Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans ha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural plasticity Ročník 2016; číslo 2016; s. 1 - 12
Hlavní autoři: Antal, Andrea, Herrmann, Christoph S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:2090-5904, 1687-5443, 1687-5443
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.
AbstractList Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.
Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.
Background . Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method . Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results . Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion . In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.
Author Herrmann, Christoph S.
Antal, Andrea
AuthorAffiliation 3 Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
1 Department of Clinical Neurophysiology, University Medical Center, 37073 Göttingen, Germany
2 Experimental Psychology Lab, Department of Psychology, Center for Excellence “Hearing4all”, European Medical School, Carl von Ossietzky University, 26111 Oldenburg, Germany
AuthorAffiliation_xml – name: 1 Department of Clinical Neurophysiology, University Medical Center, 37073 Göttingen, Germany
– name: 2 Experimental Psychology Lab, Department of Psychology, Center for Excellence “Hearing4all”, European Medical School, Carl von Ossietzky University, 26111 Oldenburg, Germany
– name: 3 Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
Author_xml – sequence: 1
  fullname: Antal, Andrea
– sequence: 2
  fullname: Herrmann, Christoph S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27242932$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFDEUxoNU7EXffJYBXwRde5LJ1QehLF4K9UKtzyGTObObZWZSkxnF_960u1VbEF_OgeR3Pr5zOSR7YxyRkMcUXlIqxDEDKo9rSaUGdY8clKwWgvN6jxwwMLAQBvg-Ocx5A8ClEOIB2WeKcWZqdkDOL5Ibsy8huL466SdMo5vCuKqWc0o4TpUb2-q8hDhUH2PIWH2ZwjD3BYrjq-pzzDk0PVYf0K-LSB7yQ3K_c33GR7t8RL6-fXOxfL84-_TudHlytvAS6mmhABC00pJ3wjGUTePAG6EQdatkA0w6UK5jiE0teWlVe9oAYsed6KRx9RE53eq20W3sZQqDSz9tdMFeP8S0si5NwfdoPXowtTYCleFemqZ2SL1rAZjvjNJF6_VW63JuBmx9aTy5_pbo7Z8xrO0qfrdcS62NKgLPdgIpfpsxT3YI2WPfuxHjnC1VZdyUUy0L-vQOuolzmXqfLeOgpDBaskI9-dvRbys3qysA2wI-lR0k7KwP0_VWisHQWwr26j7s1X3Y3X2Uohd3im50_4E_3-LrMLbuR_gfvbOMhcHO_aEprSlA_QtNxdG6
CitedBy_id crossref_primary_10_1186_s12868_022_00689_w
crossref_primary_10_3389_fpsyg_2022_822545
crossref_primary_10_3389_fpsyt_2022_928145
crossref_primary_10_1016_j_ajp_2023_103872
crossref_primary_10_3389_fnhum_2024_1477111
crossref_primary_10_1038_s41598_021_95084_6
crossref_primary_10_1088_1741_2552_acd870
crossref_primary_10_1371_journal_pbio_3002193
crossref_primary_10_3389_fneur_2024_1278200
crossref_primary_10_3389_frobt_2025_1491494
crossref_primary_10_1038_s41598_022_18376_5
crossref_primary_10_1007_s00406_021_01253_z
crossref_primary_10_3389_fnhum_2021_628229
crossref_primary_10_1161_STROKEAHA_119_025354
crossref_primary_10_1016_j_neures_2025_03_008
crossref_primary_10_1016_j_clinph_2022_03_020
crossref_primary_10_1038_s41598_020_64717_7
crossref_primary_10_1016_j_brs_2017_12_007
crossref_primary_10_1016_j_neuropsychologia_2021_107985
crossref_primary_10_1016_j_brs_2020_07_001
crossref_primary_10_1007_s41465_016_0006_z
crossref_primary_10_1016_j_chc_2018_07_008
crossref_primary_10_3389_fnins_2025_1553862
crossref_primary_10_1016_j_jpain_2021_03_150
crossref_primary_10_1523_JNEUROSCI_2961_20_2021
crossref_primary_10_1080_02687038_2024_2373135
crossref_primary_10_1016_j_clinph_2021_01_005
crossref_primary_10_1088_1741_2552_aba99d
crossref_primary_10_1007_s00406_020_01209_9
crossref_primary_10_3389_fnagi_2017_00033
crossref_primary_10_1016_j_cortex_2022_05_015
crossref_primary_10_3389_fnins_2022_781488
crossref_primary_10_1242_bio_059776
crossref_primary_10_3390_brainsci12070929
crossref_primary_10_1038_s41598_020_68028_9
crossref_primary_10_1080_23299460_2024_2408814
crossref_primary_10_1016_j_jpsychires_2020_10_008
crossref_primary_10_1016_j_neubiorev_2022_104867
crossref_primary_10_3390_biomedicines10102333
crossref_primary_10_1016_j_clinph_2025_2110929
crossref_primary_10_3390_jpm12091367
crossref_primary_10_1016_j_neurom_2022_12_007
crossref_primary_10_3390_brainsci7040034
crossref_primary_10_3389_fnhum_2018_00211
crossref_primary_10_4103_ni_ni_953_22
crossref_primary_10_1016_j_jocn_2019_03_045
crossref_primary_10_1016_j_neuropsychologia_2019_107237
crossref_primary_10_1007_s41465_019_00128_5
crossref_primary_10_3389_fncel_2017_00162
crossref_primary_10_1016_j_neuropsychologia_2018_03_030
crossref_primary_10_3389_fnhum_2024_1362593
crossref_primary_10_1177_20406223241297397
crossref_primary_10_3389_fnins_2018_00469
crossref_primary_10_1016_j_clinph_2019_12_415
crossref_primary_10_1038_s41598_022_08545_x
crossref_primary_10_3389_fneur_2021_625359
crossref_primary_10_31083_j_jin2303059
crossref_primary_10_1007_s00221_019_05640_w
crossref_primary_10_1016_j_bbr_2019_112232
crossref_primary_10_1016_j_neubiorev_2024_105862
crossref_primary_10_1155_2021_5573471
crossref_primary_10_1097_WCO_0000000000000669
crossref_primary_10_1016_j_neulet_2023_137336
crossref_primary_10_3389_fnmol_2022_888716
crossref_primary_10_3390_brainsci14040322
crossref_primary_10_1007_s12311_021_01300_4
crossref_primary_10_1016_j_neubiorev_2023_105180
crossref_primary_10_1016_j_neulet_2023_137570
crossref_primary_10_1007_s00429_016_1355_1
crossref_primary_10_1016_j_clinph_2017_09_007
crossref_primary_10_3389_fnhum_2020_00075
crossref_primary_10_3390_pathophysiology31020019
crossref_primary_10_1016_j_ijpsycho_2025_112539
crossref_primary_10_3389_fnmol_2022_1032617
crossref_primary_10_1007_s12021_024_09711_4
crossref_primary_10_3758_s13414_016_1224_2
crossref_primary_10_1002_aur_2312
crossref_primary_10_1007_s40675_023_00254_9
crossref_primary_10_1007_s00482_022_00684_4
crossref_primary_10_1111_psyp_70060
crossref_primary_10_1136_bmjopen_2023_078281
crossref_primary_10_1016_j_neuroimage_2016_11_036
crossref_primary_10_3390_s25072133
crossref_primary_10_1007_s11357_025_01615_8
crossref_primary_10_1007_s40846_023_00810_2
crossref_primary_10_1002_adma_202400346
crossref_primary_10_3389_fnins_2018_00761
crossref_primary_10_1007_s00221_019_05543_w
crossref_primary_10_1080_14737175_2020_1775586
crossref_primary_10_1016_j_chb_2024_108537
crossref_primary_10_3389_fnhum_2017_00039
crossref_primary_10_1177_15459683241310984
crossref_primary_10_1016_j_clinph_2020_01_008
crossref_primary_10_1038_s41598_022_17965_8
crossref_primary_10_3389_fnsys_2022_827353
crossref_primary_10_1007_s12311_021_01362_4
crossref_primary_10_1016_j_amc_2018_06_004
crossref_primary_10_1016_j_neulet_2016_10_026
crossref_primary_10_1016_j_brs_2022_03_001
crossref_primary_10_1016_j_neuroscience_2019_04_032
crossref_primary_10_1111_ejn_14128
crossref_primary_10_3389_fresc_2022_795737
crossref_primary_10_1016_j_brs_2025_04_011
crossref_primary_10_3389_fnhum_2017_00002
crossref_primary_10_1016_j_neubiorev_2022_104702
crossref_primary_10_1016_j_neuropsychologia_2023_108703
crossref_primary_10_3389_fnsys_2021_611507
crossref_primary_10_1176_appi_neuropsych_20240127
crossref_primary_10_3390_biology14070892
crossref_primary_10_3389_fnhum_2020_541052
crossref_primary_10_1088_1741_2552_ac676f
crossref_primary_10_1162_jocn_a_01591
crossref_primary_10_1016_j_brainres_2021_147491
crossref_primary_10_3389_fpsyg_2023_1243099
crossref_primary_10_1016_j_arr_2021_101555
crossref_primary_10_1016_j_pnpbp_2023_110802
crossref_primary_10_1007_s00455_022_10528_z
crossref_primary_10_1007_s11724_017_0532_1
crossref_primary_10_1038_s41539_024_00222_0
crossref_primary_10_1016_j_brs_2019_02_007
crossref_primary_10_1016_j_neurot_2024_e00330
crossref_primary_10_3389_fnhum_2021_755748
crossref_primary_10_1162_netn_a_00446
crossref_primary_10_3389_fnhum_2025_1577899
crossref_primary_10_1016_j_ijchp_2023_100369
crossref_primary_10_1016_j_brs_2017_10_007
crossref_primary_10_1186_s13063_022_06253_5
crossref_primary_10_1007_s11065_025_09659_5
crossref_primary_10_1177_20406223221140390
crossref_primary_10_3389_fneur_2024_1338430
crossref_primary_10_1371_journal_pbio_3001142
crossref_primary_10_1152_jn_00065_2021
crossref_primary_10_1088_1741_2552_acfa8c
crossref_primary_10_3389_fnins_2018_00176
crossref_primary_10_1007_s41465_017_0010_y
crossref_primary_10_1016_j_neuroimage_2022_119351
crossref_primary_10_1186_s40035_024_00423_y
crossref_primary_10_1109_ACCESS_2020_3028618
crossref_primary_10_1016_j_brainres_2019_146324
crossref_primary_10_1016_j_neubiorev_2025_106232
crossref_primary_10_3389_fphys_2022_1064584
crossref_primary_10_1016_j_bandl_2025_105630
crossref_primary_10_1007_s12311_017_0906_1
crossref_primary_10_3389_fnhum_2024_1308549
crossref_primary_10_1111_nmo_14173
crossref_primary_10_3389_fnins_2023_1094658
crossref_primary_10_1038_s41539_022_00152_9
crossref_primary_10_1134_S0362119718030180
crossref_primary_10_3390_brainsci10120932
crossref_primary_10_1371_journal_pone_0208691
crossref_primary_10_1017_cjn_2021_158
crossref_primary_10_4103_1673_5374_202931
crossref_primary_10_1111_ejn_13990
crossref_primary_10_1088_1741_2552_ac857d
crossref_primary_10_1186_s12984_018_0407_6
crossref_primary_10_1371_journal_pcbi_1008886
crossref_primary_10_3389_fncel_2024_1328963
crossref_primary_10_1016_j_brs_2019_02_012
crossref_primary_10_1016_j_brs_2021_03_011
crossref_primary_10_1016_j_bbih_2022_100566
crossref_primary_10_1016_j_neubiorev_2017_06_015
crossref_primary_10_1016_j_brs_2019_02_018
crossref_primary_10_1016_j_neuroimage_2018_09_047
crossref_primary_10_1111_ejn_14174
crossref_primary_10_1038_s41593_023_01457_7
crossref_primary_10_1038_s41467_019_13417_6
crossref_primary_10_3390_brainsci12040472
crossref_primary_10_1038_s41598_020_80843_8
crossref_primary_10_1007_s40473_021_00227_8
crossref_primary_10_3389_fneur_2021_587771
crossref_primary_10_1093_nc_niad008
crossref_primary_10_3758_s13414_021_02384_0
crossref_primary_10_1007_s00221_019_05666_0
crossref_primary_10_1016_j_neuroscience_2019_01_035
crossref_primary_10_3390_biomedicines12112635
crossref_primary_10_1038_s41598_025_88396_4
crossref_primary_10_3233_RNN_160714
crossref_primary_10_1016_j_neucli_2023_102887
crossref_primary_10_3389_fpsyt_2023_1273044
crossref_primary_10_1080_14737175_2019_1567332
crossref_primary_10_1038_s41598_024_83941_z
crossref_primary_10_1007_s00221_023_06668_9
crossref_primary_10_1038_s41598_023_30261_3
crossref_primary_10_1016_j_neubiorev_2021_12_031
crossref_primary_10_1146_annurev_psych_081120_013144
crossref_primary_10_3389_fnins_2019_01440
crossref_primary_10_1111_psyp_14653
crossref_primary_10_3389_fnhum_2021_640609
crossref_primary_10_1016_j_jocn_2022_04_003
crossref_primary_10_1155_2020_8896423
crossref_primary_10_3389_fnhum_2022_791478
crossref_primary_10_3758_s13415_024_01204_w
crossref_primary_10_3390_biomedicines11071813
crossref_primary_10_3389_fneur_2021_732034
crossref_primary_10_3389_fncel_2022_818703
crossref_primary_10_1016_j_bbr_2020_112733
crossref_primary_10_1016_j_humov_2019_04_017
crossref_primary_10_1038_s12276_025_01409_0
crossref_primary_10_1080_02699052_2017_1363409
crossref_primary_10_1016_j_brs_2022_06_012
crossref_primary_10_3389_fnins_2025_1609679
crossref_primary_10_1016_j_neuroimage_2022_119109
crossref_primary_10_1016_j_neulet_2018_06_047
crossref_primary_10_1162_jocn_a_01623
crossref_primary_10_3389_fnbeh_2024_1378059
crossref_primary_10_1038_s41583_022_00598_1
crossref_primary_10_1371_journal_pcbi_1006301
crossref_primary_10_3390_ijerph182010969
crossref_primary_10_1016_j_bbr_2021_113479
crossref_primary_10_3389_fnins_2022_870758
crossref_primary_10_33549_physiolres_934381
crossref_primary_10_1016_j_bbr_2022_114165
crossref_primary_10_1155_2018_3156796
crossref_primary_10_3390_brainsci14121284
crossref_primary_10_3389_fnhum_2016_00668
crossref_primary_10_1016_j_physbeh_2023_114073
crossref_primary_10_1109_TNSRE_2018_2869471
crossref_primary_10_1007_s00421_020_04584_2
crossref_primary_10_1038_s41598_018_28673_7
crossref_primary_10_7554_eLife_63782
crossref_primary_10_1016_j_jocn_2020_05_024
crossref_primary_10_3390_jcm13247793
crossref_primary_10_1016_j_neulet_2018_11_015
crossref_primary_10_1007_s40473_017_0114_9
crossref_primary_10_3389_fnagi_2022_880510
Cites_doi 10.1016/j.neuroimage.2012.07.024
10.1371/journal.pcbi.1002898
10.1016/j.cub.2013.04.045
10.1016/j.clinph.2010.08.023
10.1155/2011/105927
10.3389/fncel.2015.00311
10.3389/fpsyt.2013.00158
10.3389/fnhum.2013.00161
10.1016/j.tics.2004.06.006
10.1523/jneurosci.2002-11.2011
10.1016/j.clinph.2010.04.033
10.1073/pnas.1213390109
10.1016/j.neuron.2010.06.005
10.1016/j.cub.2013.12.041
10.1016/j.cub.2014.11.034
10.1113/jphysiol.1981.sp013897
10.1186/1471-2202-12-2
10.1038/nature05278
10.1016/j.brs.2014.04.005
10.1038/35094565
10.1103/PhysRevLett.101.264103
10.1080/09602011.2011.557292
10.1016/j.brs.2012.12.005
10.1016/j.neuron.2006.09.020
10.1016/S0167-8760(00)00138-0
10.1016/B978-0-444-53497-2.00056-5
10.1007/s10548-013-0294-x
10.1016/j.neuroimage.2015.01.033
10.1016/j.neuroimage.2007.07.011
10.3389/fnins.2015.00125
10.1152/jn.01312.2006
10.1038/nn0705-839
10.1016/j.neubiorev.2013.06.014
10.1007/bf02474537
10.1088/1741-2560/11/1/016002
10.1523/jneurosci.0095-07.2007
10.1523/jneurosci.4248-08.2008
10.1093/cercor/bhv016
10.1016/j.brs.2009.03.007
10.1155/2014/837141
10.1016/0014-4886(62)90056-0
10.1016/j.brs.2014.12.004
10.3389/fnhum.2013.00687
10.1523/JNEUROSCI.2059-10.2010
10.1016/j.brs.2011.11.004
10.1371/journal.pbio.1002031
10.1103/physrevlett.92.114102
10.1023/A:1025658432696
10.1113/jphysiol.1988.sp017232
10.1088/1741-2560/8/4/046011
10.1016/j.clinph.2003.09.014
10.1016/j.neuroimage.2012.12.034
10.1016/j.clinph.2005.07.007
10.3389/fnhum.2015.00257
10.1152/jn.2000.83.3.1394
10.1038/nn.3719
10.1523/JNEUROSCI.23-19-07255.2003
10.3389/fpsyt.2012.00083
10.1113/jphysiol.2007.137711
10.1126/science.7878473
10.1113/jphysiol.1964.sp007425
10.1016/j.clinph.2006.02.020
10.3389/fnhum.2013.00279
10.1523/JNEUROSCI.2998-05.2005
10.1523/jneurosci.5252-09.2010
10.1113/jphysiol.2003.055772
10.1016/j.tics.2009.01.004
10.1113/jphysiol.2012.247171
10.1152/jn.90287.2008
10.1007/bf00000003
10.1523/jneurosci.1692-13.2013
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1016/j.clinph.2011.05.009
10.1016/j.tics.2007.05.003
10.1016/j.neuropsychologia.2011.03.026
ContentType Journal Article
Copyright Copyright © 2016 Andrea Antal and Christoph S. Herrmann.
Copyright © 2016 Andrea Antal and Christoph S. Herrmann. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 A. Antal and C. S. Herrmann. 2016
Copyright_xml – notice: Copyright © 2016 Andrea Antal and Christoph S. Herrmann.
– notice: Copyright © 2016 Andrea Antal and Christoph S. Herrmann. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 A. Antal and C. S. Herrmann. 2016
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M2M
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOA
DOI 10.1155/2016/3616807
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Psychology Database
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5443
Editor Tronnier, Volker
Editor_xml – sequence: 1
  givenname: Volker
  surname: Tronnier
  fullname: Tronnier, Volker
EndPage 12
ExternalDocumentID oai_doaj_org_article_cec093895e794c69b3ae1cad002cf978
PMC4868897
27242932
10_1155_2016_3616807
1113100
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0R~
123
188
24P
29N
2UF
2WC
4.4
53G
5VS
7X7
8FI
8FJ
AAFWJ
AAMMB
ABDBF
ABIVO
ABUWG
ACCMX
ACUHS
ADBBV
ADJCN
ADRAZ
AEFGJ
AEGXH
AENEX
AFKRA
AFPKN
AGXDD
AHFXO
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
IHW
IL9
INH
INR
IPNFZ
IPY
ITC
KQ8
M2M
M48
O5R
O5S
OK1
OVT
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PSYQQ
PUEGO
RHU
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
UZ5
WOQ
WOW
~8M
AAJEY
AINHJ
CEFSP
CNMHZ
M~E
RHW
RHX
AAYXX
AFFHD
ALUQN
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c603t-700e087864f5a2e6bba0c957ee8d76b026a07af2eeb3641158c1b0eef4a5f69a3
IEDL.DBID RHX
ISICitedReferencesCount 266
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376019100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2090-5904
1687-5443
IngestDate Fri Oct 03 12:44:40 EDT 2025
Tue Nov 04 01:53:11 EST 2025
Fri Sep 05 10:41:41 EDT 2025
Tue Oct 07 07:04:16 EDT 2025
Wed Feb 19 02:09:55 EST 2025
Sat Nov 29 06:25:44 EST 2025
Tue Nov 18 22:32:47 EST 2025
Sun Jun 02 18:52:43 EDT 2024
Thu Sep 25 15:16:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2016
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-700e087864f5a2e6bba0c957ee8d76b026a07af2eeb3641158c1b0eef4a5f69a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Academic Editor: Volker Tronnier
OpenAccessLink https://dx.doi.org/10.1155/2016/3616807
PMID 27242932
PQID 2407659862
PQPubID 4727250
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_cec093895e794c69b3ae1cad002cf978
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868897
proquest_miscellaneous_1793214186
proquest_journals_2407659862
pubmed_primary_27242932
crossref_citationtrail_10_1155_2016_3616807
crossref_primary_10_1155_2016_3616807
hindawi_primary_10_1155_2016_3616807
emarefa_primary_1113100
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: New York
PublicationTitle Neural plasticity
PublicationTitleAlternate Neural Plast
PublicationYear 2016
Publisher Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: John Wiley & Sons, Inc
– name: Wiley
References (3) 2005; 116
(13) 1962; 5
(50) 2004; 92
(61) 2012; 5
(54) 2015; 25
(55) 2012; 63
(71) 2013; 37
(65) 2015; 25
(27) 2014; 12
(74) 2013; 23
(75) 2013; 33
(39) 2007; 37
Rosenblum M. Cimponeriu L. Pikovsky A. Coupled oscillators approach in analysis of physiological data Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06) September 2006 New York, NY, USA 441 444 10.1109/iembs.2006.259461 2-s2.0-34047092910
(38) 2001; 39
(4) 2006; 52
(44) 2013; 7, article 279
(24) 2013; 70
(29) 2013; 9
(34) 1995; 23
(53) 2015; 9, article 257
(64) 2013; 6
(6) 2011; 21
(46) 2006; 444
(31) 2010; 30
(48) 2008; 101
(35) 2013; 7, article 161
(23) 2003; 16
(68) 2008; 100
(17) 2013; 591
(1) 2004; 8
(63) 2014; 7
(70) 2000; 83
(37) 2007; 27
(47) 2014; 17
(12) 1964; 172
(77) 2011; 122
(60) 2011; 2011
(36) 2007; 583
(76) 2013; 4, article 158
(21) 2014; 11
(67) 2011; 122
(22) 2006; 117
(26) 2011; 8
(73) 2004; 115
(18) 2015; 109
(56) 2014; 27
(16) 2004; 557
(32) 2010; 30
(41) 2012; 109
(7) 2011; 12, article 2
(62) 2014; 2014
(43) 2007; 11
(69) 2015; 9, article 125
(58) 2011; 31
(40) 1995; 267
(59) 2008; 28
(42) 2005; 25
(11) 2000; 527
(45) 2014; 24
(30) 2003; 23
(2) 2001; 2
(9) 2015; 9, article 311
(5) 2009; 13
(20) 2007; 97
(10) 2010; 67
(15) 1988; 402
Pikovsky A. Rosenblum M. Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences 2003 Cambridge University Press
(19) 2010; 121
(25) 2012; 3, article 83
(14) 1981; 319
(66) 2011; 49
(8) 2015; 8
(28) 2009; 2
(72) 2013; 116
(57) 2013; 7, article 687
(33) 1967; 5
(52) 2005; 8
44
45
46
47
48
50
52
53
10
54
11
55
56
13
57
14
58
15
59
16
17
18
19
(51) 2003
1
2
3
4
5
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
71
72
73
74
31
75
32
76
33
77
34
35
36
37
38
39
40
41
42
43
17086200 - Nature. 2006 Nov 30;444(7119):610-3
7320909 - J Physiol. 1981;319:143-52
6068939 - Med Biol Eng. 1967 May;5(3):271-93
26321912 - Front Cell Neurosci. 2015 Aug 10;9:311
24310982 - J Neural Eng. 2014 Feb;11(1):016002
23369505 - Brain Stimul. 2013 Jul;6(4):683-9
14978199 - J Physiol. 2004 May 15;557(Pt 1):175-90
16136666 - Nat Neurosci. 2005 Jul;8(7):839-41
25914617 - Front Neurosci. 2015 Apr 10;9:125
21808744 - Neural Plast. 2011;2011:105927
20739569 - J Neurosci. 2010 Aug 25;30(34):11476-85
24167483 - Front Hum Neurosci. 2013 Oct 23;7:687
17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17
11163894 - Int J Psychophysiol. 2001 Jan;39(2-3):151-8
21211016 - BMC Neurosci. 2011;12:2
17946834 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:441-4
22445135 - Brain Stimul. 2012 Oct;5(4):505-11
26005411 - Front Hum Neurosci. 2015 May 08;9:257
14587968 - Brain Topogr. 2003 Fall;16(1):39-55
22031888 - J Neurosci. 2011 Oct 26;31(43):15416-23
21665534 - Clin Neurophysiol. 2011 Dec;122(12):2384-9
25613437 - Neuroimage. 2015 Apr 1;109:140-50
25662714 - Cereb Cortex. 2015 Nov;25(11):4334-40
17548233 - Trends Cogn Sci. 2007 Jul;11(7):267-9
23459152 - PLoS Comput Biol. 2013;9(2):e1002898
3236254 - J Physiol. 1988 Aug;402:751-71
14199369 - J Physiol. 1964 Aug;172:369-82
15335461 - Trends Cogn Sci. 2004 Aug;8(8):347-55
23015792 - Front Psychiatry. 2012 Sep 24;3:83
24112935 - Handb Clin Neurol. 2013;116:739-50
21819181 - Neuropsychol Rehabil. 2011 Oct;21(5):602-17
24816141 - Nat Neurosci. 2014 Jun;17(6):810-2
23684971 - Curr Biol. 2013 Jun 3;23(11):987-92
15089140 - Phys Rev Lett. 2004 Mar 19;92(11):114102
17360926 - J Neurosci. 2007 Mar 14;27(11):3030-6
16267217 - J Neurosci. 2005 Nov 2;25(44):10101-4
17706433 - Neuroimage. 2007 Oct 1;37(4):1465-73
24810956 - Brain Stimul. 2014 Jul-Aug;7(4):532-40
23827785 - Neurosci Biobehav Rev. 2013 Sep;37(8):1702-12
24391599 - Front Psychiatry. 2013 Dec 18;4:158
24461998 - Curr Biol. 2014 Feb 3;24(3):333-9
16253555 - Clin Neurophysiol. 2005 Dec;116(12):2719-33
25549264 - PLoS Biol. 2014 Dec;12(12):e1002031
21659696 - J Neural Eng. 2011 Aug;8(4):046011
23274187 - Neuroimage. 2013 Apr 15;70:48-58
25648377 - Brain Stimul. 2015 May-Jun;8(3):499-508
18463183 - J Neurophysiol. 2008 Jul;100(1):346-57
19437642 - Phys Rev Lett. 2008 Dec 31;101(26):264103
12917358 - J Neurosci. 2003 Aug 13;23(19):7255-61
22836177 - Neuroimage. 2012 Nov 1;63(2):771-8
20624597 - Neuron. 2010 Jul 15;67(1):129-43
24027289 - J Neurosci. 2013 Sep 11;33(37):14899-907
23785325 - Front Hum Neurosci. 2013 Jun 14;7:279
23151506 - Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20095-100
19286414 - Trends Cogn Sci. 2009 Apr;13(4):182-9
23709044 - Brain Topogr. 2014 Jan;27(1):158-71
10712466 - J Neurophysiol. 2000 Mar;83(3):1394-402
11584308 - Nat Rev Neurosci. 2001 Oct;2(10):704-16
8572423 - Ann Biomed Eng. 1995 Nov-Dec;23(6):728-39
24804104 - Neural Plast. 2014;2014:837141
19109497 - J Neurosci. 2008 Dec 24;28(52):14147-55
7878473 - Science. 1995 Mar 10;267(5203):1512-5
13882165 - Exp Neurol. 1962 Jun;5:436-52
25544613 - Curr Biol. 2015 Jan 19;25(2):231-5
17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65
21440562 - Neuropsychologia. 2011 Jun;49(7):1974-80
20161507 - Brain Stimul. 2009 Oct;2(4):215-28, 228.e1-3
23478132 - J Physiol. 2013 May 15;591(10):2563-78
23641206 - Front Hum Neurosci. 2013 Apr 30;7:161
16644273 - Clin Neurophysiol. 2006 Jun;117(6):1388-97
10990547 - J Physiol. 2000 Sep 15;527 Pt 3:633-9
14744566 - Clin Neurophysiol. 2004 Feb;115(2):267-81
17015233 - Neuron. 2006 Oct 5;52(1):155-68
20554472 - Clin Neurophysiol. 2010 Dec;121(12):2165-71
20980196 - Clin Neurophysiol. 2011 Apr;122(4):803-7
21068312 - J Neurosci. 2010 Nov 10;30(45):15067-79
References_xml – volume: 9, article 257
  year: 2015
  ident: 53
  article-title: Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation
– volume: 2011
  year: 2011
  end-page: 5
  ident: 60
  article-title: Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability
– volume: 28
  start-page: 14147
  issue: 52
  year: 2008
  end-page: 14155
  ident: 59
  article-title: Increasing human brain excitability by transcranial high-frequency random noise stimulation
– volume: 101
  issue: 26
  year: 2008
  ident: 48
  article-title: Partially integrable dynamics of hierarchical populations of coupled oscillators
– volume: 83
  start-page: 1394
  issue: 3
  year: 2000
  end-page: 1402
  ident: 70
  article-title: Stochastic resonance improves signal detection in hippocampal CA1 neurons
– volume: 25
  start-page: 231
  issue: 2
  year: 2015
  end-page: 235
  ident: 54
  article-title: Individual differences in alpha frequency drive crossmodal illusory perception
– volume: 49
  start-page: 1974
  issue: 7
  year: 2011
  end-page: 1980
  ident: 66
  article-title: The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task
– volume: 8
  start-page: 839
  issue: 7
  year: 2005
  end-page: 841
  ident: 52
  article-title: Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity
– volume: 21
  start-page: 602
  year: 2011
  end-page: 617
  ident: 6
  article-title: Transcranial electrical stimulation (tES—tDCS; tRNS, tACS) methods
– volume: 402
  start-page: 751
  year: 1988
  end-page: 771
  ident: 15
  article-title: Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro
– volume: 116
  start-page: 2719
  issue: 12
  year: 2005
  end-page: 2733
  ident: 3
  article-title: Human EEG gamma oscillations in neuropsychiatric disorders
– volume: 33
  start-page: 14899
  issue: 37
  year: 2013
  end-page: 14907
  ident: 75
  article-title: Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe
– volume: 27
  start-page: 3030
  issue: 11
  year: 2007
  end-page: 3036
  ident: 37
  article-title: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects
– volume: 8
  start-page: 499
  issue: 3
  year: 2015
  end-page: 508
  ident: 8
  article-title: Alpha power increase after transcranial alternating current stimulation at alpha frequency ( -tACS) reflects plastic changes rather than entrainment
– volume: 591
  start-page: 2563
  issue: 10
  year: 2013
  end-page: 2578
  ident: 17
  article-title: Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects
– volume: 7, article 279
  year: 2013
  ident: 44
  article-title: Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes
– volume: 5
  start-page: 271
  issue: 3
  year: 1967
  end-page: 293
  ident: 33
  article-title: The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist
– volume: 27
  start-page: 158
  issue: 1
  year: 2014
  end-page: 171
  ident: 56
  article-title: Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception
– volume: 2
  start-page: 704
  issue: 10
  year: 2001
  end-page: 716
  ident: 2
  article-title: Dynamic predictions: oscillations and synchrony in top-down processing
– volume: 23
  start-page: 7255
  issue: 19
  year: 2003
  end-page: 7261
  ident: 30
  article-title: Sensitivity of neurons to weak electric fields
– volume: 6
  start-page: 683
  issue: 4
  year: 2013
  end-page: 689
  ident: 64
  article-title: The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation
– volume: 11
  issue: 1
  year: 2014
  ident: 21
  article-title: Investigation of tDCS volume conduction effects in a highly realistic head model
– volume: 17
  start-page: 810
  issue: 6
  year: 2014
  end-page: 812
  ident: 47
  article-title: Induction of self awareness in dreams through frontal low current stimulation of gamma activity
– reference: Rosenblum M. Cimponeriu L. Pikovsky A. Coupled oscillators approach in analysis of physiological data Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06) September 2006 New York, NY, USA 441 444 10.1109/iembs.2006.259461 2-s2.0-34047092910
– volume: 172
  start-page: 369
  year: 1964
  end-page: 382
  ident: 12
  article-title: The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects
– volume: 52
  start-page: 155
  issue: 1
  year: 2006
  end-page: 168
  ident: 4
  article-title: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology
– volume: 23
  start-page: 728
  issue: 6
  year: 1995
  end-page: 739
  ident: 34
  article-title: On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study
– volume: 13
  start-page: 182
  issue: 4
  year: 2009
  end-page: 189
  ident: 5
  article-title: New insights into rhythmic brain activity from TMS-EEG studies
– reference: Pikovsky A. Rosenblum M. Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences 2003 Cambridge University Press
– volume: 67
  start-page: 129
  issue: 1
  year: 2010
  end-page: 143
  ident: 10
  article-title: Endogenous electric fields may guide neocortical network activity
– volume: 8
  issue: 4
  year: 2011
  ident: 26
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
– volume: 122
  start-page: 2384
  issue: 12
  year: 2011
  end-page: 2389
  ident: 67
  article-title: Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex
– volume: 5
  start-page: 436
  issue: 6
  year: 1962
  end-page: 452
  ident: 13
  article-title: Influence of transcortical d-c currents on cortical neuronal activity
– volume: 557
  start-page: 175
  issue: 1
  year: 2004
  end-page: 190
  ident: 16
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices
– volume: 109
  start-page: 140
  year: 2015
  end-page: 150
  ident: 18
  article-title: Determinants of the electric field during transcranial direct current stimulation
– volume: 37
  start-page: 1465
  issue: 4
  year: 2007
  end-page: 1473
  ident: 39
  article-title: Prestimulus oscillations predict visual perception performance between and within subjects
– volume: 122
  start-page: 803
  issue: 4
  year: 2011
  end-page: 807
  ident: 77
  article-title: Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes
– volume: 527
  start-page: 633
  issue: 3
  year: 2000
  end-page: 639
  ident: 11
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
– volume: 24
  start-page: 333
  issue: 3
  year: 2014
  end-page: 339
  ident: 45
  article-title: Entrainment of brain oscillations by transcranial alternating current stimulation
– volume: 116
  start-page: 739
  year: 2013
  end-page: 750
  ident: 72
  article-title: Transcranial stimulation and cognition
– volume: 2014
  year: 2014
  end-page: 6
  ident: 62
  article-title: Comparing the efficacy of excitatory transcranial stimulation methods measuring motor evoked potentials
– volume: 9, article 125
  year: 2015
  ident: 69
  article-title: Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive
– volume: 583
  start-page: 555
  issue: 2
  year: 2007
  end-page: 565
  ident: 36
  article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields
– volume: 319
  start-page: 143
  year: 1981
  end-page: 152
  ident: 14
  article-title: Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices
– volume: 9, article 311
  year: 2015
  ident: 9
  article-title: On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation
– volume: 12, article 2
  year: 2011
  ident: 7
  article-title: Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence
– volume: 8
  start-page: 347
  issue: 8
  year: 2004
  end-page: 355
  ident: 1
  article-title: Cognitive functions of gamma-band activity: memory match and utilization
– volume: 31
  start-page: 15416
  issue: 43
  year: 2011
  end-page: 15423
  ident: 58
  article-title: Random noise stimulation improves neuroplasticity in perceptual learning
– volume: 4, article 158
  year: 2013
  ident: 76
  article-title: Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus
– volume: 25
  start-page: 10101
  issue: 44
  year: 2005
  end-page: 10104
  ident: 42
  article-title: Neural coupling binds visual tokens to moving stimuli
– volume: 63
  start-page: 771
  issue: 2
  year: 2012
  end-page: 778
  ident: 55
  article-title: Good vibrations: oscillatory phase shapes perception
– volume: 12
  issue: 12
  year: 2014
  ident: 27
  article-title: Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception
– volume: 39
  start-page: 151
  issue: 2-3
  year: 2001
  end-page: 158
  ident: 38
  article-title: Functional aspects of alpha oscillations in the EEG
– volume: 7
  start-page: 532
  issue: 4
  year: 2014
  end-page: 540
  ident: 63
  article-title: Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning
– volume: 7, article 161
  year: 2013
  ident: 35
  article-title: Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states
– volume: 7, article 687
  year: 2013
  ident: 57
  article-title: Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies
– volume: 5
  start-page: 505
  issue: 4
  year: 2012
  end-page: 511
  ident: 61
  article-title: Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities
– volume: 16
  start-page: 39
  issue: 1
  year: 2003
  end-page: 55
  ident: 23
  article-title: A model for frequency dependence of conductivities of the live human skull
– volume: 92
  year: 2004
  ident: 50
  article-title: Controlling synchronization in an ensemble of globally coupled oscillators
– volume: 2
  start-page: 215.e1
  issue: 4
  year: 2009
  end-page: 228.e3
  ident: 28
  article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation
– volume: 23
  start-page: 987
  issue: 11
  year: 2013
  end-page: 992
  ident: 74
  article-title: Long-term enhancement of brain function and cognition using cognitive training and brain stimulation
– volume: 70
  start-page: 48
  year: 2013
  end-page: 58
  ident: 24
  article-title: The electric field in the cortex during transcranial current stimulation
– volume: 25
  start-page: 4334
  issue: 11
  year: 2015
  end-page: 4340
  ident: 65
  article-title: High-frequency transcranial random noise stimulation enhances perception of facial identity
– volume: 97
  start-page: 3109
  issue: 4
  year: 2007
  end-page: 3117
  ident: 20
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
– volume: 267
  start-page: 1512
  issue: 5203
  year: 1995
  end-page: 1515
  ident: 40
  article-title: Storage of 7 +/− 2 short-term memories in oscillatory subcycles
– volume: 30
  start-page: 11476
  issue: 34
  year: 2010
  end-page: 11485
  ident: 32
  article-title: Transcranial electric stimulation entrains cortical neuronal populations in rats
– volume: 121
  start-page: 2165
  issue: 12
  year: 2010
  end-page: 2171
  ident: 19
  article-title: Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes
– volume: 30
  start-page: 15067
  issue: 45
  year: 2010
  end-page: 15079
  ident: 31
  article-title: Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing
– volume: 109
  start-page: 20095
  issue: 49
  year: 2012
  end-page: 20100
  ident: 41
  article-title: Frequency modulation entrains slow neural oscillations and optimizes human listening behavior
– volume: 3, article 83
  year: 2012
  ident: 25
  article-title: Finite-element model predicts current density distribution for clinical applications of tDCS and tACS
– volume: 115
  start-page: 267
  issue: 2
  year: 2004
  end-page: 281
  ident: 73
  article-title: Stochastic resonance and sensory information processing: a tutorial and review of application
– volume: 444
  start-page: 610
  issue: 7119
  year: 2006
  end-page: 613
  ident: 46
  article-title: Boosting slow oscillations during sleep potentiates memory
– volume: 100
  start-page: 346
  issue: 1
  year: 2008
  end-page: 357
  ident: 68
  article-title: Extracellular stimulation of mammalian neurons through repetitive activation of Na channels by weak capacitive currents on a silicon chip
– volume: 117
  start-page: 1388
  issue: 6
  year: 2006
  end-page: 1397
  ident: 22
  article-title: Predicted current densities in the brain during transcranial electrical stimulation
– volume: 9
  issue: 2
  year: 2013
  ident: 29
  article-title: Transcranial electrical stimulation accelerates human sleep homeostasis
– volume: 37
  start-page: 1702
  issue: 8
  year: 2013
  end-page: 1712
  ident: 71
  article-title: Modelling non-invasive brain stimulation in cognitive neuroscience
– volume: 11
  start-page: 267
  issue: 7
  year: 2007
  end-page: 269
  ident: 43
  article-title: Cross-frequency coupling between neuronal oscillations
– year: 2003
  ident: 51
– ident: 55
  doi: 10.1016/j.neuroimage.2012.07.024
– ident: 29
  doi: 10.1371/journal.pcbi.1002898
– ident: 74
  doi: 10.1016/j.cub.2013.04.045
– ident: 77
  doi: 10.1016/j.clinph.2010.08.023
– ident: 60
  doi: 10.1155/2011/105927
– ident: 9
  doi: 10.3389/fncel.2015.00311
– ident: 76
  doi: 10.3389/fpsyt.2013.00158
– ident: 35
  doi: 10.3389/fnhum.2013.00161
– ident: 1
  doi: 10.1016/j.tics.2004.06.006
– ident: 58
  doi: 10.1523/jneurosci.2002-11.2011
– ident: 19
  doi: 10.1016/j.clinph.2010.04.033
– ident: 41
  doi: 10.1073/pnas.1213390109
– ident: 10
  doi: 10.1016/j.neuron.2010.06.005
– ident: 45
  doi: 10.1016/j.cub.2013.12.041
– ident: 54
  doi: 10.1016/j.cub.2014.11.034
– ident: 14
  doi: 10.1113/jphysiol.1981.sp013897
– ident: 7
  doi: 10.1186/1471-2202-12-2
– ident: 46
  doi: 10.1038/nature05278
– ident: 63
  doi: 10.1016/j.brs.2014.04.005
– ident: 2
  doi: 10.1038/35094565
– ident: 48
  doi: 10.1103/PhysRevLett.101.264103
– volume: 21
  start-page: 602
  year: 2011
  ident: 6
  publication-title: Neuropsychological Rehabilitation
  doi: 10.1080/09602011.2011.557292
– ident: 64
  doi: 10.1016/j.brs.2012.12.005
– ident: 4
  doi: 10.1016/j.neuron.2006.09.020
– ident: 38
  doi: 10.1016/S0167-8760(00)00138-0
– ident: 72
  doi: 10.1016/B978-0-444-53497-2.00056-5
– ident: 56
  doi: 10.1007/s10548-013-0294-x
– ident: 18
  doi: 10.1016/j.neuroimage.2015.01.033
– ident: 39
  doi: 10.1016/j.neuroimage.2007.07.011
– ident: 69
  doi: 10.3389/fnins.2015.00125
– ident: 20
  doi: 10.1152/jn.01312.2006
– ident: 52
  doi: 10.1038/nn0705-839
– ident: 71
  doi: 10.1016/j.neubiorev.2013.06.014
– ident: 33
  doi: 10.1007/bf02474537
– ident: 21
  doi: 10.1088/1741-2560/11/1/016002
– ident: 37
  doi: 10.1523/jneurosci.0095-07.2007
– ident: 59
  doi: 10.1523/jneurosci.4248-08.2008
– ident: 65
  doi: 10.1093/cercor/bhv016
– ident: 28
  doi: 10.1016/j.brs.2009.03.007
– ident: 62
  doi: 10.1155/2014/837141
– ident: 13
  doi: 10.1016/0014-4886(62)90056-0
– ident: 8
  doi: 10.1016/j.brs.2014.12.004
– ident: 57
  doi: 10.3389/fnhum.2013.00687
– ident: 31
  doi: 10.1523/JNEUROSCI.2059-10.2010
– ident: 61
  doi: 10.1016/j.brs.2011.11.004
– ident: 27
  doi: 10.1371/journal.pbio.1002031
– ident: 50
  doi: 10.1103/physrevlett.92.114102
– ident: 23
  doi: 10.1023/A:1025658432696
– ident: 15
  doi: 10.1113/jphysiol.1988.sp017232
– ident: 26
  doi: 10.1088/1741-2560/8/4/046011
– ident: 73
  doi: 10.1016/j.clinph.2003.09.014
– ident: 24
  doi: 10.1016/j.neuroimage.2012.12.034
– ident: 3
  doi: 10.1016/j.clinph.2005.07.007
– ident: 53
  doi: 10.3389/fnhum.2015.00257
– volume: 83
  start-page: 1394
  issue: 3
  year: 2000
  ident: 70
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2000.83.3.1394
– ident: 47
  doi: 10.1038/nn.3719
– volume: 23
  start-page: 7255
  issue: 19
  year: 2003
  ident: 30
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.23-19-07255.2003
– ident: 25
  doi: 10.3389/fpsyt.2012.00083
– ident: 36
  doi: 10.1113/jphysiol.2007.137711
– ident: 40
  doi: 10.1126/science.7878473
– volume: 172
  start-page: 369
  year: 1964
  ident: 12
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1964.sp007425
– ident: 22
  doi: 10.1016/j.clinph.2006.02.020
– ident: 44
  doi: 10.3389/fnhum.2013.00279
– ident: 42
  doi: 10.1523/JNEUROSCI.2998-05.2005
– ident: 32
  doi: 10.1523/jneurosci.5252-09.2010
– ident: 16
  doi: 10.1113/jphysiol.2003.055772
– ident: 5
  doi: 10.1016/j.tics.2009.01.004
– ident: 17
  doi: 10.1113/jphysiol.2012.247171
– ident: 68
  doi: 10.1152/jn.90287.2008
– ident: 34
  doi: 10.1007/bf00000003
– ident: 75
  doi: 10.1523/jneurosci.1692-13.2013
– ident: 11
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– ident: 67
  doi: 10.1016/j.clinph.2011.05.009
– ident: 43
  doi: 10.1016/j.tics.2007.05.003
– ident: 66
  doi: 10.1016/j.neuropsychologia.2011.03.026
– reference: 10990547 - J Physiol. 2000 Sep 15;527 Pt 3:633-9
– reference: 17706433 - Neuroimage. 2007 Oct 1;37(4):1465-73
– reference: 10712466 - J Neurophysiol. 2000 Mar;83(3):1394-402
– reference: 11584308 - Nat Rev Neurosci. 2001 Oct;2(10):704-16
– reference: 3236254 - J Physiol. 1988 Aug;402:751-71
– reference: 21211016 - BMC Neurosci. 2011;12:2
– reference: 25613437 - Neuroimage. 2015 Apr 1;109:140-50
– reference: 8572423 - Ann Biomed Eng. 1995 Nov-Dec;23(6):728-39
– reference: 15089140 - Phys Rev Lett. 2004 Mar 19;92(11):114102
– reference: 23151506 - Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20095-100
– reference: 25544613 - Curr Biol. 2015 Jan 19;25(2):231-5
– reference: 17015233 - Neuron. 2006 Oct 5;52(1):155-68
– reference: 24804104 - Neural Plast. 2014;2014:837141
– reference: 23274187 - Neuroimage. 2013 Apr 15;70:48-58
– reference: 13882165 - Exp Neurol. 1962 Jun;5:436-52
– reference: 6068939 - Med Biol Eng. 1967 May;5(3):271-93
– reference: 20161507 - Brain Stimul. 2009 Oct;2(4):215-28, 228.e1-3
– reference: 18463183 - J Neurophysiol. 2008 Jul;100(1):346-57
– reference: 25914617 - Front Neurosci. 2015 Apr 10;9:125
– reference: 21819181 - Neuropsychol Rehabil. 2011 Oct;21(5):602-17
– reference: 17548233 - Trends Cogn Sci. 2007 Jul;11(7):267-9
– reference: 17946834 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:441-4
– reference: 7878473 - Science. 1995 Mar 10;267(5203):1512-5
– reference: 21659696 - J Neural Eng. 2011 Aug;8(4):046011
– reference: 26005411 - Front Hum Neurosci. 2015 May 08;9:257
– reference: 24112935 - Handb Clin Neurol. 2013;116:739-50
– reference: 14744566 - Clin Neurophysiol. 2004 Feb;115(2):267-81
– reference: 25648377 - Brain Stimul. 2015 May-Jun;8(3):499-508
– reference: 23459152 - PLoS Comput Biol. 2013;9(2):e1002898
– reference: 23684971 - Curr Biol. 2013 Jun 3;23(11):987-92
– reference: 16253555 - Clin Neurophysiol. 2005 Dec;116(12):2719-33
– reference: 22836177 - Neuroimage. 2012 Nov 1;63(2):771-8
– reference: 26321912 - Front Cell Neurosci. 2015 Aug 10;9:311
– reference: 16136666 - Nat Neurosci. 2005 Jul;8(7):839-41
– reference: 21068312 - J Neurosci. 2010 Nov 10;30(45):15067-79
– reference: 20554472 - Clin Neurophysiol. 2010 Dec;121(12):2165-71
– reference: 19437642 - Phys Rev Lett. 2008 Dec 31;101(26):264103
– reference: 23478132 - J Physiol. 2013 May 15;591(10):2563-78
– reference: 23785325 - Front Hum Neurosci. 2013 Jun 14;7:279
– reference: 11163894 - Int J Psychophysiol. 2001 Jan;39(2-3):151-8
– reference: 23015792 - Front Psychiatry. 2012 Sep 24;3:83
– reference: 17086200 - Nature. 2006 Nov 30;444(7119):610-3
– reference: 24810956 - Brain Stimul. 2014 Jul-Aug;7(4):532-40
– reference: 19286414 - Trends Cogn Sci. 2009 Apr;13(4):182-9
– reference: 24027289 - J Neurosci. 2013 Sep 11;33(37):14899-907
– reference: 22445135 - Brain Stimul. 2012 Oct;5(4):505-11
– reference: 17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65
– reference: 12917358 - J Neurosci. 2003 Aug 13;23(19):7255-61
– reference: 25549264 - PLoS Biol. 2014 Dec;12(12):e1002031
– reference: 24816141 - Nat Neurosci. 2014 Jun;17(6):810-2
– reference: 21808744 - Neural Plast. 2011;2011:105927
– reference: 24310982 - J Neural Eng. 2014 Feb;11(1):016002
– reference: 14587968 - Brain Topogr. 2003 Fall;16(1):39-55
– reference: 20739569 - J Neurosci. 2010 Aug 25;30(34):11476-85
– reference: 14978199 - J Physiol. 2004 May 15;557(Pt 1):175-90
– reference: 24391599 - Front Psychiatry. 2013 Dec 18;4:158
– reference: 21665534 - Clin Neurophysiol. 2011 Dec;122(12):2384-9
– reference: 16267217 - J Neurosci. 2005 Nov 2;25(44):10101-4
– reference: 19109497 - J Neurosci. 2008 Dec 24;28(52):14147-55
– reference: 22031888 - J Neurosci. 2011 Oct 26;31(43):15416-23
– reference: 17360926 - J Neurosci. 2007 Mar 14;27(11):3030-6
– reference: 7320909 - J Physiol. 1981;319:143-52
– reference: 20624597 - Neuron. 2010 Jul 15;67(1):129-43
– reference: 15335461 - Trends Cogn Sci. 2004 Aug;8(8):347-55
– reference: 14199369 - J Physiol. 1964 Aug;172:369-82
– reference: 23641206 - Front Hum Neurosci. 2013 Apr 30;7:161
– reference: 21440562 - Neuropsychologia. 2011 Jun;49(7):1974-80
– reference: 23369505 - Brain Stimul. 2013 Jul;6(4):683-9
– reference: 17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17
– reference: 24167483 - Front Hum Neurosci. 2013 Oct 23;7:687
– reference: 23827785 - Neurosci Biobehav Rev. 2013 Sep;37(8):1702-12
– reference: 23709044 - Brain Topogr. 2014 Jan;27(1):158-71
– reference: 25662714 - Cereb Cortex. 2015 Nov;25(11):4334-40
– reference: 16644273 - Clin Neurophysiol. 2006 Jun;117(6):1388-97
– reference: 24461998 - Curr Biol. 2014 Feb 3;24(3):333-9
– reference: 20980196 - Clin Neurophysiol. 2011 Apr;122(4):803-7
SSID ssj0046555
Score 2.5428364
SecondaryResourceType review_article
Snippet Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically...
Background . Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animal research
Animals
Brain - physiology
Conductivity
Electric fields
Electrodes
Humans
Neurons
Neurons - physiology
Noise
Physiology
Review
Transcranial Direct Current Stimulation
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXBJRHoCAjFS4oqpP4FW4FUXFhVRWQeotsZ0Ij7WZRswXx75lxvMsuAvXCJUpiR449Mx5_zuQbxg61tKU3us2tkzKXweJZpULuOvSdwnulOhuTTZjZzJ6f16dbqb4oJmyiB54G7ihAQNBtawWoOUHXvnJQBNeiJYcOIRDNvsLUazA1zcFECkbBi6WoRY5tynXIu1KI9gt9VOlCW0ohu-WMImd__DHX4TU6qlsXBIt_9H9bfP4ZQ7nllE7usjtpNcmPp17cYzdguM_2jwdE0ouf_BWP8Z1x43yfnUW3FPDQ0yPztBM4fOWJo4m7oeVneFgu-GzZj8A_rfpFSu_1hp8uyXzmwD8C_S3cj4vxAfty8v7zuw95yqiQBy2qVW6EAGGN1bJTrgTtvROhVgbAtkZ7xGNOGNeVgBBbSxwuGwovADrpVKdrVz1ke8NygMeM61Y7CL4QzoNsrcIzWVc-GN11KP0qY6_XQ9uERDdOWS_mTYQdSjUkiCYJImMvN7W_TTQb_6j3lqS0qUPk2PEGqkyTVKa5TmUy9ijJ-HdbRUFfOjJ2mGR-zVscrBWiSSY_NgSNNbHdlxl7sSlGY6UvMG6A5dXY0GxYFrKwGt9h0p9NQ6XB1RIWZ8zsaNZOX3dLhv4iEoJLq62tzZP_MThP2W3q6rTLdMD2VpdX8IzdDN9X_Xj5PFrZL_-NKPg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFV4EGCjJS4YKiOolf4YIKouLCqiog7S2yHaeNtJuUzbaIf8-M15t2EY8DlyhZO7K9_jzjbzyZIWRPcp1bJetUG85T7jTcFcKlpgHdyawVotEh2YSaTPR0Wh5Fg9sQ3SrXMjEI6rp3aCPfR-YhMZh4_vbsW4pZo_B0NabQuE5uYNpsxLmajoQLQ4OhC2POSpZCy3zt-C4EcP5M7hcykxoTyV5RSSFyf_g818AzqKtbp0iOv7e_24L-6kl5RTUd3v3fQd0jd-KmlB6sUHSfXPPdA7J90AEhn_-gr2hwEw32921yHLSbg0uLr8yiQbE7oTHUEzVdTY_h0s_ppG8HTz8v23nMEvaGHvW4CmeefvL40XE7zIeH5Ovhhy_vP6YxMUPqJCuWqWLMM6205I0wuZfWGuZKobzXtZIWaJ1hyjS5B6YuOfzf2mWWed9wIxpZmuIR2er6zu8QKmtpvLMZM9bzWgu442VhnZJNAyAqEvJ6PTeVi1HLMXnGrArsRYgKZ7KKM5mQl2Pts1W0jj_Ue4fTPNbBGNvhh35xUsUlWznvWAn7OeFBZjlZ2sL4zJkadIhrgHwn5HEEyWVbWYYHJgnZi6D5Ry9216ioouQYqktIJOTFWAxrHg9yTOf786FCoZpnPNMS-rAC4NhQrmDTBcUJURvQ3BjrZknXnoa44lxLrUv15O_dekpu4yBWZqhdsrVcnPtn5Ka7WLbD4nlYgD8B2Tk2eA
  priority: 102
  providerName: ProQuest
Title Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms
URI https://search.emarefa.net/detail/BIM-1113100
https://dx.doi.org/10.1155/2016/3616807
https://www.ncbi.nlm.nih.gov/pubmed/27242932
https://www.proquest.com/docview/2407659862
https://www.proquest.com/docview/1793214186
https://pubmed.ncbi.nlm.nih.gov/PMC4868897
https://doaj.org/article/cec093895e794c69b3ae1cad002cf978
Volume 2016
WOSCitedRecordID wos000376019100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-5443
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046555
  issn: 2090-5904
  databaseCode: DOA
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-5443
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046555
  issn: 2090-5904
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 1687-5443
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046555
  issn: 2090-5904
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1687-5443
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046555
  issn: 2090-5904
  databaseCode: M2M
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1687-5443
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046555
  issn: 2090-5904
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5443
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046555
  issn: 2090-5904
  databaseCode: 24P
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xARIvCBgfgVEZafCCIpzEX-FtQ5vGQ6uqgFSeIttxtkhtipZuE_89Z9ctdIDgxXL8ITs-n-_OPv8McCCYyo0Udao0YymzCmMFt6luUHZSYzhvVHhsQo5GajotxxEkqf_9CB-lHZrnmXhXiEwof2t8R3HvuTU5na4XXI8A5j0Vc1rSFBtga__2G3W3JE8A6A-3cDV-o1S6e-5t4Ov2T5rmTYfJXyTQyQO4H1VHcrii9UO45bpHsHfYodk8_07ekODMGXbJ92ASZJDFoPVVZnHbrzsjEZCJ6K4mEwwWczJatL0jn5btPL7l9Z6MF55XZo4Mnb8a3Pbz_jF8OTn-_OE0jc8npFbQYplKSh1VUgnWcJ07YYymtuTSOVVLYdD40lTqJndoTwuGw6VsZqhzDdO8EaUunsBut-jcMyCiFtpZk1FtHKsVxxgrC2OlaBokdZHA2_XQVjZii_snLmZVsDE4rzwhqkiIBF5vSn9bYWr8pdyRp9KmjEfCDgk4O6rIWJV1lpaodXGHK4sVpSm0y6yucaW3DZrICTyNNP7ZVpb5Y40EDiLN_9GL_fWEqCJ_95W3g4WHts8TeLXJRs70xy26c4vLvvJLX56xTAnsw2r-bBrKJapGmJ2A3JpZW_-6ndO15wH9mymhVCmf_1_vX8A9_7naNNqH3eXFpXsJd-zVsu0vBrAjpzKEagC3j45H48kg7EpgOMyHmDb-OBx_HQR--wEZTByk
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLbKFAQXtrIEChip5YKiOom3ICFUlqqjdkaj0krlFBzHaSPNJGUypeqf4jfilzjTDmI59cAlcmInsZPvbfbzewitcSrDVPDMl4pSn2ppSxHTvsqt7CRpylgum2QTYjiUh4fxaAn96PbCgFtlxxMbRp1VGubIN8Dy4BBMPHx38s2HrFGwutql0GhhsWPOz6zJVr_tf7T_dz0Mtz7tf9j2XVYBX3MSzXxBiCFSSE5zpkLD01QRHTNhjMwET61NoohQeWismcmpVZikDlJiTE4Vy3msIvvca2iZAth7aHnUH4y-dLwfgpGB02RIYuLbsdLO1Z6xjRDcyiIecAmpay8JwSZXQLMhWNlzKyBvHIM5flb8Tun91XfzkjDcuvO_fca76LZTu_FmSyf30JIp76OVzVLNqsk5foUbR9hmhWEF7TXyW9tDAbeM3ZRpeYRdMCusygzv2UM1wcOqqA3-PCsmLg_aGzyqgM-MDR4Y2FZd1JP6ATq4ktE9RL2yKs1jhHnGldFpQFRqaCaZLdE4SrXgeW7JJPLQ6w4LiXZx2SE9yDhp7DPGEkBO4pDjofV565M2Hskf2r0HWM3bQBTx5kI1PUocU0q00SS2GiszlitrHqeRMoFWmZWSOo-F9NAjB8qLdwUBLAl5aM2B9B-9WO1QmDjeWCcXEPTQy3m15WqwVKVKU53WCYiNMKCB5LYPLeDnLwqFVStttYfEAiksjHWxpiyOm8jpVHIpY_Hk7916gW5u7w92k93-cOcpugUDaifdVlFvNj01z9B1_X1W1NPnjvwx-nrVpPITc-CVrg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gXbuMSGGCkjRcU1Ul8CxJCg1FRjVXVYNJ4Co7jbJHaZDQd0_4av47jxOlWxOVpD7xETuwkdvKdm318DkIbnMowFTzzpaLUp1pCKWLaVznITpKmjOWySTYhRiN5cBCPV9CPbi-MdavseGLDqLNK2znyvrU8uA0mHvZz5xYx3h68Of7m2wxSdqW1S6fRQmTHnJ2C-Va_Hm7Dv94Mw8H7z-8--C7DgK85iea-IMQQKSSnOVOh4WmqiI6ZMEZmgqdgnygiVB4aMDk5BeVJ6iAlxuRUsZzHKoLnXkGroJLTsIdWx8Pd8ZdODtjAZNaBMiQx8WHctHO7Z6wfWheziAdc2jS2FwRikzeg2Rys4ByE5bUja5qfFr9TgH_147wgGAe3_udPehvddOo43mrp5w5aMeVdtLZVqnk1PcMvcOMg26w8rKG9Rq5rOBT2lombSi0PsQtyhVWZ4T04VFM8qora4E_zYuryo73C48ryn4nBu8Zuty7qaX0P7V_K6O6jXlmV5iHCPOPK6DQgKjU0kwxKNI5SLXieA_lEHnrZ4SLRLl67TRsySRq7jbHEoihxKPLQ5qL1cRun5A_t3lqILdrY6OLNhWp2mDhmlWijSQyaLDPArTWP00iZQKsMpKfOYyE99MAB9PxdQWCXijy04QD7j16sd4hMHM-sk3M4euj5ohq4nV3CUqWpTurEipMwoIHk0IcW_IsXhQLUTaj2kFgii6WxLteUxVETUZ1KLmUsHv29W8_QdaCP5ONwtPMY3bDjaefi1lFvPjsxT9BV_X1e1LOnjhNg9PWyKeUnZUiebg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcranial+Alternating+Current+and+Random+Noise+Stimulation%3A+Possible+Mechanisms&rft.jtitle=Neural+plasticity&rft.au=Antal%2C+Andrea&rft.au=Herrmann%2C+Christoph+S.&rft.date=2016-01-01&rft.pub=Hindawi+Publishing+Corporation&rft.issn=2090-5904&rft.eissn=1687-5443&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1155%2F2016%2F3616807&rft.externalDBID=ADJCN&rft.externalDocID=1113100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-5904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-5904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-5904&client=summon