Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome

Synthetic biology has significantly advanced the design of genetic devices that can reprogram cellular activities and provide novel treatment strategies for future gene- and cell-based therapies. However, many metabolic disorders are functionally linked while developing distinct diseases that are di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 110; číslo 1; s. 141
Hlavní autoři: Ye, Haifeng, Charpin-El Hamri, Ghislaine, Zwicky, Katharina, Christen, Matthias, Folcher, Marc, Fussenegger, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 02.01.2013
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Synthetic biology has significantly advanced the design of genetic devices that can reprogram cellular activities and provide novel treatment strategies for future gene- and cell-based therapies. However, many metabolic disorders are functionally linked while developing distinct diseases that are difficult to treat using a classic one-drug-one-disease intervention scheme. For example, hypertension, hyperglycemia, obesity, and dyslipidemia are interdependent pathologies that are collectively known as the metabolic syndrome, the prime epidemic of the 21st century. We have designed a unique therapeutic strategy in which the clinically licensed antihypertensive drug guanabenz (Wytensin) activates a synthetic signal cascade that stimulates the secretion of metabolically active peptides GLP-1 and leptin. Therefore, the signal transduction of a chimeric trace-amine-associated receptor 1 (cTAAR1) was functionally rewired via cAMP and cAMP-dependent phosphokinase A (PKA)-mediated activation of the cAMP-response element binding protein (CREB1) to transcription of synthetic promoters containing CREB1-specific cAMP response elements. Based on this designer signaling cascade, it was possible to use guanabenz to dose-dependently control expression of GLP-1-Fc(mIgG)-Leptin, a bifunctional therapeutic peptide hormone that combines the glucagon-like peptide 1 (GLP-1) and leptin via an IgG-Fc linker. In mice developing symptoms of the metabolic syndrome, this three-in-one treatment strategy was able to simultaneously attenuate hypertension and hyperglycemia as well as obesity and dyslipidemia. Using a clinically licensed drug to coordinate expression of therapeutic transgenes combines drug- and gene-based therapies for coordinated treatment of functionally related metabolic disorders.
AbstractList Synthetic biology has significantly advanced the design of genetic devices that can reprogram cellular activities and provide novel treatment strategies for future gene- and cell-based therapies. However, many metabolic disorders are functionally linked while developing distinct diseases that are difficult to treat using a classic one-drug-one-disease intervention scheme. For example, hypertension, hyperglycemia, obesity, and dyslipidemia are interdependent pathologies that are collectively known as the metabolic syndrome, the prime epidemic of the 21st century. We have designed a unique therapeutic strategy in which the clinically licensed antihypertensive drug guanabenz (Wytensin) activates a synthetic signal cascade that stimulates the secretion of metabolically active peptides GLP-1 and leptin. Therefore, the signal transduction of a chimeric trace-amine-associated receptor 1 (cTAAR1) was functionally rewired via cAMP and cAMP-dependent phosphokinase A (PKA)-mediated activation of the cAMP-response element binding protein (CREB1) to transcription of synthetic promoters containing CREB1-specific cAMP response elements. Based on this designer signaling cascade, it was possible to use guanabenz to dose-dependently control expression of GLP-1-Fc(mIgG)-Leptin, a bifunctional therapeutic peptide hormone that combines the glucagon-like peptide 1 (GLP-1) and leptin via an IgG-Fc linker. In mice developing symptoms of the metabolic syndrome, this three-in-one treatment strategy was able to simultaneously attenuate hypertension and hyperglycemia as well as obesity and dyslipidemia. Using a clinically licensed drug to coordinate expression of therapeutic transgenes combines drug- and gene-based therapies for coordinated treatment of functionally related metabolic disorders.Synthetic biology has significantly advanced the design of genetic devices that can reprogram cellular activities and provide novel treatment strategies for future gene- and cell-based therapies. However, many metabolic disorders are functionally linked while developing distinct diseases that are difficult to treat using a classic one-drug-one-disease intervention scheme. For example, hypertension, hyperglycemia, obesity, and dyslipidemia are interdependent pathologies that are collectively known as the metabolic syndrome, the prime epidemic of the 21st century. We have designed a unique therapeutic strategy in which the clinically licensed antihypertensive drug guanabenz (Wytensin) activates a synthetic signal cascade that stimulates the secretion of metabolically active peptides GLP-1 and leptin. Therefore, the signal transduction of a chimeric trace-amine-associated receptor 1 (cTAAR1) was functionally rewired via cAMP and cAMP-dependent phosphokinase A (PKA)-mediated activation of the cAMP-response element binding protein (CREB1) to transcription of synthetic promoters containing CREB1-specific cAMP response elements. Based on this designer signaling cascade, it was possible to use guanabenz to dose-dependently control expression of GLP-1-Fc(mIgG)-Leptin, a bifunctional therapeutic peptide hormone that combines the glucagon-like peptide 1 (GLP-1) and leptin via an IgG-Fc linker. In mice developing symptoms of the metabolic syndrome, this three-in-one treatment strategy was able to simultaneously attenuate hypertension and hyperglycemia as well as obesity and dyslipidemia. Using a clinically licensed drug to coordinate expression of therapeutic transgenes combines drug- and gene-based therapies for coordinated treatment of functionally related metabolic disorders.
Synthetic biology has significantly advanced the design of genetic devices that can reprogram cellular activities and provide novel treatment strategies for future gene- and cell-based therapies. However, many metabolic disorders are functionally linked while developing distinct diseases that are difficult to treat using a classic one-drug-one-disease intervention scheme. For example, hypertension, hyperglycemia, obesity, and dyslipidemia are interdependent pathologies that are collectively known as the metabolic syndrome, the prime epidemic of the 21st century. We have designed a unique therapeutic strategy in which the clinically licensed antihypertensive drug guanabenz (Wytensin) activates a synthetic signal cascade that stimulates the secretion of metabolically active peptides GLP-1 and leptin. Therefore, the signal transduction of a chimeric trace-amine-associated receptor 1 (cTAAR1) was functionally rewired via cAMP and cAMP-dependent phosphokinase A (PKA)-mediated activation of the cAMP-response element binding protein (CREB1) to transcription of synthetic promoters containing CREB1-specific cAMP response elements. Based on this designer signaling cascade, it was possible to use guanabenz to dose-dependently control expression of GLP-1-Fc(mIgG)-Leptin, a bifunctional therapeutic peptide hormone that combines the glucagon-like peptide 1 (GLP-1) and leptin via an IgG-Fc linker. In mice developing symptoms of the metabolic syndrome, this three-in-one treatment strategy was able to simultaneously attenuate hypertension and hyperglycemia as well as obesity and dyslipidemia. Using a clinically licensed drug to coordinate expression of therapeutic transgenes combines drug- and gene-based therapies for coordinated treatment of functionally related metabolic disorders.
Author Christen, Matthias
Ye, Haifeng
Charpin-El Hamri, Ghislaine
Folcher, Marc
Fussenegger, Martin
Zwicky, Katharina
Author_xml – sequence: 1
  givenname: Haifeng
  surname: Ye
  fullname: Ye, Haifeng
  organization: Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich, CH-4058 Basel, Switzerland
– sequence: 2
  givenname: Ghislaine
  surname: Charpin-El Hamri
  fullname: Charpin-El Hamri, Ghislaine
– sequence: 3
  givenname: Katharina
  surname: Zwicky
  fullname: Zwicky, Katharina
– sequence: 4
  givenname: Matthias
  surname: Christen
  fullname: Christen, Matthias
– sequence: 5
  givenname: Marc
  surname: Folcher
  fullname: Folcher, Marc
– sequence: 6
  givenname: Martin
  surname: Fussenegger
  fullname: Fussenegger, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23248313$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1URD9gZkMeWVJsJ07iEVUUkCrB0IEteu28oUGOXWxn6L-nQJGQTrpHp9MNNycT5x0Scs3ZkrMqv9s7iEsueFkzzjk7IzPOFM_KQrHJP56SeYwfjDEla3ZBpiIXRZ3zfEbeXncQBjA4pt6AtQdqvEvBW4stbTH27w4DNX0wY59o5wNNO6QpIKQBXaK--wkGTKC97Q2NB9cGP-AlOe_ARrw6-YJs1w_b1VO2eXl8Xt1vMlMykTIlmS5yLbgp1VFQqULpGjjITquq4qat6lZK-AYJBtpKi6IzGmXZMVmKBbn9nd0H_zliTM3QR4PWgkM_xoaLKuelOp51rN6cqqMesG32oR8gHJq_M8QXBmBk7A
CitedBy_id crossref_primary_10_1007_s00210_022_02251_1
crossref_primary_10_1016_j_jmb_2015_08_020
crossref_primary_10_7554_eLife_10606
crossref_primary_10_1007_s12195_021_00676_x
crossref_primary_10_3389_fendo_2024_1439351
crossref_primary_10_1016_j_copbio_2022_102833
crossref_primary_10_1007_s10295_018_2027_3
crossref_primary_10_1038_s41551_016_0020
crossref_primary_10_1002_bies_201400094
crossref_primary_10_1016_j_tibtech_2014_11_010
crossref_primary_10_1038_s41467_021_20913_1
crossref_primary_10_1073_pnas_1400093111
crossref_primary_10_3389_fphar_2020_00119
crossref_primary_10_1586_14760584_2015_997714
crossref_primary_10_1038_s41598_018_21840_w
crossref_primary_10_1007_s00018_020_03486_y
crossref_primary_10_1016_j_cbpa_2013_10_006
crossref_primary_10_1126_science_aaf4006
crossref_primary_10_1038_nrm3738
crossref_primary_10_1073_pnas_1514383113
crossref_primary_10_1371_journal_pone_0177234
crossref_primary_10_1038_s41598_020_70689_5
crossref_primary_10_1002_biot_201700159
crossref_primary_10_1038_s41467_018_03984_5
crossref_primary_10_1016_j_jhep_2016_03_020
crossref_primary_10_1016_j_mib_2014_05_022
crossref_primary_10_1002_biot_201700160
crossref_primary_10_1038_s41467_024_54781_2
crossref_primary_10_1016_j_ymthe_2016_11_008
crossref_primary_10_3389_fbioe_2022_986210
crossref_primary_10_1007_s40484_015_0053_y
crossref_primary_10_1016_j_ymben_2013_11_003
crossref_primary_10_1146_annurev_bioeng_071516_044649
crossref_primary_10_1021_acs_chemrestox_6b00396
crossref_primary_10_1093_nar_gku545
crossref_primary_10_1016_j_copbio_2017_06_004
crossref_primary_10_1016_j_cbpa_2016_05_012
crossref_primary_10_1146_annurev_pharmtox_011613_135921
crossref_primary_10_1016_j_febslet_2014_05_003
crossref_primary_10_1039_c5ib00263j
crossref_primary_10_1016_j_addr_2016_05_006
crossref_primary_10_1038_s41551_018_0215_0
crossref_primary_10_1016_j_tem_2019_04_004
crossref_primary_10_1073_pnas_1312414110
crossref_primary_10_1073_pnas_1508521112
crossref_primary_10_1038_s41467_018_04744_1
crossref_primary_10_1039_C5IB00274E
crossref_primary_10_1186_s13036_019_0170_7
crossref_primary_10_4137_STI_S39844
crossref_primary_10_1038_s41551_016_0005
crossref_primary_10_1038_s41598_022_20906_0
crossref_primary_10_1016_j_jtemb_2014_10_005
crossref_primary_10_1093_nar_gkac1256
crossref_primary_10_1002_anie_201609229
crossref_primary_10_1016_j_ymben_2015_03_016
crossref_primary_10_1093_nar_gkv326
crossref_primary_10_1016_j_biotechadv_2013_08_017
crossref_primary_10_1007_s43440_023_00518_9
crossref_primary_10_1016_j_cbpa_2015_05_021
crossref_primary_10_1242_dev_201173
crossref_primary_10_1038_s41392_023_01440_5
crossref_primary_10_3184_003685015X14368807556441
crossref_primary_10_1016_j_cyto_2018_03_029
crossref_primary_10_1038_msb_2013_48
crossref_primary_10_1016_j_addr_2016_08_008
crossref_primary_10_1016_j_jmb_2016_02_018
crossref_primary_10_1128_MCB_01485_13
crossref_primary_10_1002_ange_201609229
crossref_primary_10_1038_s41467_017_01211_1
crossref_primary_10_1016_j_copbio_2015_01_010
crossref_primary_10_1016_j_cub_2013_06_047
crossref_primary_10_1038_s41589_018_0046_z
crossref_primary_10_7554_eLife_72847
crossref_primary_10_1016_j_addr_2016_04_021
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1216801110
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 23248313
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c602t-950b43b21c69c69a7949b8a1a5fb9771cd78d55a1cd75acad7b24fcbe56f0562
IEDL.DBID 7X8
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313630300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 09:59:41 EDT 2025
Mon Jul 21 06:05:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c602t-950b43b21c69c69a7949b8a1a5fb9771cd78d55a1cd75acad7b24fcbe56f0562
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/doi/10.1073/pnas.1216801110
PMID 23248313
PQID 1273169107
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1273169107
pubmed_primary_23248313
PublicationCentury 2000
PublicationDate 2013-01-02
PublicationDateYYYYMMDD 2013-01-02
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
References 12393845 - J Clin Invest. 2002 Oct;110(8):1093-103
11814674 - Gene. 2002 Jan 9;282(1-2):19-31
18583614 - Science. 2008 Jun 27;320(5884):1784-7
19404311 - Nat Rev Drug Discov. 2009 May;8(5):361-7
16878137 - Nature. 2006 Aug 10;442(7103):645-50
16943856 - Gene Ther. 2007 Jan;14(2):162-72
19723587 - Metab Eng. 2010 Jan;12(1):18-25
22124480 - Nat Rev Genet. 2012 Jan;13(1):21-35
19859074 - Nat Rev Endocrinol. 2009 Dec;5(12):673-81
21602805 - Nat Biotechnol. 2011 Jun;29(6):535-41
21215374 - Cell. 2011 Jan 7;144(1):119-31
21700876 - Science. 2011 Jun 24;332(6037):1565-8
21403658 - Nat Rev Cardiol. 2011 May;8(5):278-90
21885784 - Science. 2011 Sep 2;333(6047):1307-11
22488644 - Nat Rev Endocrinol. 2012 Aug;8(8):476-85
16582875 - Nat Rev Drug Discov. 2006 Apr;5(4):295-309
11459929 - Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8966-71
21647189 - Nat Rev Endocrinol. 2011 Sep;7(9):507-16
20002077 - Br J Clin Pharmacol. 2009 Dec;68(6):830-43
21109673 - Science. 2010 Nov 26;330(6008):1251-5
15502819 - Nat Biotechnol. 2004 Nov;22(11):1440-4
15550249 - Cell. 2004 Nov 24;119(5):679-91
2974179 - Science. 1988 Dec 9;242(4884):1430-3
8381211 - Nature. 1993 Jan 28;361(6410):362-5
12658028 - J Hypertens. 2003 Apr;21(4):805-11
16699500 - Nat Biotechnol. 2006 Jun;24(6):697-702
10546697 - JAMA. 1999 Oct 27;282(16):1568-75
17167477 - Nature. 2006 Dec 14;444(7121):881-7
20351688 - Nat Biotechnol. 2010 Apr;28(4):355-60
20944664 - Nat Rev Cancer. 2010 Nov;10(11):785-94
9796811 - Nature. 1998 Oct 22;395(6704):763-70
21885773 - Science. 2011 Sep 2;333(6047):1248-52
17098089 - Lancet. 2006 Nov 11;368(9548):1696-705
17568249 - Eur J Cardiovasc Prev Rehabil. 2007 Jun;14(3):456-62
21108977 - J Control Release. 2011 Feb 28;150(1):23-9
15780821 - Curr Opin Pharmacol. 2005 Apr;5(2):135-42
19725810 - Biochem J. 2009 Nov 15;424(1):39-45
11175734 - Nat Biotechnol. 2001 Feb;19(2):169-72
References_xml – reference: 16943856 - Gene Ther. 2007 Jan;14(2):162-72
– reference: 21700876 - Science. 2011 Jun 24;332(6037):1565-8
– reference: 16878137 - Nature. 2006 Aug 10;442(7103):645-50
– reference: 20002077 - Br J Clin Pharmacol. 2009 Dec;68(6):830-43
– reference: 21403658 - Nat Rev Cardiol. 2011 May;8(5):278-90
– reference: 15550249 - Cell. 2004 Nov 24;119(5):679-91
– reference: 19404311 - Nat Rev Drug Discov. 2009 May;8(5):361-7
– reference: 2974179 - Science. 1988 Dec 9;242(4884):1430-3
– reference: 21602805 - Nat Biotechnol. 2011 Jun;29(6):535-41
– reference: 17568249 - Eur J Cardiovasc Prev Rehabil. 2007 Jun;14(3):456-62
– reference: 20944664 - Nat Rev Cancer. 2010 Nov;10(11):785-94
– reference: 19859074 - Nat Rev Endocrinol. 2009 Dec;5(12):673-81
– reference: 12658028 - J Hypertens. 2003 Apr;21(4):805-11
– reference: 19725810 - Biochem J. 2009 Nov 15;424(1):39-45
– reference: 11814674 - Gene. 2002 Jan 9;282(1-2):19-31
– reference: 17098089 - Lancet. 2006 Nov 11;368(9548):1696-705
– reference: 11175734 - Nat Biotechnol. 2001 Feb;19(2):169-72
– reference: 8381211 - Nature. 1993 Jan 28;361(6410):362-5
– reference: 11459929 - Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8966-71
– reference: 19723587 - Metab Eng. 2010 Jan;12(1):18-25
– reference: 17167477 - Nature. 2006 Dec 14;444(7121):881-7
– reference: 9796811 - Nature. 1998 Oct 22;395(6704):763-70
– reference: 21885773 - Science. 2011 Sep 2;333(6047):1248-52
– reference: 21885784 - Science. 2011 Sep 2;333(6047):1307-11
– reference: 21108977 - J Control Release. 2011 Feb 28;150(1):23-9
– reference: 15780821 - Curr Opin Pharmacol. 2005 Apr;5(2):135-42
– reference: 22124480 - Nat Rev Genet. 2012 Jan;13(1):21-35
– reference: 15502819 - Nat Biotechnol. 2004 Nov;22(11):1440-4
– reference: 16582875 - Nat Rev Drug Discov. 2006 Apr;5(4):295-309
– reference: 12393845 - J Clin Invest. 2002 Oct;110(8):1093-103
– reference: 20351688 - Nat Biotechnol. 2010 Apr;28(4):355-60
– reference: 16699500 - Nat Biotechnol. 2006 Jun;24(6):697-702
– reference: 10546697 - JAMA. 1999 Oct 27;282(16):1568-75
– reference: 22488644 - Nat Rev Endocrinol. 2012 Aug;8(8):476-85
– reference: 21109673 - Science. 2010 Nov 26;330(6008):1251-5
– reference: 18583614 - Science. 2008 Jun 27;320(5884):1784-7
– reference: 21215374 - Cell. 2011 Jan 7;144(1):119-31
– reference: 21647189 - Nat Rev Endocrinol. 2011 Sep;7(9):507-16
SSID ssj0009580
Score 2.38828
Snippet Synthetic biology has significantly advanced the design of genetic devices that can reprogram cellular activities and provide novel treatment strategies for...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 141
SubjectTerms Animals
Cyclic AMP Response Element-Binding Protein - metabolism
Dose-Response Relationship, Drug
Drug Design
Gene Expression Regulation - drug effects
Glucagon-Like Peptide 1 - metabolism
Guanabenz - pharmacology
Leptin - metabolism
Metabolic Syndrome - drug therapy
Mice
Models, Molecular
Receptors, G-Protein-Coupled - metabolism
Signal Transduction - drug effects
Transgenes - genetics
Title Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome
URI https://www.ncbi.nlm.nih.gov/pubmed/23248313
https://www.proquest.com/docview/1273169107
Volume 110
WOSCitedRecordID wos000313630300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA7qPHhR5-f8IoIHPYSlSdskJxFxeNCxw5DeSpqkWJjtXDvBf2_SD91FEIRSSqCl5H3y5uHNy_MAcCUkFpywEHlGCeQnRCOhlY9CyYSkUmFR13Rfnth4zKNITNqCW9m2VXY5sU7UulCuRj70iPNYspsbu52_I-ca5U5XWwuNddCjlso4VLOIr4ju8kaNQHgo9AXupH0YHc5zWTplhZA7s3X8O7-s95nRzn__cBdstwwT3jWQ6IM1k--BfruGS3jdCk3f7INo8rpa0J59wrZxfWY01HVrh1lAlS3UMqugZbfQskX43ZoOi7QeeDOVRdIsU7CTPzgA09HD9P4RtU4LSIWYVEgEOPFpQjwVCnvZOPki4dKTQZpYgugpzbgOAukeAqmkZgnxU5WYIEwdgzoEG3mRm2MAU65JQLFJA018iaVgSWo_Tg3V1CY0fwAuu8mLLZDd6YTMTbEs45_pG4CjJgLxvFHciB3t4zbCJ394-xRskdqywkOYnIFeapexOQeb6qPKysVFjRB7H0-evwBS_8cb
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmaceutically+controlled+designer+circuit+for+the+treatment+of+the+metabolic+syndrome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ye%2C+Haifeng&rft.au=Charpin-El+Hamri%2C+Ghislaine&rft.au=Zwicky%2C+Katharina&rft.au=Christen%2C+Matthias&rft.date=2013-01-02&rft.eissn=1091-6490&rft.volume=110&rft.issue=1&rft.spage=141&rft_id=info:doi/10.1073%2Fpnas.1216801110&rft_id=info%3Apmid%2F23248313&rft_id=info%3Apmid%2F23248313&rft.externalDocID=23248313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon