Genetic variation in metabolic phenotypes: study designs and applications
Key Points Technical advances in mass spectrometry and NMR spectroscopy enable genome-wide screens to be carried out for the association between genetic variants and hundreds of metabolic traits in a single experiment. Metabolite concentrations are direct readouts of biological processes and can pla...
Saved in:
| Published in: | Nature reviews. Genetics Vol. 13; no. 11; pp. 759 - 769 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.11.2012
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1471-0056, 1471-0064, 1471-0064 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Key Points
Technical advances in mass spectrometry and NMR spectroscopy enable genome-wide screens to be carried out for the association between genetic variants and hundreds of metabolic traits in a single experiment.
Metabolite concentrations are direct readouts of biological processes and can play the part of intermediate phenotypes, providing functional links between genetic variance and disease end points in genome-wide association studies (GWASs).
The first GWASs with metabolomics have already discovered many genetic variants in enzyme-, transporter- and other metabolism-related genes that induce major differences in the individual metabolic capabilities of the organism.
Knowledge of the genetic basis of human metabolic individuality holds the key to understanding the interactions of genetic, environmental and lifestyle factors in the aetiology of complex disorders.
We review emerging insights from recent GWASs with metabolomics and present design considerations for high-throughput metabolomics experiments with metabolic traits in epidemiological and clinical studies.
Using ratios between metabolite concentrations can drastically increase the power of a metabolomics study and can provide functional information on the perturbed underlying biochemical pathways.
Integration with other biochemical information, including data from other GWASs, can largely improve the value of the study.
Current challenges and future directions include the addition of new sample types (other than urine and blood), extension of the metabolite panels, standardization between platforms and the development of adapted statistical and data analysis tools.
Revealing genetic influences on metabolic phenotypes is important in further understanding the aetiology of many complex diseases. Here, the authors introduce study design considerations and applications for genome-wide association studies with metabolic traits.
Many complex disorders are linked to metabolic phenotypes. Revealing genetic influences on metabolic phenotypes is key to a systems-wide understanding of their interactions with environmental and lifestyle factors in their aetiology, and we can now explore the genetics of large panels of metabolic traits by coupling genome-wide association studies and metabolomics. These genome-wide association studies are beginning to unravel the genetic contribution to human metabolic individuality and to demonstrate its relevance for biomedical and pharmaceutical research. Adopting the most appropriate study designs and analytical tools is paramount to further refining the genotype–phenotype map and eventually identifying the part played by genetic influences on metabolic phenotypes. We discuss such design considerations and applications in this Review. |
|---|---|
| AbstractList | Key Points
Technical advances in mass spectrometry and NMR spectroscopy enable genome-wide screens to be carried out for the association between genetic variants and hundreds of metabolic traits in a single experiment.
Metabolite concentrations are direct readouts of biological processes and can play the part of intermediate phenotypes, providing functional links between genetic variance and disease end points in genome-wide association studies (GWASs).
The first GWASs with metabolomics have already discovered many genetic variants in enzyme-, transporter- and other metabolism-related genes that induce major differences in the individual metabolic capabilities of the organism.
Knowledge of the genetic basis of human metabolic individuality holds the key to understanding the interactions of genetic, environmental and lifestyle factors in the aetiology of complex disorders.
We review emerging insights from recent GWASs with metabolomics and present design considerations for high-throughput metabolomics experiments with metabolic traits in epidemiological and clinical studies.
Using ratios between metabolite concentrations can drastically increase the power of a metabolomics study and can provide functional information on the perturbed underlying biochemical pathways.
Integration with other biochemical information, including data from other GWASs, can largely improve the value of the study.
Current challenges and future directions include the addition of new sample types (other than urine and blood), extension of the metabolite panels, standardization between platforms and the development of adapted statistical and data analysis tools.
Revealing genetic influences on metabolic phenotypes is important in further understanding the aetiology of many complex diseases. Here, the authors introduce study design considerations and applications for genome-wide association studies with metabolic traits.
Many complex disorders are linked to metabolic phenotypes. Revealing genetic influences on metabolic phenotypes is key to a systems-wide understanding of their interactions with environmental and lifestyle factors in their aetiology, and we can now explore the genetics of large panels of metabolic traits by coupling genome-wide association studies and metabolomics. These genome-wide association studies are beginning to unravel the genetic contribution to human metabolic individuality and to demonstrate its relevance for biomedical and pharmaceutical research. Adopting the most appropriate study designs and analytical tools is paramount to further refining the genotype–phenotype map and eventually identifying the part played by genetic influences on metabolic phenotypes. We discuss such design considerations and applications in this Review. Many complex disorders are linked to metabolic phenotypes. Revealing genetic influences on metabolic phenotypes is key to a systems-wide understanding of their interactions with environmental and lifestyle factors in their aetiology, and we can now explore the genetics of large panels of metabolic traits by coupling genome-wide association studies and metabolomics. These genome-wide association studies are beginning to unravel the genetic contribution to human metabolic individuality and to demonstrate its relevance for biomedical and pharmaceutical research. Adopting the most appropriate study designs and analytical tools is paramount to further refining the genotype-phenotype map and eventually identifying the part played by genetic influences on metabolic phenotypes. We discuss such design considerations and applications in this Review. Many complex disorders are linked to metabolic phenotypes. Revealing genetic influences on metabolic phenotypes is key to a systems-wide understanding of their interactions with environmental and lifestyle factors in their aetiology, and we can now explore the genetics of large panels of metabolic traits by coupling genome-wide association studies and metabolomics. These genome-wide association studies are beginning to unravel the genetic contribution to human metabolic individuality and to demonstrate its relevance for biomedical and pharmaceutical research. Adopting the most appropriate study designs and analytical tools is paramount to further refining the genotype-phenotype map and eventually identifying the part played by genetic influences on metabolic phenotypes. We discuss such design considerations and applications in this Review.Many complex disorders are linked to metabolic phenotypes. Revealing genetic influences on metabolic phenotypes is key to a systems-wide understanding of their interactions with environmental and lifestyle factors in their aetiology, and we can now explore the genetics of large panels of metabolic traits by coupling genome-wide association studies and metabolomics. These genome-wide association studies are beginning to unravel the genetic contribution to human metabolic individuality and to demonstrate its relevance for biomedical and pharmaceutical research. Adopting the most appropriate study designs and analytical tools is paramount to further refining the genotype-phenotype map and eventually identifying the part played by genetic influences on metabolic phenotypes. We discuss such design considerations and applications in this Review. |
| Audience | Academic |
| Author | Suhre, Karsten Gieger, Christian |
| Author_xml | – sequence: 1 givenname: Karsten surname: Suhre fullname: Suhre, Karsten email: karsten@suhre.fr organization: Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health – sequence: 2 givenname: Christian surname: Gieger fullname: Gieger, Christian email: christian.gieger@helmholtz-muenchen.de organization: Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26451427$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23032255$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0stu1DAUBuAIFdELiDdAkRAFFim-J8OuqqCMVAmJy9o6ceyMq8RJbQcxb1_PNKWdgQXywpb1naOc_D7ODtzgdJa9xOgMI1p9cL6lFLMn2RFmJS4QEuzgz5mLw-w4hGuEsMAlfZYdEoooIZwfZctL7XS0Kv8F3kK0g8uty3sdoR66dD2utBvietThYx7i1KzzRgfbupCDa3IYx4S2ZeF59tRAF_SLeT_Jfn7-9OPiS3H19XJ5cX5VKIFoLBgvVYX4wqSNYUMUA4UaSgRRUDOoTc0pq8uKLqhoCMKGA9AKuKjqpqbU0JPs3V3f0Q83kw5R9jYo3XXg9DAFiTHhhDK-YP9BMV1USBCR6Os9ej1M3qVBNoqlT0dV9aBa6LS0zgzRg9o0lecUiUqgFEZSZ_9QaTW6tyoFZ2y63yl4v1OQTNS_YwtTCHL5_duuPX1kVxq6uApDN20z2IWv5ommuteNHL3twa_lffYJvJkBBAWd8eCUDQ9OMI4ZKZMr7pzyQwheG6ls3GaexrKdxEhu3qCc32Dyb_f8fcu_5ZxPSMK12j_66Xv0FsNB4x8 |
| CitedBy_id | crossref_primary_10_3389_fpsyt_2020_00165 crossref_primary_10_1007_s11886_014_0488_1 crossref_primary_10_1136_bmjopen_2017_020900 crossref_primary_10_1093_hmg_ddac243 crossref_primary_10_3390_ijms24109099 crossref_primary_10_1016_j_nutres_2018_10_003 crossref_primary_10_3390_metabo9070127 crossref_primary_10_1002_bies_201300051 crossref_primary_10_1016_j_abb_2015_09_016 crossref_primary_10_1080_10495398_2022_2128814 crossref_primary_10_1002_pmic_201400255 crossref_primary_10_1007_s11306_014_0707_1 crossref_primary_10_1038_s41431_018_0296_y crossref_primary_10_3390_ijms22179108 crossref_primary_10_1016_j_bcmd_2020_102504 crossref_primary_10_1093_ije_dyz176 crossref_primary_10_1186_gm418 crossref_primary_10_1186_s12864_024_11016_4 crossref_primary_10_2217_bmm_2018_0020 crossref_primary_10_1186_s12870_015_0672_5 crossref_primary_10_1016_j_ccm_2020_10_001 crossref_primary_10_1530_JOE_14_0024 crossref_primary_10_1053_j_gastro_2013_11_001 crossref_primary_10_1016_j_ajhg_2020_01_003 crossref_primary_10_3390_metabo13080895 crossref_primary_10_1073_pnas_2500001122 crossref_primary_10_1002_jssc_201800543 crossref_primary_10_1186_gm542 crossref_primary_10_1371_journal_pone_0093844 crossref_primary_10_1371_journal_pone_0177749 crossref_primary_10_1371_journal_pgen_1005487 crossref_primary_10_1534_genetics_115_175760 crossref_primary_10_1080_02648725_2023_2191069 crossref_primary_10_3390_metabo11020108 crossref_primary_10_1002_ijc_28949 crossref_primary_10_1016_j_scienta_2019_109004 crossref_primary_10_1186_s13073_023_01209_z crossref_primary_10_3389_fnagi_2020_00136 crossref_primary_10_1093_jas_skab193 crossref_primary_10_2217_epi_2017_0101 crossref_primary_10_1016_j_phytochem_2015_04_005 crossref_primary_10_1371_journal_pcbi_1006734 crossref_primary_10_1016_j_bbadis_2021_166144 crossref_primary_10_1016_j_ophtha_2018_02_026 crossref_primary_10_1016_j_preteyeres_2018_11_002 crossref_primary_10_1186_s12864_025_11516_x crossref_primary_10_1016_j_kint_2022_01_014 crossref_primary_10_1016_j_envres_2015_05_009 crossref_primary_10_1371_journal_pone_0124574 crossref_primary_10_1007_s11306_016_1094_6 crossref_primary_10_1016_j_trac_2025_118368 crossref_primary_10_1097_MOL_0b013e32835ec621 crossref_primary_10_1016_j_cbpa_2022_102199 crossref_primary_10_1089_hum_2017_215 crossref_primary_10_1371_journal_pone_0106077 crossref_primary_10_3389_fgene_2022_814412 crossref_primary_10_1016_j_jdiacomp_2015_06_016 crossref_primary_10_1093_hmg_ddv263 crossref_primary_10_1016_j_abb_2015_09_023 crossref_primary_10_1038_s41698_024_00635_5 crossref_primary_10_1371_journal_pgen_1004132 crossref_primary_10_1038_ncomms4438 crossref_primary_10_1186_1471_2164_14_798 crossref_primary_10_1186_s13075_025_03537_4 crossref_primary_10_1016_j_pbi_2015_01_006 crossref_primary_10_1016_j_tem_2014_06_003 crossref_primary_10_1161_CIRCGENETICS_114_000223 crossref_primary_10_1038_s41598_018_26320_9 crossref_primary_10_1038_ng_2982 crossref_primary_10_3389_fbioe_2020_591049 crossref_primary_10_1016_j_abb_2015_10_007 crossref_primary_10_1093_mutage_gev060 crossref_primary_10_1111_acel_12215 crossref_primary_10_1016_j_jchromb_2013_11_022 crossref_primary_10_1111_pbi_12899 crossref_primary_10_1093_hmg_ddt430 crossref_primary_10_1161_CIRCGENETICS_114_000216 crossref_primary_10_3390_metabo11030184 crossref_primary_10_1093_jn_nxab425 crossref_primary_10_3390_ani15070912 crossref_primary_10_1111_joim_13306 crossref_primary_10_1016_j_copbio_2012_10_003 crossref_primary_10_1007_s00439_019_01971_4 crossref_primary_10_1038_srep24718 crossref_primary_10_1080_14737159_2025_2509027 crossref_primary_10_1016_j_envpol_2022_119308 crossref_primary_10_1093_schbul_sbaf154 crossref_primary_10_1371_journal_pone_0156612 crossref_primary_10_1016_j_abb_2016_03_029 crossref_primary_10_3389_fphys_2021_701035 crossref_primary_10_1016_j_hlpt_2014_08_007 crossref_primary_10_1007_s11746_017_3033_8 crossref_primary_10_2527_af_2016_0011 crossref_primary_10_1016_j_aca_2020_10_038 crossref_primary_10_1136_bmjopen_2018_025395 crossref_primary_10_1038_s41598_021_84411_6 crossref_primary_10_1016_j_jfutfo_2025_02_006 crossref_primary_10_3390_metabo13040505 crossref_primary_10_2337_dc16_2453 crossref_primary_10_1111_bph_15056 crossref_primary_10_3390_jcm11040940 crossref_primary_10_1016_j_bbadis_2014_06_007 crossref_primary_10_1016_j_xhgg_2025_100406 crossref_primary_10_1093_hmg_ddu301 crossref_primary_10_1161_CIRCRESAHA_113_300634 crossref_primary_10_1007_s11306_014_0663_9 crossref_primary_10_1534_genetics_117_203752 crossref_primary_10_1007_s10654_017_0290_7 crossref_primary_10_1038_ng_3809 crossref_primary_10_1016_j_cmet_2013_06_013 crossref_primary_10_1080_03602532_2022_2125987 crossref_primary_10_1093_bib_bbad527 crossref_primary_10_1093_ije_dyw046 crossref_primary_10_1186_1471_2164_14_865 crossref_primary_10_1371_journal_pone_0175479 crossref_primary_10_1016_j_kint_2021_03_026 crossref_primary_10_1007_s40484_013_0005_3 crossref_primary_10_1016_j_xgen_2025_100810 crossref_primary_10_1016_j_cels_2015_10_003 crossref_primary_10_1371_journal_pcbi_1005839 crossref_primary_10_1007_s00726_020_02931_3 crossref_primary_10_1093_ajh_hpaa022 crossref_primary_10_1373_clinchem_2017_275172 crossref_primary_10_3390_f8080266 crossref_primary_10_1016_j_bbadis_2014_05_030 crossref_primary_10_1371_journal_pgen_1004212 crossref_primary_10_1016_j_ophtha_2017_08_008 crossref_primary_10_1038_ncomms8208 crossref_primary_10_1186_s12711_025_00960_8 crossref_primary_10_1016_j_toxlet_2018_05_011 crossref_primary_10_3390_ijms232315024 crossref_primary_10_1038_ncomms11122 crossref_primary_10_1038_ncomms14357 |
| Cites_doi | 10.1038/msb.2011.57 10.1093/hmg/ddp203 10.3945/ajcn.2009.29130 10.1038/ng.566 10.1038/ng.834 10.1038/ng0210-97 10.1038/ng.1073 10.1371/journal.pgen.0030194 10.3945/jn.111.140392 10.1371/journal.pgen.1002215 10.1038/ng.568 10.1093/hmg/ddr581 10.1186/1471-2105-13-120 10.1016/j.ajhg.2007.11.001 10.1038/nature09270 10.1038/ng.507 10.1038/ng.717 10.1093/hmg/ddp202 10.1371/journal.pgen.1000282 10.1038/nature10354 10.1016/S0140-6736(01)41972-6 10.1177/1087057111402200 10.1007/978-1-4614-1689-0_15 10.1038/ng.75 10.1371/journal.pgen.1002490 10.1371/journal.pgen.1000338 10.1016/j.jprot.2011.10.027 10.1038/ng786 10.1093/nar/gkn810 10.1038/ng.520 10.1371/journal.pone.0021230 10.1086/519795 10.1093/nar/gkr988 10.1210/en.2007-1747 10.1371/journal.pgen.1000672 10.1186/1752-0509-5-21 10.1002/9780470743386 10.1093/bioinformatics/btn563 10.1056/NEJMoa0801936 10.1371/journal.pgen.1002270 10.1038/ng.76 10.1371/journal.pgen.1000534 10.1371/journal.pgen.1000504 10.1155/2011/839862 10.1371/journal.pone.0013953 10.1096/fj.11-198093 10.1371/journal.pgen.1002025 10.1038/msb.2010.93 10.1002/gepi.21617 10.1371/journal.pone.0016957 10.1038/ng.687 10.1038/ng.837 10.1038/nrg2796 10.1371/journal.pgen.1002033 10.1038/ng.291 10.1038/ng.107 10.1038/nature05911 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2012 2015 INIST-CNRS COPYRIGHT 2012 Nature Publishing Group Copyright Nature Publishing Group Nov 2012 |
| Copyright_xml | – notice: Springer Nature Limited 2012 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 2012 |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
| DOI | 10.1038/nrg3314 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1471-0064 |
| EndPage | 769 |
| ExternalDocumentID | 2796169361 A306860038 23032255 26451427 10_1038_nrg3314 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GeographicLocations | Qatar Germany United Kingdom--UK |
| GeographicLocations_xml | – name: Qatar – name: Germany – name: United Kingdom--UK |
| GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ACSTC AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ABFSG AEZWR AFHIU AHWEU AIXLP IQODW NFIDA CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c603t-457c8059f7c841f2c4ac0d3262cab4abfb534b783936d201f5aa38a568bdb33f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310218200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0056 1471-0064 |
| IngestDate | Thu Sep 04 16:51:53 EDT 2025 Thu Sep 04 19:36:02 EDT 2025 Mon Oct 06 18:21:20 EDT 2025 Tue Nov 11 10:18:47 EST 2025 Tue Nov 04 18:02:40 EST 2025 Thu Nov 13 15:02:18 EST 2025 Thu May 22 21:19:57 EDT 2025 Fri May 16 01:57:20 EDT 2025 Mon Jul 21 09:16:26 EDT 2025 Sat Nov 29 02:34:55 EST 2025 Tue Nov 18 22:41:47 EST 2025 Fri Feb 21 02:40:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Phenotype Genetic variability Review Genetic variant |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c603t-457c8059f7c841f2c4ac0d3262cab4abfb534b783936d201f5aa38a568bdb33f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 23032255 |
| PQID | 1114603088 |
| PQPubID | 44267 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1125234594 proquest_miscellaneous_1113980626 proquest_journals_1114603088 gale_infotracmisc_A306860038 gale_infotracacademiconefile_A306860038 gale_incontextgauss_ISR_A306860038 gale_healthsolutions_A306860038 pubmed_primary_23032255 pascalfrancis_primary_26451427 crossref_citationtrail_10_1038_nrg3314 crossref_primary_10_1038_nrg3314 springer_journals_10_1038_nrg3314 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-11-01 |
| PublicationDateYYYYMMDD | 2012-11-01 |
| PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Genetics |
| PublicationTitleAbbrev | Nat Rev Genet |
| PublicationTitleAlternate | Nat Rev Genet |
| PublicationYear | 2012 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Suhre (CR11) 2010; 5 Gieger (CR21) 2008; 4 Zhai (CR42) 2011; 7 Kronenberg (CR47) 2012 Nicholson (CR13) 2011; 7 Wallace (CR53) 2008; 82 Suhre (CR14) 2011; 43 Borenstein, Hedges, Higgins, Rothstein (CR29) 2009 Tanaka (CR22) 2009; 5 Garrod (CR1) 1902; 2 Dumont (CR6) 2011; 141 Petersen (CR28) 2012; 13 CR30 Rothman (CR51) 2010; 42 Altmaier (CR27) 2008; 149 Marchini, Howie (CR20) 2010; 11 Chambers (CR52) 2010; 42 Mootha, Hirschhorn (CR2) 2010; 42 Wishart (CR25) 2009; 37 CR3 Zhang, Sun, Wang, Han, Wang (CR32) 2011; 75 Willer (CR45) 2008; 40 Raychaudhuri (CR58) 2009; 5 Kathiresan (CR46) 2009; 41 CR48 Ried (CR57) 2012; 36 Cornelis (CR31) 2011; 7 Kolz (CR41) 2009; 5 Illig (CR16) 2010; 42 Dupuis (CR38) 2010; 42 Mittelstrass (CR12) 2011; 7 Lu (CR7) 2010; 92 Teslovich (CR43) 2010; 466 Suhre (CR15) 2011; 477 Kettunen (CR10) 2012; 44 Kathiresan (CR44) 2008; 40 Hicks (CR23) 2009; 5 Krug (CR8) 2012; 26 Purcell (CR18) 2007; 81 Inouye (CR35) 2010; 6 Ferreira, Purcell (CR56) 2009; 25 Abecasis, Cherny, Cookson, Cardon (CR19) 2002; 30 Li (CR54) 2007; 3 Doring (CR55) 2008; 40 Nicholson (CR9) 2011; 7 Kastenmuller, Romisch-Margl, Wagele, Altmaier, Suhre (CR17) 2011; 2011 Suhre (CR37) 2011; 16 Johnson (CR40) 2009; 18 Kottgen (CR36) 2010; 42 Kanehisa, Goto, Sato, Furumichi, Tanabe (CR26) 2012; 40 Psychogios (CR4) 2011; 6 Link (CR5) 2008; 359 Krumsiek, Suhre, Illig, Adamski, Theis (CR59) 2011; 5 Tukiainen (CR34) 2012; 21 Kato (CR50) 2011; 43 Franke (CR49) 2010; 42 Demirkan (CR24) 2012; 8 Sanna (CR39) 2009; 18 Yu (CR33) 2011; 6 J Dupuis (BFnrg3314_CR38) 2010; 42 J Marchini (BFnrg3314_CR20) 2010; 11 A Demirkan (BFnrg3314_CR24) 2012; 8 A Doring (BFnrg3314_CR55) 2008; 40 M Kanehisa (BFnrg3314_CR26) 2012; 40 T Illig (BFnrg3314_CR16) 2010; 42 AD Johnson (BFnrg3314_CR40) 2009; 18 G Zhai (BFnrg3314_CR42) 2011; 7 A Kottgen (BFnrg3314_CR36) 2010; 42 N Kato (BFnrg3314_CR50) 2011; 43 BFnrg3314_CR48 N Rothman (BFnrg3314_CR51) 2010; 42 J Kettunen (BFnrg3314_CR10) 2012; 44 J Krumsiek (BFnrg3314_CR59) 2011; 5 E Link (BFnrg3314_CR5) 2008; 359 G Nicholson (BFnrg3314_CR9) 2011; 7 M Borenstein (BFnrg3314_CR29) 2009 VK Mootha (BFnrg3314_CR2) 2010; 42 C Wallace (BFnrg3314_CR53) 2008; 82 AE Garrod (BFnrg3314_CR1) 1902; 2 T Tanaka (BFnrg3314_CR22) 2009; 5 C Gieger (BFnrg3314_CR21) 2008; 4 S Kathiresan (BFnrg3314_CR46) 2009; 41 G Kastenmuller (BFnrg3314_CR17) 2011; 2011 Z Yu (BFnrg3314_CR33) 2011; 6 BFnrg3314_CR30 K Suhre (BFnrg3314_CR15) 2011; 477 S Li (BFnrg3314_CR54) 2007; 3 K Suhre (BFnrg3314_CR11) 2010; 5 M Kolz (BFnrg3314_CR41) 2009; 5 DS Wishart (BFnrg3314_CR25) 2009; 37 G Nicholson (BFnrg3314_CR13) 2011; 7 K Suhre (BFnrg3314_CR37) 2011; 16 N Psychogios (BFnrg3314_CR4) 2011; 6 S Purcell (BFnrg3314_CR18) 2007; 81 A Zhang (BFnrg3314_CR32) 2011; 75 J Dumont (BFnrg3314_CR6) 2011; 141 GR Abecasis (BFnrg3314_CR19) 2002; 30 S Sanna (BFnrg3314_CR39) 2009; 18 AK Petersen (BFnrg3314_CR28) 2012; 13 CJ Willer (BFnrg3314_CR45) 2008; 40 JC Chambers (BFnrg3314_CR52) 2010; 42 TM Teslovich (BFnrg3314_CR43) 2010; 466 AA Hicks (BFnrg3314_CR23) 2009; 5 MC Cornelis (BFnrg3314_CR31) 2011; 7 S Krug (BFnrg3314_CR8) 2012; 26 E Altmaier (BFnrg3314_CR27) 2008; 149 MA Ferreira (BFnrg3314_CR56) 2009; 25 K Suhre (BFnrg3314_CR14) 2011; 43 Y Lu (BFnrg3314_CR7) 2010; 92 T Tukiainen (BFnrg3314_CR34) 2012; 21 A Franke (BFnrg3314_CR49) 2010; 42 S Kathiresan (BFnrg3314_CR44) 2008; 40 F Kronenberg (BFnrg3314_CR47) 2012 BFnrg3314_CR3 K Mittelstrass (BFnrg3314_CR12) 2011; 7 S Raychaudhuri (BFnrg3314_CR58) 2009; 5 M Inouye (BFnrg3314_CR35) 2010; 6 JS Ried (BFnrg3314_CR57) 2012; 36 20037589 - Nat Genet. 2010 Feb;42(2):137-41 20972438 - Nat Genet. 2010 Nov;42(11):978-84 21931564 - PLoS Genet. 2011 Sep;7(9):e1002270 19503597 - PLoS Genet. 2009 Jun;5(6):e1000504 20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 21179014 - Mol Syst Biol. 2010 Dec 21;6:441 18650507 - N Engl J Med. 2008 Aug 21;359(8):789-99 18327256 - Nat Genet. 2008 Apr;40(4):430-6 11731797 - Nat Genet. 2002 Jan;30(1):97-101 21490707 - PLoS Genet. 2011 Apr;7(4):e1002033 22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 20686565 - Nature. 2010 Aug 5;466(7307):707-13 18953024 - Nucleic Acids Res. 2009 Jan;37(Database issue):D603-10 22079244 - J Proteomics. 2012 Feb 2;75(4):1079-88 20936179 - J Biomed Biotechnol. 2011;2011:null 20104246 - Nat Genet. 2010 Feb;42(2):97-8 20383145 - Nat Genet. 2010 May;42(5):373-5 21852955 - PLoS Genet. 2011 Aug;7(8):e1002215 20081858 - Nat Genet. 2010 Feb;42(2):105-16 21878913 - Mol Syst Biol. 2011 Aug 30;7:525 21085649 - PLoS One. 2010 Nov 11;5(11):e13953 21102463 - Nat Genet. 2010 Dec;42(12):1118-25 21543640 - J Biomol Screen. 2011 Jun;16(5):467-75 22714936 - Genet Epidemiol. 2012 Apr;36(3):244-52 19060906 - Nat Genet. 2009 Jan;41(1):56-65 19148276 - PLoS Genet. 2009 Jan;5(1):e1000338 18179892 - Am J Hum Genet. 2008 Jan;82(1):139-49 17554300 - Nature. 2007 Jun 7;447(7145):661-78 20383146 - Nat Genet. 2010 May;42(5):376-84 22426117 - FASEB J. 2012 Jun;26(6):2607-19 22156771 - Hum Mol Genet. 2012 Mar 15;21(6):1444-55 22286219 - Nat Genet. 2012 Jan 29;44(3):269-76 19043545 - PLoS Genet. 2008 Nov;4(11):e1000282 19557189 - PLoS Genet. 2009 Jun;5(6):e1000534 21593353 - J Nutr. 2011 Jul;141(7):1247-53 21760889 - PLoS One. 2011;6(7):e21230 22672667 - BMC Bioinformatics. 2012 Jun 06;13:120 19019849 - Bioinformatics. 2009 Jan 1;25(1):132-3 19414484 - Hum Mol Genet. 2009 Jul 15;18(14 ):2700-10 21533175 - PLoS Genet. 2011 Apr;7(4):e1002025 23093944 - PLoS Genet. 2012;8(10):e1003005 21359215 - PLoS One. 2011 Feb 16;6(2):e16957 22359512 - PLoS Genet. 2012;8(2):e1002490 18372322 - Endocrinology. 2008 Jul;149(7):3478-89 17997608 - PLoS Genet. 2007 Nov;3(11):e194 21572414 - Nat Genet. 2011 Jun;43(6):565-9 21886157 - Nature. 2011 Aug 31;477(7362):54-60 19419973 - Hum Mol Genet. 2009 Jul 15;18(14):2711-8 21281499 - BMC Syst Biol. 2011 Jan 31;5:21 19798445 - PLoS Genet. 2009 Oct;5(10):e1000672 20484448 - Am J Clin Nutr. 2010 Jul;92(1):258-65 18193043 - Nat Genet. 2008 Feb;40(2):161-9 18193044 - Nat Genet. 2008 Feb;40(2):189-97 21572416 - Nat Genet. 2011 Jun;43(6):531-8 |
| References_xml | – volume: 7 start-page: 525 year: 2011 ident: CR9 article-title: Human metabolic profiles are stably controlled by genetic and environmental variation publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.57 – volume: 18 start-page: 2711 year: 2009 end-page: 2718 ident: CR39 article-title: Common variants in the locus are associated with bilirubin levels and unconjugated hyperbilirubinemia publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp203 – volume: 92 start-page: 258 year: 2010 end-page: 265 ident: CR7 article-title: Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2009.29130 – volume: 42 start-page: 373 year: 2010 end-page: 375 ident: CR52 article-title: Genetic loci influencing kidney function and chronic kidney disease publication-title: Nature Genet. doi: 10.1038/ng.566 – volume: 43 start-page: 531 year: 2011 end-page: 538 ident: CR50 article-title: Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians publication-title: Nature Genet. doi: 10.1038/ng.834 – volume: 42 start-page: 97 year: 2010 end-page: 98 ident: CR2 article-title: Inborn variation in metabolism publication-title: Nature Genet. doi: 10.1038/ng0210-97 – volume: 44 start-page: 269 year: 2012 end-page: 276 ident: CR10 article-title: Genome-wide association study identifies multiple loci influencing human serum metabolite levels publication-title: Nature Genet. doi: 10.1038/ng.1073 – volume: 3 start-page: e194 year: 2007 ident: CR54 article-title: The gene is associated with serum uric acid levels in Sardinia and Chianti cohorts publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030194 – volume: 141 start-page: 1247 year: 2011 end-page: 1253 ident: CR6 article-title: genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents publication-title: J. Nutr. doi: 10.3945/jn.111.140392 – volume: 7 start-page: e1002215 year: 2011 ident: CR12 article-title: Discovery of sexual dimorphisms in metabolic and genetic biomarkers publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002215 – volume: 42 start-page: 376 year: 2010 end-page: 384 ident: CR36 article-title: New loci associated with kidney function and chronic kidney disease publication-title: Nature Genet. doi: 10.1038/ng.568 – volume: 21 start-page: 1444 year: 2012 end-page: 1455 ident: CR34 article-title: Detailed metabolic and genetic characterization reveals new associations for 30 known lipid loci publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr581 – volume: 13 start-page: 120 year: 2012 ident: CR28 article-title: On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-120 – volume: 82 start-page: 139 year: 2008 end-page: 149 ident: CR53 article-title: Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2007.11.001 – volume: 466 start-page: 707 year: 2010 end-page: 713 ident: CR43 article-title: Biological, clinical and population relevance of 95 loci for blood lipids publication-title: Nature doi: 10.1038/nature09270 – volume: 42 start-page: 137 year: 2010 end-page: 141 ident: CR16 article-title: A genome-wide perspective of genetic variation in human metabolism publication-title: Nature Genet. doi: 10.1038/ng.507 – volume: 42 start-page: 1118 year: 2010 end-page: 1125 ident: CR49 article-title: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci publication-title: Nature Genet. doi: 10.1038/ng.717 – volume: 18 start-page: 2700 year: 2009 end-page: 2710 ident: CR40 article-title: Genome-wide association meta-analysis for total serum bilirubin levels publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp202 – volume: 4 start-page: e1000282 year: 2008 ident: CR21 article-title: Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000282 – volume: 477 start-page: 54 year: 2011 end-page: 60 ident: CR15 article-title: Human metabolic individuality in biomedical and pharmaceutical research publication-title: Nature doi: 10.1038/nature10354 – volume: 2 start-page: 1616 year: 1902 end-page: 1620 ident: CR1 article-title: The incidence of alkaptonuria a study in chemical individuality publication-title: Lancet doi: 10.1016/S0140-6736(01)41972-6 – volume: 16 start-page: 467 year: 2011 end-page: 475 ident: CR37 article-title: Identification of a potential biomarker for FABP4 inhibition: the power of lipidomics in preclinical drug testing publication-title: J. Biomol. Screen doi: 10.1177/1087057111402200 – start-page: 255 year: 2012 end-page: 264 ident: CR47 publication-title: Genetics Meets Metabolomics: from Experiment to Systems Biology doi: 10.1007/978-1-4614-1689-0_15 – volume: 40 start-page: 189 year: 2008 end-page: 197 ident: CR44 article-title: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans publication-title: Nature Genet. doi: 10.1038/ng.75 – volume: 8 start-page: e1002490 year: 2012 ident: CR24 article-title: Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002490 – volume: 5 start-page: e1000338 year: 2009 ident: CR22 article-title: Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000338 – volume: 75 start-page: 1079 year: 2011 end-page: 1088 ident: CR32 article-title: Recent and potential developments of biofluid analyses in metabolomics publication-title: J. Proteomics doi: 10.1016/j.jprot.2011.10.027 – volume: 30 start-page: 97 year: 2002 end-page: 101 ident: CR19 article-title: Merlin—rapid analysis of dense genetic maps using sparse gene flow trees publication-title: Nature Genet. doi: 10.1038/ng786 – volume: 37 start-page: D603 year: 2009 end-page: D610 ident: CR25 article-title: HMDB: a knowledgebase for the human metabolome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn810 – volume: 42 start-page: 105 year: 2010 end-page: 116 ident: CR38 article-title: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk publication-title: Nature Genet. doi: 10.1038/ng.520 – volume: 6 start-page: e21230 year: 2011 ident: CR33 article-title: Differences between human plasma and serum metabolite profiles publication-title: PLoS ONE doi: 10.1371/journal.pone.0021230 – volume: 81 start-page: 559 year: 2007 end-page: 575 ident: CR18 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – volume: 40 start-page: D109 year: 2012 end-page: D114 ident: CR26 article-title: KEGG for integration and interpretation of large-scale molecular data sets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr988 – volume: 149 start-page: 3478 year: 2008 end-page: 3489 ident: CR27 article-title: Bioinformatics analysis of targeted metabolomics--uncovering old and new tales of diabetic mice under medication publication-title: Endocrinology doi: 10.1210/en.2007-1747 – ident: CR30 – volume: 5 start-page: e1000672 year: 2009 ident: CR23 article-title: Genetic determinants of circulating sphingolipid concentrations in European populations publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000672 – volume: 5 start-page: 21 year: 2011 ident: CR59 article-title: Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-5-21 – year: 2009 ident: CR29 publication-title: Introduction to Meta-Analysis doi: 10.1002/9780470743386 – volume: 25 start-page: 132 year: 2009 end-page: 133 ident: CR56 article-title: A multivariate test of association publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn563 – volume: 359 start-page: 789 year: 2008 end-page: 799 ident: CR5 article-title: variants and statin-induced myopathy—a genomewide study publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0801936 – volume: 7 start-page: e1002270 year: 2011 ident: CR13 article-title: A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002270 – volume: 40 start-page: 161 year: 2008 end-page: 169 ident: CR45 article-title: Newly identified loci that influence lipid concentrations and risk of coronary artery disease publication-title: Nature Genet. doi: 10.1038/ng.76 – volume: 5 start-page: e1000534 year: 2009 ident: CR58 article-title: Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000534 – volume: 5 start-page: e1000504 year: 2009 ident: CR41 article-title: Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000504 – volume: 2011 start-page: 839862 year: 2011 ident: CR17 article-title: metaP-server: a web-based metabolomics data analysis tool publication-title: J. Biomed. Biotechnol. doi: 10.1155/2011/839862 – volume: 5 start-page: e13953 year: 2010 ident: CR11 article-title: Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting publication-title: PLoS ONE doi: 10.1371/journal.pone.0013953 – volume: 26 start-page: 2607 year: 2012 end-page: 2619 ident: CR8 article-title: The dynamic range of the human metabolome revealed by challenges publication-title: FASEB J. doi: 10.1096/fj.11-198093 – volume: 7 start-page: e1002025 year: 2011 ident: CR42 article-title: Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002025 – volume: 6 start-page: 441 year: 2010 ident: CR35 article-title: Metabonomic, transcriptomic, and genomic variation of a population cohort publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.93 – volume: 36 start-page: 244 year: 2012 end-page: 252 ident: CR57 article-title: PSEA: phenotype set enrichment analysis—a new method for analysis of multiple phenotypes publication-title: Genet. Epidemiol. doi: 10.1002/gepi.21617 – ident: CR48 – ident: CR3 – volume: 6 start-page: e16957 year: 2011 ident: CR4 article-title: The human serum metabolome publication-title: PLoS ONE doi: 10.1371/journal.pone.0016957 – volume: 42 start-page: 978 year: 2010 end-page: 984 ident: CR51 article-title: A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci publication-title: Nature Genet. doi: 10.1038/ng.687 – volume: 43 start-page: 565 year: 2011 end-page: 569 ident: CR14 article-title: A genome-wide association study of metabolic traits in human urine publication-title: Nature Genet. doi: 10.1038/ng.837 – volume: 11 start-page: 499 year: 2010 end-page: 511 ident: CR20 article-title: Genotype imputation for genome-wide association studies publication-title: Nature Rev. Genet. doi: 10.1038/nrg2796 – volume: 7 start-page: e1002033 year: 2011 ident: CR31 article-title: Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002033 – volume: 41 start-page: 56 year: 2009 end-page: 65 ident: CR46 article-title: Common variants at 30 loci contribute to polygenic dyslipidemia publication-title: Nature Genet. doi: 10.1038/ng.291 – volume: 40 start-page: 430 year: 2008 end-page: 436 ident: CR55 article-title: SLC2A9 influences uric acid concentrations with pronounced sex-specific effects publication-title: Nature Genet. doi: 10.1038/ng.107 – ident: BFnrg3314_CR30 – volume: 359 start-page: 789 year: 2008 ident: BFnrg3314_CR5 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0801936 – volume: 7 start-page: e1002033 year: 2011 ident: BFnrg3314_CR31 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002033 – volume: 18 start-page: 2700 year: 2009 ident: BFnrg3314_CR40 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp202 – volume: 5 start-page: e1000534 year: 2009 ident: BFnrg3314_CR58 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000534 – volume: 13 start-page: 120 year: 2012 ident: BFnrg3314_CR28 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-120 – volume: 5 start-page: 21 year: 2011 ident: BFnrg3314_CR59 publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-5-21 – volume-title: Introduction to Meta-Analysis year: 2009 ident: BFnrg3314_CR29 doi: 10.1002/9780470743386 – volume: 25 start-page: 132 year: 2009 ident: BFnrg3314_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn563 – volume: 18 start-page: 2711 year: 2009 ident: BFnrg3314_CR39 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp203 – volume: 11 start-page: 499 year: 2010 ident: BFnrg3314_CR20 publication-title: Nature Rev. Genet. doi: 10.1038/nrg2796 – volume: 36 start-page: 244 year: 2012 ident: BFnrg3314_CR57 publication-title: Genet. Epidemiol. doi: 10.1002/gepi.21617 – volume: 43 start-page: 565 year: 2011 ident: BFnrg3314_CR14 publication-title: Nature Genet. doi: 10.1038/ng.837 – volume: 2011 start-page: 839862 year: 2011 ident: BFnrg3314_CR17 publication-title: J. Biomed. Biotechnol. doi: 10.1155/2011/839862 – volume: 44 start-page: 269 year: 2012 ident: BFnrg3314_CR10 publication-title: Nature Genet. doi: 10.1038/ng.1073 – volume: 6 start-page: e16957 year: 2011 ident: BFnrg3314_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0016957 – volume: 92 start-page: 258 year: 2010 ident: BFnrg3314_CR7 publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2009.29130 – start-page: 255 volume-title: Genetics Meets Metabolomics: from Experiment to Systems Biology year: 2012 ident: BFnrg3314_CR47 doi: 10.1007/978-1-4614-1689-0_15 – volume: 41 start-page: 56 year: 2009 ident: BFnrg3314_CR46 publication-title: Nature Genet. doi: 10.1038/ng.291 – volume: 42 start-page: 137 year: 2010 ident: BFnrg3314_CR16 publication-title: Nature Genet. doi: 10.1038/ng.507 – volume: 8 start-page: e1002490 year: 2012 ident: BFnrg3314_CR24 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002490 – volume: 43 start-page: 531 year: 2011 ident: BFnrg3314_CR50 publication-title: Nature Genet. doi: 10.1038/ng.834 – volume: 6 start-page: 441 year: 2010 ident: BFnrg3314_CR35 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.93 – volume: 141 start-page: 1247 year: 2011 ident: BFnrg3314_CR6 publication-title: J. Nutr. doi: 10.3945/jn.111.140392 – volume: 5 start-page: e1000672 year: 2009 ident: BFnrg3314_CR23 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000672 – volume: 2 start-page: 1616 year: 1902 ident: BFnrg3314_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(01)41972-6 – volume: 26 start-page: 2607 year: 2012 ident: BFnrg3314_CR8 publication-title: FASEB J. doi: 10.1096/fj.11-198093 – volume: 42 start-page: 97 year: 2010 ident: BFnrg3314_CR2 publication-title: Nature Genet. doi: 10.1038/ng0210-97 – volume: 7 start-page: e1002215 year: 2011 ident: BFnrg3314_CR12 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002215 – volume: 477 start-page: 54 year: 2011 ident: BFnrg3314_CR15 publication-title: Nature doi: 10.1038/nature10354 – volume: 40 start-page: 430 year: 2008 ident: BFnrg3314_CR55 publication-title: Nature Genet. doi: 10.1038/ng.107 – volume: 5 start-page: e1000504 year: 2009 ident: BFnrg3314_CR41 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000504 – volume: 7 start-page: e1002270 year: 2011 ident: BFnrg3314_CR13 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002270 – volume: 30 start-page: 97 year: 2002 ident: BFnrg3314_CR19 publication-title: Nature Genet. doi: 10.1038/ng786 – volume: 40 start-page: D109 year: 2012 ident: BFnrg3314_CR26 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr988 – volume: 21 start-page: 1444 year: 2012 ident: BFnrg3314_CR34 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr581 – volume: 42 start-page: 373 year: 2010 ident: BFnrg3314_CR52 publication-title: Nature Genet. doi: 10.1038/ng.566 – volume: 40 start-page: 189 year: 2008 ident: BFnrg3314_CR44 publication-title: Nature Genet. doi: 10.1038/ng.75 – volume: 4 start-page: e1000282 year: 2008 ident: BFnrg3314_CR21 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000282 – volume: 42 start-page: 376 year: 2010 ident: BFnrg3314_CR36 publication-title: Nature Genet. doi: 10.1038/ng.568 – ident: BFnrg3314_CR48 doi: 10.1038/nature05911 – volume: 5 start-page: e13953 year: 2010 ident: BFnrg3314_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0013953 – volume: 5 start-page: e1000338 year: 2009 ident: BFnrg3314_CR22 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000338 – volume: 81 start-page: 559 year: 2007 ident: BFnrg3314_CR18 publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – volume: 37 start-page: D603 year: 2009 ident: BFnrg3314_CR25 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn810 – volume: 75 start-page: 1079 year: 2011 ident: BFnrg3314_CR32 publication-title: J. Proteomics doi: 10.1016/j.jprot.2011.10.027 – volume: 466 start-page: 707 year: 2010 ident: BFnrg3314_CR43 publication-title: Nature doi: 10.1038/nature09270 – volume: 16 start-page: 467 year: 2011 ident: BFnrg3314_CR37 publication-title: J. Biomol. Screen doi: 10.1177/1087057111402200 – volume: 42 start-page: 1118 year: 2010 ident: BFnrg3314_CR49 publication-title: Nature Genet. doi: 10.1038/ng.717 – volume: 42 start-page: 105 year: 2010 ident: BFnrg3314_CR38 publication-title: Nature Genet. doi: 10.1038/ng.520 – volume: 7 start-page: 525 year: 2011 ident: BFnrg3314_CR9 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.57 – volume: 149 start-page: 3478 year: 2008 ident: BFnrg3314_CR27 publication-title: Endocrinology doi: 10.1210/en.2007-1747 – volume: 42 start-page: 978 year: 2010 ident: BFnrg3314_CR51 publication-title: Nature Genet. doi: 10.1038/ng.687 – volume: 82 start-page: 139 year: 2008 ident: BFnrg3314_CR53 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2007.11.001 – ident: BFnrg3314_CR3 – volume: 6 start-page: e21230 year: 2011 ident: BFnrg3314_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0021230 – volume: 3 start-page: e194 year: 2007 ident: BFnrg3314_CR54 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030194 – volume: 40 start-page: 161 year: 2008 ident: BFnrg3314_CR45 publication-title: Nature Genet. doi: 10.1038/ng.76 – volume: 7 start-page: e1002025 year: 2011 ident: BFnrg3314_CR42 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002025 – reference: 21572416 - Nat Genet. 2011 Jun;43(6):531-8 – reference: 20383146 - Nat Genet. 2010 May;42(5):376-84 – reference: 11731797 - Nat Genet. 2002 Jan;30(1):97-101 – reference: 21359215 - PLoS One. 2011 Feb 16;6(2):e16957 – reference: 22286219 - Nat Genet. 2012 Jan 29;44(3):269-76 – reference: 20686565 - Nature. 2010 Aug 5;466(7307):707-13 – reference: 21886157 - Nature. 2011 Aug 31;477(7362):54-60 – reference: 17554300 - Nature. 2007 Jun 7;447(7145):661-78 – reference: 22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 – reference: 21543640 - J Biomol Screen. 2011 Jun;16(5):467-75 – reference: 18193044 - Nat Genet. 2008 Feb;40(2):189-97 – reference: 21593353 - J Nutr. 2011 Jul;141(7):1247-53 – reference: 18193043 - Nat Genet. 2008 Feb;40(2):161-9 – reference: 18179892 - Am J Hum Genet. 2008 Jan;82(1):139-49 – reference: 21179014 - Mol Syst Biol. 2010 Dec 21;6:441 – reference: 21085649 - PLoS One. 2010 Nov 11;5(11):e13953 – reference: 19503597 - PLoS Genet. 2009 Jun;5(6):e1000504 – reference: 20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511 – reference: 19060906 - Nat Genet. 2009 Jan;41(1):56-65 – reference: 20383145 - Nat Genet. 2010 May;42(5):373-5 – reference: 19043545 - PLoS Genet. 2008 Nov;4(11):e1000282 – reference: 19414484 - Hum Mol Genet. 2009 Jul 15;18(14 ):2700-10 – reference: 19148276 - PLoS Genet. 2009 Jan;5(1):e1000338 – reference: 21102463 - Nat Genet. 2010 Dec;42(12):1118-25 – reference: 19419973 - Hum Mol Genet. 2009 Jul 15;18(14):2711-8 – reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 – reference: 20081858 - Nat Genet. 2010 Feb;42(2):105-16 – reference: 22079244 - J Proteomics. 2012 Feb 2;75(4):1079-88 – reference: 21490707 - PLoS Genet. 2011 Apr;7(4):e1002033 – reference: 18953024 - Nucleic Acids Res. 2009 Jan;37(Database issue):D603-10 – reference: 19798445 - PLoS Genet. 2009 Oct;5(10):e1000672 – reference: 20104246 - Nat Genet. 2010 Feb;42(2):97-8 – reference: 21281499 - BMC Syst Biol. 2011 Jan 31;5:21 – reference: 22672667 - BMC Bioinformatics. 2012 Jun 06;13:120 – reference: 19557189 - PLoS Genet. 2009 Jun;5(6):e1000534 – reference: 18372322 - Endocrinology. 2008 Jul;149(7):3478-89 – reference: 21760889 - PLoS One. 2011;6(7):e21230 – reference: 20936179 - J Biomed Biotechnol. 2011;2011:null – reference: 21533175 - PLoS Genet. 2011 Apr;7(4):e1002025 – reference: 17997608 - PLoS Genet. 2007 Nov;3(11):e194 – reference: 19019849 - Bioinformatics. 2009 Jan 1;25(1):132-3 – reference: 18327256 - Nat Genet. 2008 Apr;40(4):430-6 – reference: 20484448 - Am J Clin Nutr. 2010 Jul;92(1):258-65 – reference: 22714936 - Genet Epidemiol. 2012 Apr;36(3):244-52 – reference: 21852955 - PLoS Genet. 2011 Aug;7(8):e1002215 – reference: 23093944 - PLoS Genet. 2012;8(10):e1003005 – reference: 21878913 - Mol Syst Biol. 2011 Aug 30;7:525 – reference: 18650507 - N Engl J Med. 2008 Aug 21;359(8):789-99 – reference: 21572414 - Nat Genet. 2011 Jun;43(6):565-9 – reference: 22156771 - Hum Mol Genet. 2012 Mar 15;21(6):1444-55 – reference: 22426117 - FASEB J. 2012 Jun;26(6):2607-19 – reference: 20037589 - Nat Genet. 2010 Feb;42(2):137-41 – reference: 22359512 - PLoS Genet. 2012;8(2):e1002490 – reference: 21931564 - PLoS Genet. 2011 Sep;7(9):e1002270 – reference: 20972438 - Nat Genet. 2010 Nov;42(11):978-84 |
| SSID | ssj0016173 |
| Score | 2.4635756 |
| SecondaryResourceType | review_article |
| Snippet | Key Points
Technical advances in mass spectrometry and NMR spectroscopy enable genome-wide screens to be carried out for the association between genetic... Many complex disorders are linked to metabolic phenotypes. Revealing genetic influences on metabolic phenotypes is key to a systems-wide understanding of their... |
| SourceID | proquest gale pubmed pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 759 |
| SubjectTerms | 631/1647/320 631/208/205/2138 631/208/457/649 Agriculture Amino acids Animal Genetics and Genomics Biological and medical sciences Biomedical and Life Sciences Biomedical Research - methods Biomedical Research - trends Biomedicine Cancer Research Chromatography Disease Environmental health Epidemiology Fundamental and applied biological sciences. Psychology Gene Function Gene loci Genetic Variation Genetics Genetics of eukaryotes. Biological and molecular evolution Genome-Wide Association Study - methods Genomes Genotype Human Genetics Humans Lifestyles Lipids Mass spectrometry Metabolism Metabolites Metabolomics - methods Nuclear magnetic resonance spectroscopy Phenotype Physiological aspects Plasma Research Design review-article Scientific imaging Urine |
| Title | Genetic variation in metabolic phenotypes: study designs and applications |
| URI | https://link.springer.com/article/10.1038/nrg3314 https://www.ncbi.nlm.nih.gov/pubmed/23032255 https://www.proquest.com/docview/1114603088 https://www.proquest.com/docview/1113980626 https://www.proquest.com/docview/1125234594 |
| Volume | 13 |
| WOSCitedRecordID | wos000310218200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-0064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: M7P dateStart: 20001001 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-0064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 7X7 dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1471-0064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 7RV dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-0064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: BENPR dateStart: 20001001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1471-0064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 8C1 dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIS4ptRGMUgBE_WmthOXF7QmDaxl6oqH-pb5PhjmrQlpWkn8d9z57jZoqG98OJI8SW62OfLz74vQj54lXkO2wwGwsKZMAlnpZMjBtIxdkaaxDkRik3kk4maz8fTeODWRLfKjU4MitrWBs_I9xMMn8XkKurL4jfDqlFoXY0lNLbIDmZJSIPr3rSzImSthTkBBcww52UbNIspwfer5Snniej9jaJOfrDQDYyPbwtb_At53rCahp_R8aP__YzH5GGEofSglZsn5I6rnpJ7bWHKP8_ICWajhi56CVvpMHf0rKIXbgUicw630TGsxtPb5jMNCWqpDZ4gDdWVpdeN4s_Jz-OjH4ffWCy6wAzwtWJC5kYB5vJwEYlPjdBmZAHkpUaXQpe-lFyUOeAqnllAD15qzZWWmSptybnnL8h2VVfuJaHcSpWnyuWilIDKtPJOSu4SO8qs1okdkI-bwS9MzEiOhTHOi2AZ56qIszQgtCNctEk4bpK8xdkr2ujRbtkWBxxjYND-OSDvAwUmvajQq-ZUr5umOPk-6xF9ikS-BlaMjkEK8EGYJ6tHudejhFVpet3Dnhh1fAMABYya5vD8RkCKqDaa4ko6BuRd142vRle4ytXrQMPHagQb0dtoUplyIccwLrutzF4xAKAFlLiEpzdCfI2B_qi-up3J1-Q-SEDahmbuke3Vcu3ekLvmcnXWLIdkK5_9wnaeh1ZBqw6TIdn5ejSZzoZhrf4F-8I_4g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwQS4n4pjM0gLk_RmthuXCSEpsG0aqNCMKS9Bcexp0kjLU07tD_Fb-QcO8kWDe1tDzxVqo8jx_7OxTk3gFdODRzHa0aEYOGRMDGPciv7EaJjaI00sbXCN5tIx2O1vz_8sgR_mlwYCqtsZKIX1MXE0Dfy9ZjSZ6m4ivow_RVR1yjyrjYtNAIsduzJb7yyVe9HH_F8XyfJ1qe9ze2o7ioQGZw_j4RMjUKjwuGPiF1ihDb9Aq2YxOhc6Nzlkos8RcOBDwpUj05qzZWWA5UXOeeO43OvwFWqZEccpTbbkBK6KviAfhT4EdXYDEm6VIJ8vZwdcB6LjvardcCtqa7wPFxopPEvS_ecl9Yrv607_9u23YXbtZnNNgJf3IMlW96H66Hx5skDGFG1bRxix3oWsMkOS_bTzpEljvBvCnyb0Nfp6h3zBXhZ4SNdKqbLgp11-j-E75fyHo9guZyU9gkwXkiVJsqmIpdodWrlrJTcxkV_UGgdFz140xx2ZuqK69T44yjznn-ushoVPWAt4TQUGTlPskZoyUJ2bCuWsg1OOT7k3-3BS09BRT1Kiho60IuqykbfvnaI3tZEboJLMbpOwsAXojpgHcqVDiVKHdMZXu3Atl03Gthogycpzm8AmdViscpO0diDF-0wPZpC_Uo7WXgaPlR9vGhfRJPIhAs5xH15HHjkdAFolKGSkji7YZozC-ju6tOLF7kGN7b3Pu9mu6PxzjO4iWhIQhrqCizPZwv7HK6Z4_lhNVv1coDBj8vmoL8nDJdd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUxIiOuAwtgM4vIUtYntxEVCaLBVVENVNYa0t-A49jRppKVph_bX-HUcx062aGhve-CpUn1iOfZ3Ls65Abw2IjYUrxkBgoUGTIU0yDTvB4iOgVZchVqzqtlEMh6Lw8PBZAX-1LkwNqyylomVoM6nyn4j74U2fdYWVxE948MiJjvDj7Nfge0gZT2tdTsNB5E9ffYbr2_lh9EOnvWbKBruHnz-EvgOA4HCuRYB44kSaGAY_GGhiRSTqp-jRRMpmTGZmYxTliVoRNA4R1VpuJRUSB6LLM8oNRTnvQGrCRoZrAOrn3bHk_3GhxE7_3aI4j-wFTddyq4tSN4r5keUhqylC71GuDOTJZ6OcW01_mX3XvLZVqpweO9_3sT7cNcb4GTbccwDWNHFQ7jlWnKePYKRrcONQ-RUzh1qyXFBfuoFMssJ_m1D4qb2u3X5nlSleUlexcCURBY5uRgOsA7fr-U9HkOnmBb6KRCac5FEQics42iPSmE051SHeT_OpQzzLrytDz5Vvha7bQlyklYxAVSkHiFdIA3hzJUfuUyyZZGTurzZRmCl29Rm_1jPbxdeVRS23Edhz_xILssyHX3bbxG980RmiktR0qdn4AvZCmEtyo0WJcoj1RrebEG4WTea3midRwk-X4Mz9QKzTM-R2YWXzbCd2gYBFnq6rGjoQPTxCn4VTcQjyvgA9-WJ45fzBaC5huqL49M1A11YQHtXn129yC1YQ8ZJv47Ge8_hNoIhcvmpG9BZzJf6BdxUp4vjcr7phQKBH9fNQn8B_nuhuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+variation+in+metabolic+phenotypes%3A+study+designs+and+applications&rft.jtitle=Nature+reviews.+Genetics&rft.au=Suhre%2C+Karsten&rft.au=Gieger%2C+Christian&rft.date=2012-11-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=13&rft.issue=11&rft.spage=759&rft.epage=769&rft_id=info:doi/10.1038%2Fnrg3314&rft.externalDocID=10_1038_nrg3314 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |