Benchmarking machine learning models for late-onset alzheimer’s disease prediction from genomic data

Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 20; H. 1; S. 709 - 17
Hauptverfasser: De Velasco Oriol, Javier, Vallejo, Edgar E., Estrada, Karol, Taméz Peña, José Gerardo, Disease Neuroimaging Initiative, The Alzheimer’s
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 16.12.2019
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. Results We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. Conclusions Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
AbstractList Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. Results We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. Conclusions Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
Late-Onset Alzheimer's Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available.BACKGROUNDLate-Onset Alzheimer's Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available.We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve.RESULTSWe conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve.Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.CONCLUSIONSMachine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
Abstract Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. Results We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. Conclusions Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. Results We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. Conclusions Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
Late-Onset Alzheimer's Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
ArticleNumber 709
Author Taméz Peña, José Gerardo
De Velasco Oriol, Javier
Estrada, Karol
Vallejo, Edgar E.
Disease Neuroimaging Initiative, The Alzheimer’s
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0000-0002-7556-245X
  surname: De Velasco Oriol
  fullname: De Velasco Oriol, Javier
  email: javierdevelascooriol@gmail.com
  organization: Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey
– sequence: 2
  givenname: Edgar E.
  surname: Vallejo
  fullname: Vallejo, Edgar E.
  organization: Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey
– sequence: 3
  givenname: Karol
  surname: Estrada
  fullname: Estrada, Karol
  organization: Graduate Professional Studies, Brandeis University
– sequence: 4
  givenname: José Gerardo
  surname: Taméz Peña
  fullname: Taméz Peña, José Gerardo
  organization: Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey
– sequence: 5
  givenname: The Alzheimer’s
  surname: Disease Neuroimaging Initiative
  fullname: Disease Neuroimaging Initiative, The Alzheimer’s
  organization: Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31842725$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEg8oAP4IJG4sJlwI-ZsX1BgohHpEhc4Gz12j2zXjz2Ys-iwInf4Pf4EryZBJJIcLLdripVd9dxdRBiwKp6TMlzSmX_IlMmO9UQqhpOO9lc3KuOaCtowyjpDm7cD6vjnDeEUCFJ96A65FS2TLDuqBpeYzDrCdJnF8Z6ArN2AWuPkMJlIVr0uR5iqj3M2MSQca7Bf1-jmzD9-vEz19ZlhIz1NqF1ZnYx1EOKUz1iiJMztYUZHlb3B_AZH12dJ9Wnt28-nr5vzj-8Ozt9dd6YnrC5WRmFpG-RMobK9IyDFEa0VAE1LUgrGVhuegSwA0rkLaJsy4vyXomeCH5SnS26NsJGb5MrnX3TEZy-LMQ0akizMx41GGyHjgiQYMowOmCqM3bFLRBjyuCK1stFa7tbTWgNhjmBvyV6-ye4tR7jV90r2inWFYFnVwIpftlhnvXkskHvIWDcZc04E4oryvoCfXoHuom7FMqo9ijJJOWCFdSTm47-WLleZwGIBWBSzDnhoI2bYb-SYtB5TYneB0cvwdElOHofHH1RmPQO81r8fxy2cHLBhhHTX9P_Jv0GKR3ZGA
CitedBy_id crossref_primary_10_2139_ssrn_3797592
crossref_primary_10_1109_ACCESS_2024_3410135
crossref_primary_10_3390_diagnostics12112708
crossref_primary_10_3390_ijms26125541
crossref_primary_10_1002_alz_13319
crossref_primary_10_1038_s41598_022_21491_y
crossref_primary_10_1177_15333175211027681
crossref_primary_10_3390_diagnostics12010166
crossref_primary_10_3389_fnagi_2022_893018
crossref_primary_10_1186_s40537_023_00853_x
crossref_primary_10_3389_fnagi_2023_1277731
crossref_primary_10_3390_ijms26052085
crossref_primary_10_3390_healthcare9080941
crossref_primary_10_7717_peerj_cs_697
crossref_primary_10_1038_s41598_024_56489_1
crossref_primary_10_26599_TST_2023_9010037
crossref_primary_10_1186_s40537_025_01201_x
crossref_primary_10_1038_s41398_023_02531_1
crossref_primary_10_1186_s12920_023_01675_9
crossref_primary_10_1109_ACCESS_2022_3182543
crossref_primary_10_1007_s11831_025_10246_3
crossref_primary_10_3233_JAD_210540
crossref_primary_10_3390_bioengineering11030219
crossref_primary_10_3390_cells12050772
crossref_primary_10_1002_alz_13427
crossref_primary_10_3390_diagnostics12071543
crossref_primary_10_1371_journal_pone_0250278
crossref_primary_10_4316_AECE_2020_03007
crossref_primary_10_1186_s40035_022_00315_z
crossref_primary_10_1371_journal_pone_0283712
crossref_primary_10_3390_genes16040377
crossref_primary_10_3390_ijerph18179223
crossref_primary_10_1002_dad2_12300
crossref_primary_10_1109_TCBB_2022_3233869
crossref_primary_10_1515_hsz_2021_0109
crossref_primary_10_3389_fgene_2025_1552063
Cites_doi 10.1086/519795
10.1016/j.neuroscience.2016.03.051
10.1038/s41598-018-37769-z
10.1001/jama.2010.574
10.1016/j.jalz.2015.05.009
10.1016/j.jalz.2010.03.013
10.1016/j.jocn.2017.06.074
10.1016/S1474-4422(18)30123-6
10.1371/journal.pmed.1002270
10.1038/nature19323
10.1007/s11910-017-0787-1
10.1117/1.JMI.1.3.031005
10.1016/j.ajhg.2013.05.002
10.1002/0471142905.hg0119s68
10.1016/j.artmed.2017.09.005
10.3389/fnagi.2017.00077
10.1016/j.arcmed.2012.11.003
10.1038/mp.2016.18
10.3389/fgene.2019.00267
10.2174/1567205015666180202095616
10.1038/s41598-018-36429-6
10.1016/j.neurobiolaging.2017.05.007
10.1117/12.2008100
10.3174/ajnr.A1809
10.1016/S0140-6736(10)61349-9
10.3389/fnagi.2018.00340
10.3390/ijms20010081
10.1109/IJCNN.2018.8489048
10.1038/ng.2802
10.1016/j.cell.2017.05.038
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-019-3158-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 17
ExternalDocumentID oai_doaj_org_article_ace4f507a8ac4275a295cdb3da0cc471
PMC6915925
31842725
10_1186_s12859_019_3158_x
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG032984
– fundername: Wellcome Trust
– fundername: NIA NIH HHS
  grantid: U01 AG016976
– fundername: NIA NIH HHS
  grantid: U24 AG021886
– fundername: NHLBI NIH HHS
  grantid: R01 HL105756
– fundername: NIA NIH HHS
  grantid: R01 AG033193
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
EJD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c602t-bc9e064e122e9c623a87c7419a1c4a8d82ad3c6eaadfe8e34ee84eaa136976073
IEDL.DBID RSV
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511609400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:44:50 EDT 2025
Tue Nov 04 01:57:45 EST 2025
Fri Sep 05 12:15:39 EDT 2025
Mon Oct 06 18:23:37 EDT 2025
Wed Feb 19 02:07:26 EST 2025
Tue Nov 18 21:48:01 EST 2025
Sat Nov 29 05:40:05 EST 2025
Sat Sep 06 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Benchmarking
Genome-wide association studies
Alzheimer’s disease
Machine learning
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c602t-bc9e064e122e9c623a87c7419a1c4a8d82ad3c6eaadfe8e34ee84eaa136976073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7556-245X
OpenAccessLink https://link.springer.com/10.1186/s12859-019-3158-x
PMID 31842725
PQID 2328281372
PQPubID 44065
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ace4f507a8ac4275a295cdb3da0cc471
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6915925
proquest_miscellaneous_2327939126
proquest_journals_2328281372
pubmed_primary_31842725
crossref_citationtrail_10_1186_s12859_019_3158_x
crossref_primary_10_1186_s12859_019_3158_x
springer_journals_10_1186_s12859_019_3158_x
PublicationCentury 2000
PublicationDate 2019-12-16
PublicationDateYYYYMMDD 2019-12-16
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References Evan A. Boyle (3158_CR34) 2017; 169
3158_CR12
Clive Ballard (3158_CR3) 2011; 377
3158_CR32
3158_CR30
Zhi Wei (3158_CR28) 2013; 92
Beatriz López (3158_CR27) 2018; 85
Ana Luisa Sosa-Ortiz (3158_CR1) 2012; 43
J-C Lambert (3158_CR23) 2013; 45
A Lacour (3158_CR33) 2016; 22
Stephen Turner (3158_CR22) 2011; 68
K.B. Walhovd (3158_CR14) 2010; 31
Antonio Martinez-Torteya (3158_CR13) 2014; 1
Shaun Purcell (3158_CR19) 2007; 81
M. Panpalli Ates (3158_CR9) 2016; 325
3158_CR18
Wen Shao (3158_CR6) 2017; 45
3158_CR17
3158_CR15
Jin Li (3158_CR5) 2017; 57
3158_CR24
Hélène-Marie Lanoiselée (3158_CR2) 2017; 14
Carole Dufouil (3158_CR25) 2018; 17
Andrew J. Saykin (3158_CR10) 2010; 6
3158_CR21
Sudha Seshadri (3158_CR7) 2010; 303
3158_CR20
J Sevigny (3158_CR4) 2016; 537
Cody Wolfe (3158_CR31) 2018; 20
3158_CR8
Andrew J. Saykin (3158_CR16) 2015; 11
Antonio Martinez-Torteya (3158_CR11) 2018; 15
3158_CR29
3158_CR26
References_xml – volume: 81
  start-page: 559
  issue: 3
  year: 2007
  ident: 3158_CR19
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/519795
– volume: 325
  start-page: 124
  year: 2016
  ident: 3158_CR9
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.03.051
– ident: 3158_CR18
– ident: 3158_CR15
  doi: 10.1038/s41598-018-37769-z
– volume: 303
  start-page: 1832
  issue: 18
  year: 2010
  ident: 3158_CR7
  publication-title: JAMA
  doi: 10.1001/jama.2010.574
– volume: 11
  start-page: 792
  issue: 7
  year: 2015
  ident: 3158_CR16
  publication-title: Alzheimer's & Dementia
  doi: 10.1016/j.jalz.2015.05.009
– volume: 6
  start-page: 265
  issue: 3
  year: 2010
  ident: 3158_CR10
  publication-title: Alzheimer's & Dementia
  doi: 10.1016/j.jalz.2010.03.013
– volume: 45
  start-page: 1
  year: 2017
  ident: 3158_CR6
  publication-title: Journal of Clinical Neuroscience
  doi: 10.1016/j.jocn.2017.06.074
– volume: 17
  start-page: 388
  issue: 5
  year: 2018
  ident: 3158_CR25
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(18)30123-6
– volume: 14
  start-page: e1002270
  issue: 3
  year: 2017
  ident: 3158_CR2
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1002270
– volume: 537
  start-page: 50
  year: 2016
  ident: 3158_CR4
  publication-title: Nature
  doi: 10.1038/nature19323
– ident: 3158_CR8
  doi: 10.1007/s11910-017-0787-1
– volume: 1
  start-page: 031005
  issue: 3
  year: 2014
  ident: 3158_CR13
  publication-title: Journal of Medical Imaging
  doi: 10.1117/1.JMI.1.3.031005
– ident: 3158_CR20
– volume: 92
  start-page: 1008
  issue: 6
  year: 2013
  ident: 3158_CR28
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2013.05.002
– volume: 68
  start-page: 1.19.1-1.19.18
  issue: 1
  year: 2011
  ident: 3158_CR22
  publication-title: Current Protocols in Human Genetics
  doi: 10.1002/0471142905.hg0119s68
– volume: 85
  start-page: 43
  year: 2018
  ident: 3158_CR27
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2017.09.005
– ident: 3158_CR26
  doi: 10.3389/fnagi.2017.00077
– volume: 43
  start-page: 600
  issue: 8
  year: 2012
  ident: 3158_CR1
  publication-title: Archives of Medical Research
  doi: 10.1016/j.arcmed.2012.11.003
– ident: 3158_CR17
– volume: 22
  start-page: 153
  year: 2016
  ident: 3158_CR33
  publication-title: Mole Psych
  doi: 10.1038/mp.2016.18
– ident: 3158_CR30
  doi: 10.3389/fgene.2019.00267
– volume: 15
  start-page: 751
  issue: 8
  year: 2018
  ident: 3158_CR11
  publication-title: Current Alzheimer Research
  doi: 10.2174/1567205015666180202095616
– ident: 3158_CR32
  doi: 10.1038/s41598-018-36429-6
– volume: 57
  start-page: 247.e1-247.e8
  year: 2017
  ident: 3158_CR5
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2017.05.007
– ident: 3158_CR12
  doi: 10.1117/12.2008100
– volume: 31
  start-page: 347
  issue: 2
  year: 2010
  ident: 3158_CR14
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A1809
– volume: 377
  start-page: 1019
  issue: 9770
  year: 2011
  ident: 3158_CR3
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(10)61349-9
– ident: 3158_CR24
  doi: 10.3389/fnagi.2018.00340
– volume: 20
  start-page: 81
  issue: 1
  year: 2018
  ident: 3158_CR31
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms20010081
– ident: 3158_CR21
– ident: 3158_CR29
  doi: 10.1109/IJCNN.2018.8489048
– volume: 45
  start-page: 1452
  year: 2013
  ident: 3158_CR23
  publication-title: Nat Genet
  doi: 10.1038/ng.2802
– volume: 169
  start-page: 1177
  issue: 7
  year: 2017
  ident: 3158_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.038
SSID ssj0017805
Score 2.5294986
Snippet Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on...
Late-Onset Alzheimer's Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive...
Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on...
Abstract Background Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 709
SubjectTerms Accuracy
Age
Age of Onset
Aged
Algorithms
Alzheimer Disease - genetics
Alzheimer's disease
Artificial intelligence
Benchmarking
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Classification
Cognitive ability
Cohort Studies
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Datasets
Dementia
Dementia disorders
Female
Genetic diversity
Genetic markers
Genome-wide association studies
Genomics
Humans
Learning algorithms
Life Sciences
Machine Learning
Machine Learning and Artificial Intelligence in Bioinformatics
Machine learning for computational and systems biology
Male
Medical imaging
Methods
Microarrays
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
NMR
Nuclear magnetic resonance
Predictions
Research Article
ROC Curve
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hCiQuqPwHCjISJ5DV2HFi-0gRFaeKA0i9WY7jaFfaTavNFhVOfQ1ejydhxvEuLL8XjnGcxPGMx99kJt8APFca96W-9lz4UHLlW7SDwXRcohfnRasQMahUbEKfnJjTU_vuh1JflBM20QNPE3foQ8R7ldobH5TUtZe2Dl1bdb4MQaW_x2Wp7caZyvEDYurPMUxhmsNREE8bus0WbU5t-OXOLpTI-n-HMH9NlPwpWpo2oeN9uJXRI3s1jfo2XIvDHbgx1ZP8dBf6I9S52dKn799smfIkI8uFIbCBqt6MDGEqWyDE5JRIvWZ-8XkW58u4-nr1ZWQ5YMPOVxTBIakx-gOFEZfrch4YZZTegw_Hb96_fstzIQUemlKueRtsROgRhZTRBgQ83uiAUMJ6EZQ3nZG-q0ITve_6aGKlYjQKj0TVIFpBI3Af9oazIT4EFhCO9FROnfY1IYIVrUZQpnstyxahZAHlZmJdyCzjVOxi4ZK3YRo3ycKhLBzJwl0W8GJ7yflEsfG3zkckrW1HYsdODagzLuuM-5fOFHCwkbXLS3Z0-BbofYpKywKebU_jYqMIih_i2UXqg_bMCtkU8GBSje1I0Djis2RdgN5Rmp2h7p4Z5rNE6N1YBJV05cuNen0f1h9n4tH_mInHcFPSqhCSi-YA9tari_gEroeP6_m4eprW1DfLFyhF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb2igICNxAlmNnYedE6KIilPVA0gVF8txHHalfZFsq8KJv8Hf45cw43hTLY9eOCZxFCfz-uyZzAfwIlcYl9rCcmFdynNbox90uuESV3FW1DkihjyQTaijI31yUh3HDbc-llVufGJw1M3S0R75PkZ-XByITMnXqy-cWKMouxopNK7CNeqSQNQNx8WnMYtA_fpjJlPocr8X1K0NF88Vep5C8_OtWBRa9v8NZ_5ZLvlbzjSEosPb__sSd-BWBKHszaA1d-GKX9yDGwMt5df70B6g6k7mNmyjs3kot_Qs8kvgCSLP6RmiXTZDpMqpHnvN7OzbxE_nvvv5_UfPYt6HrTpKBJHwGf3Iwqgl7HzqGBWmPoCPh-8-vH3PIx8Dd2Uq17x2lUcE44WUvnKIm6xWDhFJZYXLrW60tE3mSm9t03rts9x7neORyEoEPehLHsLOYrnwu8AcopqWWNkpPArhKlEr_DiqVTKtEZEmkG4kY1xsVk6cGTMTFi26NIMwDQrTkDDNeQIvx1tWQ6eOywYfkLjHgdRkO5xYdp9NtFljnUc1TpXV1uVSFVZWhWvqrLGpcxjUE9jbSNlEy-_NhYgTeD5eRpulRIxd-OVpGINusRKyTODRoFvjTNDH4rNkkYDa0rqtqW5fWUwnoS94WSE2pTtfbfTzYlr__BKPL3-JJ3BTksEIyUW5Bzvr7tQ_hevubD3tu2fB3H4Bn3g1RQ
  priority: 102
  providerName: ProQuest
Title Benchmarking machine learning models for late-onset alzheimer’s disease prediction from genomic data
URI https://link.springer.com/article/10.1186/s12859-019-3158-x
https://www.ncbi.nlm.nih.gov/pubmed/31842725
https://www.proquest.com/docview/2328281372
https://www.proquest.com/docview/2327939126
https://pubmed.ncbi.nlm.nih.gov/PMC6915925
https://doaj.org/article/ace4f507a8ac4275a295cdb3da0cc471
Volume 20
WOSCitedRecordID wos000511609400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66q-DLel2triWCT0qwSS9JHx3ZRRGHsl4YfSlpmjoDM52lnV3UJ_-Gf89f4jnpRUZXQV8CbRKaJufyJefkHEIeRhL0UhVrxrUJWKQLkINGlUzALk7zIgLEELlkE3I6VbNZmvX3uNvB230wSTpJ7dhaJU9ajrHWYOubgtyIFQPguAvaTqIf3_Hrd6PpAIP09-bLc7ttKSAXp_88cPm7j-QvhlKnf46u_tfIr5G9Hm7Spx19XCcXbH2DXO4SUH6-SaoJEOl8pd2BOV05x0pL-0wS8ALT5LQUcC1dAiZl6Hm9oXr5ZW4XK9t8__qtpb2Fh540aPLBZaZ4ZYVi8NfVwlB0Qb1F3h4dvnn2nPWZF5hJArFhhUktYBXLhbCpAYSklTSAPVLNTaRVqYQuQ5NYrcvKKhtG1qoInniYALwBqbFPdup1be8QagC_VJh_HRUh5yblhQQUJyspggKwp0eCYTly04clx-wYy9xtT1SSd9OXw_TlOH35J488GrucdDE5_tZ4gms8NsRw2u7FuvmY99yZa2OBYAOplTaRkLEWaWzKIix1YAyob48cDBSS9zze5vAXsF3loRQeeTBWA3eiyUXXdn3q2oAATLlIPHK7I6hxJCBN4Vsi9ojcIrWtoW7X1Iu5iwCepIBCsefjgeB-DuuPM3H3n1rfI1cEUiwXjCcHZGfTnNr75JI52yzaxicX5Uy6Uvlkd3I4zY59d5wB5UvJfHShzaDM4g9Qn714lb33HZv-ADghNIY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3pRAASPBBRQ19mZj54AQBapWLSsORdqb6zhedqV9kWyh5cTf4E_wo_glzDiPann01gPHJM7GSb6Zb2bHmQ_gSSyRlwZdE3JjozA2GfpBq_JQYBZneBZjxBB7sQnZ66l-P32_Aj-ab2FoWWXjE72jzmeW_iPfRObH5IB3pHg5_xSSahRVVxsJjQoWe-7kC6Zs5YvdN_h-nwqx_fbg9U5YqwqENonEIsxs6pCHHRfCpRbZ3yhpkVdTw21sVK6EyTs2ccbkA6dcJ3ZOxbjFOwlSN1oE_u4FuIh-XJJiguy3CR4nfYC6cspVslly6g6HyXqKnq6rwuMl7vMSAX-La_9cnvlbjdZT3_a1_-2hXYerdZDNXlVWcQNW3PQmXK5kN09uwWALTXM4Mb5MwCZ-OaljtX4G7iBxoJJhNM_GGImHtN58wcz469CNJq74-e17yeq6FpsXVOgicDP6UIdRy9vJyDJaeHsbPpzLTd6B1els6u4Csxi1DUh1nuifc5vyTOLLkAMpogwj7gCiBgna1s3YSRNkrH1SphJdgUcjeDSBRx8H8Kw9ZV51Ijlr8BbBqx1ITcT9jlnxUdc-SRvr0EwjaZSxsZBdI9KuzbNObiJrMWgJYKNBla49W6lPIRXA4_Yw-iQqNJmpmx35Mej2Uy6SANYrLLczQQ7Ba4luAHIJ5UtTXT4yHQ193_Mkxdibznze2MPptP75JO6dfROPYG3n4N2-3t_t7d2HK4KMlYuQJxuwuiiO3AO4ZD8vRmXx0Js6g8PzNpNfc2KTbg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6h5SEuyxsCCxiJEyja2HnYObJABQJVK_HQ3izHcbaV2rRKsivgxN_g7_FLmHGSosKChDg2sVXHnsc3mck3AI8TiX6pSk3IjY3CxBRoB60qQ4FRnOFFgogh8c0m5HSqjo7yw6HPaTtWu48pyf6bBmJpqrv9dVn1Kq6y_ZYT7xqGwTnakFSFCCLPJ1QtR-H6u4-bNAIR9g-pzDOnbTkjz9l_FtD8vV7yl6Sp90WTK__9FFdhd4Ch7FkvN9fgnKuvw8W-MeXnG1AdoPDOlsa_SGdLX3Dp2NBhAi9Q-5yWId5lC8SqIVVkd8wsvszcfOma71-_tWzI_LB1Q6kgOn5Gn7IwIoVdzi2j0tSb8GHy8v3zV-HQkSG0WSS6sLC5QwzjuBAut4icjJIWMUluuE2MKpUwZWwzZ0xZOeXixDmV4C8eZwh70Jrcgp16Vbs7wCzimor6spOD5NzmvJCI7mQlRVQgJg0gGo9G24GunLpmLLQPW1Sm--3TuH2atk9_CuDJZsq65-r42-ADOu_NQKLZ9hdWzbEetFYb61CQI2mUsYmQqRF5assiLk1kLbr1APZGadGD7rcanwLDWB5LEcCjzW3UWkrFmNqtTvwYNIw5F1kAt3vh2qwErSz-l0gDkFtit7XU7Tv1fOaZwbMc0SnNfDoK389l_XEn7v7T6Idw6fDFRL99PX1zDy4LEl4uQp7twU7XnLj7cMGedvO2eeA18Qdg8Ddw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+machine+learning+models+for+late-onset+alzheimer%E2%80%99s+disease+prediction+from+genomic+data&rft.jtitle=BMC+bioinformatics&rft.au=De+Velasco+Oriol%2C+Javier&rft.au=Vallejo%2C+Edgar+E.&rft.au=Estrada%2C+Karol&rft.au=Tam%C3%A9z+Pe%C3%B1a%2C+Jos%C3%A9+Gerardo&rft.date=2019-12-16&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3158-x&rft.externalDocID=10_1186_s12859_019_3158_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon