A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges
Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Med...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 9; p. 4178 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
22.04.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets). |
|---|---|
| AbstractList | Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets). Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets).Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets). |
| Audience | Academic |
| Author | Rahman, Saifur Kang, James Jin An, Qi Zhou, Jingwen |
| AuthorAffiliation | 2 Computing and Security, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia 1 School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia |
| AuthorAffiliation_xml | – name: 1 School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia – name: 2 Computing and Security, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia |
| Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0003-4869-1763 surname: An fullname: An, Qi – sequence: 2 givenname: Saifur orcidid: 0000-0001-8345-0952 surname: Rahman fullname: Rahman, Saifur – sequence: 3 givenname: Jingwen surname: Zhou fullname: Zhou, Jingwen – sequence: 4 givenname: James Jin orcidid: 0000-0002-0242-4187 surname: Kang fullname: Kang, James Jin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37177382$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1v0zAUhiM0xD7ggj-ALHED0rr5q7G9G1RVwCoNTUJwbTn2SesqtYudFO2C_467jrJOUy6SnDx-ktd5T6ujEANU1VuCLxhT-DJThhUnQr6oTginfCQpxUePro-r05yXGFPGmHxVHTNBhGCSnlR_JmgaV-sECwjZbwB9h42H3ygG9M3YhQ-AbsCk4MMc-YCuwXT9wpoEaBbckPt0d4WmncnZt96a3sdwXhRl7u32Jp-j2_U6pn4IvveQkQkOTRem6yDMIb-uXramy_Dm4XxW_fzy-cf0enRz-3U2ndyMbI1ZPzJUSUeZhZY5S9hYWsEbJYkV1trWOWZV0wrnuHDKCUdarCQlpikxDTSOs7NqtvO6aJZ6nfzKpDsdjdf3g5jm2qTe2w40rymRrIExHXMuFVNKYlFDcQFzkuPi-rRzrYdmBc5C6JPpDqSHT4Jf6HncaIKJxLWQxfDhwZDir6Fsll75bKHrTIA4ZE1lyTgWNRYFff8EXcYhhbJXW4oKjqWs_1NzUxL40MbyYruV6ongqvx1IWihLp6hyuFg5W1pVOvL_GDBu8dJ9xH_tacAH3eATTHnBO0eIVhvm6n3zSzs5RPW-v6-MOUrfPfMir9h7eQ2 |
| CitedBy_id | crossref_primary_10_3390_bioengineering11010094 crossref_primary_10_3390_ijms26020589 crossref_primary_10_3390_info15080467 crossref_primary_10_1016_j_health_2025_100402 crossref_primary_10_1016_j_resplu_2025_100973 crossref_primary_10_1016_j_ijid_2025_107922 crossref_primary_10_1016_j_engappai_2024_108789 crossref_primary_10_3390_su17136091 crossref_primary_10_5937_jomb0_45936 crossref_primary_10_1016_j_knosys_2025_114468 crossref_primary_10_1016_j_media_2025_103742 crossref_primary_10_1177_20552076251359498 crossref_primary_10_3390_app15010277 crossref_primary_10_1177_17085381251331394 crossref_primary_10_3390_diagnostics15040501 crossref_primary_10_1016_j_compbiomed_2025_110865 crossref_primary_10_3389_fmed_2025_1606238 crossref_primary_10_1038_s41597_025_05619_z crossref_primary_10_1038_s41598_025_97787_6 crossref_primary_10_14336_AD_2024_0328_1 crossref_primary_10_3390_s23187667 crossref_primary_10_1007_s11695_024_07548_z crossref_primary_10_1016_j_tca_2025_179936 crossref_primary_10_3390_bioengineering12010063 crossref_primary_10_5498_wjp_v14_i8_1148 crossref_primary_10_1111_evj_14517 crossref_primary_10_31796_ogummf_1591951 crossref_primary_10_1002_lio2_70188 crossref_primary_10_3389_fdata_2025_1574683 crossref_primary_10_1111_cob_70011 crossref_primary_10_20517_jmi_2024_108 crossref_primary_10_1016_j_cageo_2024_105712 crossref_primary_10_2196_52310 crossref_primary_10_3390_fi16090343 crossref_primary_10_3390_s24051403 crossref_primary_10_1142_S0218539324500566 crossref_primary_10_3389_fendo_2025_1635451 crossref_primary_10_3390_neurolint16060098 crossref_primary_10_3390_nitrogen4040024 crossref_primary_10_1080_17512433_2024_2317963 crossref_primary_10_1016_j_eswa_2023_122982 crossref_primary_10_1371_journal_pone_0316287 crossref_primary_10_1007_s11883_024_01210_w crossref_primary_10_3389_fendo_2025_1561447 crossref_primary_10_1016_j_jpba_2025_116993 crossref_primary_10_1007_s00415_024_12651_3 crossref_primary_10_7759_cureus_51036 crossref_primary_10_1080_20464177_2025_2469336 crossref_primary_10_1109_TCAD_2024_3446870 crossref_primary_10_3389_fphar_2024_1352113 crossref_primary_10_1007_s11916_024_01330_7 crossref_primary_10_3390_polym17131791 crossref_primary_10_1097_SHK_0000000000002312 crossref_primary_10_1016_j_modpat_2024_100680 crossref_primary_10_1109_ACCESS_2025_3567081 crossref_primary_10_1016_j_oceaneng_2025_121000 crossref_primary_10_1016_j_heliyon_2024_e29372 crossref_primary_10_1038_s41598_024_78482_4 crossref_primary_10_1007_s41870_024_02312_z crossref_primary_10_1021_acs_jafc_5c05624 crossref_primary_10_1002_jrs_6817 crossref_primary_10_1016_j_jbi_2025_104838 crossref_primary_10_1007_s00521_024_09893_7 crossref_primary_10_3390_diseases11030097 crossref_primary_10_3389_fpubh_2025_1655659 crossref_primary_10_3390_children12020244 crossref_primary_10_1016_j_envint_2025_109301 crossref_primary_10_63096_medtigo3092114 crossref_primary_10_1371_journal_pone_0323949 crossref_primary_10_1016_j_jcot_2025_103137 crossref_primary_10_1109_ACCESS_2023_3330691 crossref_primary_10_3390_math12020237 crossref_primary_10_1007_s00520_025_09236_9 crossref_primary_10_1016_j_ejmech_2023_116119 crossref_primary_10_1007_s00221_025_07002_1 crossref_primary_10_1007_s11042_024_20070_9 crossref_primary_10_7759_cureus_44591 crossref_primary_10_1016_j_eswa_2025_126413 crossref_primary_10_3390_s24227126 crossref_primary_10_1016_j_jad_2024_02_035 crossref_primary_10_1177_09287329251330222 crossref_primary_10_1007_s13369_024_09898_3 crossref_primary_10_1016_j_jece_2024_114428 crossref_primary_10_1016_j_compbiomed_2024_108117 crossref_primary_10_3390_electronics14071270 crossref_primary_10_1007_s11082_023_05798_2 crossref_primary_10_3390_math12101567 crossref_primary_10_1038_s41598_023_50832_8 crossref_primary_10_3390_fi17050204 crossref_primary_10_1007_s11517_024_03224_7 crossref_primary_10_1038_s41598_024_59785_y crossref_primary_10_1186_s12871_024_02720_5 crossref_primary_10_2196_77893 crossref_primary_10_1038_s41598_025_95604_8 crossref_primary_10_1109_JIOT_2025_3549720 crossref_primary_10_1016_j_cca_2025_120181 crossref_primary_10_3390_inventions8050129 crossref_primary_10_1016_j_trac_2025_118162 crossref_primary_10_1080_14787210_2024_2322445 crossref_primary_10_1016_j_heliyon_2024_e39198 crossref_primary_10_1002_uro2_100 crossref_primary_10_1002_cnl2_70002 crossref_primary_10_2196_66233 crossref_primary_10_1088_1752_7163_ad7a9a crossref_primary_10_3390_app15010296 crossref_primary_10_3892_wasj_2025_363 crossref_primary_10_1016_j_ijpharm_2024_124440 crossref_primary_10_1016_j_japr_2025_100602 crossref_primary_10_3390_bios14070356 crossref_primary_10_7759_cureus_47486 crossref_primary_10_2147_POR_S466505 crossref_primary_10_1109_ACCESS_2025_3536286 crossref_primary_10_3389_fonc_2024_1342317 crossref_primary_10_1097_PHM_0000000000002680 crossref_primary_10_1016_j_spinee_2025_01_005 crossref_primary_10_3390_diagnostics13223477 crossref_primary_10_20935_AcadMed7444 crossref_primary_10_1039_D5NR01562F crossref_primary_10_2147_IJGM_S475302 crossref_primary_10_3390_a17120565 crossref_primary_10_70749_ijbr_v2i02_396 crossref_primary_10_3390_su16177626 crossref_primary_10_48017_dj_v10i1_3131 crossref_primary_10_1016_j_engappai_2024_109179 crossref_primary_10_3390_fi16110394 crossref_primary_10_1007_s11096_024_01707_z crossref_primary_10_1016_j_oor_2025_100730 crossref_primary_10_1136_bmjopen_2024_093495 |
| Cites_doi | 10.1007/978-3-319-59050-9_51 10.1109/ICIRCA51532.2021.9544795 10.1109/TMI.2016.2524985 10.1007/s40815-020-00828-7 10.1016/j.chemolab.2019.103814 10.3389/fdata.2020.00004 10.1016/j.apenergy.2018.07.050 10.1007/s00521-022-07762-9 10.1016/j.patcog.2019.04.014 10.1109/ACCESS.2019.2909969 10.1017/S026646230200051X 10.1109/SPW.2017.9 10.1016/j.asoc.2015.11.021 10.1109/TMI.2016.2535865 10.1109/COMITCon.2019.8862451 10.1007/s42979-020-00394-7 10.1016/j.patcog.2016.09.022 10.1007/s42979-021-00518-7 10.1109/CommNet52204.2021.9641998 10.1109/ICTKE.2017.8259629 10.1016/j.compeleceng.2017.07.006 10.1177/0165551516677946 10.1007/978-1-4302-5990-9 10.5120/21131-4058 10.1016/j.apr.2019.09.009 10.1016/j.eswa.2011.02.008 10.1016/j.asoc.2017.05.043 10.1007/s10796-008-9131-2 10.21500/20112084.819 10.14445/22312803/IJCTT-V48P126 10.21037/atm.2017.02.05 10.1016/j.apenergy.2019.03.044 10.1016/j.ins.2020.06.025 10.5626/JCSE.2021.15.1.1 10.23919/ITC.2017.8065806 10.1109/ICECA.2018.8474918 10.1557/mrc.2019.32 10.1016/j.cosrev.2021.100370 10.1016/j.protcy.2013.12.340 10.20544/HORIZONS.B.04.1.17.P05 10.1007/s40860-021-00152-3 10.1016/j.procs.2020.02.053 10.1016/j.neucom.2017.11.077 10.1007/s10916-018-0934-5 10.1109/ACCESS.2017.2694446 10.1016/j.neucom.2016.08.083 10.1007/978-1-4899-7641-3 10.1109/ACCESS.2020.2988796 10.1016/S1470-2045(19)30149-4 10.1207/S15324796ABM2603_02 10.1109/TBDATA.2018.2840696 10.1109/IVS.2017.7995773 10.1109/BIGCOMP.2019.8679157 10.1109/ICSEM.2010.14 10.1016/j.compag.2017.01.001 10.1109/TCSVT.2018.2799214 10.4066/biomedicalresearch.29-18-620 10.1016/j.knosys.2016.06.031 10.1109/ICCSCE.2012.6487177 10.1016/j.advwatres.2015.12.017 10.2478/seeur-2021-0008 10.1016/j.health.2022.100080 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23094178 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Public Health |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_462183be52544893998076eb37e3d840 PMC10180678 A749233772 37177382 10_3390_s23094178 |
| Genre | Journal Article Review |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c603t-a298d23cef3dc1358c74b981c7cccfdd3c9bf7dd47d9d7d1f09821ab371aebd43 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000987798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:44:29 EDT 2025 Tue Nov 04 02:07:14 EST 2025 Fri Sep 05 09:08:26 EDT 2025 Tue Oct 07 07:28:20 EDT 2025 Tue Nov 11 10:00:50 EST 2025 Tue Nov 04 17:57:47 EST 2025 Wed Feb 19 02:08:40 EST 2025 Tue Nov 18 22:39:55 EST 2025 Sat Nov 29 07:16:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | unsupervised machine learning mobile health machine learning machine learning algorithms supervised learning healthcare |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c603t-a298d23cef3dc1358c74b981c7cccfdd3c9bf7dd47d9d7d1f09821ab371aebd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-0242-4187 0000-0001-8345-0952 0000-0003-4869-1763 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2812740886?pq-origsite=%requestingapplication% |
| PMID | 37177382 |
| PQID | 2812740886 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_462183be52544893998076eb37e3d840 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180678 proquest_miscellaneous_2813557607 proquest_journals_2812740886 gale_infotracmisc_A749233772 gale_infotracacademiconefile_A749233772 pubmed_primary_37177382 crossref_primary_10_3390_s23094178 crossref_citationtrail_10_3390_s23094178 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-22 |
| PublicationDateYYYYMMDD | 2023-04-22 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Dulhare (ref_39) 2018; 29 ref_90 Ripan (ref_71) 2021; 2 Cai (ref_17) 2018; 300 Mydyti (ref_40) 2021; 16 Anthimopoulos (ref_8) 2016; 35 Fan (ref_78) 2016; 88 ref_13 ref_57 ref_12 Das (ref_15) 2015; 115 Xu (ref_44) 2018; 44 Yuan (ref_32) 2010; 12 ref_52 ref_51 Srividya (ref_74) 2018; 42 Zhang (ref_73) 2017; 5 ref_18 ref_59 Dana (ref_75) 2019; Volume 1360 Shouman (ref_50) 2012; 2 Berrar (ref_42) 2018; Volume 403 Lozano (ref_69) 2017; 117 Yu (ref_64) 2010; 3 ref_61 Thenmozhi (ref_27) 2014; 2 Luo (ref_21) 2019; 192 Dhillon (ref_1) 2019; 8 Kaushik (ref_58) 2020; 3 Kotsiantis (ref_25) 2007; 160 ref_24 Mythili (ref_87) 2013; 68 ref_65 Qureshi (ref_11) 2020; 538 Li (ref_23) 2011; 38 ref_63 Sieranoja (ref_67) 2019; 93 ref_29 Arar (ref_37) 2017; 59 Mehta (ref_10) 2017; 63 ref_28 Nasteski (ref_38) 2017; 4 Yan (ref_7) 2016; 35 ref_26 Lemon (ref_55) 2003; 26 Bhavsar (ref_33) 2012; 2 Tang (ref_68) 2017; 135 Petrou (ref_54) 2002; 18 ref_72 Ngiam (ref_5) 2019; 20 Garg (ref_6) 2021; 40 ref_34 Wuest (ref_3) 2016; 4 ref_77 Duneja (ref_47) 2017; 4 ref_30 Zhang (ref_76) 2019; 241 Li (ref_79) 2018; 6 Govender (ref_70) 2020; 11 Chen (ref_4) 2017; 5 Abikoye (ref_41) 2018; 1 Ciaburro (ref_14) 2021; 33 Li (ref_20) 2016; 218 Ali (ref_35) 2019; 7 Muna (ref_16) 2018; 41 Muhammad (ref_86) 2021; 2 Ezzeddine (ref_60) 2018; 65 Chefira (ref_81) 2021; 15 ref_82 Wen (ref_19) 2018; 29 ref_80 Nagarajan (ref_22) 2022; 8 ref_46 ref_89 Nilashi (ref_36) 2020; 22 ref_85 ref_84 Sinaga (ref_66) 2020; 8 Kazemi (ref_31) 2016; 40 Chen (ref_48) 2020; 166 Deekshatulu (ref_49) 2013; 10 ref_2 Balaha (ref_45) 2023; 35 (ref_83) 2019; 19 Sohn (ref_88) 2020; 33 ref_9 Chen (ref_53) 2019; 9 Sharin (ref_62) 2022; 2 Liu (ref_56) 2018; 228 Osisanwo (ref_43) 2017; 48 |
| References_xml | – volume: 8 start-page: 1 year: 2019 ident: ref_1 article-title: Machine learning in healthcare data analysis: A survey publication-title: J. Biol. Today World – ident: ref_9 doi: 10.1007/978-3-319-59050-9_51 – ident: ref_72 doi: 10.1109/ICIRCA51532.2021.9544795 – volume: 35 start-page: 1332 year: 2016 ident: ref_7 article-title: Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2524985 – ident: ref_51 – volume: 4 start-page: 23 year: 2016 ident: ref_3 article-title: Machine learning in manufacturing: Advantages, challenges, and applications publication-title: Prod. Manuf. Res. – volume: 22 start-page: 1376 year: 2020 ident: ref_36 article-title: Coronary heart disease diagnosis through self-organizing map and fuzzy support vector machine with incremental updates publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-00828-7 – ident: ref_84 – volume: 192 start-page: 103814 year: 2019 ident: ref_21 article-title: Discriminant autoencoder for feature extraction in fault diagnosis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.103814 – volume: 3 start-page: 4 year: 2020 ident: ref_58 article-title: AI in healthcare: Time-series forecasting using statistical, neural, and ensemble architectures publication-title: Front. Big Data doi: 10.3389/fdata.2020.00004 – volume: 33 start-page: 213 year: 2021 ident: ref_14 article-title: An artificial neural network approach to modelling absorbent asphalts acoustic properties publication-title: J. King Saud. Univ. Eng. Sci. – volume: 41 start-page: 1 year: 2018 ident: ref_16 article-title: Identification of malicious activities in industrial internet of things based on deep learning models publication-title: J. Inf. Secur. Appl. – volume: 228 start-page: 1783 year: 2018 ident: ref_56 article-title: A novel ensemble model of different mother wavelets for wind speed multi-step forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.050 – ident: ref_65 – volume: 35 start-page: 815 year: 2023 ident: ref_45 article-title: Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07762-9 – volume: 93 start-page: 95 year: 2019 ident: ref_67 article-title: How much can k-means be improved by using better initialization and repeats? publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.04.014 – volume: 7 start-page: 54007 year: 2019 ident: ref_35 article-title: An optimized stacked support vector machines based expert system for the effective prediction of heart failure publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909969 – volume: 18 start-page: 705 year: 2002 ident: ref_54 article-title: The accuracy of self-reported healthcare resource utilization in health economic studies publication-title: Int. J. Technol. Assess. Health Care doi: 10.1017/S026646230200051X – ident: ref_77 doi: 10.1109/SPW.2017.9 – volume: 40 start-page: 507 year: 2016 ident: ref_31 article-title: A hybrid method for estimating the process change point using support vector machine and fuzzy statistical clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.11.021 – volume: 35 start-page: 1207 year: 2016 ident: ref_8 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535865 – ident: ref_26 doi: 10.1109/COMITCon.2019.8862451 – volume: 2 start-page: 1 year: 2021 ident: ref_86 article-title: Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-00394-7 – volume: 63 start-page: 499 year: 2017 ident: ref_10 article-title: Rodeo: Robust de-aliasing autoencoder for real-time medical image reconstruction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.022 – volume: 2 start-page: 1 year: 2021 ident: ref_71 article-title: A data-driven heart disease prediction model through K-means clustering-based anomaly detection publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00518-7 – ident: ref_85 doi: 10.1109/CommNet52204.2021.9641998 – ident: ref_89 doi: 10.1109/ICTKE.2017.8259629 – volume: Volume 1360 start-page: 012017 year: 2019 ident: ref_75 article-title: Measurement of health service performance through machine learning using clustering techniques publication-title: Proceedings of the Journal of Physics: Conference Series – volume: 65 start-page: 102 year: 2018 ident: ref_60 article-title: Smart grid load forecasting using online support vector regression publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.07.006 – volume: 44 start-page: 48 year: 2018 ident: ref_44 article-title: Bayesian Naïve Bayes classifiers to text classification publication-title: J. Inf. Sci. doi: 10.1177/0165551516677946 – ident: ref_61 doi: 10.1007/978-1-4302-5990-9 – ident: ref_63 doi: 10.5120/21131-4058 – ident: ref_52 – volume: 160 start-page: 3 year: 2007 ident: ref_25 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – volume: 11 start-page: 40 year: 2020 ident: ref_70 article-title: Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019) publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.09.009 – volume: 38 start-page: 10000 year: 2011 ident: ref_23 article-title: A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.008 – volume: 59 start-page: 197 year: 2017 ident: ref_37 article-title: A feature dependent Naive Bayes approach and its application to the software defect prediction problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.043 – volume: 12 start-page: 149 year: 2010 ident: ref_32 article-title: An SVM-based machine learning method for accurate internet traffic classification publication-title: Inf. Syst. Front. doi: 10.1007/s10796-008-9131-2 – volume: 3 start-page: 9 year: 2010 ident: ref_64 article-title: Exploratory data analysis in the context of data mining and resampling publication-title: Int. J. Psychol. Res. doi: 10.21500/20112084.819 – ident: ref_13 – volume: 48 start-page: 128 year: 2017 ident: ref_43 article-title: Supervised machine learning algorithms: Classification and comparison publication-title: Int. J. Comput. Trends Technol. (IJCTT) doi: 10.14445/22312803/IJCTT-V48P126 – volume: 5 start-page: 75 year: 2017 ident: ref_73 article-title: Hierarchical cluster analysis in clinical research with heterogeneous study population: Highlighting its visualization with R publication-title: Ann. Transl. Med. doi: 10.21037/atm.2017.02.05 – ident: ref_59 – volume: Volume 403 start-page: 412 year: 2018 ident: ref_42 article-title: Bayes’ theorem and naive bayes classifier publication-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics – ident: ref_28 – volume: 241 start-page: 229 year: 2019 ident: ref_76 article-title: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.044 – volume: 538 start-page: 486 year: 2020 ident: ref_11 article-title: An accurate and dynamic predictive model for a smart M-Health system using machine learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.06.025 – volume: 15 start-page: 1 year: 2021 ident: ref_81 article-title: A Knowledge Extraction Pipeline between Supervised and Unsupervised Machine Learning Using Gaussian Mixture Models for Anomaly Detection publication-title: J. Comput. Sci. Eng. doi: 10.5626/JCSE.2021.15.1.1 – ident: ref_34 doi: 10.23919/ITC.2017.8065806 – ident: ref_12 doi: 10.1109/ICECA.2018.8474918 – ident: ref_82 – volume: 1 start-page: 1 year: 2018 ident: ref_41 article-title: Text Classification Using Data Mining Techniques: A Review publication-title: Comput. Inf. Syst. J. – volume: 9 start-page: 556 year: 2019 ident: ref_53 article-title: Machine learning for composite materials publication-title: MRS Commun. doi: 10.1557/mrc.2019.32 – volume: 115 start-page: 31 year: 2015 ident: ref_15 article-title: Applications of artificial intelligence in machine learning: Review and prospect publication-title: Int. J. Comput. Appl. – volume: 40 start-page: 100370 year: 2021 ident: ref_6 article-title: Role of machine learning in medical research: A survey publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100370 – volume: 10 start-page: 85 year: 2013 ident: ref_49 article-title: Classification of heart disease using k-nearest neighbor and genetic algorithm publication-title: Procedia Technol. doi: 10.1016/j.protcy.2013.12.340 – volume: 4 start-page: 51 year: 2017 ident: ref_38 article-title: An overview of the supervised machine learning methods publication-title: Horizons. B doi: 10.20544/HORIZONS.B.04.1.17.P05 – volume: 8 start-page: 333 year: 2022 ident: ref_22 article-title: Innovative feature selection and classification model for heart disease prediction publication-title: J. Reliab. Intell. Environ. doi: 10.1007/s40860-021-00152-3 – volume: 4 start-page: 1385 year: 2017 ident: ref_47 article-title: Enhancing classification accuracy of k-nearest neighbours algorithm using gain ratio publication-title: Int. Res. J. Eng. Technol – volume: 166 start-page: 523 year: 2020 ident: ref_48 article-title: The Lao text classification method based on KNN publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.02.053 – volume: 19 start-page: 1 year: 2019 ident: ref_83 article-title: Machine learning in medicine: A practical introduction publication-title: BMC Med. Res. Methodol. – volume: 68 start-page: 11 year: 2013 ident: ref_87 article-title: A heart disease prediction model using SVM-decision trees-logistic regression (SDL) publication-title: Int. J. Comput. Appl. – volume: 300 start-page: 70 year: 2018 ident: ref_17 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 42 start-page: 1 year: 2018 ident: ref_74 article-title: Behavioral modeling for mental health using machine learning algorithms publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0934-5 – volume: 33 start-page: 596 year: 2020 ident: ref_88 article-title: Fixmatch: Simplifying semi-supervised learning with consistency and confidence publication-title: Adv. Neural Inf. Process. Syst. – volume: 5 start-page: 8869 year: 2017 ident: ref_4 article-title: Disease prediction by machine learning over big data from healthcare communities publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694446 – volume: 218 start-page: 371 year: 2016 ident: ref_20 article-title: Extracting the nonlinear features of motor imagery EEG using parametric t-SNE publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.083 – ident: ref_30 doi: 10.1007/978-1-4899-7641-3 – volume: 8 start-page: 80716 year: 2020 ident: ref_66 article-title: Unsupervised K-means clustering algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 – volume: 20 start-page: e262 year: 2019 ident: ref_5 article-title: Big data and machine learning algorithms for health-care delivery publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30149-4 – volume: 26 start-page: 172 year: 2003 ident: ref_55 article-title: Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression publication-title: Ann. Behav. Med. doi: 10.1207/S15324796ABM2603_02 – volume: 6 start-page: 223 year: 2018 ident: ref_79 article-title: Clustering analysis in the wireless propagation channel with a variational Gaussian mixture model publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2018.2840696 – ident: ref_29 – ident: ref_80 doi: 10.1109/IVS.2017.7995773 – ident: ref_2 – ident: ref_90 doi: 10.1109/BIGCOMP.2019.8679157 – ident: ref_46 – ident: ref_18 doi: 10.1109/ICSEM.2010.14 – volume: 135 start-page: 63 year: 2017 ident: ref_68 article-title: Weed identification based on K-means feature learning combined with convolutional neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.01.001 – volume: 29 start-page: 390 year: 2018 ident: ref_19 article-title: Robust sparse linear discriminant analysis publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2799214 – volume: 29 start-page: 2646 year: 2018 ident: ref_39 article-title: Prediction system for heart disease using Naive Bayes and particle swarm optimization publication-title: Biomed. Res. doi: 10.4066/biomedicalresearch.29-18-620 – volume: 117 start-page: 56 year: 2017 ident: ref_69 article-title: An efficient approximation to the K-means clustering for massive data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.06.031 – ident: ref_24 doi: 10.1109/ICCSCE.2012.6487177 – volume: 2 start-page: 6 year: 2014 ident: ref_27 article-title: Heart disease prediction using classification with different decision tree techniques publication-title: Int. J. Eng. Res. Gen. Sci. – volume: 2 start-page: 220 year: 2012 ident: ref_50 article-title: Applying k-nearest neighbour in diagnosing heart disease patients publication-title: Int. J. Inf. Educ. Technol. – volume: 88 start-page: 170 year: 2016 ident: ref_78 article-title: Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.12.017 – volume: 16 start-page: 45 year: 2021 ident: ref_40 article-title: Data Mining Approach Improving Decision-Making Competency along the Business Digital Transformation Journey: A Case Study–Home Appliances after Sales Service publication-title: Seeu Rev. doi: 10.2478/seeur-2021-0008 – ident: ref_57 – volume: 2 start-page: 2231 year: 2012 ident: ref_33 article-title: A comparative study of training algorithms for supervised machine learning publication-title: Int. J. Soft Comput. Eng. (IJSCE) – volume: 2 start-page: 100080 year: 2022 ident: ref_62 article-title: A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia publication-title: Healthc. Anal. doi: 10.1016/j.health.2022.100080 |
| SSID | ssj0023338 |
| Score | 2.6994188 |
| SecondaryResourceType | review_article |
| Snippet | Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 4178 |
| SubjectTerms | Accuracy Algorithms Analysis Artificial Intelligence Classification Clinical decision making Computational linguistics Data analysis Data mining Datasets Discriminant analysis Disease Efficiency Electronic health records Epidemiology Health care industry Health care reform Health Care Sector healthcare Language processing Machine Learning machine learning algorithms Medical advice systems Medical care Medical diagnosis Medical research Medicine, Experimental mobile health Natural language interfaces Neural networks Pattern recognition Public health Quality management Review supervised learning Telemedicine Unsupervised Machine Learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqLwDLTIICQ6N6thubPe2VFS9UDiA1FvkV-hKyFttditx4L8z42SjRCBx4br2RvG8v2TyDSFvlbTGOIh-nrlY4ouz0vlaly2T0nFW2-B8HjahLi_11ZX5Mhn1hT1hPT1wL7hjWWMSd_EEubQguQI8AOgNEFBFEQCdYPRlyuzA1AC1BCCvnkdIAKg_7qDQNrLCWWqT7JNJ-v8MxZNcNO-TnCSe833yYKgY6aK_04fkTkyPyP0Jj-Bj8mtB0a_X8bpvR6f9E3-6SvRTbpaMdOBR_U6XiV6MPV90mNzx85Tm6ZjYN5RVdQSXwIke-auH7oh-vsE6fZsy_yq1KdCz3RSW7gn5dv7x69lFOcxVKH3NxKa03OjAhY-tCL4SJ9or6YyuvPLetyEIb1yrQpAqmKBC1TKjeWVB5JWNLkjxlOylVYrPCWUtpHwGKMdaC6GgNtoxEaTmMeoQWV2Q9zt5N34gHcfZFz8aAB-ommZUTUHejFtveqaNv236gEobNyA5dv4BTKYZTKb5l8kU5B2qvEEXhpvxdvgSAY6EZFjNQiFrnQDcUZCD2U5wPT9f3hlNM7h-13AomZSE4A2Hfz0u4z-xnS3F1TbvgTpP1UwV5FlvY-ORQMpKCQ0X1zPrm515vpKW15kYPLOxQfXx4n9I6SW5x8GR8M0Z5wdkb7PexkNy199ult36VXa33-MZLzo priority: 102 providerName: Directory of Open Access Journals |
| Title | A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37177382 https://www.proquest.com/docview/2812740886 https://www.proquest.com/docview/2813557607 https://pubmed.ncbi.nlm.nih.gov/PMC10180678 https://doaj.org/article/462183be52544893998076eb37e3d840 |
| Volume | 23 |
| WOSCitedRecordID | wos000987798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbYlgMI8VgWCCyVQUhw2KhOnI0dLqi76goOLRUCqZyi-JHdSigtTYvEAX47M44bGoE4ccmhnkR2PTOescffR8gLkRRZpsD7aaZsiAdnodKpDEuWJCpmaWGUdmQTYjqV83k289eja19WufOJzlE3aM9Ytw1OeGiWGnfMhzGsSyIBC0nfrL6GyCGFZ62eUOOA9BF4i_VIf_ZuMvvcJmAc8rEGXYhDqj-sIfzOkggZ1vbWJAfd_6eD3luhutWTe8vRxZ3_O5C75LYPS-mo0aN75JqtDsnNPbDCQ3Kr2eGjzcWl--THiKIzWdurpgaeNscMdFnRiavQtNSDt17SReVfw0Iz6ulCvr-mjpITi5WcfpzAJ5BGxF21qE_o-xUmB9vKgb7SojL0fEf9Uh-RTxfjj-dvQ0_mEOqU8U1YxJk0Mde25EZH_FRqkahMRlporUtjuM5UKYxJhMmMMFHJMhlHheIiKqwyCX9AetWyso8IZSXEGQxSq6IowP-kmVSMm0TG1kpjWRqQV7vpzLVHOkfCjS85ZDw483k78wF53oquGniPvwmdoU60AojI7X5Yri9zb-B5kmKwqewpqh4EgZDGMpFa6L_lBrLogLxEjcrRb0BndOGvP8CQEIErHwmEyuOQ7ATkuCMJ9q67zTu9yr2_qfPfahSQZ20zvok1dJVdbp0MBJciZSIgDxsVbocE_7IQXMLHZUe5O2PutlSLK4dG7iDgIOR5_O9-PSE3YrBAPIiL42PS26y39im5rr9tFvV6QA7EXLinHJD-2Xg6-zBw2yPwnPwcD7wl_wItcFbE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQIcRm3wACDQPCwaE7sxQ4SQmUwrdpa-jCk8RQS29kqobQ0LWgP_CV-I-c4FxqBeNsDr7Fj2c65xsffR8gzKdI4zsD6aZZZHw_O_ExHys-ZEFnIotRk2pFNyNFIHR_H4zXys7kLg2WVjU10htpMNf4j3w7BE0kBOhG9mX31kTUKT1cbCo1KLA7s2XdI2crXg3fwfZ-H4d77o919v2YV8HXE-MJPw1iZkGubc6MDvqO0FFmsAi211rkxXMdZLo0R0sRGmiBnsQqDNOMySG1mBIdxL5B1AcLOemR9PBiOP7UpHoeMr8Iv4jxm2yUE-LEIkMNtxes5coA_XcCKD-zWZ644vL3r_9tW3SDX6tCa9itduEnWbLFBrqwALm6Qq9VfSlpdvrpFfvQpGsS5Pa3q-Gl1VEKnBR26KlNLawDaEzop6tewWI7WlCdnr6ijFcWCKyfjWzAEUqG46yLlFv0wwwRnWTjgWpoWhu429DXlbfLxXPbjDukV08LeI5TlECsxSA_TNAUbGsUqY9wIFVqrjGWRR142ApPoGq0dSUO-JJC1oWwlrWx55GnbdVZBlPyt01uUurYDooq7B9P5SVIbqUREGDBndgdx6yCQhVScycjC_C03SjCPvECZTdD2wWR0Wl_hgCUhiljSlwj3xyFh88hmpyfYLN1tbiQ3qW1mmfwWW488aZvxTawDLOx06fpAgCwjJj1yt1KSdkmwy1JyBYOrjvp01txtKSanDlHdwdhB2Hb_3_N6TC7tHw0Pk8PB6OABuRyCvuPBYhhukt5ivrQPyUX9bTEp549qu0DJ5_PWr18h5aZl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUIgxGXcAgMMAsHDojpxFidICHWXimlQqgmkvYXEdrZKKC1NC9oDf4xfxznOhUYg3vbAa-xYtnOu8fH3ATyTQRrHGVo_xTPj0sGZm6kwcnMeBJnPw1RnypJNyNEoOj6Ox2vws7kLQ2WVjU20hlpPFf0j7_voiWSAOhH287osYrw3fDP76hKDFJ20NnQalYgcmrPvmL6Vrw_28Fs_9_3h_sfdt27NMOCqkIuFm_pxpH2hTC608sR2pGSQxZGnpFIq11qoOMul1oHUsZbay3kc-V6aCemlJtOBwHEvwLoUmPT0YH1nfzQ-atM9gdlfhWUkRMz7JQb7ceARn9uKB7REAX-6gxV_2K3VXHF-w-v_87bdgGt1yM0GlY7chDVTbMCVFSDGDbha_b1k1aWsW_BjwMhQzs1pVd_PqiMUNi3Ye1t9algNTHvCJkX9GhXRsZoK5ewVs3SjVIhlZX8LhyCKFHuNpNxiH2aU-CwLC2jL0kKz3YbWprwNn85lP-5Ar5gW5h4wnmMMxTFtTNMUbWsYRxkXOoh8YyJteOjAy0Z4ElWjuBOZyJcEszmSs6SVMweetl1nFXTJ3zrtkAS2HQht3D6Yzk-S2nglQUiBdGa2Cc8OA1xM0bkMDc7fCB0F3IEXJL8J2UScjErrqx24JEIXSwaSYAAFJnIObHZ6oi1T3eZGipPalpbJbxF24EnbTG9SfWBhpkvbBwNnGXLpwN1KYdol4S5LKSIcPOqoUmfN3ZZicmqR1i28HYZz9_89r8dwCZUqeXcwOnwAl31UfTpv9P1N6C3mS_MQLqpvi0k5f1SbCAafz1u9fgHjGq7_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+on+Machine+Learning+in+Healthcare+Industry%3A+Classification%2C+Restrictions%2C+Opportunities+and+Challenges&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=An%2C+Qi&rft.au=Rahman%2C+Saifur&rft.au=Zhou%2C+Jingwen&rft.au=Kang%2C+James+Jin&rft.date=2023-04-22&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=9&rft_id=info:doi/10.3390%2Fs23094178&rft_id=info%3Apmid%2F37177382&rft.externalDocID=PMC10180678 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |