Benchmarking machine learning models for late-onset alzheimer’s disease prediction from genomic data

Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a grow...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 20; no. 1; pp. 709 - 17
Main Authors: De Velasco Oriol, Javier, Vallejo, Edgar E., Estrada, Karol, Taméz Peña, José Gerardo, Disease Neuroimaging Initiative, The Alzheimer’s
Format: Journal Article
Language:English
Published: London BioMed Central 16.12.2019
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. Results We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. Conclusions Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-019-3158-x