Resurveying historical vegetation data — opportunities and challenges
Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location...
Saved in:
| Published in: | Applied vegetation science Vol. 20; no. 2; pp. 164 - 171 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
John Wiley & Sons Ltd
01.04.2017
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1402-2001, 1654-109X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Methods: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions: Re-sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses. |
|---|---|
| AbstractList | Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Methods: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions: Re-sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses. Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Resampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses. Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Methods Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions Re-sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses. Resurveying historical vegetation plots provides a unique opportunity to estimate vegetation and environmental changes over the past decades. This paper describes the properties of vegetation resurveys distinguishing basic types of plots according to relocation error and it highlights the potential of such data types for studying vegetation dynamics and their drivers. Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists.BACKGROUNDResurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists.Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research.MATERIAL & METHODSVegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research.Resampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses.RESULTS AND CONCLUSIONSResampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses. Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long‐term environmental change and deserve closer attention of vegetation ecologists. Methods Vegetation data obtained from the resurveying of non‐permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non‐permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions Re‐sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non‐permanent plots, while the latter are further divided into quasi‐permanent (with approximate relocation) and non‐traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses. Resurveying historical vegetation plots provides a unique opportunity to estimate vegetation and environmental changes over the past decades. This paper describes the properties of vegetation resurveys distinguishing basic types of plots according to relocation error and it highlights the potential of such data types for studying vegetation dynamics and their drivers. |
| Author | Schei, Fride H. Kapfer, Jutta Kopecký, Martin Hédl, Radim Jurasinski, Gerald Grytnes, John-Arvid |
| AuthorAffiliation | 2 Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic 1 Department of Biology, University of Bergen, Thormøhlensgate 53A, 5020 Bergen, Norway 3 Department of Botany, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic 4 Landscape Ecology and Site Evaluation, University of Rostock, 18059 Rostock, Germany 5 Norwegian Institute of Bioeconomy Research, Holtveien 66, 9016 Tromsø, Norway 7 Norwegian Institute of Bioeconomy Research, Fanaflaten 4, 5244 Fana, Norway 6 Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6-Suchdol, Czech Republic |
| AuthorAffiliation_xml | – name: 3 Department of Botany, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic – name: 6 Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6-Suchdol, Czech Republic – name: 2 Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic – name: 1 Department of Biology, University of Bergen, Thormøhlensgate 53A, 5020 Bergen, Norway – name: 4 Landscape Ecology and Site Evaluation, University of Rostock, 18059 Rostock, Germany – name: 7 Norwegian Institute of Bioeconomy Research, Fanaflaten 4, 5244 Fana, Norway – name: 5 Norwegian Institute of Bioeconomy Research, Holtveien 66, 9016 Tromsø, Norway |
| Author_xml | – sequence: 1 givenname: Jutta surname: Kapfer fullname: Kapfer, Jutta – sequence: 2 givenname: Radim surname: Hédl fullname: Hédl, Radim – sequence: 3 givenname: Gerald surname: Jurasinski fullname: Jurasinski, Gerald – sequence: 4 givenname: Martin surname: Kopecký fullname: Kopecký, Martin – sequence: 5 givenname: Fride H. surname: Schei fullname: Schei, Fride H. – sequence: 6 givenname: John-Arvid surname: Grytnes fullname: Grytnes, John-Arvid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30245580$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl1rFDEUhoO02A-98V4Z8KYIU3MyySS5EcqiVSgU6gfehWwms5tlNtkmMyt71x_hL_SXmHW6pRaxucmB87wvnPecI7Tng7cIvQB8Cvm91etkToGQWj5Bh1AzWgKW3_dyTTEpCcZwgI5SWuSCSyafooMKE8qYwIfo_MqmIa7txvlZMXepD9EZ3RVrO7O97l3wRaN7Xfy6-VmE1SrEfvCudzYV2jeFmeuus35m0zO03-ou2ee3_zH6-uH9l8nH8uLy_NPk7KI0NSayFNpI0hJDG1NXjMipZrrKLcpIw6UWuKFVy8WUV4TI1lhaGw6mgqkUjWhaXB2jd6PvapgubWOs76Pu1Cq6pY4bFbRTf3e8m6tZWKsaKKOUZIOTW4MYrgeberV0ydiu096GISmSE-WUgqCPo5hgITHj_FEUhADOGNRVRl8_QBdhiD6HlikuMOZAt4av7s95N-BucxnAI2BiSCnaVhk3LiyP7ToFWG2PQ22PQ_05jix580Cyc_0nDCP8w3V28x9SnX37PNlpXo6axfaO7jQ5dgCaA_0NE17UOw |
| CitedBy_id | crossref_primary_10_1111_avsc_12417 crossref_primary_10_1111_avsc_12532 crossref_primary_10_1016_j_rama_2018_06_003 crossref_primary_10_1002_ece3_7106 crossref_primary_10_1080_11263504_2022_2104399 crossref_primary_10_1111_ecog_07116 crossref_primary_10_3390_f11050545 crossref_primary_10_1111_jvs_13317 crossref_primary_10_1080_17445647_2021_1957033 crossref_primary_10_1016_j_ecolind_2019_105790 crossref_primary_10_1016_j_scitotenv_2023_165164 crossref_primary_10_1016_j_biocon_2024_110502 crossref_primary_10_1111_avsc_70012 crossref_primary_10_1002_ece3_7592 crossref_primary_10_1016_j_foreco_2025_122562 crossref_primary_10_1007_s10531_018_01688_2 crossref_primary_10_1016_j_jenvman_2023_118199 crossref_primary_10_1038_s41597_023_02763_2 crossref_primary_10_3390_f10060498 crossref_primary_10_1016_j_chnaes_2022_09_002 crossref_primary_10_1016_j_foreco_2025_122841 crossref_primary_10_1111_nph_20068 crossref_primary_10_1111_1365_2745_13339 crossref_primary_10_1111_jvs_13201 crossref_primary_10_3390_rs15061547 crossref_primary_10_1111_avsc_70009 crossref_primary_10_1111_jvs_12911 crossref_primary_10_1111_jvs_13208 crossref_primary_10_1002_ecm_1543 crossref_primary_10_3897_pls2024612_03 crossref_primary_10_1080_17550874_2019_1646831 crossref_primary_10_1111_aen_12515 crossref_primary_10_1007_s10531_020_02031_4 crossref_primary_10_1111_avsc_12372 crossref_primary_10_1007_s11258_023_01306_4 crossref_primary_10_1111_nph_19587 crossref_primary_10_1016_j_ecolind_2018_09_039 crossref_primary_10_1111_jvs_70040 crossref_primary_10_1111_jvs_12882 crossref_primary_10_1016_j_ecoleng_2022_106878 crossref_primary_10_3390_f11111218 crossref_primary_10_1177_05529360251318072 crossref_primary_10_1080_11263504_2022_2100498 crossref_primary_10_1111_aje_13207 crossref_primary_10_3390_rs15245716 crossref_primary_10_1656_045_028_s1103 crossref_primary_10_1016_j_apsoil_2025_106484 crossref_primary_10_1111_avsc_12287 crossref_primary_10_1016_j_baae_2018_05_013 crossref_primary_10_1111_jvs_12928 crossref_primary_10_1002_ece3_8186 crossref_primary_10_1007_s00035_024_00320_0 crossref_primary_10_1016_j_ecolind_2023_111015 crossref_primary_10_1111_avsc_12307 crossref_primary_10_1016_j_foreco_2024_122322 crossref_primary_10_1111_avsc_12669 crossref_primary_10_1111_avsc_12424 crossref_primary_10_1134_S1067413621010033 crossref_primary_10_1007_s12210_022_01110_8 crossref_primary_10_1007_s10980_023_01661_7 crossref_primary_10_1111_ele_70218 crossref_primary_10_1007_s10342_023_01595_4 crossref_primary_10_1007_s12224_018_9322_7 crossref_primary_10_1016_j_scitotenv_2017_10_001 crossref_primary_10_1002_ece3_4422 crossref_primary_10_1111_1365_2745_13118 crossref_primary_10_2478_ffp_2025_0009 crossref_primary_10_3390_su16010451 crossref_primary_10_1029_2022EF002823 crossref_primary_10_1016_j_catena_2022_106412 crossref_primary_10_1016_j_sajb_2020_03_025 crossref_primary_10_1111_jvs_12939 crossref_primary_10_1111_avsc_12338 crossref_primary_10_1016_j_biocon_2017_06_027 crossref_primary_10_1016_j_biocon_2017_04_017 crossref_primary_10_1007_s11258_018_0831_5 crossref_primary_10_1111_gcb_14568 crossref_primary_10_3389_fenvs_2023_1153601 crossref_primary_10_1002_ecs2_2929 crossref_primary_10_1007_s10531_021_02310_8 crossref_primary_10_1016_j_foreco_2021_119754 crossref_primary_10_1038_s41598_023_42808_5 crossref_primary_10_1111_jvs_13235 crossref_primary_10_1007_s11258_018_0794_6 crossref_primary_10_1111_gcb_70030 crossref_primary_10_1111_jvs_13119 crossref_primary_10_1016_j_agee_2017_06_033 crossref_primary_10_1080_11956860_2025_2540144 crossref_primary_10_1111_geb_13351 crossref_primary_10_1007_s10531_023_02723_7 crossref_primary_10_1016_j_baae_2025_05_003 crossref_primary_10_1111_avsc_12289 crossref_primary_10_1111_jvs_70038 crossref_primary_10_1002_ece3_5778 crossref_primary_10_1007_s00035_021_00270_x crossref_primary_10_1111_avsc_12726 crossref_primary_10_1111_jvs_12673 crossref_primary_10_1007_s10526_023_10229_y crossref_primary_10_1002_ece3_70035 crossref_primary_10_1016_j_biocon_2023_110393 crossref_primary_10_1016_j_biocon_2025_111124 crossref_primary_10_1111_jbi_14503 crossref_primary_10_1007_s00035_019_00223_5 crossref_primary_10_1007_s10530_024_03292_8 crossref_primary_10_1111_avsc_12452 crossref_primary_10_1111_avsc_12573 crossref_primary_10_1111_csp2_70101 crossref_primary_10_1111_gcb_14030 crossref_primary_10_1016_j_biocon_2023_110317 crossref_primary_10_1080_23766808_2021_1940056 crossref_primary_10_1007_s12210_018_0681_z crossref_primary_10_1007_s12224_018_9312_9 crossref_primary_10_1111_avsc_12513 crossref_primary_10_15835_nbha49112223 crossref_primary_10_1016_j_aquabot_2021_103401 crossref_primary_10_3390_plants13070962 crossref_primary_10_1007_s10661_021_09227_3 crossref_primary_10_1111_avsc_12598 crossref_primary_10_1007_s11258_023_01342_0 crossref_primary_10_3390_f9060316 crossref_primary_10_1002_ece3_3882 crossref_primary_10_3389_fpls_2022_1067096 crossref_primary_10_1111_jvs_13254 crossref_primary_10_1111_oik_05114 crossref_primary_10_1002_ece3_70244 crossref_primary_10_1111_jvs_13255 crossref_primary_10_1002_ece3_6913 crossref_primary_10_1111_ecog_07213 crossref_primary_10_1016_j_biocon_2025_111210 crossref_primary_10_1016_j_flora_2025_152742 crossref_primary_10_1111_jvs_13138 crossref_primary_10_1007_s12224_024_09445_w crossref_primary_10_1007_s11258_020_01057_6 crossref_primary_10_1111_jvs_12727 crossref_primary_10_1016_j_ufug_2019_126524 crossref_primary_10_1111_2041_210X_70131 crossref_primary_10_1016_j_sajb_2025_01_024 crossref_primary_10_1007_s11258_023_01351_z crossref_primary_10_1016_j_biocon_2020_108689 crossref_primary_10_3389_fmicb_2024_1422529 crossref_primary_10_3389_fenvs_2024_1306062 crossref_primary_10_1007_s10531_025_03128_4 crossref_primary_10_1111_avsc_12587 crossref_primary_10_1016_j_scitotenv_2018_06_222 crossref_primary_10_1111_avsc_12347 crossref_primary_10_1093_biosci_biac063 crossref_primary_10_1007_s11258_021_01125_5 crossref_primary_10_1007_s10531_025_03087_w crossref_primary_10_1111_avsc_12507 crossref_primary_10_1111_jvs_13263 crossref_primary_10_1016_j_biocon_2025_111500 crossref_primary_10_1111_jvs_12697 crossref_primary_10_1073_pnas_1904585116 crossref_primary_10_1111_jvs_13303 crossref_primary_10_1111_jvs_12854 crossref_primary_10_1007_s12224_024_09456_7 crossref_primary_10_1111_geb_13682 |
| Cites_doi | 10.1126/science.1122667 10.1038/nature10548 10.1073/pnas.1006823107 10.1111/jvs.12211 10.2307/3236808 10.1111/j.1472-4642.2010.00637.x 10.2307/1939337 10.1111/1365-2664.12010 10.1007/978-3-7091-8110-2 10.1016/j.foreco.2008.04.042 10.1111/j.1654-1103.2007.tb02553.x 10.7809/b-e.00082 10.1111/j.1365-2745.2006.01145.x 10.1046/j.1523-1739.1997.96082.x 10.1080/17550871003706233 10.1080/17550874.2013.764943 10.1023/B:VEGE.0000021681.83068.53 10.1111/j.1365-2745.2011.01928.x 10.1111/avsc.12050 10.1007/BF00121023 10.1111/j.1469-8137.1994.tb04252.x 10.1191/0959683603hl589ft 10.1098/rspb.2005.3119 10.1890/08-1140.1 10.1038/369448a0 10.1007/BF00006028 10.1111/j.1654-1103.2006.tb02449.x 10.1111/gcb.12993 10.1111/j.1654-1103.2011.01265.x 10.1111/j.1365-2486.2009.01896.x 10.1073/pnas.0802891105 10.1111/geb.12170 10.1111/j.1365-2486.2010.02345.x 10.1111/j.1365-2486.2006.01128.x 10.1073/pnas.1312779110 10.1111/j.1600-0587.2011.07057.x 10.1111/j.1654-1103.2012.01416.x 10.1023/A:1021441331839 10.1111/j.1472-4642.2011.00799.x 10.1098/rspb.2009.0938 10.1016/j.foreco.2011.06.024 10.1890/12-1006.1 10.1111/ddi.12299 10.2307/3236314 10.1111/j.1365-2745.2006.01104.x 10.1126/science.1219033 10.2307/3237030 10.1111/j.1365-2745.2011.01847.x 10.1126/science.1156831 10.1007/BF02853510 10.1080/17550874.2013.862752 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 International Association for Vegetation Science 2016 International Association for Vegetation Science |
| Copyright_xml | – notice: Copyright © 2017 International Association for Vegetation Science – notice: 2016 International Association for Vegetation Science |
| DBID | AAYXX CITATION NPM 7SN C1K 7S9 L.6 7X8 5PM |
| DOI | 10.1111/avsc.12269 |
| DatabaseName | CrossRef PubMed Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | PubMed AGRICOLA Ecology Abstracts Ecology Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1654-109X |
| EndPage | 171 |
| ExternalDocumentID | PMC6145442 4320906797 30245580 10_1111_avsc_12269 AVSC12269 44211484 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: European Research Council funderid: FP7/2007–2013; 278065 – fundername: Polish‐Norwegian Research Programme funderid: Pol‐Nor/196829/87/2013 – fundername: The Fram Centre funderid: 362202 – fundername: European Research Council grantid: 278065 |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OC 23M 2~F 33P 3SF 4.4 4P2 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAMMB AAMNL AANLZ AAONW AAPSS AASGY AAXRX AAXTN AAYCA AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABJNI ABPLY ABPVW ABTLG ABXSQ ACAHQ ACCZN ACGFS ACHIC ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEJZ AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AICQM AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CBGCD CS3 D-E D-F DATOO DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EBD EBS ECGQY EDH EJD EMK ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZ~ IAO IGH IHR IPSME IX1 J.8 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RX1 SA0 SUPJJ TEORI TUS UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~8M ~IA ~KM ~WT -JH .Y3 31~ AAHHS AANHP ACBWZ ACCFJ ACRPL ACYXJ ADHSS ADNMO ADULT ADZOD AEEZP AEPYG AEQDE AEUQT AFFIJ AFNWH AFPWT AIWBW AJBDE AKPMI ASPBG AVWKF AZFZN CAG COF DC7 DOOOF EQZMY FEDTE GTFYD H13 HF~ HGD HTVGU HVGLF IAG IEP ITC JSODD KPI RWI WRC AAYXX AGQPQ BANNL CITATION O8X NPM 7SN C1K 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c6029-8ac92f2c4dc63529ba5a3c60452d79a80d43f78b73229fce46c71c31b98d8df03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 175 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398083700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1402-2001 |
| IngestDate | Tue Nov 04 01:35:17 EST 2025 Sun Nov 09 10:46:53 EST 2025 Fri Jul 11 18:25:47 EDT 2025 Tue Oct 07 07:50:27 EDT 2025 Fri Jul 25 10:24:43 EDT 2025 Mon Jul 21 06:08:07 EDT 2025 Sat Nov 29 03:38:09 EST 2025 Tue Nov 18 21:42:01 EST 2025 Wed Jan 22 16:51:11 EST 2025 Thu Jul 03 22:06:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | long-term vegetation dynamics pseudo-turnover non-permanent plots quasi-permanent plots semi-permanent plots Environmental change observer bias relocation error vegetation resampling non-traceable plots |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6029-8ac92f2c4dc63529ba5a3c60452d79a80d43f78b73229fce46c71c31b98d8df03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/avsc.12269 |
| PMID | 30245580 |
| PQID | 1878007147 |
| PQPubID | 946338 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6145442 proquest_miscellaneous_2111744184 proquest_miscellaneous_2020890577 proquest_miscellaneous_1881755163 proquest_journals_1878007147 pubmed_primary_30245580 crossref_citationtrail_10_1111_avsc_12269 crossref_primary_10_1111_avsc_12269 wiley_primary_10_1111_avsc_12269_AVSC12269 jstor_primary_44211484 |
| PublicationCentury | 2000 |
| PublicationDate | April 2017 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Malden |
| PublicationTitle | Applied vegetation science |
| PublicationTitleAlternate | Appl Veg Sci |
| PublicationYear | 2017 |
| Publisher | John Wiley & Sons Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
| References | 2011; 479 2010; 16 1993; 28 2010; 107 2009; 81 1995; 76 1980; 43 2003; 13 1992; 18 2009; 276 2011; 99 2008; 105 2011; 17 2013; 6 2014; 23 1997; 8 2010; 20 1997; 11 2004; 170 2000 1999; 19 2013; 94 2000; 11 2013; 50 2011; 22 2013; 110 2014; 17 2010; 3 2012; 336 2012; 23 2009; 15 1996; 7 2007; 18 2012; 100 2005; 272 2006; 94 2012 2006; 12 1989; 178 2010 2006; 17 1999; 27 2006; 314 2012; 35 2008; 320 2015; 8 2015; 26 1994; 369 1994; 126 2002; 165 2015; 21 1921 1964 2008; 256 2011; 262 2012; 4 e_1_2_8_28_1 Fischer A. (e_1_2_8_21_1) 1999; 19 e_1_2_8_24_1 Legendre P. (e_1_2_8_38_1) 2012 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 Schaminée J.H.J. (e_1_2_8_43_1) 2009; 81 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 Landolt E. (e_1_2_8_36_1) 2010 Lawesson J.E (e_1_2_8_37_1) 2000 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_39_1 Fischer A. (e_1_2_8_20_1) 1999; 27 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Du Rietz G.E (e_1_2_8_17_1) 1921 Ellenberg H. (e_1_2_8_18_1) 1992; 18 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 165 start-page: 101 year: 2002 end-page: 115 article-title: Assessing species misidentification rates through quality assurance of vegetation monitoring publication-title: Plant Ecology – volume: 43 start-page: 103 year: 1980 end-page: 122 article-title: Succession in a south Swedish deciduous wood: a numerical approach publication-title: Vegetatio – volume: 22 start-page: 582 year: 2011 end-page: 597 article-title: The Global Index of Vegetation‐Plot Databases (GIVD): a new resource for vegetation science publication-title: Journal of Vegetation Science – year: 2012 publication-title: Numerical ecology – volume: 126 start-page: 533 year: 1994 end-page: 539 article-title: Simultaneous eutrophication and acidification of a forest ecosystem in North‐East France publication-title: New Phytologist – volume: 4 start-page: 255 year: 2012 end-page: 264 article-title: Wisconsin Vegetation Database – plant community survey and resurvey data from the Wisconsin Plant Ecology Laboratory publication-title: Biodiversity & Ecology – volume: 3 start-page: 1 year: 2010 end-page: 8 article-title: How important is plot relocation accuracy when interpreting re‐visitation studies of vegetation change? publication-title: Plant Ecology & Diversity – volume: 100 start-page: 352 year: 2012 end-page: 365 article-title: Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests publication-title: Journal of Ecology – volume: 7 start-page: 147 year: 1996 end-page: 156 article-title: Why do we need permanent plots in the study of long‐term vegetation dynamics? publication-title: Journal of Vegetation Science – volume: 479 start-page: 517 year: 2011 end-page: 520 article-title: Changes in plant community composition lag behind climate warming in lowland forests publication-title: Nature – volume: 21 start-page: 322 year: 2015 end-page: 330 article-title: Vegetation resurvey is robust to plot location uncertainty publication-title: Diversity and Distributions – volume: 17 start-page: 32 year: 2014 end-page: 41 article-title: Assessing vegetation change using vegetation‐plot databases: a risky business publication-title: Applied Vegetation Science – volume: 81 start-page: 173 year: 2009 end-page: 185 article-title: Vegetation‐plot data and databases in Europe: an overview publication-title: Preslia – volume: 170 start-page: 243 year: 2004 end-page: 265 article-title: Vegetation of beech forests in the Rychlebske Mountains, Czech Republic, re‐inspected after 60 years with assessment of environmental changes publication-title: Plant Ecology – volume: 94 start-page: 1687 year: 2013 end-page: 1696 article-title: Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation publication-title: Ecology – volume: 8 start-page: 855 year: 1997 end-page: 864 article-title: Acidification and eutrophication of deciduous forests in northwestern Germany demonstrated by indicator species analysis publication-title: Journal of Vegetation Science – volume: 105 start-page: 11823 year: 2008 end-page: 22826 article-title: Rapid shifts in plant distribution with recent climate change publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 35 start-page: 922 year: 2012 end-page: 932 article-title: Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway publication-title: Ecography – volume: 6 start-page: 447 year: 2013 end-page: 455 article-title: The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835 publication-title: Plant Ecology & Diversity – volume: 107 start-page: 19362 year: 2010 end-page: 19367 article-title: Ecological contingency in the effects of climatic warming on forest herb communities publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 256 start-page: 519 year: 2008 end-page: 528 article-title: Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice‐with‐standards forest publication-title: Forest Ecology and Management – volume: 262 start-page: 1265 year: 2011 end-page: 1279 article-title: Acidification of primeval forests in the Ukraine Carpathians: vegetation and soil changes over six decades publication-title: Forest Ecology and Management – volume: 26 start-page: 191 year: 2015 end-page: 200 article-title: Observation bias and its causes in botanical surveys on high‐alpine summits publication-title: Journal of Vegetation Science – volume: 336 start-page: 353 year: 2012 end-page: 355 article-title: Recent plant diversity changes on Europe's mountain summits publication-title: Science – year: 1964 – volume: 17 start-page: 1089 year: 2011 end-page: 1098 article-title: Spread of common species results in local‐scale floristic homogenization in grassland of Switzerland publication-title: Diversity and Distributions – volume: 76 start-page: 694 year: 1995 end-page: 711 article-title: Responses of arctic Tundra to experimental and observed changes in climate publication-title: Ecology – volume: 12 start-page: 686 year: 2006 end-page: 702 article-title: The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic publication-title: Global Change Biology – volume: 28 start-page: 225 year: 1993 end-page: 245 article-title: Long‐term changes in the field layer of oak and oak–hornbeam forests under the impact of deer and mouflon publication-title: Folia Geobotanica et Phytotaxonomica – volume: 8 start-page: 49 year: 2015 end-page: 60 article-title: Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment publication-title: Plant Ecology & Diversity – volume: 314 start-page: 1261 year: 2006 end-page: 1265 article-title: What is natural? The need for a long‐term perspective in biodiversity conservation publication-title: Science – year: 2000 – year: 1921 – volume: 369 start-page: 448 year: 1994 article-title: Climate effects on mountain plants publication-title: Nature – volume: 11 start-page: 277 year: 2000 end-page: 286 article-title: Diversity and pH changes after 50 years on the boreal mire Skattlössbergs Stormosse, Central Sweden publication-title: Journal of Vegetation Science – volume: 99 start-page: 1179 year: 2011 end-page: 1189 article-title: Fine‐scale changes in vegetation composition in a boreal mire over 50 years publication-title: Journal of Ecology – volume: 16 start-page: 267 year: 2010 end-page: 276 article-title: Half a century of succession in a temperate oakwood: from species‐rich community to mesic forest publication-title: Diversity and Distributions – volume: 23 start-page: 978 year: 2012 end-page: 984 article-title: Effect of intra‐seasonal variability on vegetation data publication-title: Journal of Vegetation Science – year: 2010 – volume: 276 start-page: 3539 year: 2009 end-page: 3544 article-title: Taxonomic homogenization of woodland plant communities over 70 years publication-title: Proceedings of the Royal Society, Series B: Biological Sciences – volume: 94 start-page: 801 year: 2006 end-page: 814 article-title: The Park Grass experiment 1856‐2006: its contribution to ecology publication-title: Journal of Ecology – volume: 272 start-page: 1427 year: 2005 end-page: 1432 article-title: An ecological ‘footprint’ of climate change publication-title: Proceedings of the Royal Society, Series B, Biological Science – volume: 320 start-page: 1768 year: 2008 end-page: 1771 article-title: A significant upward shift in plant species optimum elevation during the 20th century publication-title: Science – volume: 20 start-page: 30 year: 2010 end-page: 59 article-title: Global assessment of nitrogen‐deposition effects on terrestrial plant diversity: a synthesis publication-title: Ecological Applications – volume: 18 start-page: 1 year: 1992 end-page: 258 article-title: Zeigerwerte von Pflanzen in Mitteleuropa publication-title: Scripta Geobotanica – volume: 11 start-page: 727 year: 1997 end-page: 737 article-title: Local extinctions of plants in remnants of extensively used calcareous grasslands 1950‐1985 publication-title: Conservation Biology – volume: 110 start-page: 19456 year: 2013 end-page: 19459 article-title: Global meta‐analysis reveals no net change in local‐scale plant biodiversity over time publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 27 start-page: 53 year: 1999 end-page: 64 article-title: Floristical changes in Central European forest ecosystems during the past decades as an expression of changing site conditions publication-title: EFI Proceedings – volume: 50 start-page: 79 year: 2013 end-page: 87 article-title: Non‐random extinctions dominate plant community changes in abandoned coppices publication-title: Journal of Applied Ecology – volume: 178 start-page: 209 year: 1989 end-page: 223 article-title: Inferring pH from diatoms: a comparison of old and new calibration methods publication-title: Hydrobiologia – volume: 21 start-page: 3726 year: 2015 end-page: 3737 article-title: Drivers of temporal changes in temperate forest plant diversity vary across spatial scales publication-title: Global Change Biology – volume: 13 start-page: 1 year: 2003 end-page: 6 article-title: Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants publication-title: The Holocene – volume: 17 start-page: 299 year: 2006 end-page: 306 article-title: Effects of sampling time, species richness and observer on the exhaustiveness of plant censuses publication-title: Journal of Vegetation Science – volume: 19 start-page: 10 year: 1999 end-page: 12 article-title: Zusammenstellung von Begriffen, die in der Vegetations‐Dauerbeobachtung eine zentrale Rolle spielen publication-title: Tuexenia – volume: 23 start-page: 876 year: 2014 end-page: 884 article-title: Identifying the driving factors behind observed elevational range shifts on European mountains publication-title: Global Ecology and Biogeography – volume: 15 start-page: 1676 year: 2009 end-page: 1684 article-title: Arctic alpine vegetation change over 20 years publication-title: Global Change Biology – volume: 17 start-page: 1871 year: 2011 end-page: 1883 article-title: Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands publication-title: Global Change Biology – volume: 18 start-page: 413 year: 2007 end-page: 422 article-title: How reliable is the monitoring of permanent vegetation plots? A test with multiple observers publication-title: Journal of Vegetation Science – volume: 94 start-page: 355 year: 2006 end-page: 368 article-title: Influence of slope and aspect on long‐term vegetation change in British chalk grasslands publication-title: Journal of Ecology – ident: e_1_2_8_58_1 doi: 10.1126/science.1122667 – ident: e_1_2_8_6_1 doi: 10.1038/nature10548 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.1006823107 – volume: 18 start-page: 1 year: 1992 ident: e_1_2_8_18_1 article-title: Zeigerwerte von Pflanzen in Mitteleuropa publication-title: Scripta Geobotanica – ident: e_1_2_8_10_1 doi: 10.1111/jvs.12211 – volume: 19 start-page: 10 year: 1999 ident: e_1_2_8_21_1 article-title: Zusammenstellung von Begriffen, die in der Vegetations‐Dauerbeobachtung eine zentrale Rolle spielen publication-title: Tuexenia – ident: e_1_2_8_25_1 doi: 10.2307/3236808 – ident: e_1_2_8_28_1 doi: 10.1111/j.1472-4642.2010.00637.x – ident: e_1_2_8_11_1 doi: 10.2307/1939337 – volume-title: Flora Indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen year: 2010 ident: e_1_2_8_36_1 – ident: e_1_2_8_35_1 doi: 10.1111/1365-2664.12010 – volume-title: A concept for vegetation studies and monitoring in the Nordic Countries year: 2000 ident: e_1_2_8_37_1 – ident: e_1_2_8_8_1 doi: 10.1007/978-3-7091-8110-2 – ident: e_1_2_8_50_1 doi: 10.1016/j.foreco.2008.04.042 – ident: e_1_2_8_54_1 doi: 10.1111/j.1654-1103.2007.tb02553.x – ident: e_1_2_8_56_1 doi: 10.7809/b-e.00082 – ident: e_1_2_8_46_1 doi: 10.1111/j.1365-2745.2006.01145.x – volume-title: Zur methodologischen Grundlage der modernen Pflanzensoziologie year: 1921 ident: e_1_2_8_17_1 – ident: e_1_2_8_22_1 doi: 10.1046/j.1523-1739.1997.96082.x – ident: e_1_2_8_42_1 doi: 10.1080/17550871003706233 – ident: e_1_2_8_60_1 doi: 10.1080/17550874.2013.764943 – ident: e_1_2_8_27_1 doi: 10.1023/B:VEGE.0000021681.83068.53 – ident: e_1_2_8_53_1 doi: 10.1111/j.1365-2745.2011.01928.x – year: 2012 ident: e_1_2_8_38_1 publication-title: Numerical ecology – ident: e_1_2_8_13_1 doi: 10.1111/avsc.12050 – ident: e_1_2_8_41_1 doi: 10.1007/BF00121023 – ident: e_1_2_8_49_1 doi: 10.1111/j.1469-8137.1994.tb04252.x – ident: e_1_2_8_32_1 doi: 10.1191/0959683603hl589ft – ident: e_1_2_8_57_1 doi: 10.1098/rspb.2005.3119 – ident: e_1_2_8_7_1 doi: 10.1890/08-1140.1 – ident: e_1_2_8_23_1 doi: 10.1038/369448a0 – ident: e_1_2_8_48_1 doi: 10.1007/BF00006028 – ident: e_1_2_8_2_1 doi: 10.1111/j.1654-1103.2006.tb02449.x – ident: e_1_2_8_5_1 doi: 10.1111/gcb.12993 – ident: e_1_2_8_15_1 doi: 10.1111/j.1654-1103.2011.01265.x – ident: e_1_2_8_59_1 doi: 10.1111/j.1365-2486.2009.01896.x – ident: e_1_2_8_31_1 doi: 10.1073/pnas.0802891105 – ident: e_1_2_8_24_1 doi: 10.1111/geb.12170 – ident: e_1_2_8_51_1 doi: 10.1111/j.1365-2486.2010.02345.x – ident: e_1_2_8_47_1 doi: 10.1111/j.1365-2486.2006.01128.x – ident: e_1_2_8_52_1 doi: 10.1073/pnas.1312779110 – ident: e_1_2_8_19_1 doi: 10.1111/j.1600-0587.2011.07057.x – ident: e_1_2_8_55_1 doi: 10.1111/j.1654-1103.2012.01416.x – ident: e_1_2_8_44_1 doi: 10.1023/A:1021441331839 – ident: e_1_2_8_9_1 doi: 10.1111/j.1472-4642.2011.00799.x – ident: e_1_2_8_30_1 doi: 10.1098/rspb.2009.0938 – ident: e_1_2_8_45_1 doi: 10.1016/j.foreco.2011.06.024 – volume: 27 start-page: 53 year: 1999 ident: e_1_2_8_20_1 article-title: Floristical changes in Central European forest ecosystems during the past decades as an expression of changing site conditions publication-title: EFI Proceedings – ident: e_1_2_8_14_1 doi: 10.1890/12-1006.1 – ident: e_1_2_8_34_1 doi: 10.1111/ddi.12299 – ident: e_1_2_8_3_1 doi: 10.2307/3236314 – ident: e_1_2_8_4_1 doi: 10.1111/j.1365-2745.2006.01104.x – ident: e_1_2_8_40_1 doi: 10.1126/science.1219033 – ident: e_1_2_8_16_1 doi: 10.2307/3237030 – ident: e_1_2_8_29_1 doi: 10.1111/j.1365-2745.2011.01847.x – ident: e_1_2_8_39_1 doi: 10.1126/science.1156831 – volume: 81 start-page: 173 year: 2009 ident: e_1_2_8_43_1 article-title: Vegetation‐plot data and databases in Europe: an overview publication-title: Preslia – ident: e_1_2_8_12_1 doi: 10.1007/BF02853510 – ident: e_1_2_8_33_1 doi: 10.1080/17550874.2013.862752 |
| SSID | ssj0017959 |
| Score | 2.5436325 |
| Snippet | Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation... Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation... Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and... Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation... BACKGROUND: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation... |
| SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 164 |
| SubjectTerms | Bias data collection Environmental change Environmental changes Environmental effects Historical account Long‐term vegetation dynamics Non‐permanent plots Non‐traceable plots Observer bias Plant communities Pseudo‐turnover Quasi‐permanent plots Relocation Relocation error seasonal variation Seasonal variations Semi‐permanent plots SPECIAL FEATURE: VEGETATION RESURVEY Studies surveys uncertainty Vegetation Vegetation re‐sampling |
| Title | Resurveying historical vegetation data — opportunities and challenges |
| URI | https://www.jstor.org/stable/44211484 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Favsc.12269 https://www.ncbi.nlm.nih.gov/pubmed/30245580 https://www.proquest.com/docview/1878007147 https://www.proquest.com/docview/1881755163 https://www.proquest.com/docview/2020890577 https://www.proquest.com/docview/2111744184 https://pubmed.ncbi.nlm.nih.gov/PMC6145442 |
| Volume | 20 |
| WOSCitedRecordID | wos000398083700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1654-109X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017959 issn: 1402-2001 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612x64QHkUAm1lBBeQghLHWdsSl7awcEAVKhTtLXIcm1ZC2WrTXYkb_4F_yC9hxnm0K0olxC2RJ44znrG_iecB8Nxol-VkqYrS81goI2OTchnn3qJmKS9Ta0OxCXl0pKZT_XENXvexMG1-iOGHG2lGWK9JwU3ZXFFys2zsqxTRg16HDY6Cm49g483x5OTDcIpAdbRDdBGFION9l56UPHkun17ZkFqfxOvQ5p9Ok1fBbNiNJnf-7zu24HaHQtl-KzZ3Yc3V92DzYIZI8ft9eHfsmsV86SgCip0OeUTY0n3tnBMZOZayXz9-stk5AfhFHRKzMlNXzPblWZoHcDJ5-_nwfdwVXIjtmNxglLGae25FZRGHcF2a3GTYJHJeSW1UUonMS1VKXAW0t06MLc5llpZaVarySbYNo3pWu0fAvKlKmbg88bkQ3I7RDLPJ2GD32mcIUSN40XO9sF02ciqK8a3orRLiSxH4EsGzgfa8zcFxLdV2mLyBBN9Lxp6IYKefzaJT0KZIlVQEr4SM4OnQjKpF5yWmdrMF0SgEVzki1r_TcCpyqhH03tAPDgPtPpHSUB62QjQMMqOj71whP-SKeA0ElP57taU-Ow1pwBFYEW8jeBnE6wbWFPtfPh2Gq8f_QvwEbnECMcFPaQdGF_OF24VNu7w4a-Z7sC6naq9Tud9abC90 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BWwku_BdCCxjBBaSgxHHW9rEUliKWFSot6i1yHJtWQtlq012JG-_QN-yTdMbJhq4olRC3RJ44znjG-caeH4CXRrssJ0tVlJ7HQhkZm5TLOPcWNUt5mVobik3I8VgdHOgvnW8OxcK0-SH6DTfSjLBek4LThvQFLTfzxr5JET7o67AqUI5QwFff7Q73R_0xAhXSDuFFFIOM911-UnLl-f300h-pdUq8DG7-6TV5Ec2G39Hw9n9-yB241eFQttUKzl245up7sPZ2gljx5334sOua2XTuKAaKHfaZRNjcfe_cExm5lrKzX6dsckwQflaH1KzM1BWziwItzQPYH77f296Ju5ILsR2QI4wyVnPPragsIhGuS5ObDJtEziupjUoqkXmpSonrgPbWiYHF2czSUqtKVT7J1mGlntTuETBvqlImLk98LgS3AzTEbDIw2L32GYLUCF4t2F7YLh85lcX4USzsEuJLEfgSwYue9rjNwnEp1XqYvZ4E30vmnohgczGdRaeiTZEqqQhgCRnB874ZlYtOTEztJjOiUQivcsSsf6fhVOZUI-y9oh8cBlp-IqWhPGylqB9kRoffuUJ-yCX56gkoAfhyS310GBKBI7Qi3kbwOsjXFawptr593Q5Xj_-F-Bnc2Nn7PCpGH8efNuAmJ0gTvJY2YeVkOnNPYM3OT46a6dNO884BR4UyfA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BtkJcym9poIARXEBKlTjO2j6WlgVEtaoKRb1FjmPTSii72nRX4sY78IY8CTNONnRFqYS4JfLEccYz9jfx_AC8MNplOVmqovQ8FsrI2KRcxrm3qFnKy9TaUGxCjsfq5EQfdr45FAvT5ofof7iRZoT1mhTcTSt_QcvNorE7KcIHfR3WBFWRGcDa_tHo-KA_RqBC2iG8iGKQ8b7LT0quPL-fXtmRWqfEy-Dmn16TF9Fs2I5Gt_7zQ27DRodD2W4rOHfgmqvvwvrrCWLFb_fg7ZFr5rOFoxgodtpnEmEL96VzT2TkWsp-fv_BJlOC8PM6pGZlpq6YXRZoae7D8ejNp713cVdyIbZDcoRRxmruuRWVRSTCdWlyk2GTyHkltVFJJTIvVSlxHdDeOjG0OJtZWmpVqcon2SYM6knttoB5U5UycXnicyG4HaIhZpOhwe61zxCkRvByyfbCdvnIqSzG12JplxBfisCXCJ73tNM2C8elVJth9noSfC-ZeyKC7eV0Fp2KNkWqpCKAJWQEz_pmVC46MTG1m8yJRiG8yhGz_p2GU5lTjbD3in5wGGj5iZSG8qCVon6QGR1-5wr5IVfkqyegBOCrLfXZaUgEjtCKeBvBqyBfV7Cm2P38cS9cPfwX4qdw43B_VBy8H394BDc5IZrgtLQNg_PZ3D2Gdbs4P2tmTzrF-wWK3zH3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resurveying+historical+vegetation+data+%E2%80%93+opportunities+and+challenges&rft.jtitle=Applied+vegetation+science&rft.au=Kapfer%2C+Jutta&rft.au=H%C3%A9dl%2C+Radim&rft.au=Jurasinski%2C+Gerald&rft.au=Kopeck%C3%BD%2C+Martin&rft.date=2017-04-01&rft.issn=1402-2001&rft.volume=20&rft.issue=2+p.164-171&rft.spage=164&rft.epage=171&rft_id=info:doi/10.1111%2Favsc.12269&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1402-2001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1402-2001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1402-2001&client=summon |