A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges

Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Med...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 23; H. 9; S. 4178
Hauptverfasser: An, Qi, Rahman, Saifur, Zhou, Jingwen, Kang, James Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 22.04.2023
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets).
AbstractList Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets).
Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets).Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets).
Audience Academic
Author Rahman, Saifur
Kang, James Jin
An, Qi
Zhou, Jingwen
AuthorAffiliation 2 Computing and Security, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
1 School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
AuthorAffiliation_xml – name: 1 School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
– name: 2 Computing and Security, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0003-4869-1763
  surname: An
  fullname: An, Qi
– sequence: 2
  givenname: Saifur
  orcidid: 0000-0001-8345-0952
  surname: Rahman
  fullname: Rahman, Saifur
– sequence: 3
  givenname: Jingwen
  surname: Zhou
  fullname: Zhou, Jingwen
– sequence: 4
  givenname: James Jin
  orcidid: 0000-0002-0242-4187
  surname: Kang
  fullname: Kang, James Jin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37177382$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v0zAUhiM0xD7ggj-ALHED0rr5q7G9G1RVwCoNTUJwbTn2SesqtYudFO2C_467jrJOUy6SnDx-ktd5T6ujEANU1VuCLxhT-DJThhUnQr6oTginfCQpxUePro-r05yXGFPGmHxVHTNBhGCSnlR_JmgaV-sECwjZbwB9h42H3ygG9M3YhQ-AbsCk4MMc-YCuwXT9wpoEaBbckPt0d4WmncnZt96a3sdwXhRl7u32Jp-j2_U6pn4IvveQkQkOTRem6yDMIb-uXramy_Dm4XxW_fzy-cf0enRz-3U2ndyMbI1ZPzJUSUeZhZY5S9hYWsEbJYkV1trWOWZV0wrnuHDKCUdarCQlpikxDTSOs7NqtvO6aJZ6nfzKpDsdjdf3g5jm2qTe2w40rymRrIExHXMuFVNKYlFDcQFzkuPi-rRzrYdmBc5C6JPpDqSHT4Jf6HncaIKJxLWQxfDhwZDir6Fsll75bKHrTIA4ZE1lyTgWNRYFff8EXcYhhbJXW4oKjqWs_1NzUxL40MbyYruV6ongqvx1IWihLp6hyuFg5W1pVOvL_GDBu8dJ9xH_tacAH3eATTHnBO0eIVhvm6n3zSzs5RPW-v6-MOUrfPfMir9h7eQ2
CitedBy_id crossref_primary_10_3390_bioengineering11010094
crossref_primary_10_3390_ijms26020589
crossref_primary_10_3390_info15080467
crossref_primary_10_1016_j_health_2025_100402
crossref_primary_10_1016_j_resplu_2025_100973
crossref_primary_10_1016_j_ijid_2025_107922
crossref_primary_10_1016_j_engappai_2024_108789
crossref_primary_10_3390_su17136091
crossref_primary_10_5937_jomb0_45936
crossref_primary_10_1016_j_knosys_2025_114468
crossref_primary_10_1016_j_media_2025_103742
crossref_primary_10_1177_20552076251359498
crossref_primary_10_3390_app15010277
crossref_primary_10_1177_17085381251331394
crossref_primary_10_3390_diagnostics15040501
crossref_primary_10_1016_j_compbiomed_2025_110865
crossref_primary_10_3389_fmed_2025_1606238
crossref_primary_10_1038_s41597_025_05619_z
crossref_primary_10_1038_s41598_025_97787_6
crossref_primary_10_14336_AD_2024_0328_1
crossref_primary_10_3390_s23187667
crossref_primary_10_1007_s11695_024_07548_z
crossref_primary_10_1016_j_tca_2025_179936
crossref_primary_10_3390_bioengineering12010063
crossref_primary_10_5498_wjp_v14_i8_1148
crossref_primary_10_1111_evj_14517
crossref_primary_10_31796_ogummf_1591951
crossref_primary_10_1002_lio2_70188
crossref_primary_10_3389_fdata_2025_1574683
crossref_primary_10_1111_cob_70011
crossref_primary_10_20517_jmi_2024_108
crossref_primary_10_1016_j_cageo_2024_105712
crossref_primary_10_2196_52310
crossref_primary_10_3390_fi16090343
crossref_primary_10_3390_s24051403
crossref_primary_10_1142_S0218539324500566
crossref_primary_10_3389_fendo_2025_1635451
crossref_primary_10_3390_neurolint16060098
crossref_primary_10_3390_nitrogen4040024
crossref_primary_10_1080_17512433_2024_2317963
crossref_primary_10_1016_j_eswa_2023_122982
crossref_primary_10_1371_journal_pone_0316287
crossref_primary_10_1007_s11883_024_01210_w
crossref_primary_10_3389_fendo_2025_1561447
crossref_primary_10_1016_j_jpba_2025_116993
crossref_primary_10_1007_s00415_024_12651_3
crossref_primary_10_7759_cureus_51036
crossref_primary_10_1080_20464177_2025_2469336
crossref_primary_10_1109_TCAD_2024_3446870
crossref_primary_10_3389_fphar_2024_1352113
crossref_primary_10_1007_s11916_024_01330_7
crossref_primary_10_3390_polym17131791
crossref_primary_10_1097_SHK_0000000000002312
crossref_primary_10_1016_j_modpat_2024_100680
crossref_primary_10_1109_ACCESS_2025_3567081
crossref_primary_10_1016_j_oceaneng_2025_121000
crossref_primary_10_1016_j_heliyon_2024_e29372
crossref_primary_10_1038_s41598_024_78482_4
crossref_primary_10_1007_s41870_024_02312_z
crossref_primary_10_1021_acs_jafc_5c05624
crossref_primary_10_1002_jrs_6817
crossref_primary_10_1016_j_jbi_2025_104838
crossref_primary_10_1007_s00521_024_09893_7
crossref_primary_10_3390_diseases11030097
crossref_primary_10_3389_fpubh_2025_1655659
crossref_primary_10_3390_children12020244
crossref_primary_10_1016_j_envint_2025_109301
crossref_primary_10_63096_medtigo3092114
crossref_primary_10_1371_journal_pone_0323949
crossref_primary_10_1016_j_jcot_2025_103137
crossref_primary_10_1109_ACCESS_2023_3330691
crossref_primary_10_3390_math12020237
crossref_primary_10_1007_s00520_025_09236_9
crossref_primary_10_1016_j_ejmech_2023_116119
crossref_primary_10_1007_s00221_025_07002_1
crossref_primary_10_1007_s11042_024_20070_9
crossref_primary_10_7759_cureus_44591
crossref_primary_10_1016_j_eswa_2025_126413
crossref_primary_10_3390_s24227126
crossref_primary_10_1016_j_jad_2024_02_035
crossref_primary_10_1177_09287329251330222
crossref_primary_10_1007_s13369_024_09898_3
crossref_primary_10_1016_j_jece_2024_114428
crossref_primary_10_1016_j_compbiomed_2024_108117
crossref_primary_10_3390_electronics14071270
crossref_primary_10_1007_s11082_023_05798_2
crossref_primary_10_3390_math12101567
crossref_primary_10_1038_s41598_023_50832_8
crossref_primary_10_3390_fi17050204
crossref_primary_10_1007_s11517_024_03224_7
crossref_primary_10_1038_s41598_024_59785_y
crossref_primary_10_1186_s12871_024_02720_5
crossref_primary_10_2196_77893
crossref_primary_10_1038_s41598_025_95604_8
crossref_primary_10_1109_JIOT_2025_3549720
crossref_primary_10_1016_j_cca_2025_120181
crossref_primary_10_3390_inventions8050129
crossref_primary_10_1016_j_trac_2025_118162
crossref_primary_10_1080_14787210_2024_2322445
crossref_primary_10_1016_j_heliyon_2024_e39198
crossref_primary_10_1002_uro2_100
crossref_primary_10_1002_cnl2_70002
crossref_primary_10_2196_66233
crossref_primary_10_1088_1752_7163_ad7a9a
crossref_primary_10_3390_app15010296
crossref_primary_10_3892_wasj_2025_363
crossref_primary_10_1016_j_ijpharm_2024_124440
crossref_primary_10_1016_j_japr_2025_100602
crossref_primary_10_3390_bios14070356
crossref_primary_10_7759_cureus_47486
crossref_primary_10_2147_POR_S466505
crossref_primary_10_1109_ACCESS_2025_3536286
crossref_primary_10_3389_fonc_2024_1342317
crossref_primary_10_1097_PHM_0000000000002680
crossref_primary_10_1016_j_spinee_2025_01_005
crossref_primary_10_3390_diagnostics13223477
crossref_primary_10_20935_AcadMed7444
crossref_primary_10_1039_D5NR01562F
crossref_primary_10_2147_IJGM_S475302
crossref_primary_10_3390_a17120565
crossref_primary_10_70749_ijbr_v2i02_396
crossref_primary_10_3390_su16177626
crossref_primary_10_48017_dj_v10i1_3131
crossref_primary_10_1016_j_engappai_2024_109179
crossref_primary_10_3390_fi16110394
crossref_primary_10_1007_s11096_024_01707_z
crossref_primary_10_1016_j_oor_2025_100730
crossref_primary_10_1136_bmjopen_2024_093495
Cites_doi 10.1007/978-3-319-59050-9_51
10.1109/ICIRCA51532.2021.9544795
10.1109/TMI.2016.2524985
10.1007/s40815-020-00828-7
10.1016/j.chemolab.2019.103814
10.3389/fdata.2020.00004
10.1016/j.apenergy.2018.07.050
10.1007/s00521-022-07762-9
10.1016/j.patcog.2019.04.014
10.1109/ACCESS.2019.2909969
10.1017/S026646230200051X
10.1109/SPW.2017.9
10.1016/j.asoc.2015.11.021
10.1109/TMI.2016.2535865
10.1109/COMITCon.2019.8862451
10.1007/s42979-020-00394-7
10.1016/j.patcog.2016.09.022
10.1007/s42979-021-00518-7
10.1109/CommNet52204.2021.9641998
10.1109/ICTKE.2017.8259629
10.1016/j.compeleceng.2017.07.006
10.1177/0165551516677946
10.1007/978-1-4302-5990-9
10.5120/21131-4058
10.1016/j.apr.2019.09.009
10.1016/j.eswa.2011.02.008
10.1016/j.asoc.2017.05.043
10.1007/s10796-008-9131-2
10.21500/20112084.819
10.14445/22312803/IJCTT-V48P126
10.21037/atm.2017.02.05
10.1016/j.apenergy.2019.03.044
10.1016/j.ins.2020.06.025
10.5626/JCSE.2021.15.1.1
10.23919/ITC.2017.8065806
10.1109/ICECA.2018.8474918
10.1557/mrc.2019.32
10.1016/j.cosrev.2021.100370
10.1016/j.protcy.2013.12.340
10.20544/HORIZONS.B.04.1.17.P05
10.1007/s40860-021-00152-3
10.1016/j.procs.2020.02.053
10.1016/j.neucom.2017.11.077
10.1007/s10916-018-0934-5
10.1109/ACCESS.2017.2694446
10.1016/j.neucom.2016.08.083
10.1007/978-1-4899-7641-3
10.1109/ACCESS.2020.2988796
10.1016/S1470-2045(19)30149-4
10.1207/S15324796ABM2603_02
10.1109/TBDATA.2018.2840696
10.1109/IVS.2017.7995773
10.1109/BIGCOMP.2019.8679157
10.1109/ICSEM.2010.14
10.1016/j.compag.2017.01.001
10.1109/TCSVT.2018.2799214
10.4066/biomedicalresearch.29-18-620
10.1016/j.knosys.2016.06.031
10.1109/ICCSCE.2012.6487177
10.1016/j.advwatres.2015.12.017
10.2478/seeur-2021-0008
10.1016/j.health.2022.100080
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23094178
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_462183be52544893998076eb37e3d840
PMC10180678
A749233772
37177382
10_3390_s23094178
Genre Journal Article
Review
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c603t-a298d23cef3dc1358c74b981c7cccfdd3c9bf7dd47d9d7d1f09821ab371aebd43
IEDL.DBID BENPR
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000987798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:44:29 EDT 2025
Tue Nov 04 02:07:14 EST 2025
Fri Sep 05 09:08:26 EDT 2025
Tue Oct 07 07:28:20 EDT 2025
Tue Nov 11 10:00:50 EST 2025
Tue Nov 04 17:57:47 EST 2025
Wed Feb 19 02:08:40 EST 2025
Tue Nov 18 22:39:55 EST 2025
Sat Nov 29 07:16:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords unsupervised machine learning
mobile health
machine learning
machine learning algorithms
supervised learning
healthcare
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-a298d23cef3dc1358c74b981c7cccfdd3c9bf7dd47d9d7d1f09821ab371aebd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0242-4187
0000-0001-8345-0952
0000-0003-4869-1763
OpenAccessLink https://www.proquest.com/docview/2812740886?pq-origsite=%requestingapplication%
PMID 37177382
PQID 2812740886
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_462183be52544893998076eb37e3d840
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180678
proquest_miscellaneous_2813557607
proquest_journals_2812740886
gale_infotracmisc_A749233772
gale_infotracacademiconefile_A749233772
pubmed_primary_37177382
crossref_primary_10_3390_s23094178
crossref_citationtrail_10_3390_s23094178
PublicationCentury 2000
PublicationDate 2023-04-22
PublicationDateYYYYMMDD 2023-04-22
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-22
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dulhare (ref_39) 2018; 29
ref_90
Ripan (ref_71) 2021; 2
Cai (ref_17) 2018; 300
Mydyti (ref_40) 2021; 16
Anthimopoulos (ref_8) 2016; 35
Fan (ref_78) 2016; 88
ref_13
ref_57
ref_12
Das (ref_15) 2015; 115
Xu (ref_44) 2018; 44
Yuan (ref_32) 2010; 12
ref_52
ref_51
Srividya (ref_74) 2018; 42
Zhang (ref_73) 2017; 5
ref_18
ref_59
Dana (ref_75) 2019; Volume 1360
Shouman (ref_50) 2012; 2
Berrar (ref_42) 2018; Volume 403
Lozano (ref_69) 2017; 117
Yu (ref_64) 2010; 3
ref_61
Thenmozhi (ref_27) 2014; 2
Luo (ref_21) 2019; 192
Dhillon (ref_1) 2019; 8
Kaushik (ref_58) 2020; 3
Kotsiantis (ref_25) 2007; 160
ref_24
Mythili (ref_87) 2013; 68
ref_65
Qureshi (ref_11) 2020; 538
Li (ref_23) 2011; 38
ref_63
Sieranoja (ref_67) 2019; 93
ref_29
Arar (ref_37) 2017; 59
Mehta (ref_10) 2017; 63
ref_28
Nasteski (ref_38) 2017; 4
Yan (ref_7) 2016; 35
ref_26
Lemon (ref_55) 2003; 26
Bhavsar (ref_33) 2012; 2
Tang (ref_68) 2017; 135
Petrou (ref_54) 2002; 18
ref_72
Ngiam (ref_5) 2019; 20
Garg (ref_6) 2021; 40
ref_34
Wuest (ref_3) 2016; 4
ref_77
Duneja (ref_47) 2017; 4
ref_30
Zhang (ref_76) 2019; 241
Li (ref_79) 2018; 6
Govender (ref_70) 2020; 11
Chen (ref_4) 2017; 5
Abikoye (ref_41) 2018; 1
Ciaburro (ref_14) 2021; 33
Li (ref_20) 2016; 218
Ali (ref_35) 2019; 7
Muna (ref_16) 2018; 41
Muhammad (ref_86) 2021; 2
Ezzeddine (ref_60) 2018; 65
Chefira (ref_81) 2021; 15
ref_82
Wen (ref_19) 2018; 29
ref_80
Nagarajan (ref_22) 2022; 8
ref_46
ref_89
Nilashi (ref_36) 2020; 22
ref_85
ref_84
Sinaga (ref_66) 2020; 8
Kazemi (ref_31) 2016; 40
Chen (ref_48) 2020; 166
Deekshatulu (ref_49) 2013; 10
ref_2
Balaha (ref_45) 2023; 35
(ref_83) 2019; 19
Sohn (ref_88) 2020; 33
ref_9
Chen (ref_53) 2019; 9
Sharin (ref_62) 2022; 2
Liu (ref_56) 2018; 228
Osisanwo (ref_43) 2017; 48
References_xml – volume: 8
  start-page: 1
  year: 2019
  ident: ref_1
  article-title: Machine learning in healthcare data analysis: A survey
  publication-title: J. Biol. Today World
– ident: ref_9
  doi: 10.1007/978-3-319-59050-9_51
– ident: ref_72
  doi: 10.1109/ICIRCA51532.2021.9544795
– volume: 35
  start-page: 1332
  year: 2016
  ident: ref_7
  article-title: Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2524985
– ident: ref_51
– volume: 4
  start-page: 23
  year: 2016
  ident: ref_3
  article-title: Machine learning in manufacturing: Advantages, challenges, and applications
  publication-title: Prod. Manuf. Res.
– volume: 22
  start-page: 1376
  year: 2020
  ident: ref_36
  article-title: Coronary heart disease diagnosis through self-organizing map and fuzzy support vector machine with incremental updates
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00828-7
– ident: ref_84
– volume: 192
  start-page: 103814
  year: 2019
  ident: ref_21
  article-title: Discriminant autoencoder for feature extraction in fault diagnosis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103814
– volume: 3
  start-page: 4
  year: 2020
  ident: ref_58
  article-title: AI in healthcare: Time-series forecasting using statistical, neural, and ensemble architectures
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2020.00004
– volume: 33
  start-page: 213
  year: 2021
  ident: ref_14
  article-title: An artificial neural network approach to modelling absorbent asphalts acoustic properties
  publication-title: J. King Saud. Univ. Eng. Sci.
– volume: 41
  start-page: 1
  year: 2018
  ident: ref_16
  article-title: Identification of malicious activities in industrial internet of things based on deep learning models
  publication-title: J. Inf. Secur. Appl.
– volume: 228
  start-page: 1783
  year: 2018
  ident: ref_56
  article-title: A novel ensemble model of different mother wavelets for wind speed multi-step forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.050
– ident: ref_65
– volume: 35
  start-page: 815
  year: 2023
  ident: ref_45
  article-title: Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07762-9
– volume: 93
  start-page: 95
  year: 2019
  ident: ref_67
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.014
– volume: 7
  start-page: 54007
  year: 2019
  ident: ref_35
  article-title: An optimized stacked support vector machines based expert system for the effective prediction of heart failure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909969
– volume: 18
  start-page: 705
  year: 2002
  ident: ref_54
  article-title: The accuracy of self-reported healthcare resource utilization in health economic studies
  publication-title: Int. J. Technol. Assess. Health Care
  doi: 10.1017/S026646230200051X
– ident: ref_77
  doi: 10.1109/SPW.2017.9
– volume: 40
  start-page: 507
  year: 2016
  ident: ref_31
  article-title: A hybrid method for estimating the process change point using support vector machine and fuzzy statistical clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.11.021
– volume: 35
  start-page: 1207
  year: 2016
  ident: ref_8
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535865
– ident: ref_26
  doi: 10.1109/COMITCon.2019.8862451
– volume: 2
  start-page: 1
  year: 2021
  ident: ref_86
  article-title: Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00394-7
– volume: 63
  start-page: 499
  year: 2017
  ident: ref_10
  article-title: Rodeo: Robust de-aliasing autoencoder for real-time medical image reconstruction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.022
– volume: 2
  start-page: 1
  year: 2021
  ident: ref_71
  article-title: A data-driven heart disease prediction model through K-means clustering-based anomaly detection
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00518-7
– ident: ref_85
  doi: 10.1109/CommNet52204.2021.9641998
– ident: ref_89
  doi: 10.1109/ICTKE.2017.8259629
– volume: Volume 1360
  start-page: 012017
  year: 2019
  ident: ref_75
  article-title: Measurement of health service performance through machine learning using clustering techniques
  publication-title: Proceedings of the Journal of Physics: Conference Series
– volume: 65
  start-page: 102
  year: 2018
  ident: ref_60
  article-title: Smart grid load forecasting using online support vector regression
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.07.006
– volume: 44
  start-page: 48
  year: 2018
  ident: ref_44
  article-title: Bayesian Naïve Bayes classifiers to text classification
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551516677946
– ident: ref_61
  doi: 10.1007/978-1-4302-5990-9
– ident: ref_63
  doi: 10.5120/21131-4058
– ident: ref_52
– volume: 160
  start-page: 3
  year: 2007
  ident: ref_25
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– volume: 11
  start-page: 40
  year: 2020
  ident: ref_70
  article-title: Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019)
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.09.009
– volume: 38
  start-page: 10000
  year: 2011
  ident: ref_23
  article-title: A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.008
– volume: 59
  start-page: 197
  year: 2017
  ident: ref_37
  article-title: A feature dependent Naive Bayes approach and its application to the software defect prediction problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.043
– volume: 12
  start-page: 149
  year: 2010
  ident: ref_32
  article-title: An SVM-based machine learning method for accurate internet traffic classification
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-008-9131-2
– volume: 3
  start-page: 9
  year: 2010
  ident: ref_64
  article-title: Exploratory data analysis in the context of data mining and resampling
  publication-title: Int. J. Psychol. Res.
  doi: 10.21500/20112084.819
– ident: ref_13
– volume: 48
  start-page: 128
  year: 2017
  ident: ref_43
  article-title: Supervised machine learning algorithms: Classification and comparison
  publication-title: Int. J. Comput. Trends Technol. (IJCTT)
  doi: 10.14445/22312803/IJCTT-V48P126
– volume: 5
  start-page: 75
  year: 2017
  ident: ref_73
  article-title: Hierarchical cluster analysis in clinical research with heterogeneous study population: Highlighting its visualization with R
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2017.02.05
– ident: ref_59
– volume: Volume 403
  start-page: 412
  year: 2018
  ident: ref_42
  article-title: Bayes’ theorem and naive bayes classifier
  publication-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics
– ident: ref_28
– volume: 241
  start-page: 229
  year: 2019
  ident: ref_76
  article-title: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.044
– volume: 538
  start-page: 486
  year: 2020
  ident: ref_11
  article-title: An accurate and dynamic predictive model for a smart M-Health system using machine learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.06.025
– volume: 15
  start-page: 1
  year: 2021
  ident: ref_81
  article-title: A Knowledge Extraction Pipeline between Supervised and Unsupervised Machine Learning Using Gaussian Mixture Models for Anomaly Detection
  publication-title: J. Comput. Sci. Eng.
  doi: 10.5626/JCSE.2021.15.1.1
– ident: ref_34
  doi: 10.23919/ITC.2017.8065806
– ident: ref_12
  doi: 10.1109/ICECA.2018.8474918
– ident: ref_82
– volume: 1
  start-page: 1
  year: 2018
  ident: ref_41
  article-title: Text Classification Using Data Mining Techniques: A Review
  publication-title: Comput. Inf. Syst. J.
– volume: 9
  start-page: 556
  year: 2019
  ident: ref_53
  article-title: Machine learning for composite materials
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.32
– volume: 115
  start-page: 31
  year: 2015
  ident: ref_15
  article-title: Applications of artificial intelligence in machine learning: Review and prospect
  publication-title: Int. J. Comput. Appl.
– volume: 40
  start-page: 100370
  year: 2021
  ident: ref_6
  article-title: Role of machine learning in medical research: A survey
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100370
– volume: 10
  start-page: 85
  year: 2013
  ident: ref_49
  article-title: Classification of heart disease using k-nearest neighbor and genetic algorithm
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2013.12.340
– volume: 4
  start-page: 51
  year: 2017
  ident: ref_38
  article-title: An overview of the supervised machine learning methods
  publication-title: Horizons. B
  doi: 10.20544/HORIZONS.B.04.1.17.P05
– volume: 8
  start-page: 333
  year: 2022
  ident: ref_22
  article-title: Innovative feature selection and classification model for heart disease prediction
  publication-title: J. Reliab. Intell. Environ.
  doi: 10.1007/s40860-021-00152-3
– volume: 4
  start-page: 1385
  year: 2017
  ident: ref_47
  article-title: Enhancing classification accuracy of k-nearest neighbours algorithm using gain ratio
  publication-title: Int. Res. J. Eng. Technol
– volume: 166
  start-page: 523
  year: 2020
  ident: ref_48
  article-title: The Lao text classification method based on KNN
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.02.053
– volume: 19
  start-page: 1
  year: 2019
  ident: ref_83
  article-title: Machine learning in medicine: A practical introduction
  publication-title: BMC Med. Res. Methodol.
– volume: 68
  start-page: 11
  year: 2013
  ident: ref_87
  article-title: A heart disease prediction model using SVM-decision trees-logistic regression (SDL)
  publication-title: Int. J. Comput. Appl.
– volume: 300
  start-page: 70
  year: 2018
  ident: ref_17
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 42
  start-page: 1
  year: 2018
  ident: ref_74
  article-title: Behavioral modeling for mental health using machine learning algorithms
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0934-5
– volume: 33
  start-page: 596
  year: 2020
  ident: ref_88
  article-title: Fixmatch: Simplifying semi-supervised learning with consistency and confidence
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 5
  start-page: 8869
  year: 2017
  ident: ref_4
  article-title: Disease prediction by machine learning over big data from healthcare communities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694446
– volume: 218
  start-page: 371
  year: 2016
  ident: ref_20
  article-title: Extracting the nonlinear features of motor imagery EEG using parametric t-SNE
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.083
– ident: ref_30
  doi: 10.1007/978-1-4899-7641-3
– volume: 8
  start-page: 80716
  year: 2020
  ident: ref_66
  article-title: Unsupervised K-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 20
  start-page: e262
  year: 2019
  ident: ref_5
  article-title: Big data and machine learning algorithms for health-care delivery
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30149-4
– volume: 26
  start-page: 172
  year: 2003
  ident: ref_55
  article-title: Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression
  publication-title: Ann. Behav. Med.
  doi: 10.1207/S15324796ABM2603_02
– volume: 6
  start-page: 223
  year: 2018
  ident: ref_79
  article-title: Clustering analysis in the wireless propagation channel with a variational Gaussian mixture model
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2018.2840696
– ident: ref_29
– ident: ref_80
  doi: 10.1109/IVS.2017.7995773
– ident: ref_2
– ident: ref_90
  doi: 10.1109/BIGCOMP.2019.8679157
– ident: ref_46
– ident: ref_18
  doi: 10.1109/ICSEM.2010.14
– volume: 135
  start-page: 63
  year: 2017
  ident: ref_68
  article-title: Weed identification based on K-means feature learning combined with convolutional neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.01.001
– volume: 29
  start-page: 390
  year: 2018
  ident: ref_19
  article-title: Robust sparse linear discriminant analysis
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2799214
– volume: 29
  start-page: 2646
  year: 2018
  ident: ref_39
  article-title: Prediction system for heart disease using Naive Bayes and particle swarm optimization
  publication-title: Biomed. Res.
  doi: 10.4066/biomedicalresearch.29-18-620
– volume: 117
  start-page: 56
  year: 2017
  ident: ref_69
  article-title: An efficient approximation to the K-means clustering for massive data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.06.031
– ident: ref_24
  doi: 10.1109/ICCSCE.2012.6487177
– volume: 2
  start-page: 6
  year: 2014
  ident: ref_27
  article-title: Heart disease prediction using classification with different decision tree techniques
  publication-title: Int. J. Eng. Res. Gen. Sci.
– volume: 2
  start-page: 220
  year: 2012
  ident: ref_50
  article-title: Applying k-nearest neighbour in diagnosing heart disease patients
  publication-title: Int. J. Inf. Educ. Technol.
– volume: 88
  start-page: 170
  year: 2016
  ident: ref_78
  article-title: Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.12.017
– volume: 16
  start-page: 45
  year: 2021
  ident: ref_40
  article-title: Data Mining Approach Improving Decision-Making Competency along the Business Digital Transformation Journey: A Case Study–Home Appliances after Sales Service
  publication-title: Seeu Rev.
  doi: 10.2478/seeur-2021-0008
– ident: ref_57
– volume: 2
  start-page: 2231
  year: 2012
  ident: ref_33
  article-title: A comparative study of training algorithms for supervised machine learning
  publication-title: Int. J. Soft Comput. Eng. (IJSCE)
– volume: 2
  start-page: 100080
  year: 2022
  ident: ref_62
  article-title: A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2022.100080
SSID ssj0023338
Score 2.69938
SecondaryResourceType review_article
Snippet Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4178
SubjectTerms Accuracy
Algorithms
Analysis
Artificial Intelligence
Classification
Clinical decision making
Computational linguistics
Data analysis
Data mining
Datasets
Discriminant analysis
Disease
Efficiency
Electronic health records
Epidemiology
Health care industry
Health care reform
Health Care Sector
healthcare
Language processing
Machine Learning
machine learning algorithms
Medical advice systems
Medical care
Medical diagnosis
Medical research
Medicine, Experimental
mobile health
Natural language interfaces
Neural networks
Pattern recognition
Public health
Quality management
Review
supervised learning
Telemedicine
Unsupervised Machine Learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDeBggxCgkOjJrE3trktFVUvFA4g9RY5Y4euhLzVZheph_53ZhxvlAgkLlzXs1E8D898yeQbxt5q0ZXKdTKXnYGcZjnkml4htoC5vjVQ-87FYRPq_FxfXJivk1Ff1BM20AMPijuWNSXx1i-ISwuTK8IDhN4IAZUXDtEJnb6FMnswlaCWQOQ18AgJBPXHPRbaRpY0S22SfSJJ_59H8SQXzfskJ4nn9D67lypGvhzu9AG75cNDdnfCI_iI3Sw5xfXGXw7t6Hx44s_XgX-OzZKeJx7VH3wV-NnY88XT5I7rDzxOx6S-oWiqI7wETfSIXz30R_zLFdXpuxD5V7kNjp_sp7D0j9n300_fTs7yNFchh7oQ29xWRrtKgO-Eg1IsNCjZGl2CAoDOOQGm7ZRzUjnjlCu7wuiqtKjy0vrWSfGEHYR18M8YxwyooWrBSrvAdNha66jG8AZRiISiyNj7vb4bSKTjNPviZ4Pgg0zTjKbJ2JtR9Gpg2vib0Ecy2ihA5NjxB3SZJrlM8y-Xydg7MnlDIYw3AzZ9iYBbIjKsZqmItU4g7sjY4UwSQw_my3unaVLo902FJZOSeHjXGXs9LtM_qZ0t-PUuymCdp-pCZezp4GPjllDLSgmNF9cz75vteb4SVpeRGDyysWH18fx_aOkFu1NhINGbs6o6ZAfbzc6_ZLfh13bVb17FcPsNza4vPg
  priority: 102
  providerName: Directory of Open Access Journals
Title A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges
URI https://www.ncbi.nlm.nih.gov/pubmed/37177382
https://www.proquest.com/docview/2812740886
https://www.proquest.com/docview/2813557607
https://pubmed.ncbi.nlm.nih.gov/PMC10180678
https://doaj.org/article/462183be52544893998076eb37e3d840
Volume 23
WOSCitedRecordID wos000987798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iGwcQ4mMMCIzKICQ4LFoSp7HDBXVTJzi0VAikcooS29kqoaQ0LRIH-Nt5z3FDIxAXLjnYTmTHz-_Dfv79AF5IXoZCl7Efl6nyicvBl3SEWCi09UWqElNqSzYhplM5n6czt-HWuLTKrU60ilrXivbITyO0RCLGNZG8WX71iTWKTlcdhcYeHBBSGcr5wdl4OvvQhVwcI7AWT4hjcH_aoMOdxiFxqu1YIQvW_6dK3rFJ_XzJHQN0ced_u34XbjvXk41aWbkH10x1CDd3AAkP4Va7i8fay0n34ceIkcJYmas2z521RwmsrtjEZmEa5gBaL9micq9RMhlzlCDfXzNLu0kJSVYGTvATRBVir1M0J-z9kgKATWWBXVleaXa-pXdpjuDTxfjj-VvfETb4Kgn42s-jVOqIK1NyrUI-lErERSpDJZRSpdZcpUUptI6FTrXQYRmkMgrzgoswN4WO-QPYr-rKPAKGplWqqFB5nA_RzhZ5rsl5MSmGN7EKAg9ebScwUw7NnEg1vmQY1dBcZ91ce_C8a7psITz-1uiMpKBrQKjbtqBeXWZuEWdxQg5lYYaE64aOHoaqgUgM9t9wjZGyBy9JhjLSDdgZlbsrDjgkQtnKRoLg8DgGNB4c91rimlb96q0kZU6nNNlvMfLgWVdNb1KeXGXqjW2DDqRIAuHBw1ZouyHhXxaCS_y47Ilzb8z9mmpxZRHHLcwbujWP_92vJ3AjwjVHh21RdAz769XGPIXr6tt60awGsCfmwj7lwK3Tgd0Cwefk5xjLZu8ms8-_AO-tS0M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRIgxGUMKAwwCAQPi5bEbpwgIVQG06qtpQ9DGk9ZYjtbJZSWpgXtgb_Eb-Qc50IjEG974DV2LNs51_j4-wCehzzzpM6EI7JIOcTl4IR0hJgq9PVppAKTaUs2IUej8Pg4Gq_Bz_ouDJVV1jbRGmo9VfSPfMdHTyQF6kTwdvbVIdYoOl2tKTRKsTgw598xZSveDN7j933h-3sfjnb3nYpVwFGByxdO4keh9rkyGdfK471QSZFGoaekUirTmqsozaTWQupIS-1lbhT6XpJy6SUm1YLjuJdgXaCwux1YHw-G489Niscx4yvxiziP3J0CA_xIeMThtuL1LDnAny5gxQe26zNXHN7ezf9tq27BjSq0Zv1SF27Dmsk34NoK4OIGXC__UrLy8tUd-NFnZBDn5qys42flUQmb5mxoq0wNqwBoT9kkr16jYjlWUZ6cv2aWVpQKrqyMb-MQRIVir4sU2-zjjBKcZW6Ba1mSa7Zb09cUm_DpQvbjLnTyaW7uA8PQIVR-qhKR9DCOSJNEU3BmIkzfhHLdLryqBSZWFVo7kYZ8iTFrI9mKG9nqwrOm66yEKPlbp3ckdU0HQhW3D6bz07gyUrEIKGBOTY9w6zCQxVTclYHB-RuuQ4GTekkyG5Ptw8mopLrCgUsiFLG4Lwnuj2PC1oWtVk-0WardXEtuXNnMIv4ttl142jTTm1QHmJvp0vbBAFkGruzCvVJJmiXhLkvJQxw8bKlPa83tlnxyZhHVLYwdhm0P_j2vJ3Bl_2h4GB8ORgcP4aqP-k4Hi76_BZ3FfGkewWX1bTEp5o8ru8Dg5KL16xf2XKZp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAyEQ4jJuhQEGgeBhUZPYjWMkhMpGxTQoewCpbyGxna0SSkrTgvbAH-PXcY6TdI1AvO2B19ixbOdc4-PvA3ga8zyQJheeyJX2iMvBi-kIMdPo6zOlI5sbRzYhx-N4MlGHG_CrvQtDZZWtTXSG2pSa_pH3Q_REUqBORP28KYs43Bu9nn3ziEGKTlpbOo1aRA7syQ9M36pX-3v4rZ-F4ejtp913XsMw4OnI5wsvDVVsQq5tzo0O-CDWUmQqDrTUWufGcK2yXBojpFFGmiD3VRwGacZlkNrMCI7jnoPzBClIRkFOTpM9jrlfjWTEufL7FYb6SgTE5rbm_xxNwJ_OYM0bdis111zf6Nr_vGnX4WoTcLNhrSE3YMMWW3B5DYZxC67U_y5ZfSXrJvwcMjKTc3tcV_ez-gCFlQX74GpPLWtgaY_YtGheoxI61hChnLxkjmyUyrCc5O_gEESQ4i6RVDvs44zSnmXh4GxZWhi225LaVLfg85nsx23YLMrC3gWGAUWsw0ynIh1gdJGlqaGQzSpM6oT2_R68aIUn0Q2GO1GJfE0wlyM5S1Zy1oMnq66zGrjkb53ekASuOhDWuHtQzo-SxnQlIqIwOrMDQrPD8BYTdF9GFudvuYkFTuo5yW9CFhEno9PmYgcuibDFkqEkEECOaVwPtjs90ZLpbnMrxUljSavkVIR78HjVTG9SdWBhy6Xrg2GzjHzZgzu1wqyWhLssJY9x8LijSp01d1uK6bHDWXfgdhjM3fv3vB7BRVSq5P3--OA-XApR9em0MQy3YXMxX9oHcEF_X0yr-UNnIBh8OWvl-g1p6K2W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+on+Machine+Learning+in+Healthcare+Industry%3A+Classification%2C+Restrictions%2C+Opportunities+and+Challenges&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=An%2C+Qi&rft.au=Rahman%2C+Saifur&rft.au=Zhou%2C+Jingwen&rft.au=Kang%2C+James+Jin&rft.date=2023-04-22&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=9&rft.spage=4178&rft_id=info:doi/10.3390%2Fs23094178&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23094178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon