99m-Tc MDP bone scan image enhancement using pipeline application of dynamic stochastic resonance algorithm and block-matching 3D filter

Introduction: In this pilot study, we have proposed and evaluated pipelined application of the dynamic stochastic resonance (DSR) algorithm and block-matching 3D (BM3D) filter for the enhancement of nuclear medicine images. The enhanced images out of the pipeline were compared with the corresponding...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Indian journal of nuclear medicine Ročník 38; číslo 1; s. 8 - 15
Hlavní autori: Pandey, Anil, Kaur, Gagandeep, Chaudhary, Jagrati, Hemrom, Angel, Jaleel, Jasim, Sharma, Param, Patel, Chetan, Kumar, Rakesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: India Wolters Kluwer India Pvt. Ltd 01.01.2023
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Wolters Kluwer - Medknow
Predmet:
ISSN:0972-3919, 0974-0244
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Introduction: In this pilot study, we have proposed and evaluated pipelined application of the dynamic stochastic resonance (DSR) algorithm and block-matching 3D (BM3D) filter for the enhancement of nuclear medicine images. The enhanced images out of the pipeline were compared with the corresponding enhanced images obtained using individual applications of DSR and BM3D algorithm. Materials and Methods: Twenty 99m-Tc MDP bone scan images acquired on SymbiaT6 SPECT/CT gamma camera system fitted with low-energy high-resolution collimators were exported in DICOM format to a personal computer and converted into PNG format. These PNG images were processed using the proposed algorithm in MATLAB. Two nuclear medicine physicians visually compared each input and its corresponding three enhanced images to select the best-enhanced image. The image quality metrics (Brightness, Global Contrast Factor (GCF), Contrast per pixel (CPP), and Blur) were used to assess the image quality objectively. The Wilcoxon signed test was applied to find a statistically significant difference in Brightness, GCF, CPP, and Blur of enhanced and its input images at a level of significance. Results: Images enhanced using the pipelined application of SR and BM3D were selected as the best images by both nuclear medicine physicians. Based on Brightness, Global Contrast Factor (GCF), CPP, and Blur, the image quality of our proposed pipeline was significantly better than enhanced images obtained using individual applications of DSR and BM3D algorithm. The proposed method was found to be very successful in enhancing details in the low count region of input images. The enhanced images were bright, smooth, and had better target-to-background ratio compared to input images. Conclusion: The pipelined application of DSR and BM3D algorithm produced enhancement in nuclear medicine images having following characteristics: bright, smooth, better target-to-background ratio, and improved visibility of details in the low count regions of the input image, as compared to individual enhancements by application of DSR or BM3D algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0972-3919
0974-0244
DOI:10.4103/ijnm.ijnm_78_22