Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning

Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical intervention, or analysis of the remaining muscle strength in a wearer of an assistive device. The ability to estimate joint torque during daily ac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Ročník 30; s. 600 - 609
Hlavní autoři: Zhang, Longbin, Soselia, Davit, Wang, Ruoli, Gutierrez-Farewik, Elena M.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical intervention, or analysis of the remaining muscle strength in a wearer of an assistive device. The ability to estimate joint torque during daily activities using wearable sensors is increasingly relevant in such settings. In this study, lower limb joint torques during ten daily activities were predicted by long short-term memory (LSTM) neural networks and transfer learning. LSTM models were trained with muscle electromyography signals and lower limb joint angles. Hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsiflexion/plantarflexion torques were predicted. The LSTM models' performance in predicting torque was investigated in both intra-subject and inter-subject scenarios. Each scenario was further divided into intra-task and inter-task tests. We observed that LSTM models could predict lower limb joint torques during various activities accurately with relatively low error (root mean square error ≤ 0.14 Nm/kg, normalized root mean square error ≤ 8.7%) either through a uniform model or through ten separate models in intra-subject tests. Furthermore, a transfer learning technique was adopted in the inter-task and inter-subject tests to further improve the generalizability of LSTM models by pre-training a model on multiple subjects and/or tasks and transferring the learned knowledge to a target task/subject. Particularly in the inter-subject tests, we could predict joint torques accurately in several movements after training from only a few movements from new subjects.
AbstractList Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical intervention, or analysis of the remaining muscle strength in a wearer of an assistive device. The ability to estimate joint torque during daily activities using wearable sensors is increasingly relevant in such settings. In this study, lower limb joint torques during ten daily activities were predicted by long short-term memory (LSTM) neural networks and transfer learning. LSTM models were trained with muscle electromyography signals and lower limb joint angles. Hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsiflexion/plantarflexion torques were predicted. The LSTM models' performance in predicting torque was investigated in both intra-subject and inter-subject scenarios. Each scenario was further divided into intra-task and inter-task tests. We observed that LSTM models could predict lower limb joint torques during various activities accurately with relatively low error (root mean square error ≤ 0.14 Nm/kg, normalized root mean square error ≤ 8.7%) either through a uniform model or through ten separate models in intra-subject tests. Furthermore, a transfer learning technique was adopted in the inter-task and inter-subject tests to further improve the generalizability of LSTM models by pre-training a model on multiple subjects and/or tasks and transferring the learned knowledge to a target task/subject. Particularly in the inter-subject tests, we could predict joint torques accurately in several movements after training from only a few movements from new subjects.
Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical intervention, or analysis of the remaining muscle strength in a wearer of an assistive device. The ability to estimate joint torque during daily activities using wearable sensors is increasingly relevant in such settings. In this study, lower limb joint torques during ten daily activities were predicted by long short-term memory (LSTM) neural networks and transfer learning. LSTM models were trained with muscle electromyography signals and lower limb joint angles. Hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsiflexion/plantarflexion torques were predicted. The LSTM models' performance in predicting torque was investigated in both intra-subject and inter-subject scenarios. Each scenario was further divided into intra-task and inter-task tests. We observed that LSTM models could predict lower limb joint torques during various activities accurately with relatively low error (root mean square error ≤ 0.14 Nm/kg, normalized root mean square error ≤ 8.7%) either through a uniform model or through ten separate models in intra-subject tests. Furthermore, a transfer learning technique was adopted in the inter-task and inter-subject tests to further improve the generalizability of LSTM models by pre-training a model on multiple subjects and/or tasks and transferring the learned knowledge to a target task/subject. Particularly in the inter-subject tests, we could predict joint torques accurately in several movements after training from only a few movements from new subjects.Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical intervention, or analysis of the remaining muscle strength in a wearer of an assistive device. The ability to estimate joint torque during daily activities using wearable sensors is increasingly relevant in such settings. In this study, lower limb joint torques during ten daily activities were predicted by long short-term memory (LSTM) neural networks and transfer learning. LSTM models were trained with muscle electromyography signals and lower limb joint angles. Hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsiflexion/plantarflexion torques were predicted. The LSTM models' performance in predicting torque was investigated in both intra-subject and inter-subject scenarios. Each scenario was further divided into intra-task and inter-task tests. We observed that LSTM models could predict lower limb joint torques during various activities accurately with relatively low error (root mean square error ≤ 0.14 Nm/kg, normalized root mean square error ≤ 8.7%) either through a uniform model or through ten separate models in intra-subject tests. Furthermore, a transfer learning technique was adopted in the inter-task and inter-subject tests to further improve the generalizability of LSTM models by pre-training a model on multiple subjects and/or tasks and transferring the learned knowledge to a target task/subject. Particularly in the inter-subject tests, we could predict joint torques accurately in several movements after training from only a few movements from new subjects.
Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical intervention, or analysis of the remaining muscle strength in a wearer of an assistive device. The ability to estimate joint torque during daily activities using wearable sensors is increasingly relevant in such settings. In this study, lower limb joint torques during ten daily activities were predicted by long short-term memory (LSTM) neural networks and transfer learning. LSTM models were trained with muscle electromyography signals and lower limb joint angles. Hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsiflexion/plantarflexion torques were predicted. The LSTM models' performance in predicting torque was investigated in both intra-subject and inter-subject scenarios. Each scenario was further divided into intra-task and inter-task tests. We observed that LSTM models could predict lower limb joint torques during various activities accurately with relatively low error (root mean square error <= 0.14 Nm/kg, normalized root mean square error <= 8.7%) either through a uniform model or through ten separate models in intra-subject tests. Furthermore, a transfer learning technique was adopted in the inter-task and inter-subject tests to further improve the generalizability of LSTM models by pre-training a model on multiple subjects and/or tasks and transferring the learned knowledge to a target task/subject. Particularly in the inter-subject tests, we could predict joint torques accurately in several movements after training from only a few movements from new subjects.
Author Soselia, Davit
Zhang, Longbin
Wang, Ruoli
Gutierrez-Farewik, Elena M.
Author_xml – sequence: 1
  givenname: Longbin
  orcidid: 0000-0001-8785-5885
  surname: Zhang
  fullname: Zhang, Longbin
  organization: Department of Engineering Mechanics, KTH MoveAbility Laboratory, KTH BioMEx Center, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 2
  givenname: Davit
  surname: Soselia
  fullname: Soselia, Davit
  organization: Department of Engineering Mechanics, KTH MoveAbility Laboratory, KTH BioMEx Center, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 3
  givenname: Ruoli
  orcidid: 0000-0002-2232-5258
  surname: Wang
  fullname: Wang, Ruoli
  organization: Department of Engineering Mechanics, KTH MoveAbility Laboratory, KTH BioMEx Center, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 4
  givenname: Elena M.
  orcidid: 0000-0001-5417-5939
  surname: Gutierrez-Farewik
  fullname: Gutierrez-Farewik, Elena M.
  email: lanie@kth.se
  organization: Department of Engineering Mechanics, KTH MoveAbility Laboratory, KTH BioMEx Center, KTH Royal Institute of Technology, Stockholm, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35239487$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310875$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNp9kklvFDEQhVsoiCzwB0BCLXHh0oP35RiFAEFNQMyEq-X2EjzpaQ92t0b8ezxLIpFDTlWyvvfKqnqn1dEQB1dVryGYQQjkh8X1_OflDAGEZhhSxgV7Vp1ASkUDEARH2x6ThmAEjqvTnJcAQM4of1EdY4qwJIKfVPM2blxq2rDq6q8xDGO9iOnP5OofydlgxhCH-iaH4bZu54tv9bWbku5LGTcx3eVaD7ZeJD1k71LdOp2Ggr6snnvdZ_fqUM-qm0-Xi4svTfv989XFedsYBvDYWOAwwZY4DawV0HfeS0FJx433AtKuM6JjHjIqvLQd58xzZoDFxkhBONX4rLra-9qol2qdwkqnvyrqoHYPMd0qncZgeqfKIG-9wdpBQiwRwnAPUEcFc9II2xWvZu-VN249df-5HZ7uSucUoxJL9CT_Mfw6302_G38rDIHgtPDv9_w6xbLePKpVyMb1vR5cnLJCDDNIKJeyoO8eocs4paFsslAESlk2sjV8e6CmbuXswwfuT1sAsQdMijkn55UJo94edEw69AoCtU2R2qVIbVOkDikqUvRIeu_-pOjNXhSccw8CyRGHgOB_Ld7Sow
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3488052
crossref_primary_10_1109_ACCESS_2025_3591227
crossref_primary_10_1111_exsy_13659
crossref_primary_10_1109_TIM_2022_3225023
crossref_primary_10_1109_TII_2024_3353823
crossref_primary_10_3390_s24134217
crossref_primary_10_1016_j_compbiomed_2023_107124
crossref_primary_10_1109_TNSRE_2024_3349639
crossref_primary_10_1016_j_ijhydene_2024_06_282
crossref_primary_10_1109_TNSRE_2023_3315373
crossref_primary_10_1109_TIM_2024_3480203
crossref_primary_10_3390_s23063331
crossref_primary_10_1016_j_bspc_2024_106188
crossref_primary_10_1109_TNSRE_2024_3495530
crossref_primary_10_1109_JSEN_2024_3352005
crossref_primary_10_1145_3699768
crossref_primary_10_1109_TNSRE_2023_3295453
crossref_primary_10_1016_j_neucom_2025_130884
crossref_primary_10_1177_16878132241278508
crossref_primary_10_1016_j_bspc_2024_106551
crossref_primary_10_1088_1741_2552_accd22
crossref_primary_10_1016_j_cmpb_2023_107848
crossref_primary_10_1016_j_bspc_2023_105103
crossref_primary_10_1016_j_bspc_2025_108612
crossref_primary_10_3390_electronics11233848
crossref_primary_10_3390_s24092792
crossref_primary_10_3390_s23239576
crossref_primary_10_1016_j_engappai_2023_107761
crossref_primary_10_1109_ACCESS_2024_3414175
crossref_primary_10_3390_s24227301
crossref_primary_10_3390_s24010211
crossref_primary_10_1109_JSEN_2025_3576709
crossref_primary_10_1109_JSEN_2024_3521896
crossref_primary_10_1186_s12984_024_01398_7
crossref_primary_10_1002_cpe_70248
crossref_primary_10_1016_j_clinbiomech_2023_106074
crossref_primary_10_1016_j_joca_2024_02_891
crossref_primary_10_1109_TNSRE_2024_3515966
crossref_primary_10_1016_j_compbiomed_2024_108016
crossref_primary_10_1007_s42452_025_07198_5
crossref_primary_10_1016_j_bspc_2024_106245
crossref_primary_10_1007_s42044_025_00267_3
crossref_primary_10_1007_s11517_023_03011_w
crossref_primary_10_1109_TIM_2024_3384565
crossref_primary_10_1016_j_bspc_2025_108282
crossref_primary_10_1177_09544062251332155
crossref_primary_10_3390_pr12050924
crossref_primary_10_1016_j_jbiomech_2024_111997
crossref_primary_10_1016_j_ijmecsci_2025_110519
crossref_primary_10_1016_j_robot_2025_105178
Cites_doi 10.1016/j.neunet.2020.07.033
10.1016/j.jbiomech.2019.109533
10.1109/BioRob49111.2020.9224286
10.1016/j.jbiomech.2021.110698
10.3389/fnbot.2018.00016
10.1109/TBME.2017.2704085
10.1146/annurev.bioeng.3.1.245
10.1310/sci1701-16
10.1162/neco.1997.9.8.1735
10.1016/j.medengphy.2007.05.005
10.3390/s20247127
10.1016/j.gaitpost.2019.04.015
10.1109/TBME.2016.2538296
10.1109/TMI.2016.2528162
10.1109/TCYB.2015.2422785
10.1016/j.jbiomech.2009.01.033
10.21105/joss.00568
10.1080/10255840701552036
10.1016/j.jbiomech.2015.09.021
10.3389/fnbot.2019.00097
10.1016/j.neucom.2020.10.056
10.1002/cphy.cp120108
10.1519/JSC.0000000000001323
10.1007/s11044-019-09685-1
10.1016/j.jbiomech.2008.01.014
10.1523/JNEUROSCI.5792-11.2012
10.1016/j.jbiomech.2018.08.023
10.3390/s19132974
10.1126/science.1127647
10.1109/JAS.2021.1004243
10.1109/ACCESS.2019.2900591
10.1519/SSC.0b013e318213afa8
10.1109/TASE.2020.3033664
10.1016/0021-9290(74)90056-6
10.1186/s40537-016-0043-6
10.1007/s11517-018-1940-y
10.1186/s13029-015-0044-4
10.1088/1741-2552/aae26b
10.1109/ICRA40945.2020.9197441
10.1589/jpts.29.2160
ContentType Journal Article
Publication
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
BZJLE
STUKM
DOA
DOI 10.1109/TNSRE.2022.3156786
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SwePub Other
SwePub Other full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 609
ExternalDocumentID oai_doaj_org_article_343fdfc3ae144d488c7f02b586e9c8db
oai_swepub_ki_se_659392
oai_DiVA_org_kth_310875
35239487
10_1109_TNSRE_2022_3156786
9727104
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Promobilia Foundation
  grantid: 18200; 18014; 18202; 19302; 21302
  funderid: 10.13039/100009389
– fundername: Swedish Research Council
  grantid: 2018-00750; 2018-04902
  funderid: 10.13039/501100004359
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
BZJLE
STUKM
ID FETCH-LOGICAL-c603t-d0e343d4ea0dd81fbff9854b7cff815bbc8b6f1658f9db776f76c0d3cc98475a3
IEDL.DBID DOA
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000772417400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:53:31 EDT 2025
Tue Nov 25 03:34:03 EST 2025
Tue Nov 04 17:21:02 EST 2025
Thu Oct 02 07:40:14 EDT 2025
Sun Nov 30 04:16:26 EST 2025
Wed Feb 19 02:27:21 EST 2025
Tue Nov 18 22:11:38 EST 2025
Sat Nov 29 01:47:13 EST 2025
Wed Aug 27 02:40:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-d0e343d4ea0dd81fbff9854b7cff815bbc8b6f1658f9db776f76c0d3cc98475a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5417-5939
0000-0002-2232-5258
0000-0001-8785-5885
OpenAccessLink https://doaj.org/article/343fdfc3ae144d488c7f02b586e9c8db
PMID 35239487
PQID 2641996585
PQPubID 85423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_343fdfc3ae144d488c7f02b586e9c8db
proquest_journals_2641996585
pubmed_primary_35239487
swepub_primary_oai_DiVA_org_kth_310875
swepub_primary_oai_swepub_ki_se_659392
proquest_miscellaneous_2636145799
crossref_citationtrail_10_1109_TNSRE_2022_3156786
crossref_primary_10_1109_TNSRE_2022_3156786
ieee_primary_9727104
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref39
bergstra (ref35) 2012; 13
ref17
ref38
ref16
ref19
ref18
srivastava (ref31) 2014; 15
woolson (ref36) 2007
harrison (ref4) 2004; 18
ref46
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
molnar (ref32) 2020
ref29
ref8
ref7
myer (ref3) 2005; 19
hermens (ref24) 1999; 8
ref9
ref6
ref5
brownlee (ref33) 2019
ref40
References_xml – ident: ref16
  doi: 10.1016/j.neunet.2020.07.033
– volume: 19
  start-page: 51
  year: 2005
  ident: ref3
  article-title: Neuromuscular training improves performance and lower-extremity biomechanics in female athletes
  publication-title: The Journal of Strength and Conditioning Research
– ident: ref28
  doi: 10.1016/j.jbiomech.2019.109533
– ident: ref21
  doi: 10.1109/BioRob49111.2020.9224286
– ident: ref44
  doi: 10.1016/j.jbiomech.2021.110698
– ident: ref10
  doi: 10.3389/fnbot.2018.00016
– ident: ref11
  doi: 10.1109/TBME.2017.2704085
– volume: 8
  start-page: 13
  year: 1999
  ident: ref24
  article-title: European recommendations for surface electromyography
  publication-title: Roessingh Res Develop
– ident: ref29
  doi: 10.1146/annurev.bioeng.3.1.245
– ident: ref41
  doi: 10.1310/sci1701-16
– ident: ref19
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref5
  doi: 10.1016/j.medengphy.2007.05.005
– ident: ref22
  doi: 10.3390/s20247127
– ident: ref25
  doi: 10.1016/j.gaitpost.2019.04.015
– volume: 13
  start-page: 1
  year: 2012
  ident: ref35
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1109/TBME.2016.2538296
– year: 2019
  ident: ref33
  publication-title: Deep learning for computer vision image classification object detection and face recognition in python
– ident: ref34
  doi: 10.1109/TMI.2016.2528162
– ident: ref17
  doi: 10.1109/TCYB.2015.2422785
– ident: ref2
  doi: 10.1016/j.jbiomech.2009.01.033
– ident: ref37
  doi: 10.21105/joss.00568
– volume: 18
  start-page: 473
  year: 2004
  ident: ref4
  article-title: Force-velocity relationship and stretch-shortening cycle function in sprint and endurance athletes
  publication-title: The Journal of Strength and Conditioning Research
– ident: ref7
  doi: 10.1080/10255840701552036
– ident: ref30
  doi: 10.1016/j.jbiomech.2015.09.021
– ident: ref8
  doi: 10.3389/fnbot.2019.00097
– ident: ref23
  doi: 10.1016/j.neucom.2020.10.056
– ident: ref1
  doi: 10.1002/cphy.cp120108
– ident: ref42
  doi: 10.1519/JSC.0000000000001323
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref31
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1007/s11044-019-09685-1
– ident: ref6
  doi: 10.1016/j.jbiomech.2008.01.014
– ident: ref40
  doi: 10.1523/JNEUROSCI.5792-11.2012
– ident: ref38
  doi: 10.1016/j.jbiomech.2018.08.023
– ident: ref15
  doi: 10.3390/s19132974
– ident: ref46
  doi: 10.1126/science.1127647
– year: 2020
  ident: ref32
  publication-title: Interpretable Machine Learning A Guide for Making Black Box Models Explainable
– ident: ref18
  doi: 10.1109/JAS.2021.1004243
– ident: ref39
  doi: 10.1109/ACCESS.2019.2900591
– ident: ref48
  doi: 10.1519/SSC.0b013e318213afa8
– ident: ref14
  doi: 10.1109/TASE.2020.3033664
– ident: ref26
  doi: 10.1016/0021-9290(74)90056-6
– ident: ref43
  doi: 10.1186/s40537-016-0043-6
– ident: ref45
  doi: 10.1007/s11517-018-1940-y
– start-page: 1
  year: 2007
  ident: ref36
  article-title: Wilcoxon signed-rank test
  publication-title: Wiley Encyclopedia of Clinical Trials
– ident: ref27
  doi: 10.1186/s13029-015-0044-4
– ident: ref9
  doi: 10.1088/1741-2552/aae26b
– ident: ref20
  doi: 10.1109/ICRA40945.2020.9197441
– ident: ref47
  doi: 10.1589/jpts.29.2160
SSID ssj0017657
Score 2.5546923
Snippet Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical...
Estimation of joint torque during movement provides important information in several settings, such as effect of athletes’ training or of a medical...
SourceID doaj
swepub
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 600
SubjectTerms Ankle
Ankle Joint
Athletes
Biomechanical Phenomena
Electromyography
generalizability
Humans
inverse dynamics
Joints (anatomy)
Knee Joint
Learning
Long short-term memory
Lower Extremity
LSTM
Machine Learning
Mean square errors
Muscle strength
Muscles
Neural networks
Neural Networks, Computer
Performance prediction
Plantar flexion
Predictive models
Root-mean-square errors
Task analysis
time series
Torque
Training
Transfer learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxYELr_IIFGQk6AVC4ziJ7WOBVggtq6obUG-Wn7Bqm6Bslt_P2MlGLVohcYucieXJjD0z9vgbhF5nWlGIK2zKqeFpkTuTakfK1BDFlckUWMxYtWTG5nN-fi5Od9C76S6Mcy4mn7n34TGe5dvWrMNW2aEAY0sC-OctxthwV2s6MWBVRPWECVykBc2zzQWZTBzW88XZMYSCeQ4Ragmrc6hbBI4HFUXIpLtmjyJs_1hnZZvL-ReeaLRBJ_f-b_T30d3R18RHg3I8QDuueYjeXMcVxvUAKoAP8NkNyO49tJiF-mnpbHml8Zd22fS4bjsYJz7twtlOIMIx3wDPFvVXHEA-oL_5kFW-wqqxONpB7zo8grj-eIS-nRzXHz-nYwWG1FQZ7VObOVpQWziVWcuJ194LXhaaGe85KbU2XFeegBfjhdWMVZ5VJrPUGAFWr1T0Mdpt2sY9RVgTcD0K7rQmvrCugq6Up8QQz4j2NE8Q2chBmpHXUCXjUsYwJRMyilEGMcpRjAl6O33zawDn-Cf1hyDeiTIAa8cGkJIc56kEdr31hioHkaaF1c0wn-W65JUThludoL0g2amTUagJ2t8oixwXgZUEXzPkeENAlqBX02uYvuFMRjWuXQcaCg5SyYRI0JNByaa-NyqaoINB624M_dPy-1Ec-kX_E1gMlQm2E45NF_DkZFUK8IifbefiOboTftiww7SPdvtu7V6g2-Z3v1x1L-N8-wNk8SgA
  priority: 102
  providerName: IEEE
Title Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning
URI https://ieeexplore.ieee.org/document/9727104
https://www.ncbi.nlm.nih.gov/pubmed/35239487
https://www.proquest.com/docview/2641996585
https://www.proquest.com/docview/2636145799
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310875
http://kipublications.ki.se/Default.aspx?queryparsed=id
https://doaj.org/article/343fdfc3ae144d488c7f02b586e9c8db
Volume 30
WOSCitedRecordID wos000772417400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFFcojpayMBL2gqHGcxPaxQCuEllXVDWhvlp-wKmTRbsrvZ-x4oy6q4MItSiaOPTPOfBM73yD0qtCKQl5hc04Nz6vSmVw7UueGKK5MoSBixqolUzab8cVCXNwo9RX2hA30wIPiTmhFvfWGKgfQ34K7GeaLUte8ccJwq8PbF1DPNplK6wesqdn2F5lCnLSz-eUZJINlCTlqDe_nZicMRbb-VF7lNqT5B41oDD3n--hBwoz4dOjrQ3THdY_Q65v8wLgdyAHwMb7cod4-QPNpqIOWT5c_NP64WnY9bldreDC-WIc1miCE474BPJ23n3Ag64D2ZsPu8A1WncUxnnm3xomM9etj9Pn8rH33IU-VFHLTFLTPbeFAj7ZyqrCWE6-9F7yuNDPec1JrbbhuPAE04oXVjDWeNaaw1BgB0atW9Ana61ade4awJgAhKu60Jr6yroGmlKfEEM-I9rTMENkqVpo01lDt4ruM6UYhZDSGDMaQyRgZejPe83Mg2fir9Ntgr1EyEGTHE-A2MrmN_JfbZOggWHtsRACOg8w0Q0db68s0mTcSMGPYqw2JVYZejpdhGoa1FdW51XWQoQB0aiZEhp4OXjO2DRiXCkgMM3Q8uNFO198vv5zGrl_132CIocLA7YLp1BUcOdnUApDt4f9QxXN0P6h3-K50hPb69bV7ge6ZX_1ys56gu2zBJ3F2TeLfkb8BbiIqMw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQXXuURKGAk6AVC49hJ7GOBVgXSVdUNqDcrfsGqkKBslt_P2MlGLVohcYucieXJjD0z9vgbhF4mqqYQV5iYU81jllodK0uyWJOa1zqpwWKGqiVlMZvx83NxuoXeTHdhrLUh-cy-9Y_hLN-0euW3yvYFGFviwT-vZYylZLitNZ0ZFHnA9YQpzGJG02R9RSYR-9VsfnYIwWCaQoyawfrsKxeB60EF87l0lyxSAO4fK61scjr_QhQNVujo9v-N_w66NXqb-GBQj7toyzb30KvLyMK4GmAF8B4-uwLavYPmpa-gFpeLnwp_ahdNj6u2g3Hi086f7ngiHDIOcDmvTrCH-YD-ZkNe-RLXjcHBEjrb4RHG9dt99OXosHp_HI81GGKdJ7SPTWIpo4bZOjGGE6ecEzxjqtDOcZIppbnKHQE_xgmjiiJ3Ra4TQ7UWYPeymj5A203b2EcIKwLOB-NWKeKYsTl0VTtKNHEFUY6mESJrOUg98urrZPyQIVBJhAxilF6MchRjhF5P3_wa4Dn-Sf3Oi3ei9NDaoQGkJMeZKoFdZ5ymtYVY08D6pguXpCrjuRWaGxWhHS_ZqZNRqBHaXSuLHJeBpQRv02d5Q0gWoRfTa5jA_lSmbmy78jQUXKSsECJCDwclm_peq2iE9gatuzL0D4uvB2HoF_13YNHXJthMODZdwJOVeSbAJ368mYvn6MZxdVLK8uPs8xN00_-8Yb9pF2333co-Rdf1736x7J6FufcH32grRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower-Limb+Joint+Torque+Prediction+Using+LSTM+Neural+Networks+and+Transfer+Learning&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhang%2C+Longbin&rft.au=Soselia%2C+Davit&rft.au=Wang%2C+Ruoli&rft.au=Gutierrez-Farewik%2C+Elena+M&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=600&rft_id=info:doi/10.1109%2FTNSRE.2022.3156786&rft_id=info%3Apmid%2F35239487&rft.externalDocID=35239487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon