Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort

Background Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Clinical epigenetics Ročník 8; číslo 1; s. 64
Hlavní autoři: Perna, Laura, Zhang, Yan, Mons, Ute, Holleczek, Bernd, Saum, Kai-Uwe, Brenner, Hermann
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 03.06.2016
BioMed Central Ltd
Springer Nature B.V
Témata:
ISSN:1868-7075, 1868-7083, 1868-7083, 1868-7075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality. Results DNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age (Δ age ) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of Δ age with cancer, cardiovascular, and all-cause mortality. Hazard ratios for Δ age (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10–1.38) for all-cause mortality, 1.22 (95 % CI 1.03–1.45) for cancer mortality, and 1.19 (95 % CI 0.98–1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for Δ age calculated using the epigenetic clock developed by Hannum. Conclusions These results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging.
AbstractList Background Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality. Results DNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age (Δ age ) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of Δ age with cancer, cardiovascular, and all-cause mortality. Hazard ratios for Δ age (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10–1.38) for all-cause mortality, 1.22 (95 % CI 1.03–1.45) for cancer mortality, and 1.19 (95 % CI 0.98–1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for Δ age calculated using the epigenetic clock developed by Hannum. Conclusions These results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging.
Background Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality. Results DNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age (Δage) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of Δage with cancer, cardiovascular, and all-cause mortality. Hazard ratios for Δage (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10-1.38) for all-cause mortality, 1.22 (95 % CI 1.03-1.45) for cancer mortality, and 1.19 (95 % CI 0.98-1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for Δage calculated using the epigenetic clock developed by Hannum. Conclusions These results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging.
Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality.BACKGROUNDPrevious studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality.DNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age (Δage) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of Δage with cancer, cardiovascular, and all-cause mortality. Hazard ratios for Δage (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10-1.38) for all-cause mortality, 1.22 (95 % CI 1.03-1.45) for cancer mortality, and 1.19 (95 % CI 0.98-1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for Δage calculated using the epigenetic clock developed by Hannum.RESULTSDNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age (Δage) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of Δage with cancer, cardiovascular, and all-cause mortality. Hazard ratios for Δage (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10-1.38) for all-cause mortality, 1.22 (95 % CI 1.03-1.45) for cancer mortality, and 1.19 (95 % CI 0.98-1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for Δage calculated using the epigenetic clock developed by Hannum.These results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging.CONCLUSIONSThese results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging.
Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality. DNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age ([DELA].sub.age) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of [DELA].sub.age with cancer, cardiovascular, and all-cause mortality. Hazard ratios for [DELA].sub.age (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10-1.38) for all-cause mortality, 1.22 (95 % CI 1.03-1.45) for cancer mortality, and 1.19 (95 % CI 0.98-1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for [DELA].sub.age calculated using the epigenetic clock developed by Hannum. These results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging.
Background Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality. Results DNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age ([DELA].sub.age) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of [DELA].sub.age with cancer, cardiovascular, and all-cause mortality. Hazard ratios for [DELA].sub.age (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10-1.38) for all-cause mortality, 1.22 (95 % CI 1.03-1.45) for cancer mortality, and 1.19 (95 % CI 0.98-1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for [DELA].sub.age calculated using the epigenetic clock developed by Hannum. Conclusions These results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging. Keywords: DNA methylation age, Epigenetic clock, Epigenetic age acceleration, Mortality risk
Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the difference between DNA methylation and chronological ages as a marker of healthy aging. The goal of this study was to confirm and expand such observations by investigating whether different concepts of the epigenetic clocks in a population-based cohort are associated with cancer, cardiovascular, and all-cause mortality. DNA methylation age was estimated in a cohort of 1863 older people, and the difference between age predicted by DNA methylation and chronological age (Δage) was calculated. A case-cohort design and weighted proportional Cox hazard models were used to estimate associations of Δage with cancer, cardiovascular, and all-cause mortality. Hazard ratios for Δage (per 5 years) calculated using the epigenetic clock developed by Horvath were 1.23 (95 % CI 1.10-1.38) for all-cause mortality, 1.22 (95 % CI 1.03-1.45) for cancer mortality, and 1.19 (95 % CI 0.98-1.43) for cardiovascular mortality after adjustment for batch effects, age, sex, educational level, history of chronic diseases, hypertension, smoking status, body mass index, and leucocyte distribution. Associations were similar but weaker for Δage calculated using the epigenetic clock developed by Hannum. These results show that age acceleration in terms of the difference between age predicted by DNA methylation and chronological age is an independent predictor of all-cause and cause-specific mortality and may be useful as a general marker of healthy aging.
ArticleNumber 64
Audience Academic
Author Saum, Kai-Uwe
Holleczek, Bernd
Zhang, Yan
Mons, Ute
Perna, Laura
Brenner, Hermann
Author_xml – sequence: 1
  givenname: Laura
  surname: Perna
  fullname: Perna, Laura
  email: l.perna@dkfz-heidelberg.de
  organization: Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ)
– sequence: 2
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ)
– sequence: 3
  givenname: Ute
  surname: Mons
  fullname: Mons, Ute
  organization: Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ)
– sequence: 4
  givenname: Bernd
  surname: Holleczek
  fullname: Holleczek, Bernd
  organization: Saarland Cancer Registry
– sequence: 5
  givenname: Kai-Uwe
  surname: Saum
  fullname: Saum, Kai-Uwe
  organization: Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ)
– sequence: 6
  givenname: Hermann
  surname: Brenner
  fullname: Brenner, Hermann
  organization: Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Network Aging Research (NAR), University of Heidelberg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27274774$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQjVARLaUfwAZFYsOCFDsP29kgVVUpSJXYwNqaOJPUlWNf7KRS-_VMuO3tQ4C9GHvmnHm_zvZ88Jhlbzk75lyJT4lXvFYF46JgZamK2xfZAelVIZmq9nZv2exnRyldMTpV27acvcr2S1nKWsr6IHNnGzuix9maHEbMwRh0GGG2weebiL01c8oNeIPxI8nY23ANySwO6A--z8G5wsCSMJ9CnMHZ-Sa3Pof8HOMEnjhkMuGSjG-ylwO4hEd38jD7-eXsx-nX4uL7-bfTk4vCCFbNBXYcpGCixqEfJKAxqutk3_HKtKppOC-lWvUCoK67XjS1wrY3TVWqvhJMVofZ563fzdJN2Bv0cwSnN9FOEG90AKufWry91GO41rVquZKCHHy4cxDDrwXTrCebqDEOPIYlaS7bRglGfSfo-2fQq7BET-VprhhrGQ2IPaBGcKitHwLFNatTfVILpVrZlCvq-C8ouj1O1tD4B0v6J4R3jwvdVXg_XwLwLcDEkFLEYQfhTK9rpLdrpClLva6RviWOfMYxdv6zEJSNdf9llltmoih-xPioF_8k_QY-utw6
CitedBy_id crossref_primary_10_1007_s11011_020_00589_0
crossref_primary_10_2147_CIA_S422371
crossref_primary_10_1093_cid_ciaa396
crossref_primary_10_1038_s41386_023_01747_5
crossref_primary_10_1177_0962280218759138
crossref_primary_10_1186_s43682_025_00033_3
crossref_primary_10_1017_S0954579418000937
crossref_primary_10_1016_j_crmeth_2023_100567
crossref_primary_10_1093_humrep_dex209
crossref_primary_10_3389_fimmu_2024_1399676
crossref_primary_10_1186_s13148_020_00840_6
crossref_primary_10_1038_tp_2017_188
crossref_primary_10_1186_s12967_022_03541_1
crossref_primary_10_3390_jpm12010110
crossref_primary_10_1080_15592294_2020_1861401
crossref_primary_10_1186_s12916_023_03067_3
crossref_primary_10_1186_s12920_019_0585_5
crossref_primary_10_1007_s10522_025_10202_5
crossref_primary_10_2217_epi_2019_0343
crossref_primary_10_1289_EHP15012
crossref_primary_10_1016_j_envres_2022_113507
crossref_primary_10_1007_s11357_021_00438_7
crossref_primary_10_1371_journal_pone_0215055
crossref_primary_10_1016_j_ynpai_2024_100170
crossref_primary_10_3390_ijerph16173074
crossref_primary_10_1093_aje_kwx291
crossref_primary_10_1186_s13148_019_0656_7
crossref_primary_10_1186_s13148_021_01112_7
crossref_primary_10_1186_s13148_023_01434_8
crossref_primary_10_1038_s41559_022_01679_1
crossref_primary_10_1186_s12874_024_02181_x
crossref_primary_10_1002_da_23279
crossref_primary_10_1007_s00414_021_02665_1
crossref_primary_10_1111_acel_12877
crossref_primary_10_1016_j_yexcr_2018_06_034
crossref_primary_10_1002_ijc_33451
crossref_primary_10_3389_fgene_2022_929416
crossref_primary_10_1016_j_biocon_2024_110570
crossref_primary_10_1177_10998004221135628
crossref_primary_10_1186_s13148_017_0438_z
crossref_primary_10_1016_j_mad_2020_111244
crossref_primary_10_1146_annurev_anthro_052721_090516
crossref_primary_10_1186_s12885_018_4884_6
crossref_primary_10_1186_s13148_018_0538_4
crossref_primary_10_1097_HRP_0000000000000300
crossref_primary_10_3390_genes14091724
crossref_primary_10_1186_s13148_021_01065_x
crossref_primary_10_1038_s41598_021_87175_1
crossref_primary_10_1038_s41467_017_02697_5
crossref_primary_10_1097_PSY_0000000000001397
crossref_primary_10_1155_2022_4524032
crossref_primary_10_3389_fgene_2021_563051
crossref_primary_10_1186_s13148_023_01468_y
crossref_primary_10_1136_jnnp_2023_332889
crossref_primary_10_1038_s41380_019_0616_9
crossref_primary_10_3390_ijms19103106
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_1186_s12920_022_01183_2
crossref_primary_10_7554_eLife_85104
crossref_primary_10_1007_s11357_025_01575_z
crossref_primary_10_1186_s13148_017_0315_9
crossref_primary_10_1038_nrneph_2017_78
crossref_primary_10_1177_01939459231208304
crossref_primary_10_1016_j_ebiom_2020_103151
crossref_primary_10_1093_ije_dyz082
crossref_primary_10_1186_s13148_021_01038_0
crossref_primary_10_1542_peds_2020_001230
crossref_primary_10_1038_s41598_019_51457_6
crossref_primary_10_1186_s13148_021_01222_2
crossref_primary_10_3389_fvets_2019_00444
crossref_primary_10_1007_s40572_018_0203_2
crossref_primary_10_1080_15592294_2023_2214394
crossref_primary_10_1080_15592294_2017_1414127
crossref_primary_10_1161_CIRCGEN_118_002089
crossref_primary_10_1186_s13072_019_0306_5
crossref_primary_10_1016_j_exger_2017_12_020
crossref_primary_10_1097_QAD_0000000000002805
crossref_primary_10_2217_epi_2020_0333
crossref_primary_10_1186_s13148_021_01174_7
crossref_primary_10_1007_s11920_017_0823_5
crossref_primary_10_1002_pmic_201900408
crossref_primary_10_3390_cells12010032
crossref_primary_10_1038_s42003_021_02935_z
crossref_primary_10_1093_ajcn_nqz326
crossref_primary_10_1016_j_mam_2022_101099
crossref_primary_10_1002_aur_2822
crossref_primary_10_1016_j_jtho_2018_10_163
crossref_primary_10_1016_j_arr_2021_101350
crossref_primary_10_1017_S0033291718001411
crossref_primary_10_1093_cid_ciac656
crossref_primary_10_1093_humrep_deaa206
crossref_primary_10_3389_fcell_2022_985274
crossref_primary_10_1016_j_ebiom_2021_103686
crossref_primary_10_1182_bloodadvances_2022009240
crossref_primary_10_7554_eLife_59479
crossref_primary_10_1002_ijc_31189
crossref_primary_10_1016_j_envres_2022_114115
crossref_primary_10_1186_s12885_025_13760_6
crossref_primary_10_1007_s00414_020_02375_0
crossref_primary_10_3389_fgene_2017_00064
crossref_primary_10_3390_antiox12030651
crossref_primary_10_1001_jamanetworkopen_2022_39796
crossref_primary_10_1038_s41398_019_0489_3
crossref_primary_10_1097_QAD_0000000000001854
crossref_primary_10_3389_fmars_2021_713373
crossref_primary_10_1016_j_mad_2022_111695
crossref_primary_10_1016_j_psyneuen_2025_107568
crossref_primary_10_1080_15592294_2020_1824097
crossref_primary_10_1093_humrep_dez149
crossref_primary_10_1007_s10815_020_01763_0
crossref_primary_10_1186_s13148_021_01035_3
crossref_primary_10_1186_s13059_019_1810_4
crossref_primary_10_1007_s11357_017_9960_3
crossref_primary_10_1111_acel_13492
crossref_primary_10_1186_s13148_024_01660_8
crossref_primary_10_1001_jamanetworkopen_2024_27889
crossref_primary_10_3389_fphys_2019_00996
crossref_primary_10_1016_j_envint_2023_108109
crossref_primary_10_1017_S2040174420000380
crossref_primary_10_1016_j_envint_2021_106683
crossref_primary_10_3389_fimmu_2021_737650
crossref_primary_10_1186_s13148_022_01249_z
crossref_primary_10_1093_ecco_jcc_jjae157
crossref_primary_10_1111_jcmm_17101
crossref_primary_10_1093_ije_dyz027
crossref_primary_10_1186_s13148_018_0481_4
crossref_primary_10_1111_acel_13366
crossref_primary_10_1016_j_biopsych_2018_09_008
crossref_primary_10_1016_j_exphem_2024_104600
crossref_primary_10_1007_s42764_024_00123_x
crossref_primary_10_1038_s41467_024_48426_7
crossref_primary_10_1186_s12916_024_03568_9
crossref_primary_10_1016_j_mad_2017_01_006
crossref_primary_10_1093_pnasnexus_pgaf121
crossref_primary_10_1002_ijc_31641
crossref_primary_10_1007_s11357_025_01796_2
crossref_primary_10_1530_REP_17_0601
crossref_primary_10_3389_fbioe_2019_00388
crossref_primary_10_1093_ptj_pzy092
crossref_primary_10_1186_s13059_016_1030_0
crossref_primary_10_1007_s11357_025_01604_x
crossref_primary_10_1093_infdis_jiaa599
crossref_primary_10_3389_fpsyt_2023_1018797
crossref_primary_10_1016_j_psyneuen_2017_08_016
crossref_primary_10_1007_s00109_022_02193_4
crossref_primary_10_1038_s41598_021_94281_7
crossref_primary_10_3389_fimmu_2018_00197
crossref_primary_10_1016_j_arr_2022_101743
crossref_primary_10_1038_s12276_024_01287_y
crossref_primary_10_1111_acel_13452
crossref_primary_10_1017_S2040174419000801
crossref_primary_10_1111_eci_13051
crossref_primary_10_1016_j_jelectrocard_2022_03_001
crossref_primary_10_1093_humrep_dead266
crossref_primary_10_17816_MAJ34959
crossref_primary_10_1093_cercor_bhac043
crossref_primary_10_1111_eci_12872
crossref_primary_10_1080_10428194_2018_1533128
crossref_primary_10_1002_cam4_5809
crossref_primary_10_1016_j_bpsgos_2025_100577
crossref_primary_10_3390_biology12010068
crossref_primary_10_1080_15592294_2020_1790924
crossref_primary_10_1007_s41999_018_0148_x
crossref_primary_10_1007_s13365_021_00947_3
crossref_primary_10_1093_infdis_jiab338
crossref_primary_10_1186_s13148_025_01872_6
crossref_primary_10_1007_s11357_022_00626_z
crossref_primary_10_1016_j_pnpbp_2018_11_011
crossref_primary_10_1016_j_neubiorev_2017_11_002
crossref_primary_10_1016_j_scitotenv_2024_175150
crossref_primary_10_3390_ijms20051254
crossref_primary_10_1016_j_jtct_2021_01_013
crossref_primary_10_1016_j_fertnstert_2020_09_009
crossref_primary_10_1177_1535370220968802
crossref_primary_10_1016_j_arr_2021_101314
crossref_primary_10_1146_annurev_biodatasci_120924_091033
crossref_primary_10_1186_s13148_023_01480_2
crossref_primary_10_3389_fmed_2018_00061
crossref_primary_10_1038_nrclinonc_2018_30
crossref_primary_10_1038_s41576_018_0004_3
crossref_primary_10_1098_rspb_2022_0635
crossref_primary_10_1161_CIRCRESAHA_124_325066
crossref_primary_10_1007_s40615_024_01915_3
crossref_primary_10_1089_rej_2018_2073
crossref_primary_10_1186_s13148_023_01464_2
crossref_primary_10_1007_s11357_021_00445_8
crossref_primary_10_1002_evan_21745
crossref_primary_10_1017_S0954579421000614
crossref_primary_10_2217_epi_2020_0049
crossref_primary_10_1038_s41598_024_60311_3
crossref_primary_10_1007_s11764_025_01803_7
crossref_primary_10_3390_biomedicines11113076
crossref_primary_10_1073_pnas_2208530119
crossref_primary_10_7554_eLife_61073
crossref_primary_10_1007_s00414_021_02650_8
crossref_primary_10_1161_CIRCGEN_122_003772
crossref_primary_10_1038_s41598_025_13175_0
crossref_primary_10_2217_epi_2020_0290
crossref_primary_10_1038_s41467_021_27754_y
crossref_primary_10_1080_15592294_2022_2080993
crossref_primary_10_1016_j_ejca_2017_01_014
crossref_primary_10_1038_s42003_024_06609_4
crossref_primary_10_1186_s13148_023_01509_6
crossref_primary_10_1093_cvr_cvaf030
crossref_primary_10_3389_fnins_2020_00605
crossref_primary_10_1016_j_cdnut_2024_104497
crossref_primary_10_1080_08880018_2022_2101722
crossref_primary_10_18632_aging_101211
crossref_primary_10_3390_ijms20174273
crossref_primary_10_1016_j_exger_2017_10_010
crossref_primary_10_1016_j_tig_2018_03_006
crossref_primary_10_1186_s13148_024_01647_5
crossref_primary_10_1007_s40471_020_00234_5
crossref_primary_10_1016_j_jaci_2019_01_034
crossref_primary_10_1016_j_tig_2024_08_008
crossref_primary_10_1007_s10815_020_01739_0
crossref_primary_10_1186_s13073_024_01387_4
crossref_primary_10_1002_mnfr_201800092
crossref_primary_10_1093_aje_kwz193
crossref_primary_10_1080_15592294_2020_1734148
crossref_primary_10_1016_j_ajog_2023_10_005
crossref_primary_10_1161_ATVBAHA_122_317332
crossref_primary_10_3389_fgene_2022_934519
crossref_primary_10_1186_s13148_020_0822_y
crossref_primary_10_1007_s11357_024_01414_7
crossref_primary_10_1080_17501911_2024_2340958
crossref_primary_10_1093_ajcn_nqab307
crossref_primary_10_1111_joim_13528
crossref_primary_10_1016_j_ijcha_2025_101670
crossref_primary_10_1080_15592294_2021_1939479
crossref_primary_10_1186_s13148_020_00977_4
crossref_primary_10_1007_s12603_022_1773_0
crossref_primary_10_1177_23337214211046419
crossref_primary_10_1007_s11357_017_0001_z
crossref_primary_10_1007_s11357_019_00149_0
crossref_primary_10_1016_j_molcel_2018_08_008
crossref_primary_10_1016_j_arr_2024_102552
crossref_primary_10_1016_j_jhep_2022_08_042
crossref_primary_10_1007_s11357_024_01138_8
crossref_primary_10_1038_ncomms15353
crossref_primary_10_1002_bies_201700055
crossref_primary_10_1093_biolre_ioab241
crossref_primary_10_1016_j_jad_2019_06_032
crossref_primary_10_1093_geront_gny136
crossref_primary_10_1093_ajcn_nqab318
crossref_primary_10_1007_s10522_023_10077_4
crossref_primary_10_1016_j_biopsycho_2021_108021
crossref_primary_10_2174_1381612825666191112095655
crossref_primary_10_1016_j_ijrobp_2021_04_002
crossref_primary_10_1186_s13148_020_00905_6
crossref_primary_10_1016_j_envint_2016_12_024
crossref_primary_10_1186_s13148_018_0443_x
crossref_primary_10_1289_EHP10174
crossref_primary_10_1007_s10815_021_02326_7
crossref_primary_10_1007_s10522_017_9695_7
crossref_primary_10_1136_bmjopen_2024_093052
crossref_primary_10_1038_s41598_017_09235_9
crossref_primary_10_1186_s13148_019_0767_1
crossref_primary_10_1038_s41576_022_00511_7
crossref_primary_10_1111_acel_14079
crossref_primary_10_1093_advances_nmz046
crossref_primary_10_1182_blood_2018_02_831347
crossref_primary_10_1093_ageing_afae038
crossref_primary_10_1186_s13059_019_1824_y
crossref_primary_10_1093_aje_kwad172
crossref_primary_10_1016_j_atherosclerosis_2017_05_022
crossref_primary_10_1016_j_jaac_2024_04_019
crossref_primary_10_3390_cells11030468
crossref_primary_10_3390_ijerph16173141
crossref_primary_10_1039_D1NR07725B
crossref_primary_10_1016_j_etap_2018_08_018
crossref_primary_10_1016_j_pharmthera_2018_11_001
crossref_primary_10_1016_j_socscimed_2023_116088
crossref_primary_10_1161_CIRCGEN_117_001937
crossref_primary_10_3390_life15010013
crossref_primary_10_1016_j_arr_2021_101488
crossref_primary_10_1186_s13059_022_02603_3
crossref_primary_10_1089_rej_2017_2024
crossref_primary_10_1038_s41598_023_49064_7
crossref_primary_10_2217_epi_2018_0130
crossref_primary_10_1007_s10549_017_4218_4
crossref_primary_10_1016_j_ebiom_2017_03_046
crossref_primary_10_1097_PSY_0000000000001028
crossref_primary_10_1134_S0006297924602843
crossref_primary_10_1186_s12877_021_02391_8
crossref_primary_10_1186_s13148_021_01138_x
crossref_primary_10_1016_j_mad_2021_111616
crossref_primary_10_3390_genes8060152
crossref_primary_10_3390_cells11050767
crossref_primary_10_1007_s11357_024_01406_7
crossref_primary_10_1164_rccm_201708_1659OC
crossref_primary_10_1001_jamanetworkopen_2024_21824
crossref_primary_10_1016_j_isci_2025_113181
crossref_primary_10_1111_acel_12799
crossref_primary_10_1007_s11912_016_0557_2
crossref_primary_10_1016_j_fsigen_2023_102871
crossref_primary_10_1016_j_tem_2023_09_007
crossref_primary_10_3390_microorganisms10030668
crossref_primary_10_1093_jnci_djz020
crossref_primary_10_1186_s13148_020_00834_4
crossref_primary_10_1016_j_cct_2021_106289
crossref_primary_10_3390_biomedicines12091985
crossref_primary_10_1186_s13148_017_0349_z
crossref_primary_10_1371_journal_pone_0236045
crossref_primary_10_1016_j_envres_2025_121347
crossref_primary_10_1016_j_jcmg_2024_03_001
crossref_primary_10_3390_ijms20082022
crossref_primary_10_1038_s41398_019_0446_1
crossref_primary_10_1001_jamanetworkopen_2020_15428
crossref_primary_10_1016_j_numecd_2017_12_006
crossref_primary_10_3389_fgene_2019_00107
crossref_primary_10_1089_rej_2020_2379
crossref_primary_10_1016_j_jadohealth_2024_10_012
crossref_primary_10_1136_gutjnl_2020_322166
crossref_primary_10_1161_STROKEAHA_121_037419
crossref_primary_10_1016_j_mad_2018_01_002
crossref_primary_10_1093_cid_ciaa1371
crossref_primary_10_1172_JCI158446
crossref_primary_10_1016_j_psyneuen_2018_07_007
crossref_primary_10_1007_s11357_020_00249_2
crossref_primary_10_1016_j_jgo_2023_101655
crossref_primary_10_1016_j_semcancer_2024_08_003
crossref_primary_10_1097_PSY_0000000000001007
crossref_primary_10_1016_j_envint_2024_108581
crossref_primary_10_1007_s10522_020_09874_y
crossref_primary_10_1186_s12940_021_00717_y
crossref_primary_10_1007_s11357_022_00560_0
crossref_primary_10_1097_CM9_0000000000001723
crossref_primary_10_1016_j_arr_2024_102227
crossref_primary_10_1016_j_envint_2018_01_019
crossref_primary_10_1289_EHP11981
crossref_primary_10_1097_YCO_0000000000000473
crossref_primary_10_1002_mef2_50
crossref_primary_10_1007_s10522_022_09985_8
crossref_primary_10_1038_s41467_024_54721_0
crossref_primary_10_1016_j_arr_2023_102044
crossref_primary_10_1172_JCI158452
crossref_primary_10_1186_s13148_021_01028_2
crossref_primary_10_1186_s13148_021_01082_w
Cites_doi 10.1111/acel.12421
10.1016/j.molcel.2012.10.016
10.1093/hmg/ddt531
10.1093/ije/dyu277
10.1093/hmg/ddt375
10.1186/s13059-015-0584-6
10.1186/1742-5573-4-15
10.1111/acel.12325
10.1016/j.ebiom.2016.02.008
10.1186/gb-2013-14-10-r115
10.18632/aging.100809
10.18632/aging.100861
10.18632/aging.100864
10.1159/000380881
10.1093/nar/16.3.1215
10.1172/JCI69735
10.1186/s13148-016-0186-5
10.1093/bioinformatics/btu029
10.18632/aging.100908
ContentType Journal Article
Copyright Perna et al. 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: Perna et al. 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/s13148-016-0228-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1868-7083
1868-7075
ExternalDocumentID PMC4891876
4106065321
A468897520
27274774
10_1186_s13148_016_0228_z
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
0R~
2JY
4.4
53G
5C9
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
EN4
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HF~
HMCUK
HYE
HZ~
IAO
IHR
INH
INR
ITC
KOV
KQ8
LK8
M1P
M48
M7P
O9I
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
QOS
R9I
RBZ
RNS
ROL
RPM
RSV
S27
SBL
SOJ
T13
U2A
UKHRP
WK8
AAYXX
AFFHD
CITATION
-A0
2VQ
3V.
AAYZH
ACRMQ
ADINQ
AGJBK
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
IPNFZ
M~E
NPM
O9-
RIG
S1Z
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c603t-eb1a76064efdf7aecc8bb7db13c985511278f7ae6aa44bd6548e9dc5328d36073
IEDL.DBID RSV
ISICitedReferencesCount 417
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377202200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-7075
1868-7083
IngestDate Tue Nov 04 02:03:21 EST 2025
Thu Sep 04 20:21:24 EDT 2025
Tue Oct 14 12:41:03 EDT 2025
Tue Nov 11 10:44:25 EST 2025
Tue Nov 04 18:00:24 EST 2025
Thu Jan 02 22:22:45 EST 2025
Sat Nov 29 06:11:45 EST 2025
Tue Nov 18 21:33:46 EST 2025
Sat Sep 06 07:30:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epigenetic clock
DNA methylation age
Mortality risk
Epigenetic age acceleration
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-eb1a76064efdf7aecc8bb7db13c985511278f7ae6aa44bd6548e9dc5328d36073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13148-016-0228-z
PMID 27274774
PQID 1800900160
PQPubID 2040146
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4891876
proquest_miscellaneous_1795860022
proquest_journals_1800900160
gale_infotracmisc_A468897520
gale_infotracacademiconefile_A468897520
pubmed_primary_27274774
crossref_primary_10_1186_s13148_016_0228_z
crossref_citationtrail_10_1186_s13148_016_0228_z
springer_journals_10_1186_s13148_016_0228_z
PublicationCentury 2000
PublicationDate 2016-06-03
PublicationDateYYYYMMDD 2016-06-03
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-03
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
PublicationSubtitle The official journal of the Clinical Epigenetics Society
PublicationTitle Clinical epigenetics
PublicationTitleAbbrev Clin Epigenet
PublicationTitleAlternate Clin Epigenetics
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References D Simmons (228_CR1) 2008; 1
S Horvath (228_CR5) 2013; 14
RE Marioni (228_CR11) 2015; 44
S Horvath (228_CR13) 2015; 14
SA Miller (228_CR17) 1988; 16
S Horvath (228_CR6) 2015; 7
228_CR15
I Florath (228_CR18) 2014; 23
ME Levine (228_CR12) 2015; 7
Q Lin (228_CR9) 2016; 8
KU Saum (228_CR16) 2015; 61
S Kulathinal (228_CR19) 2007; 4
S Lenzi (228_CR21) 1986
L Christiansen (228_CR8) 2016; 15
G Hannum (228_CR4) 2013; 49
RE Marioni (228_CR7) 2015; 16
EA Houseman (228_CR20) 2014; 30
JP Issa (228_CR3) 2014; 124
AE Teschendorff (228_CR2) 2013; 22
ME Levine (228_CR14) 2016; 7
LP Breitling (228_CR10) 2016; 8
24163245 - Hum Mol Genet. 2014 Mar 1;23(5):1186-201
23918660 - Hum Mol Genet. 2013 Oct 15;22(R1):R7-R15
26684672 - Aging (Albany NY). 2015 Dec;7(12 ):1198-211
18053196 - Epidemiol Perspect Innov. 2007 Dec 04;4:15
27077113 - EBioMedicine. 2016 Feb 08;5:68-73
26411804 - Aging (Albany NY). 2015 Sep;7(9):690-700
26928272 - Aging (Albany NY). 2016 Feb;8(2):394-401
26594032 - Aging Cell. 2016 Feb;15(1):149-54
24382386 - J Clin Invest. 2014 Jan;124(1):24-9
25924722 - Gerontology. 2015;61(5):407-15
26678252 - Aging (Albany NY). 2015 Dec;7(12 ):1159-70
25633388 - Genome Biol. 2015 Jan 30;16:25
23177740 - Mol Cell. 2013 Jan 24;49(2):359-67
24138928 - Genome Biol. 2013;14(10):R115
3344216 - Nucleic Acids Res. 1988 Feb 11;16(3):1215
24451622 - Bioinformatics. 2014 May 15;30(10):1431-9
26925173 - Clin Epigenetics. 2016 Feb 26;8:21
25678027 - Aging Cell. 2015 Jun;14(3):491-5
25617346 - Int J Epidemiol. 2015 Aug;44(4):1388-96
References_xml – volume: 15
  start-page: 149
  year: 2016
  ident: 228_CR8
  publication-title: Aging Cell
  doi: 10.1111/acel.12421
– volume: 49
  start-page: 359
  year: 2013
  ident: 228_CR4
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.016
– volume: 23
  start-page: 1186
  year: 2014
  ident: 228_CR18
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt531
– volume: 44
  start-page: 1388
  year: 2015
  ident: 228_CR11
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyu277
– volume: 22
  start-page: R7
  year: 2013
  ident: 228_CR2
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt375
– volume-title: Atherosclerosis and cardiovascular diseases
  year: 1986
  ident: 228_CR21
– volume: 16
  start-page: 25
  year: 2015
  ident: 228_CR7
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0584-6
– volume: 4
  start-page: 15
  year: 2007
  ident: 228_CR19
  publication-title: Epidemiol Perspect Innov
  doi: 10.1186/1742-5573-4-15
– volume: 14
  start-page: 491
  year: 2015
  ident: 228_CR13
  publication-title: Aging Cell
  doi: 10.1111/acel.12325
– ident: 228_CR15
  doi: 10.1016/j.ebiom.2016.02.008
– volume: 14
  start-page: R115
  year: 2013
  ident: 228_CR5
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-10-r115
– volume: 7
  start-page: 690
  year: 2016
  ident: 228_CR14
  publication-title: Aging
  doi: 10.18632/aging.100809
– volume: 7
  start-page: 1159
  year: 2015
  ident: 228_CR6
  publication-title: Aging
  doi: 10.18632/aging.100861
– volume: 7
  start-page: 1198
  year: 2015
  ident: 228_CR12
  publication-title: Aging
  doi: 10.18632/aging.100864
– volume: 61
  start-page: 407
  year: 2015
  ident: 228_CR16
  publication-title: Gerontology
  doi: 10.1159/000380881
– volume: 16
  start-page: 1215
  year: 1988
  ident: 228_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/16.3.1215
– volume: 124
  start-page: 24
  year: 2014
  ident: 228_CR3
  publication-title: J Clin Invest
  doi: 10.1172/JCI69735
– volume: 8
  start-page: 21
  year: 2016
  ident: 228_CR10
  publication-title: Clin Epigenetics
  doi: 10.1186/s13148-016-0186-5
– volume: 1
  start-page: 6
  year: 2008
  ident: 228_CR1
  publication-title: Nat Educ
– volume: 30
  start-page: 1431
  year: 2014
  ident: 228_CR20
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu029
– volume: 8
  start-page: 394
  year: 2016
  ident: 228_CR9
  publication-title: Aging
  doi: 10.18632/aging.100908
– reference: 18053196 - Epidemiol Perspect Innov. 2007 Dec 04;4:15
– reference: 24163245 - Hum Mol Genet. 2014 Mar 1;23(5):1186-201
– reference: 27077113 - EBioMedicine. 2016 Feb 08;5:68-73
– reference: 26678252 - Aging (Albany NY). 2015 Dec;7(12 ):1159-70
– reference: 25617346 - Int J Epidemiol. 2015 Aug;44(4):1388-96
– reference: 26594032 - Aging Cell. 2016 Feb;15(1):149-54
– reference: 24382386 - J Clin Invest. 2014 Jan;124(1):24-9
– reference: 23177740 - Mol Cell. 2013 Jan 24;49(2):359-67
– reference: 23918660 - Hum Mol Genet. 2013 Oct 15;22(R1):R7-R15
– reference: 25924722 - Gerontology. 2015;61(5):407-15
– reference: 25633388 - Genome Biol. 2015 Jan 30;16:25
– reference: 26925173 - Clin Epigenetics. 2016 Feb 26;8:21
– reference: 26684672 - Aging (Albany NY). 2015 Dec;7(12 ):1198-211
– reference: 24138928 - Genome Biol. 2013;14(10):R115
– reference: 24451622 - Bioinformatics. 2014 May 15;30(10):1431-9
– reference: 26411804 - Aging (Albany NY). 2015 Sep;7(9):690-700
– reference: 3344216 - Nucleic Acids Res. 1988 Feb 11;16(3):1215
– reference: 26928272 - Aging (Albany NY). 2016 Feb;8(2):394-401
– reference: 25678027 - Aging Cell. 2015 Jun;14(3):491-5
SSID ssj0000399910
Score 2.557301
Snippet Background Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested...
Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested the...
Background Previous studies have developed models predicting methylation age from DNA methylation in blood and other tissues (epigenetic clock) and suggested...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Aged
Aging
Aging (Biology)
Aging - genetics
Biomedical and Life Sciences
Biomedicine
Biorhythms
Blood - metabolism
Cardiovascular Diseases - genetics
Cause of Death
Cohort Studies
development
Disease susceptibility
Epigenesis, Genetic
Epigenetic inheritance
Female
Gene Function
Genetic aspects
Health aspects
Human Genetics
Humans
imprinting and reproductive epigenetics
Leukocyte Count
Male
Middle Aged
Mortality
Neoplasms - genetics
Proportional Hazards Models
Risk Factors
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0VPDF74_qKREEQS9c26RJ-iSH3OnTcQ8Khy8lTbK4sHbXtuvD_fXOpN11u-C9CAvd3SQl7UxmfpmZzAC8LY2XKguGK5SEXNba8RphBn6bqdSp3DuXxmIT-vzcXF6WF6PBrRvDKjcyMQpqv3RkIz_OENmUsSryx9UvTlWjyLs6ltC4CbcoS4KIoXsXWxtLKgj-xDORRhmuEW6Mjk38fdxlgqxpeEtOSWD41UQ17QvoHQ21Hz2550KNmuns_v8-0wO4N2JSdjIw0UO4EZpHcOf7MlrcH8PidEUpO-m0I0Ppw6xzqKsGzmGrljw9fcccsU97hNfdANcjZhvP7GLBnV13gf2MaB-RP5s3zLLPpBcaHINNVKq37Z_At7PTr5--8LFIA3cqFT1HWW817oJkmPmZtsgRpq61rzPhSlMQnNOG_lfWSll7KlMfSu8KkRsvFAqYp3DQLJvwHJi3ATd_VjrpBe4aM4JGaRAyuEwVhVcJpBv6VG7MYE6FNBZV3MkYVQ0krShqjUhaXSXwfjtkNaTvuK7zOyJ6RUsb7-vseEIBZ0dJsqoTqYwpdZGnCRxOeuKSdNPmDb2rUSR01V9iJ_Bm20wjKcytCcs19tFlYchTmifwbOCy7bRzTQYELRPQE_7bdqBE4dOWZv4jJgyXpsxQ6yXwYcOpO9P619t4cf1DvIS7eVw6-BGHcNC36_AKbrvf_bxrX8d1-Ack2zj9
  priority: 102
  providerName: ProQuest
Title Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort
URI https://link.springer.com/article/10.1186/s13148-016-0228-z
https://www.ncbi.nlm.nih.gov/pubmed/27274774
https://www.proquest.com/docview/1800900160
https://www.proquest.com/docview/1795860022
https://pubmed.ncbi.nlm.nih.gov/PMC4891876
Volume 8
WOSCitedRecordID wos000377202200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1868-7083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399910
  issn: 1868-7075
  databaseCode: RBZ
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1868-7083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399910
  issn: 1868-7075
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1868-7083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399910
  issn: 1868-7075
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1868-7083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399910
  issn: 1868-7075
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1868-7083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399910
  issn: 1868-7075
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1868-7083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399910
  issn: 1868-7075
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-7083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399910
  issn: 1868-7075
  databaseCode: RSV
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1ri9NAcPDuFO6L70f0LCsIgl4wj83u5uMpPfWDpZwPql_CZneLhV5aktQP9-ud2aSlLSoohCZkZ8N2d147MzsD8DxXlovYqVAgJwx5KU1YopqBT1MRGZFYYyJfbEKORmoyycf9Oe5mHe2-dkl6Tu3JWonXTZyS8QtVlJBytoRXB3CE0k4RNV58-roxrEQp6Tz-IKQSKpQoE3tv5m-_siOP9rnylljaD5nc85t6cXR-67_-yG242Wuf7KxDlztwzVV34cb3hbet34P5cEnJOelcI0M-w7QxKJU6HGHLmnw6bcMMIUp9ivftUNZTpivL9HweGr1qHLv0ej3q-GxWMc3ekQSosA82UVHeur0PX86Hn9--D_tyDKERUdqGyNW1xP0Od1M7lRrXXpWltGWcmlxlpLhJRe-F1pyXlgrSu9yaLE2UTQWykgdwWC0q9wiY1Q63eZobblPcH8akBEUu5c7EIsusCCBaL0ph-lzlVDJjXvg9ixJFN4kFxafRJBZXAbzcdFl2iTr-BvyCVrogIsbvGt2fRcDRUTqs4owLpXKZJVEAJzuQSHxmt3mNK0VP_E0RoxKe-wLeATzbNFNPCmir3GKFMDLPFPlEkwAedqi1GXYiyVQgeQByB-k2AJQSfLelmv3wqcG5ymOUbwG8WqPe1rD-NBuP_wn6CRwnHnfxSk_gsK1X7ilcNz_bWVMP4EBOpP9VAzh6MxyNLwbezjGgqNoxvht_-Dj-NvA0-wsuOzZ8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NAYIXvj8CA4wEQoJZy6ftPCA0wcamjWoPQ5r2EhzbFZVKWpoWxP4o_kbunKS0ldjbHpAqpa3tyE5-9-U73wG8yJVNReQUF8gJeVpKw0tUM_BbX4RGxNaY0BebkL2eOjnJj9bgd3cWhsIqO57oGbUdGdoj34pQs8l9VeR34--cqkaRd7UrodHA4sD9-okmW_12_wO-35dxvLtz_H6Pt1UFuBFhMuXInLREtT11fduXGpegylLaMkpMrjLSP6Si_4XWaVpaqqvucmuyJFY2EUgReN9LcBnViFj5UMGj-Z5OmJC65c9gKqG4RPWmdaTi7606Smj3DpfAKekMP1sShasCYUEirkZrrrhsvSTcvfm_PcNbcKPVudl2QyS3Yc1Vd-Dq6ch7FO7CcGdMKUnpNCdD7sq0MSiLG8pg4wl5sqY1M0Qek028LgbwbjJdWaaHQ270rHbsm7dm0LJhg4pp9pHkXoVjsIlKEU-m9-DzhSz1PqxXo8o9BGa1Q-NWpya1CVrFEal-oUtSZyKRZVYEEHZ4KEyboZ0KhQwLb6kpUTQQKigqjyBUnAXwej5k3KQnOa_zKwJZQawL72t0ewIDZ0dJwIrtVCiVyywOA9hY6oksxyw3d_gqWpZXF3_BFcDzeTONpDC-yo1m2EfmmSJPcBzAgwbV82nHkjZIZBqAXML7vAMlQl9uqQZffUL0VOURSvUA3nSUsTCtfz2NR-cv4hlc2zv-dFgc7vcOHsP12JMtfpINWJ9OZu4JXDE_poN68tTzAAZfLppg_gDZOZdo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEB_01MMvvh_VUyMIgl65PtIk_XjorYqyHPjg8EtIkywu7HWXtuuH--ud6YvdRQURFro0k5Kmk5nfZCYzAC9y5biIvQoFSsKQF9KGBcIM_DcTkRWJszZqi03I6VSdneWnfZ3Teoh2H1yS3ZkGytJUNkcrN-uWuBJHdZzSRhjClZDyt4QXl-EKp5pBZK5__jZuskQp4Z_2UKQSKpSoH3vP5m-fsqWbdiX0horaDZ_c8aG2qmly879f6hbc6FEpO-7Y6DZc8uUduPZ92e6534XFyYqSdtJ5R4byhxlrUVt1vMNWFfl6mppZYqDqEK-bIa6HzJSOmcUitGZde3be4n3E_mxeMsPekWYosQ82UbHeqrkHXycnX968D_syDaEVUdqEKO2NRDuI-5mbSYM8oYpCuiJOba4yAnRS0X1hDOeFo0L1Pnc2SxPlUoEi5j7slcvSPwTmjEfzz3DLXYp2Y0zgKPIp9zYWWeZEANHwgbTtc5hTKY2Fbm0ZJXQ3iZri1mgS9UUAr8Yuqy6Bx9-IX9JX17S48bnW9GcUcHSUJksfc6FULrMkCuBgixIXpd1uHvhG90Kh1jGC87wt7B3A87GZelKgW-mXa6SReabIV5oE8KBjs3HYiaQtBMkDkFsMOBJQqvDtlnL-o00ZzlUeo94L4PXAhhvD-tNsPPon6mewf_p2oj99mH58DNeTlo3xlx7AXlOt_RO4an8287p62i7RXyg8Oz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+age+acceleration+predicts+cancer%2C+cardiovascular%2C+and+all-cause+mortality+in+a+German+case+cohort&rft.jtitle=Clinical+epigenetics&rft.au=Perna%2C+Laura&rft.au=Zhang%2C+Yan&rft.au=Mons%2C+Ute&rft.au=Holleczek%2C+Bernd&rft.date=2016-06-03&rft.pub=BioMed+Central&rft.issn=1868-7075&rft.eissn=1868-7083&rft.volume=8&rft_id=info:doi/10.1186%2Fs13148-016-0228-z&rft_id=info%3Apmid%2F27274774&rft.externalDocID=PMC4891876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-7075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-7075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-7075&client=summon