Multiscale brain MRI super-resolution using deep 3D convolutional networks

[Display omitted] •A residual-based deep 3D CNN architecture for super-resolution.•Comprehensive performance analysis of key elements of neural networks.•Multi-scale training approach to handle arbitrary scale factors.•Multimodal CNN for super-resolution. The purpose of super-resolution approaches i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics Jg. 77; S. 101647
Hauptverfasser: Pham, Chi-Hieu, Tor-Díez, Carlos, Meunier, Hélène, Bednarek, Nathalie, Fablet, Ronan, Passat, Nicolas, Rousseau, François
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.10.2019
Elsevier Science Ltd
Elsevier
Schlagworte:
ISSN:0895-6111, 1879-0771, 1879-0771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •A residual-based deep 3D CNN architecture for super-resolution.•Comprehensive performance analysis of key elements of neural networks.•Multi-scale training approach to handle arbitrary scale factors.•Multimodal CNN for super-resolution. The purpose of super-resolution approaches is to overcome the hardware limitations and the clinical requirements of imaging procedures by reconstructing high-resolution images from low-resolution acquisitions using post-processing methods. Super-resolution techniques could have strong impacts on structural magnetic resonance imaging when focusing on cortical surface or fine-scale structure analysis for instance. In this paper, we study deep three-dimensional convolutional neural networks for the super-resolution of brain magnetic resonance imaging data. First, our work delves into the relevance of several factors in the performance of the purely convolutional neural network-based techniques for the monomodal super-resolution: optimization methods, weight initialization, network depth, residual learning, filter size in convolution layers, number of the filters, training patch size and number of training subjects. Second, our study also highlights that one single network can efficiently handle multiple arbitrary scaling factors based on a multiscale training approach. Third, we further extend our super-resolution networks to the multimodal super-resolution using intermodality priors. Fourth, we investigate the impact of transfer learning skills onto super-resolution performance in terms of generalization among different datasets. Lastly, the learnt models are used to enhance real clinical low-resolution images. Results tend to demonstrate the potential of deep neural networks with respect to practical medical image applications.
AbstractList The purpose of super-resolution approaches is to overcome the hardware limitations and the clinical requirements of imaging procedures by reconstructing high-resolution images from low-resolution acquisitions using post-processing methods. Super-resolution techniques could have strong impacts on structural magnetic resonance imaging when focusing on cortical surface or fine-scale structure analysis for instance. In this paper, we study deep three-dimensional convolutional neural networks for the super-resolution of brain magnetic resonance imaging data. First, our work delves into the relevance of several factors in the performance of the purely convolutional neural network-based techniques for the monomodal super-resolution: optimization methods, weight initialization, network depth, residual learning, filter size in convolution layers, number of the filters, training patch size and number of training subjects. Second, our study also highlights that one single network can efficiently handle multiple arbitrary scaling factors based on a multiscale training approach. Third, we further extend our super-resolution networks to the multimodal super-resolution using intermodality priors. Fourth, we investigate the impact of transfer learning skills onto super-resolution performance in terms of generalization among different datasets. Lastly, the learnt models are used to enhance real clinical low-resolution images. Results tend to demonstrate the potential of deep neural networks with respect to practical medical image applications.
[Display omitted] •A residual-based deep 3D CNN architecture for super-resolution.•Comprehensive performance analysis of key elements of neural networks.•Multi-scale training approach to handle arbitrary scale factors.•Multimodal CNN for super-resolution. The purpose of super-resolution approaches is to overcome the hardware limitations and the clinical requirements of imaging procedures by reconstructing high-resolution images from low-resolution acquisitions using post-processing methods. Super-resolution techniques could have strong impacts on structural magnetic resonance imaging when focusing on cortical surface or fine-scale structure analysis for instance. In this paper, we study deep three-dimensional convolutional neural networks for the super-resolution of brain magnetic resonance imaging data. First, our work delves into the relevance of several factors in the performance of the purely convolutional neural network-based techniques for the monomodal super-resolution: optimization methods, weight initialization, network depth, residual learning, filter size in convolution layers, number of the filters, training patch size and number of training subjects. Second, our study also highlights that one single network can efficiently handle multiple arbitrary scaling factors based on a multiscale training approach. Third, we further extend our super-resolution networks to the multimodal super-resolution using intermodality priors. Fourth, we investigate the impact of transfer learning skills onto super-resolution performance in terms of generalization among different datasets. Lastly, the learnt models are used to enhance real clinical low-resolution images. Results tend to demonstrate the potential of deep neural networks with respect to practical medical image applications.
The purpose of super-resolution approaches is to overcome the hardware limitations and the clinical requirements of imaging procedures by reconstructing high-resolution images from low-resolution acquisitions using post-processing methods. Super-resolution techniques could have strong impacts on structural magnetic resonance imaging when focusing on cortical surface or fine-scale structure analysis for instance. In this paper, we study deep three-dimensional convolutional neural networks for the super-resolution of brain magnetic resonance imaging data. First, our work delves into the relevance of several factors in the performance of the purely convolutional neural network-based techniques for the monomodal super-resolution: optimization methods, weight initialization, network depth, residual learning, filter size in convolution layers, number of the filters, training patch size and number of training subjects. Second, our study also highlights that one single network can efficiently handle multiple arbitrary scaling factors based on a multiscale training approach. Third, we further extend our super-resolution networks to the multimodal super-resolution using intermodality priors. Fourth, we investigate the impact of transfer learning skills onto super-resolution performance in terms of generalization among different datasets. Lastly, the learnt models are used to enhance real clinical low-resolution images. Results tend to demonstrate the potential of deep neural networks with respect to practical medical image applications.The purpose of super-resolution approaches is to overcome the hardware limitations and the clinical requirements of imaging procedures by reconstructing high-resolution images from low-resolution acquisitions using post-processing methods. Super-resolution techniques could have strong impacts on structural magnetic resonance imaging when focusing on cortical surface or fine-scale structure analysis for instance. In this paper, we study deep three-dimensional convolutional neural networks for the super-resolution of brain magnetic resonance imaging data. First, our work delves into the relevance of several factors in the performance of the purely convolutional neural network-based techniques for the monomodal super-resolution: optimization methods, weight initialization, network depth, residual learning, filter size in convolution layers, number of the filters, training patch size and number of training subjects. Second, our study also highlights that one single network can efficiently handle multiple arbitrary scaling factors based on a multiscale training approach. Third, we further extend our super-resolution networks to the multimodal super-resolution using intermodality priors. Fourth, we investigate the impact of transfer learning skills onto super-resolution performance in terms of generalization among different datasets. Lastly, the learnt models are used to enhance real clinical low-resolution images. Results tend to demonstrate the potential of deep neural networks with respect to practical medical image applications.
Graphical abstract
ArticleNumber 101647
Author Tor-Díez, Carlos
Pham, Chi-Hieu
Bednarek, Nathalie
Passat, Nicolas
Rousseau, François
Meunier, Hélène
Fablet, Ronan
Author_xml – sequence: 1
  givenname: Chi-Hieu
  surname: Pham
  fullname: Pham, Chi-Hieu
  email: ch.pham@imt-atlantique.fr
  organization: IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France
– sequence: 2
  givenname: Carlos
  surname: Tor-Díez
  fullname: Tor-Díez, Carlos
  email: carlos.tordiez@imt-atlantique.fr
  organization: IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France
– sequence: 3
  givenname: Hélène
  surname: Meunier
  fullname: Meunier, Hélène
  email: hmeunier@chu-reims.fr
  organization: Service de médecine néonatale et réanimation pédiatrique, CHU de Reims, France
– sequence: 4
  givenname: Nathalie
  surname: Bednarek
  fullname: Bednarek, Nathalie
  email: nbednarek@chu-reims.fr
  organization: Service de médecine néonatale et réanimation pédiatrique, CHU de Reims, France
– sequence: 5
  givenname: Ronan
  surname: Fablet
  fullname: Fablet, Ronan
  email: ronan.fablet@imt-atlantique.fr
  organization: IMT Atlantique, LabSTICC UMR CNRS 6285, UBL, Brest, France
– sequence: 6
  givenname: Nicolas
  surname: Passat
  fullname: Passat, Nicolas
  email: nicolas.passat@univ-reims.fr
  organization: Université de Reims Champagne Ardenne, CReSTIC EA 3804, 51097 Reims, France
– sequence: 7
  givenname: François
  surname: Rousseau
  fullname: Rousseau, François
  organization: IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31493703$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01635455$$DView record in HAL
BookMark eNqNkl1v0zAUhi00xLrBX0BB3MBFij8Su7kBVWWwoU5IfFxbjnMy3Ll2sJOi_fs5pJtQJaReWEeyH7_Hft9zhk6cd4DQK4LnBBP-bjPXftttoTFbdTOnmFR_9wvxBM3IQlQ5FoKcoBleVGXOCSGn6CzGDcaYYkGeoVNGiooJzGboy_VgexO1spDVQRmXXX-7yuLQQcgDRG-H3niXDdG4m6wB6DL2MdPe7fYnymYO-j8-3Mbn6GmrbIQX-3qOfn66-LG6zNdfP1-tlutcc8z6XFCoaloIwgpdF2XdAqdatK0WtC5VI4jmTYNr1qRS0wZzrlWhNVZU1xj4gp2jt5PuL2VlF5IH4U56ZeTlci3HvWQFK4uy3NHEvpnYLvjfA8RebtNnwVrlwA9RUrrgFSl5yRL6-gDd-CGkDyaKEZoWFkWiXu6poU4BPPZ_cDQBHyZABx9jgFZq06vRqj7ZayXBcsxKbuQ_GcoxQzllmBSqA4WHJsfcXU13IQWwMxBk1AacTmgA3cvGm6NU3h-oaGucSUNyC3cQH30hMlKJ5fdxzsYxIwuGC4LLJLD8v8CRj7gHvhLnxw
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110345
crossref_primary_10_1109_TCYB_2022_3178370
crossref_primary_10_1016_j_bspc_2022_104154
crossref_primary_10_1109_TNNLS_2023_3315271
crossref_primary_10_1109_ACCESS_2024_3516380
crossref_primary_10_1016_j_acra_2024_10_054
crossref_primary_10_3390_s24206639
crossref_primary_10_1109_ACCESS_2024_3427674
crossref_primary_10_1016_j_bspc_2021_103339
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_1002_hbm_70112
crossref_primary_10_1109_JBHI_2023_3271815
crossref_primary_10_1007_s11548_021_02535_6
crossref_primary_10_1016_j_ejrad_2025_112289
crossref_primary_10_1016_j_compbiomed_2024_108151
crossref_primary_10_1016_j_mri_2023_01_012
crossref_primary_10_1002_mrm_29785
crossref_primary_10_1016_j_compbiomed_2020_103755
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_3390_electronics14153009
crossref_primary_10_1016_j_imu_2021_100713
crossref_primary_10_1016_j_bspc_2025_107777
crossref_primary_10_1109_ACCESS_2022_3140810
crossref_primary_10_1007_s10278_024_01139_1
crossref_primary_10_1016_j_mri_2025_110463
crossref_primary_10_1016_j_neuroimage_2021_118687
crossref_primary_10_1109_TETCI_2022_3215137
crossref_primary_10_3390_s22207925
crossref_primary_10_1109_TCDS_2022_3153090
crossref_primary_10_1002_mrm_29059
crossref_primary_10_1016_j_bspc_2022_104177
crossref_primary_10_1111_jon_13187
crossref_primary_10_1186_s12968_020_00651_x
crossref_primary_10_3724_SP_J_1089_2022_18793
crossref_primary_10_1007_s11554_021_01181_0
crossref_primary_10_1016_j_media_2022_102393
crossref_primary_10_1109_ACCESS_2020_2992204
crossref_primary_10_1016_j_ymeth_2020_09_007
crossref_primary_10_3390_app15158744
crossref_primary_10_1007_s12194_024_00871_1
crossref_primary_10_1016_j_media_2021_101957
crossref_primary_10_1007_s00234_023_03271_1
crossref_primary_10_1016_j_compbiomed_2024_109301
crossref_primary_10_1097_RCT_0000000000001680
crossref_primary_10_3389_fnins_2024_1473132
crossref_primary_10_1016_j_cmpb_2024_108110
crossref_primary_10_1002_mrm_28911
crossref_primary_10_1016_j_compmedimag_2021_101973
crossref_primary_10_1016_j_bspc_2020_102120
crossref_primary_10_1002_mrm_29601
crossref_primary_10_1016_j_compbiomed_2023_107632
crossref_primary_10_3390_app9224874
crossref_primary_10_1109_TAI_2024_3397292
crossref_primary_10_1038_s41551_024_01283_7
crossref_primary_10_1038_s41598_025_90972_7
crossref_primary_10_1002_mp_17563
crossref_primary_10_1007_s00521_024_09890_w
crossref_primary_10_1016_j_bspc_2023_104901
crossref_primary_10_1109_ACCESS_2024_3478829
crossref_primary_10_1093_cercor_bhaa237
crossref_primary_10_3390_brainsci15080821
crossref_primary_10_1134_S1054661824701438
crossref_primary_10_1016_j_neuroimage_2022_119033
crossref_primary_10_1016_j_diii_2022_06_006
crossref_primary_10_3389_frai_2022_780405
crossref_primary_10_1093_dmfr_twaf029
crossref_primary_10_3390_bioengineering11070643
crossref_primary_10_1002_mp_16860
crossref_primary_10_1002_jmri_29205
crossref_primary_10_1007_s00234_023_03212_y
crossref_primary_10_1007_s00034_025_03150_5
crossref_primary_10_1016_j_neuroimage_2021_117946
crossref_primary_10_1038_s41598_023_38335_y
crossref_primary_10_1016_j_neuroimage_2020_117017
crossref_primary_10_1109_JTEHM_2021_3076152
crossref_primary_10_1016_j_mri_2021_12_011
crossref_primary_10_1371_journal_pone_0244745
crossref_primary_10_3390_ma13061397
crossref_primary_10_1109_TMI_2024_3367321
crossref_primary_10_1002_mrm_30245
crossref_primary_10_1109_ACCESS_2020_2980266
crossref_primary_10_1002_acm2_13758
crossref_primary_10_1186_s43055_025_01574_2
crossref_primary_10_1016_j_imavis_2025_105652
crossref_primary_10_1371_journal_pone_0280076
crossref_primary_10_1109_ACCESS_2022_3155226
crossref_primary_10_3390_life13091893
crossref_primary_10_1007_s11831_023_09898_w
crossref_primary_10_1007_s10278_022_00721_9
crossref_primary_10_3390_make6010033
crossref_primary_10_1016_j_acra_2023_05_010
crossref_primary_10_3389_fcvm_2021_682924
crossref_primary_10_1002_mrm_28553
crossref_primary_10_1016_j_cmpb_2023_107854
crossref_primary_10_1016_j_neuroimage_2021_118869
crossref_primary_10_1109_ACCESS_2020_2968395
crossref_primary_10_3233_ICA_200620
crossref_primary_10_3390_app14041351
crossref_primary_10_1016_j_heliyon_2024_e29331
crossref_primary_10_3389_fnins_2022_830143
crossref_primary_10_1016_j_phro_2022_06_008
Cites_doi 10.1016/j.media.2012.09.003
10.1016/S1361-8415(02)00061-0
10.1109/TMI.2015.2437894
10.1109/ISBI.2019.8759255
10.1007/978-3-642-27413-8_47
10.1016/j.neuroimage.2010.11.047
10.1016/j.media.2012.05.003
10.1109/TMI.2015.2415453
10.3389/fnins.2017.00013
10.1259/bjr/33169417
10.1145/2647868.2654889
10.1002/mrm.24233
10.1109/TPAMI.2015.2439281
10.1109/TMI.2017.2656907
10.1109/ICCV.2013.241
10.1109/TMI.2010.2051680
10.1109/ISBI.2017.7950500
10.1016/j.neuroimage.2011.09.015
10.1109/TIP.2003.819861
10.1109/TMI.2013.2284014
10.1109/TMI.2016.2535302
10.1109/TMI.2016.2611653
10.1109/5.726791
10.1109/ISBI.2018.8363594
10.1016/j.neuroimage.2018.01.054
10.1002/mrm.25597
10.1109/72.279181
10.1002/mrm.26262
10.1016/j.media.2010.04.005
10.1109/ISBI.2018.8363679
10.1016/j.media.2010.05.010
10.1016/j.media.2016.10.004
10.1093/comjnl/bxm075
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright Elsevier Science Ltd. Oct 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Oct 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1016/j.compmedimag.2019.101647
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Nursing & Allied Health Premium

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1879-0771
EndPage 101647
ExternalDocumentID oai:HAL:hal-01635455v2
31493703
10_1016_j_compmedimag_2019_101647
S0895611118304105
1_s2_0_S0895611118304105
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c603t-72e9b247134cb45bfe62c7ffc72b5ad71c6dd0b3d6ddb2d066ca4cc0a2cb0e683
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493216400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-6111
1879-0771
IngestDate Sat Nov 29 15:03:55 EST 2025
Sun Sep 28 10:47:05 EDT 2025
Tue Oct 07 06:58:45 EDT 2025
Thu Apr 03 06:58:33 EDT 2025
Tue Nov 18 22:04:16 EST 2025
Sat Nov 29 07:18:50 EST 2025
Fri Feb 23 02:29:48 EST 2024
Tue Feb 25 19:59:04 EST 2025
Tue Oct 14 19:37:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Super-resolution
3D convolutional neural network
Brain MRI
brain MRI
super-resolution
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c603t-72e9b247134cb45bfe62c7ffc72b5ad71c6dd0b3d6ddb2d066ca4cc0a2cb0e683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7415-7746
0000-0002-6462-423X
0000-0002-0320-4581
0000-0001-9837-7487
OpenAccessLink https://hal.science/hal-01635455
PMID 31493703
PQID 2312231074
PQPubID 2047475
PageCount 1
ParticipantIDs hal_primary_oai_HAL_hal_01635455v2
proquest_miscellaneous_2286915653
proquest_journals_2312231074
pubmed_primary_31493703
crossref_citationtrail_10_1016_j_compmedimag_2019_101647
crossref_primary_10_1016_j_compmedimag_2019_101647
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2019_101647
elsevier_clinicalkeyesjournals_1_s2_0_S0895611118304105
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2019_101647
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
– name: Elsevier
References Walter, Kruessell, Gindele, Brochhagen, Gossmann, Landwehr (bib0295) 2003; 76
Fogtmann, Seshamani, Kroenke, Cheng, Chapman, Wilm, Rousseau, Studholme (bib0035) 2014; 33
Milanfar (bib0175) 2010
Pham, Tor-Díez, Meunier, Bednarek, Fablet, Passat, Rousseau (bib0200) 2019
Ballester, Zisserman, Brady (bib0010) 2002; 6
Lim, Son, Kim, Nah, Lee (bib0155) 2017
Johnson, Alahi, Fei-Fei (bib0105) 2016
Pascanu, Mikolov, Bengio (bib0190) 2013; 28
Huang, Liu, Van Der Maaten, Weinberger (bib0065) 2017
Timofte, De Smet, Van Gool (bib0270) 2013
Ancel, Goffinet (bib0005) 2014
Krizhevsky, Sutskever, Hinton (bib0135) 2012
He, Zhang, Ren, Sun (bib0060) 2016
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0085) 2012; 62
Manjón, Coupé, Buades, Fonov, Collins, Robles (bib0170) 2010; 14
Steenkiste, Jeurissen, Veraart, Den Dekker, Parizel, Poot, Sijbers (bib0250) 2016; 75
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0095) 2014
Oktay, Bai, Lee, Guerrero, Kamnitsas, Caballero, de Marvao, Cook, O’Regan, Rueckert (bib0185) 2016
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (bib0255) 2016; 35
Shi, Cheng, Wang, Yap, Shen (bib0235) 2015; 34
Zhao, Gallo, Frosio, Kautz (bib0315) 2017
LeCun, Bottou, Bengio, Haffner (bib0145) 1998; 86
Wang, Bovik, Sheikh, Simoncelli (bib0300) 2004; 13
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib0115) 2017; 36
Scherrer, Gholipour, Warfield (bib0230) 2012; 16
Kainz, Steinberger, Wein, Kuklisova-Murgasova, Malamateniou, Keraudren, Torsney-Weir, Rutherford, Aljabar, Hajnal (bib0110) 2015; 34
Kim, Lee, Lee (bib0125) 2016
Rueda, Malpica, Romero (bib0225) 2013; 17
Pham, Ducournau, Fablet, Rousseau (bib0195) 2017
Glorot, Bengio (bib0045) 2010
Shi, Caballero, Huszar, Totz, Aitken, Bishop, Rueckert, Wang (bib0240) 2016
Zeyde, Elad, Protter (bib0305) 2012
Jog, Carass, Prince (bib0100) 2016
Ioffe, Szegedy (bib0075) 2015
Timofte, Rothe, Van Gool (bib0280) 2016
Simonyan, Zisserman (bib0245) 2014
Poot, Jeurissen, Bastiaensen, Veraart, Van Hecke, Parizel, Sijbers (bib0205) 2013; 69
Timofte, Agustsson, Van Gool, Yang, Zhang (bib0265) 2017
Dong, Loy, Tang (bib0030) 2016
Bengio, Simard, Frasconi (bib0015) 1994; 5
Rousseau, Initiative (bib0215) 2010; 14
Dong, Loy, He, Tang (bib0025) 2016; 38
Ledig, Theis, Huszár, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang (bib0150) 2017
Kim, Lee, Lee (bib0120) 2016
Jia, Gholipour, He, Warfield (bib0090) 2017; 36
Chen, Xie, Zhou, Shi, Christodoulou, Li (bib0020) 2018
Gholipour, Estroff, Warfield (bib0040) 2010; 29
Landman, Huang, Gifford, Vikram, Lim, Farrell, Bogovic, Hua, Chen, Jarso (bib0140) 2011; 54
Nesterov (bib0180) 1983
Kingma, Ba (bib0130) 2015
Timofte, De Smet, Van Gool (bib0275) 2014
Greenspan (bib0050) 2008; 52
Tieleman, Hinton (bib0260) 2012; 4
He, Zhang, Ren, Sun (bib0055) 2015
Hughes, Grande, Murgasova, Hutter, Price, Gomes, Allsop, Steinweg, Tusor, Wurie (bib0070) 2017
Jain, Sima, Nezhad, Hangel, Bogner, Williams, Van Huffel, Maes, Smeets (bib0080) 2017; 11
Van Steenkiste, Poot, Jeurissen, Den Dekker, Vanhevel, Parizel, Sijbers (bib0290) 2017; 77
Manjón, Coupé, Buades, Collins, Robles (bib0165) 2010; 2010
Zhao, Carass, Dewey, Prince (bib0310) 2018
Tor-Díez, Pham, Meunier, Faisan, Bloch, Bednarek, Passat, Rousseau (bib0285) 2019
Ramos-Llordén, Arnold, Van Steenkiste, Jeurissen, Vanhevel, Van Audekerke, Verhoye, Sijbers (bib0210) 2017; 36
Rousseau, Kim, Studholme, Koob, Dietemann (bib0220) 2010
Makropoulos, Robinson, Schuh, Wright, Fitzgibbon, Bozek, Counsell, Steinweg, Vecchiato, Passerat-Palmbach (bib0160) 2018; 173
Wang (10.1016/j.compmedimag.2019.101647_bib0300) 2004; 13
Dong (10.1016/j.compmedimag.2019.101647_bib0030) 2016
Ledig (10.1016/j.compmedimag.2019.101647_bib0150) 2017
Tajbakhsh (10.1016/j.compmedimag.2019.101647_bib0255) 2016; 35
Makropoulos (10.1016/j.compmedimag.2019.101647_bib0160) 2018; 173
Van Steenkiste (10.1016/j.compmedimag.2019.101647_bib0290) 2017; 77
Oktay (10.1016/j.compmedimag.2019.101647_bib0185) 2016
Manjón (10.1016/j.compmedimag.2019.101647_bib0165) 2010; 2010
Rousseau (10.1016/j.compmedimag.2019.101647_bib0215) 2010; 14
Zhao (10.1016/j.compmedimag.2019.101647_bib0310) 2018
Timofte (10.1016/j.compmedimag.2019.101647_bib0275) 2014
Chen (10.1016/j.compmedimag.2019.101647_bib0020) 2018
Glorot (10.1016/j.compmedimag.2019.101647_bib0045) 2010
Kingma (10.1016/j.compmedimag.2019.101647_bib0130) 2015
Kim (10.1016/j.compmedimag.2019.101647_bib0120) 2016
Manjón (10.1016/j.compmedimag.2019.101647_bib0170) 2010; 14
Ramos-Llordén (10.1016/j.compmedimag.2019.101647_bib0210) 2017; 36
Jain (10.1016/j.compmedimag.2019.101647_bib0080) 2017; 11
Dong (10.1016/j.compmedimag.2019.101647_bib0025) 2016; 38
Nesterov (10.1016/j.compmedimag.2019.101647_bib0180) 1983
Tor-Díez (10.1016/j.compmedimag.2019.101647_bib0285) 2019
Pascanu (10.1016/j.compmedimag.2019.101647_bib0190) 2013; 28
Ballester (10.1016/j.compmedimag.2019.101647_bib0010) 2002; 6
Kamnitsas (10.1016/j.compmedimag.2019.101647_bib0115) 2017; 36
Zhao (10.1016/j.compmedimag.2019.101647_bib0315) 2017
LeCun (10.1016/j.compmedimag.2019.101647_bib0145) 1998; 86
Walter (10.1016/j.compmedimag.2019.101647_bib0295) 2003; 76
Simonyan (10.1016/j.compmedimag.2019.101647_bib0245) 2014
Kainz (10.1016/j.compmedimag.2019.101647_bib0110) 2015; 34
Zeyde (10.1016/j.compmedimag.2019.101647_bib0305) 2012
Landman (10.1016/j.compmedimag.2019.101647_bib0140) 2011; 54
Jia (10.1016/j.compmedimag.2019.101647_bib0095) 2014
Scherrer (10.1016/j.compmedimag.2019.101647_bib0230) 2012; 16
Shi (10.1016/j.compmedimag.2019.101647_bib0240) 2016
Rousseau (10.1016/j.compmedimag.2019.101647_bib0220) 2010
Pham (10.1016/j.compmedimag.2019.101647_bib0195) 2017
Greenspan (10.1016/j.compmedimag.2019.101647_bib0050) 2008; 52
Ioffe (10.1016/j.compmedimag.2019.101647_bib0075) 2015
Poot (10.1016/j.compmedimag.2019.101647_bib0205) 2013; 69
Fogtmann (10.1016/j.compmedimag.2019.101647_bib0035) 2014; 33
Tieleman (10.1016/j.compmedimag.2019.101647_bib0260) 2012; 4
Hughes (10.1016/j.compmedimag.2019.101647_bib0070) 2017
Jenkinson (10.1016/j.compmedimag.2019.101647_bib0085) 2012; 62
Jia (10.1016/j.compmedimag.2019.101647_bib0090) 2017; 36
Milanfar (10.1016/j.compmedimag.2019.101647_bib0175) 2010
Timofte (10.1016/j.compmedimag.2019.101647_bib0270) 2013
Timofte (10.1016/j.compmedimag.2019.101647_bib0280) 2016
Lim (10.1016/j.compmedimag.2019.101647_bib0155) 2017
Kim (10.1016/j.compmedimag.2019.101647_bib0125) 2016
Rueda (10.1016/j.compmedimag.2019.101647_bib0225) 2013; 17
Ancel (10.1016/j.compmedimag.2019.101647_bib0005) 2014
Huang (10.1016/j.compmedimag.2019.101647_bib0065) 2017
Gholipour (10.1016/j.compmedimag.2019.101647_bib0040) 2010; 29
Timofte (10.1016/j.compmedimag.2019.101647_bib0265) 2017
Krizhevsky (10.1016/j.compmedimag.2019.101647_bib0135) 2012
Shi (10.1016/j.compmedimag.2019.101647_bib0235) 2015; 34
Steenkiste (10.1016/j.compmedimag.2019.101647_bib0250) 2016; 75
Bengio (10.1016/j.compmedimag.2019.101647_bib0015) 1994; 5
He (10.1016/j.compmedimag.2019.101647_bib0055) 2015
Jog (10.1016/j.compmedimag.2019.101647_bib0100) 2016
Johnson (10.1016/j.compmedimag.2019.101647_bib0105) 2016
He (10.1016/j.compmedimag.2019.101647_bib0060) 2016
Pham (10.1016/j.compmedimag.2019.101647_bib0200) 2019
References_xml – volume: 77
  start-page: 1818
  year: 2017
  end-page: 1830
  ident: bib0290
  article-title: Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 1182
  year: 2017
  end-page: 1193
  ident: bib0090
  article-title: A new sparse representation framework for reconstruction of an isotropic high spatial resolution MR volume from orthogonal anisotropic resolution scans
  publication-title: IEEE Trans. Med. Imaging
– start-page: 553
  year: 2016
  end-page: 560
  ident: bib0100
  article-title: Self super-resolution for magnetic resonance images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 675
  year: 2014
  end-page: 678
  ident: bib0095
  article-title: Caffe: convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
– start-page: 3
  year: 2017
  ident: bib0155
  article-title: Enhanced deep residual networks for single image super-resolution
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– start-page: 246
  year: 2016
  end-page: 254
  ident: bib0185
  article-title: Multi-input cardiac image super-resolution using convolutional neural networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0060
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 365
  year: 2018
  end-page: 368
  ident: bib0310
  article-title: Self super-resolution for magnetic resonance images using deep networks
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 33
  start-page: 272
  year: 2014
  end-page: 289
  ident: bib0035
  article-title: A unified approach to diffusion direction sensitive slice registration and 3D DTI reconstruction from moving fetal brain anatomy
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 2459
  year: 2015
  end-page: 2466
  ident: bib0235
  article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
– volume: 76
  start-page: 696
  year: 2003
  end-page: 703
  ident: bib0295
  article-title: Imaging of renal lesions: evaluation of fast MRI and helical CT
  publication-title: Br. J. Radiol.
– year: 2019
  ident: bib0285
  article-title: Evaluation of cortical segmentation pipelines on clinical neonatal MRI data
  publication-title: 41st International Engineering in Medicine and Biology Conference. (EMBC 2019)
– volume: 17
  start-page: 113
  year: 2013
  end-page: 132
  ident: bib0225
  article-title: Single-image super-resolution of brain MR images using overcomplete dictionaries
  publication-title: Med. Image Anal.
– start-page: 1920
  year: 2013
  end-page: 1927
  ident: bib0270
  article-title: Anchored neighborhood regression for fast example-based super-resolution
  publication-title: 2013 IEEE International Conference on Computer Vision (ICCV)
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0055
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0300
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0065
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0135
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2016
  ident: bib0120
  article-title: Accurate image super-resolution using very deep convolutional networks
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 173
  start-page: 88
  year: 2018
  end-page: 112
  ident: bib0160
  article-title: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction
  publication-title: Neuroimage
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0145
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– year: 2019
  ident: bib0200
  article-title: Simultaneous super-resolution and segmentation using a generative adversarial network: application to neonatal brain MRI
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– year: 2016
  ident: bib0125
  article-title: Deeply-recursive convolutional network for image super-resolution
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 25
  year: 2017
  end-page: 29
  ident: bib0070
  article-title: The developing human connectome: announcing the first release of open access neonatal brain imaging
  publication-title: 23rd Annual Meeting of the Organization for Human Brain Mapping
– year: 2017
  ident: bib0150
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 14
  start-page: 594
  year: 2010
  end-page: 605
  ident: bib0215
  article-title: A non-local approach for image super-resolution using intermodality priors
  publication-title: Med. Image Anal.
– year: 2017
  ident: bib0265
  article-title: NTIRE 2017 challenge on single image super-resolution: methods and results
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– volume: 34
  start-page: 1901
  year: 2015
  end-page: 1913
  ident: bib0110
  article-title: Fast volume reconstruction from motion corrupted stacks of 2D slices
  publication-title: IEEE Trans. Med. Imaging
– volume: 2010
  start-page: 17
  year: 2010
  ident: bib0165
  article-title: MRI superresolution using self-similarity and image priors
  publication-title: J. Biomed. Imaging
– volume: 36
  start-page: 433
  year: 2017
  end-page: 446
  ident: bib0210
  article-title: A unified maximum likelihood framework for simultaneous motion and
  publication-title: IEEE Trans. Med. Imaging
– volume: 75
  start-page: 181
  year: 2016
  end-page: 195
  ident: bib0250
  article-title: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations
  publication-title: Magn. Reson. Med.
– start-page: 197
  year: 2017
  end-page: 200
  ident: bib0195
  article-title: Brain MRI super-resolution using deep 3D convolutional networks
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
– start-page: 355
  year: 2010
  end-page: 362
  ident: bib0220
  article-title: On super-resolution for fetal brain MRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1874
  year: 2016
  end-page: 1883
  ident: bib0240
  article-title: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 739
  year: 2018
  end-page: 742
  ident: bib0020
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0085
  article-title: FSL
  publication-title: Neuroimage
– volume: 28
  start-page: 1310
  year: 2013
  end-page: 1318
  ident: bib0190
  article-title: On the difficulty of training recurrent neural networks
  publication-title: ICML
– volume: 4
  start-page: 26
  year: 2012
  end-page: 31
  ident: bib0260
  article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Netw. Mach. Learn.
– start-page: 1865
  year: 2016
  end-page: 1873
  ident: bib0280
  article-title: Seven ways to improve example-based single image super resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 389
  year: 2002
  end-page: 405
  ident: bib0010
  article-title: Estimation of the partial volume effect in MRI
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: bib0255
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  start-page: 1465
  year: 2012
  end-page: 1476
  ident: bib0230
  article-title: Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions
  publication-title: Med. Image Anal.
– volume: 52
  start-page: 43
  year: 2008
  end-page: 63
  ident: bib0050
  article-title: Super-resolution in medical imaging
  publication-title: Comput. J.
– volume: 69
  start-page: 103
  year: 2013
  end-page: 113
  ident: bib0205
  article-title: Super-resolution for multislice diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib0115
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– year: 2010
  ident: bib0175
  article-title: Super-Resolution Imaging
– start-page: 2017
  year: 2017
  ident: bib0315
  article-title: Loss functions for neural networks for image processing
  publication-title: IEEE Trans. Comput. Imaging
– year: 2015
  ident: bib0130
  article-title: Adam: a method for stochastic optimization
  publication-title: International Conference on Learning Representations
– year: 2014
  ident: bib0245
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: bib0015
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– start-page: 249
  year: 2010
  end-page: 256
  ident: bib0045
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– start-page: 111
  year: 2014
  end-page: 126
  ident: bib0275
  article-title: A+: adjusted anchored neighborhood regression for fast super-resolution
  publication-title: Computer Vision-ACCV 2014
– start-page: 14
  year: 2014
  end-page: 97
  ident: bib0005
  article-title: EPIPAGE2: A preterm birth cohort in France in 2011
  publication-title: BMC Pediatr.
– start-page: 391
  year: 2016
  end-page: 407
  ident: bib0030
  article-title: Accelerating the super-resolution convolutional neural network
  publication-title: European Conference on Computer Vision
– volume: 54
  start-page: 2854
  year: 2011
  end-page: 2866
  ident: bib0140
  article-title: Multi-parametric neuroimaging reproducibility: a 3T resource study
  publication-title: Neuroimage
– volume: 14
  start-page: 784
  year: 2010
  end-page: 792
  ident: bib0170
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0075
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: 29
  start-page: 1739
  year: 2010
  end-page: 1758
  ident: bib0040
  article-title: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI
  publication-title: IEEE Trans. Med. Imaging
– start-page: 711
  year: 2012
  end-page: 730
  ident: bib0305
  article-title: On single image scale-up using sparse-representations
  publication-title: Curves and Surfaces
– volume: 11
  start-page: 13
  year: 2017
  ident: bib0080
  article-title: Patch-based super-resolution of MR spectroscopic images: application to multiple sclerosis
  publication-title: Front. Neurosci.
– start-page: 372
  year: 1983
  end-page: 376
  ident: bib0180
  article-title: A method of solving a convex programming problem with convergence rate
  publication-title: Soviet Mathematics Doklady
– start-page: 694
  year: 2016
  end-page: 711
  ident: bib0105
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: European Conference on Computer Vision
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: bib0025
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 17
  start-page: 113
  year: 2013
  ident: 10.1016/j.compmedimag.2019.101647_bib0225
  article-title: Single-image super-resolution of brain MR images using overcomplete dictionaries
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.09.003
– volume: 6
  start-page: 389
  year: 2002
  ident: 10.1016/j.compmedimag.2019.101647_bib0010
  article-title: Estimation of the partial volume effect in MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00061-0
– volume: 34
  start-page: 2459
  year: 2015
  ident: 10.1016/j.compmedimag.2019.101647_bib0235
  article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2437894
– year: 2019
  ident: 10.1016/j.compmedimag.2019.101647_bib0200
  article-title: Simultaneous super-resolution and segmentation using a generative adversarial network: application to neonatal brain MRI
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
  doi: 10.1109/ISBI.2019.8759255
– start-page: 1026
  year: 2015
  ident: 10.1016/j.compmedimag.2019.101647_bib0055
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2010
  ident: 10.1016/j.compmedimag.2019.101647_bib0175
– year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0150
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 711
  year: 2012
  ident: 10.1016/j.compmedimag.2019.101647_bib0305
  article-title: On single image scale-up using sparse-representations
  publication-title: Curves and Surfaces
  doi: 10.1007/978-3-642-27413-8_47
– volume: 54
  start-page: 2854
  year: 2011
  ident: 10.1016/j.compmedimag.2019.101647_bib0140
  article-title: Multi-parametric neuroimaging reproducibility: a 3T resource study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.047
– start-page: 3
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0155
  article-title: Enhanced deep residual networks for single image super-resolution
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– volume: 16
  start-page: 1465
  year: 2012
  ident: 10.1016/j.compmedimag.2019.101647_bib0230
  article-title: Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.05.003
– volume: 34
  start-page: 1901
  year: 2015
  ident: 10.1016/j.compmedimag.2019.101647_bib0110
  article-title: Fast volume reconstruction from motion corrupted stacks of 2D slices
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2415453
– volume: 11
  start-page: 13
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0080
  article-title: Patch-based super-resolution of MR spectroscopic images: application to multiple sclerosis
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00013
– volume: 76
  start-page: 696
  year: 2003
  ident: 10.1016/j.compmedimag.2019.101647_bib0295
  article-title: Imaging of renal lesions: evaluation of fast MRI and helical CT
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr/33169417
– start-page: 675
  year: 2014
  ident: 10.1016/j.compmedimag.2019.101647_bib0095
  article-title: Caffe: convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
  doi: 10.1145/2647868.2654889
– volume: 69
  start-page: 103
  year: 2013
  ident: 10.1016/j.compmedimag.2019.101647_bib0205
  article-title: Super-resolution for multislice diffusion tensor imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24233
– year: 2015
  ident: 10.1016/j.compmedimag.2019.101647_bib0130
  article-title: Adam: a method for stochastic optimization
  publication-title: International Conference on Learning Representations
– year: 2019
  ident: 10.1016/j.compmedimag.2019.101647_bib0285
  article-title: Evaluation of cortical segmentation pipelines on clinical neonatal MRI data
  publication-title: 41st International Engineering in Medicine and Biology Conference. (EMBC 2019)
– start-page: 694
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0105
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: European Conference on Computer Vision
– start-page: 1097
  year: 2012
  ident: 10.1016/j.compmedimag.2019.101647_bib0135
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 38
  start-page: 295
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0025
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 36
  start-page: 1182
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0090
  article-title: A new sparse representation framework for reconstruction of an isotropic high spatial resolution MR volume from orthogonal anisotropic resolution scans
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2656907
– start-page: 246
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0185
  article-title: Multi-input cardiac image super-resolution using convolutional neural networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1920
  year: 2013
  ident: 10.1016/j.compmedimag.2019.101647_bib0270
  article-title: Anchored neighborhood regression for fast example-based super-resolution
  publication-title: 2013 IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2013.241
– start-page: 2017
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0315
  article-title: Loss functions for neural networks for image processing
  publication-title: IEEE Trans. Comput. Imaging
– volume: 29
  start-page: 1739
  year: 2010
  ident: 10.1016/j.compmedimag.2019.101647_bib0040
  article-title: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2051680
– volume: 28
  start-page: 1310
  issue: 3
  year: 2013
  ident: 10.1016/j.compmedimag.2019.101647_bib0190
  article-title: On the difficulty of training recurrent neural networks
  publication-title: ICML
– start-page: 4700
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0065
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 197
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0195
  article-title: Brain MRI super-resolution using deep 3D convolutional networks
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
  doi: 10.1109/ISBI.2017.7950500
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.compmedimag.2019.101647_bib0085
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.compmedimag.2019.101647_bib0300
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 33
  start-page: 272
  year: 2014
  ident: 10.1016/j.compmedimag.2019.101647_bib0035
  article-title: A unified approach to diffusion direction sensitive slice registration and 3D DTI reconstruction from moving fetal brain anatomy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2284014
– volume: 35
  start-page: 1299
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0255
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 36
  start-page: 433
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0210
  article-title: A unified maximum likelihood framework for simultaneous motion and t _ {1} estimation in quantitative mr t _ {1} mapping
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2611653
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.compmedimag.2019.101647_bib0145
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 365
  year: 2018
  ident: 10.1016/j.compmedimag.2019.101647_bib0310
  article-title: Self super-resolution for magnetic resonance images using deep networks
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
  doi: 10.1109/ISBI.2018.8363594
– volume: 173
  start-page: 88
  year: 2018
  ident: 10.1016/j.compmedimag.2019.101647_bib0160
  article-title: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.054
– year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0265
  article-title: NTIRE 2017 challenge on single image super-resolution: methods and results
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– volume: 75
  start-page: 181
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0250
  article-title: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25597
– volume: 5
  start-page: 157
  year: 1994
  ident: 10.1016/j.compmedimag.2019.101647_bib0015
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0120
  article-title: Accurate image super-resolution using very deep convolutional networks
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1865
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0280
  article-title: Seven ways to improve example-based single image super resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 770
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0060
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 553
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0100
  article-title: Self super-resolution for magnetic resonance images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2014
  ident: 10.1016/j.compmedimag.2019.101647_bib0245
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations
– start-page: 1874
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0240
  article-title: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 14
  year: 2014
  ident: 10.1016/j.compmedimag.2019.101647_bib0005
  article-title: EPIPAGE2: A preterm birth cohort in France in 2011
  publication-title: BMC Pediatr.
– volume: 77
  start-page: 1818
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0290
  article-title: Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26262
– start-page: 249
  year: 2010
  ident: 10.1016/j.compmedimag.2019.101647_bib0045
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– start-page: 25
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0070
  article-title: The developing human connectome: announcing the first release of open access neonatal brain imaging
  publication-title: 23rd Annual Meeting of the Organization for Human Brain Mapping
– start-page: 391
  year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0030
  article-title: Accelerating the super-resolution convolutional neural network
  publication-title: European Conference on Computer Vision
– volume: 14
  start-page: 594
  year: 2010
  ident: 10.1016/j.compmedimag.2019.101647_bib0215
  article-title: A non-local approach for image super-resolution using intermodality priors
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.04.005
– volume: 4
  start-page: 26
  year: 2012
  ident: 10.1016/j.compmedimag.2019.101647_bib0260
  article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Netw. Mach. Learn.
– start-page: 739
  year: 2018
  ident: 10.1016/j.compmedimag.2019.101647_bib0020
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
  doi: 10.1109/ISBI.2018.8363679
– start-page: 355
  year: 2010
  ident: 10.1016/j.compmedimag.2019.101647_bib0220
  article-title: On super-resolution for fetal brain MRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 2010
  start-page: 17
  year: 2010
  ident: 10.1016/j.compmedimag.2019.101647_bib0165
  article-title: MRI superresolution using self-similarity and image priors
  publication-title: J. Biomed. Imaging
– start-page: 111
  year: 2014
  ident: 10.1016/j.compmedimag.2019.101647_bib0275
  article-title: A+: adjusted anchored neighborhood regression for fast super-resolution
  publication-title: Computer Vision-ACCV 2014
– start-page: 448
  year: 2015
  ident: 10.1016/j.compmedimag.2019.101647_bib0075
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– year: 2016
  ident: 10.1016/j.compmedimag.2019.101647_bib0125
  article-title: Deeply-recursive convolutional network for image super-resolution
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 14
  start-page: 784
  year: 2010
  ident: 10.1016/j.compmedimag.2019.101647_bib0170
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.05.010
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.compmedimag.2019.101647_bib0115
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– start-page: 372
  year: 1983
  ident: 10.1016/j.compmedimag.2019.101647_bib0180
  article-title: A method of solving a convex programming problem with convergence rate o(1/k2)
  publication-title: Soviet Mathematics Doklady
– volume: 52
  start-page: 43
  year: 2008
  ident: 10.1016/j.compmedimag.2019.101647_bib0050
  article-title: Super-resolution in medical imaging
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxm075
SSID ssj0002071
Score 2.589324
Snippet [Display omitted] •A residual-based deep 3D CNN architecture for super-resolution.•Comprehensive performance analysis of key elements of neural...
Graphical abstract
The purpose of super-resolution approaches is to overcome the hardware limitations and the clinical requirements of imaging procedures by reconstructing...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101647
SubjectTerms 3D convolutional neural network
Artificial neural networks
Brain
Brain MRI
Computer Science
Computer Vision and Pattern Recognition
Convolution
Cortex
Image acquisition
Image enhancement
Image Processing
Image reconstruction
Image resolution
Internal Medicine
Learning
Magnetic resonance imaging
Medical Imaging
Neural networks
Neuroimaging
NMR
Nuclear magnetic resonance
Optimization
Other
Post-processing
Resonance
Scaling factors
Structural analysis
Super-resolution
Training
Transfer learning
Title Multiscale brain MRI super-resolution using deep 3D convolutional networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611118304105
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611118304105
https://dx.doi.org/10.1016/j.compmedimag.2019.101647
https://www.ncbi.nlm.nih.gov/pubmed/31493703
https://www.proquest.com/docview/2312231074
https://www.proquest.com/docview/2286915653
https://hal.science/hal-01635455
Volume 77
WOSCitedRecordID wos000493216400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELeSdqr2Mu2zY-sqOu0togJDMEx7iZJMaddU1dZJebPAGJUqJRGUqNrftj9u5w8IXRcpm7QXiAwGc_fL-e58vkPog4uJUDSY5TKwVb3Y4VYQeoEl02XZiR3FXGbXPyPn58FsFl50Oj_rvTCrOcnz4O4uXP5XVkMbMFtsnf0LdjcPhQb4DUyHI7AdjlsxXm6pLYH0vBeL-g-96deTXlkteWGBaa1f3aukjyDhfNlzRzL2XF8BluUqNLxsK6519YfsB2ioN3p1J7tRNY6E811mvm6Fzl_oDdjDq8yaZLxau7MLaySX50fKeT2Mivmi6TblVZ4pGE3UIv5cnoLW8j9P8qjgqniQcP3PM952XjhhEwbXyLiwD9arlrdaIOu6LkqiOjLjWWt-Xjc8kP7KEXEtmLcUlAAiiOC98Lj9kHbG7fHwi2OV-Ni2vomRiIGAiLNF6Ov9m5W9REtMbfrg1i7axaQfgkzdHZyMZ6eNJoBtafA3H7mHjtbxhRsGuUk_6l6JQN1NVpDUhi6foifajDEHCn7PUIfnz9HeVAdqvECnaxSaEoUmoND8HYWmRKEpUGi6I_MeCs0ahS_R98_jy-HE0mU7LObb7q1FMA9j7IlNyiz2-nHKfcxImjKC436UEIf5SWLHbgKnGCeg87LIY8yOMItt7gfuK7STL3L-Gpmc-H6YemngeI7HiBPHnLM0ArqyxPV8x0BBTSzKdE57UVplTuvgxWvaojMVdKaKzgbCTdelSuyyTaePNUdovXMZ5loKANymM_lTZ15q4VHSTQAz0Kemp1aMlcK77YvfA3iarxQJ5SeDMyra4LoLNlR_hQ10UGOLNgMC4w8LA5B4BjpqLsMEJFYVo5wvKrgHB37ogF3oGmhfYbJ5let4YP7Y7pt__vS36PFabhygndui4u_QI7YCDBeHqEtmwaH-2_0CXtYHNA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+brain+MRI+super-resolution+using+deep+3D+convolutional+networks&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Pham%2C+Chi-Hieu&rft.au=Tor-D%C3%ADez%2C+Carlos&rft.au=Meunier%2C+H%C3%A9l%C3%A8ne&rft.au=Bednarek%2C+Nathalie&rft.date=2019-10-01&rft.issn=0895-6111&rft.volume=77&rft.spage=101647&rft.epage=101647&rft_id=info:doi/10.1016%2Fj.compmedimag.2019.101647&rft.externalDBID=ECK1-s2.0-S0895611118304105&rft.externalDocID=1_s2_0_S0895611118304105
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611119X00075%2Fcov150h.gif