Lorentz‐Boost‐Driven Magneto‐Optics in a Dirac Nodal‐Line Semimetal

Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any so...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 9; číslo 23; s. e2105720 - n/a
Hlavní autoři: Wyzula, Jan, Lu, Xin, Santos‐Cottin, David, Mukherjee, Dibya Kanti, Mohelský, Ivan, Le Mardelé, Florian, Novák, Jiří, Novak, Mario, Sankar, Raman, Krupko, Yuriy, Piot, Benjamin A., Lee, Wei‐Li, Akrap, Ana, Potemski, Marek, Goerbig, Mark O., Orlita, Milan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany John Wiley & Sons, Inc 01.08.2022
Wiley Open Access
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Here the authors show that the magneto‐optical response of a topological Dirac semimetal with a dispersive nodal line can be understood in terms of pseudo‐relativistic Lorentz transformation. The observed variation of the optical band gap Δ is interpreted as Lorentz‐boost‐driven renormalization of energy, Δ → Δ/γ, where γ stands for the Lorentz factor defined by the mutual orientation of the applied magnetic field and nodal‐line direction.
AbstractList Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.
Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.
Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.
Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Here the authors show that the magneto‐optical response of a topological Dirac semimetal with a dispersive nodal line can be understood in terms of pseudo‐relativistic Lorentz transformation. The observed variation of the optical band gap Δ is interpreted as Lorentz‐boost‐driven renormalization of energy, Δ → Δ/γ, where γ stands for the Lorentz factor defined by the mutual orientation of the applied magnetic field and nodal‐line direction.
Abstract Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.
Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Here the authors show that the magneto‐optical response of a topological Dirac semimetal with a dispersive nodal line can be understood in terms of pseudo‐relativistic Lorentz transformation. The observed variation of the optical band gap Δ is interpreted as Lorentz‐boost‐driven renormalization of energy, Δ → Δ/γ, where γ stands for the Lorentz factor defined by the mutual orientation of the applied magnetic field and nodal‐line direction.
Author Mohelský, Ivan
Krupko, Yuriy
Potemski, Marek
Mukherjee, Dibya Kanti
Goerbig, Mark O.
Santos‐Cottin, David
Wyzula, Jan
Orlita, Milan
Sankar, Raman
Le Mardelé, Florian
Lee, Wei‐Li
Akrap, Ana
Novák, Jiří
Novak, Mario
Piot, Benjamin A.
Lu, Xin
AuthorAffiliation 1 LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3 INSA Toulouse EMFL 25 rue des Martyrs, BP166 Grenoble Cedex 9 38042 France
10 Institute of Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague 2 Czech Republic
5 Department of Condensed Matter Physics Masaryk University Kotlářská 2 611 37 Brno Czech Republic
9 Institute of Experimental Physics Faculty of Physics University of Warsaw ul. Pasteura 5 Warszawa 02‐093 Poland
7 Institute of Physics Academia Sinica Nankang Taipei 11529 Taiwan
2 Laboratoire de Physique des Solides Université Paris Saclay CNRS UMR 8502 Orsay Cedex 91405 France
8 Institut d'Electronique et des Systemes CNRS, UMR 5214, Université de Montpellier Montpellier 34000 France
4 Department of Physics Indiana University Bloomington IN 47405 USA
3 Department of Physics University of Fribourg Chemin du Musée 3 Fribourg 1700 Switzerland
6 Department of Physics Faculty of Science University of Zagreb Zagreb 10000 Croatia
AuthorAffiliation_xml – name: 4 Department of Physics Indiana University Bloomington IN 47405 USA
– name: 10 Institute of Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague 2 Czech Republic
– name: 1 LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3 INSA Toulouse EMFL 25 rue des Martyrs, BP166 Grenoble Cedex 9 38042 France
– name: 3 Department of Physics University of Fribourg Chemin du Musée 3 Fribourg 1700 Switzerland
– name: 6 Department of Physics Faculty of Science University of Zagreb Zagreb 10000 Croatia
– name: 2 Laboratoire de Physique des Solides Université Paris Saclay CNRS UMR 8502 Orsay Cedex 91405 France
– name: 8 Institut d'Electronique et des Systemes CNRS, UMR 5214, Université de Montpellier Montpellier 34000 France
– name: 9 Institute of Experimental Physics Faculty of Physics University of Warsaw ul. Pasteura 5 Warszawa 02‐093 Poland
– name: 5 Department of Condensed Matter Physics Masaryk University Kotlářská 2 611 37 Brno Czech Republic
– name: 7 Institute of Physics Academia Sinica Nankang Taipei 11529 Taiwan
Author_xml – sequence: 1
  givenname: Jan
  surname: Wyzula
  fullname: Wyzula, Jan
  organization: EMFL
– sequence: 2
  givenname: Xin
  surname: Lu
  fullname: Lu, Xin
  organization: Université Paris Saclay
– sequence: 3
  givenname: David
  surname: Santos‐Cottin
  fullname: Santos‐Cottin, David
  organization: University of Fribourg
– sequence: 4
  givenname: Dibya Kanti
  surname: Mukherjee
  fullname: Mukherjee, Dibya Kanti
  organization: Indiana University
– sequence: 5
  givenname: Ivan
  surname: Mohelský
  fullname: Mohelský, Ivan
  organization: EMFL
– sequence: 6
  givenname: Florian
  surname: Le Mardelé
  fullname: Le Mardelé, Florian
  organization: University of Fribourg
– sequence: 7
  givenname: Jiří
  surname: Novák
  fullname: Novák, Jiří
  organization: Masaryk University
– sequence: 8
  givenname: Mario
  surname: Novak
  fullname: Novak, Mario
  organization: University of Zagreb
– sequence: 9
  givenname: Raman
  surname: Sankar
  fullname: Sankar, Raman
  organization: Academia Sinica
– sequence: 10
  givenname: Yuriy
  surname: Krupko
  fullname: Krupko, Yuriy
  organization: CNRS, UMR 5214, Université de Montpellier
– sequence: 11
  givenname: Benjamin A.
  surname: Piot
  fullname: Piot, Benjamin A.
  organization: EMFL
– sequence: 12
  givenname: Wei‐Li
  surname: Lee
  fullname: Lee, Wei‐Li
  organization: Academia Sinica
– sequence: 13
  givenname: Ana
  surname: Akrap
  fullname: Akrap, Ana
  organization: University of Fribourg
– sequence: 14
  givenname: Marek
  surname: Potemski
  fullname: Potemski, Marek
  organization: University of Warsaw
– sequence: 15
  givenname: Mark O.
  surname: Goerbig
  fullname: Goerbig, Mark O.
  organization: Université Paris Saclay
– sequence: 16
  givenname: Milan
  orcidid: 0000-0002-9633-507X
  surname: Orlita
  fullname: Orlita, Milan
  email: milan.orlita@lncmi.cnrs.fr
  organization: Charles University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35713280$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03750827$$DView record in HAL
BookMark eNqFks9uEzEQxleoiJbSK0e0Ehc4JIz_7XovSKEBWhHoocDVcuxx6mizTu1NUDnxCDwjT4JDStTm0pOtme_7zXg8T4uDLnRYFM8JDAkAfaPtOg0pUAKipvCoOKKkkQMmOT-4cz8sTlKaAwARrOZEPikOmagJoxKOik-TELHrf_759ftdCKnP5zj6NXblZz3rsA85cLHsvUml70pdjn3UpvwSrG5zZuI7LC9x4RfY6_ZZ8djpNuHJ7XlcfPvw_uvp2WBy8fH8dDQZmAqoGGhmm1oQBOesEBKlroljDeNiqrljgnJHAaQzhFnCCecVCic1tcZM0XFkx8X5lmuDnqtl9Asdb1TQXv0LhDhTOuaWW1TWgrTCNY4zxpHQhky1rSqJjhrBjcyst1vWcjVdoDV5FlG396D3M52_UrOwVg2rK0lIBrzeAq72bGejidrEgNUCJK3XG-2r22IxXK8w9Wrhk8G21R2GVVK0qiWnNIOz9OWedB5WsctjVbQGCrwBzrPqxd3ud_X__28WDLcCE0NKEd1OQkBtdkhtdkjtdigb-J7B-F73Pmxe79sHbT98izcPFFGj8fdLTirB_gLep9yW
CitedBy_id crossref_primary_10_1103_PhysRevX_14_041057
crossref_primary_10_1021_acs_nanolett_4c06072
crossref_primary_10_1038_s41567_023_01978_9
crossref_primary_10_1016_j_aop_2025_169996
crossref_primary_10_1103_wfzd_7r9n
Cites_doi 10.1038/s41598-018-24823-z
10.1103/PhysRevB.94.121108
10.1007/BF01339716
10.1103/RevModPhys.90.015001
10.1103/PhysRevB.93.195106
10.1088/0953-8984/28/15/155801
10.1103/PhysRevB.88.104412
10.1103/RevModPhys.88.035005
10.1126/science.aac6089
10.1103/PhysRevB.92.035306
10.1038/nphys2857
10.1103/PhysRevLett.108.017602
10.1038/nphys1198
10.1088/1367-2630/18/8/085006
10.1103/PhysRevLett.55.983
10.1038/ncomms11696
10.1073/pnas.1809631115
10.1103/PhysRevB.94.041103
10.1038/nature15768
10.1016/0370-2693(83)91529-0
10.1063/5.0042307
10.1103/PhysRevB.87.235121
10.1103/PhysRevB.93.121202
10.1107/S0108270195007062
10.1103/PhysRevE.66.037402
10.1209/0295-5075/85/57005
10.1103/RevModPhys.88.021004
10.1103/PhysRevLett.117.086402
10.1143/JPSJ.75.054705
10.1103/PhysRevB.104.L201115
10.1515/zna-1958-0609
10.1038/s42254-021-00310-9
10.1002/pssb.202000027
10.1103/PhysRevB.33.6916
10.1103/PhysRevLett.98.116802
10.1038/nmat4787
10.1038/nphys384
10.1126/science.aad2713
10.1073/pnas.1820331116
10.1038/s41567-020-0859-z
10.1103/PhysRevB.93.195119
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1002/advs.202105720
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
PubMed
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_dd08d5f9f4334e1291bad668ef2c54c8
PMC9376811
oai:HAL:hal-03750827v1
35713280
10_1002_advs_202105720
ADVS4165
Genre article
Journal Article
GrantInformation_xml – fundername: Croatian Government + European regional development fund
  funderid: KK.01.1.1.02.0013
– fundername: ANR
  funderid: Colector ANR‐19‐CE30‐0032; DIRAC3D ANR‐17‐CE30‐0023
– fundername: Ministry of Science and Technology
  funderid: MOST‐110‐2112‐M‐001‐065‐MY3
– fundername: PHC ORCHID
  funderid: 47044XE
– fundername: National Science Foundation
  funderid: DMR‐1914451
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: PP00P2‐170544
– fundername: ANR
  grantid: DIRAC3D ANR-17-CE30-0023
– fundername: PHC ORCHID
  grantid: 47044XE
– fundername: ANR
  grantid: Colector ANR-19-CE30-0032
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: PP00P2-170544
– fundername: Ministry of Science and Technology
  grantid: MOST-110-2112-M-001-065-MY3
– fundername: National Science Foundation
  grantid: DMR-1914451
– fundername: Croatian Government + European regional development fund
  grantid: KK.01.1.1.02.0013
– fundername: ;
  grantid: PP00P2‐170544
– fundername: ;
  grantid: Colector ANR‐19‐CE30‐0032; DIRAC3D ANR‐17‐CE30‐0023
– fundername: ;
  grantid: MOST‐110‐2112‐M‐001‐065‐MY3
– fundername: ;
  grantid: DMR‐1914451
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c6025-a3d9751e0ffd558e8a71f39345ba4f3524f2008fc13d141446e5f8a2dccbef4e3
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812290100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Tue Oct 14 19:09:29 EDT 2025
Tue Nov 04 02:02:31 EST 2025
Sat Nov 22 06:20:22 EST 2025
Thu Oct 02 11:45:31 EDT 2025
Sat Jul 26 02:01:56 EDT 2025
Mon Jul 21 06:04:26 EDT 2025
Sat Nov 29 07:22:04 EST 2025
Tue Nov 18 21:51:56 EST 2025
Wed Jan 22 16:22:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Lorentz boost
dirac and topological matter
nodal-line semimetals
Landau level spectroscopy
infrared magneto-spectroscopy
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6025-a3d9751e0ffd558e8a71f39345ba4f3524f2008fc13d141446e5f8a2dccbef4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9633-507X
OpenAccessLink https://www.proquest.com/docview/2702049044?pq-origsite=%requestingapplication%
PMID 35713280
PQID 2702049044
PQPubID 4365299
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_dd08d5f9f4334e1291bad668ef2c54c8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9376811
hal_primary_oai_HAL_hal_03750827v1
proquest_miscellaneous_2678422768
proquest_journals_2702049044
pubmed_primary_35713280
crossref_primary_10_1002_advs_202105720
crossref_citationtrail_10_1002_advs_202105720
wiley_primary_10_1002_advs_202105720_ADVS4165
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Open Access
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Open Access
– name: John Wiley and Sons Inc
– name: Wiley
References 1995; 51
2009; 85
2015; 5
2006; 75
2021; 3
2013; 88
2012
1983; 130
2015; 92
2013; 87
2021; 104
1986; 33
1958; 13
2021; 129
2020; 16
2015; 527
1967; 24
2016; 94
2016; 93
2006; 2
2016; 18
2007; 98
2016; 15
2012; 108
2015; 350
2016; 7
2018; 8
2021; 258
2002; 66
2019; 116
2018; 90
2016; 117
2009; 5
1985; 55
2016; 28
2014; 10
2016; 88
1929; 53
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Landwehr G. (e_1_2_10_42_1) 2012
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Huang X. (e_1_2_10_10_1) 2015; 5
e_1_2_10_29_1
e_1_2_10_27_1
Aronov A. G. (e_1_2_10_22_1) 1967; 24
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 55
  start-page: 983
  year: 1985
  publication-title: Phys. Rev. Lett.
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 339
  year: 1967
  publication-title: Sov. Phys.– JETP
– volume: 3
  start-page: 394
  year: 2021
  publication-title: Nat. Rev. Phys.
– volume: 28
  year: 2016
  publication-title: J. Phys.: Condens. Matter
– volume: 90
  year: 2018
  publication-title: Rev. Mod. Phys.
– volume: 88
  year: 2013
  publication-title: Phys. Rev. B
– volume: 75
  year: 2006
  publication-title: J. Phys. Soc. Jpn.
– volume: 116
  start-page: 1168
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 53
  start-page: 157
  year: 1929
  publication-title: Z. Phys.
– volume: 88
  year: 2016
  publication-title: Rev. Mod. Phys.
– volume: 258
  year: 2021
  publication-title: Phys. Status Solidi B
– volume: 350
  start-page: 413
  year: 2015
  publication-title: Science
– volume: 5
  year: 2015
  publication-title: Phys. Rev. X
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 116
  start-page: 1084
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2012
– volume: 8
  start-page: 6414
  year: 2018
  publication-title: Sci. Rep.
– volume: 10
  start-page: 233
  year: 2014
  publication-title: Nat. Phys.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 620
  year: 2006
  publication-title: Nat. Phys.
– volume: 5
  start-page: 222
  year: 2009
  publication-title: Nat. Phys.
– volume: 33
  start-page: 6916
  year: 1986
  publication-title: Phys. Rev. B
– volume: 18
  year: 2016
  publication-title: New J. Phys.
– volume: 51
  start-page: 2205
  year: 1995
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 484
  year: 1958
  publication-title: Z. Naturforsch., A: Phys. Sci.
– volume: 527
  start-page: 495
  year: 2015
  publication-title: Nature
– volume: 66
  year: 2002
  publication-title: Phys. Rev. E
– volume: 350
  start-page: 378
  year: 2015
  publication-title: Science
– volume: 15
  start-page: 1140
  year: 2016
  publication-title: Nat. Mater.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 129
  year: 2021
  publication-title: J. Appl. Phys.
– volume: 104
  year: 2021
  publication-title: Phys. Rev. B
– volume: 130
  start-page: 389
  year: 1983
  publication-title: Phys. Lett. B
– volume: 85
  year: 2009
  publication-title: Europhys. Lett.
– volume: 16
  start-page: 636
  year: 2020
  publication-title: Nat. Phys.
– ident: e_1_2_10_41_1
  doi: 10.1038/s41598-018-24823-z
– ident: e_1_2_10_33_1
– ident: e_1_2_10_31_1
  doi: 10.1103/PhysRevB.94.121108
– ident: e_1_2_10_4_1
  doi: 10.1007/BF01339716
– volume: 24
  start-page: 339
  year: 1967
  ident: e_1_2_10_22_1
  publication-title: Sov. Phys.– JETP
– ident: e_1_2_10_3_1
  doi: 10.1103/RevModPhys.90.015001
– ident: e_1_2_10_27_1
  doi: 10.1103/PhysRevB.93.195106
– volume-title: Landau Level Spectroscopy
  year: 2012
  ident: e_1_2_10_42_1
– ident: e_1_2_10_44_1
  doi: 10.1088/0953-8984/28/15/155801
– ident: e_1_2_10_8_1
  doi: 10.1103/PhysRevB.88.104412
– ident: e_1_2_10_2_1
  doi: 10.1103/RevModPhys.88.035005
– ident: e_1_2_10_9_1
  doi: 10.1126/science.aac6089
– ident: e_1_2_10_17_1
  doi: 10.1103/PhysRevB.92.035306
– ident: e_1_2_10_35_1
  doi: 10.1038/nphys2857
– ident: e_1_2_10_43_1
  doi: 10.1103/PhysRevLett.108.017602
– ident: e_1_2_10_6_1
  doi: 10.1038/nphys1198
– ident: e_1_2_10_12_1
  doi: 10.1088/1367-2630/18/8/085006
– ident: e_1_2_10_23_1
  doi: 10.1103/PhysRevLett.55.983
– ident: e_1_2_10_30_1
  doi: 10.1038/ncomms11696
– ident: e_1_2_10_26_1
  doi: 10.1073/pnas.1809631115
– ident: e_1_2_10_40_1
  doi: 10.1103/PhysRevB.94.041103
– ident: e_1_2_10_18_1
  doi: 10.1038/nature15768
– ident: e_1_2_10_7_1
  doi: 10.1016/0370-2693(83)91529-0
– ident: e_1_2_10_20_1
  doi: 10.1063/5.0042307
– ident: e_1_2_10_34_1
  doi: 10.1103/PhysRevB.87.235121
– ident: e_1_2_10_36_1
  doi: 10.1103/PhysRevB.93.121202
– ident: e_1_2_10_28_1
  doi: 10.1107/S0108270195007062
– ident: e_1_2_10_25_1
  doi: 10.1103/PhysRevE.66.037402
– ident: e_1_2_10_16_1
  doi: 10.1209/0295-5075/85/57005
– ident: e_1_2_10_1_1
  doi: 10.1103/RevModPhys.88.021004
– ident: e_1_2_10_19_1
  doi: 10.1103/PhysRevLett.117.086402
– ident: e_1_2_10_15_1
  doi: 10.1143/JPSJ.75.054705
– ident: e_1_2_10_38_1
  doi: 10.1103/PhysRevB.104.L201115
– ident: e_1_2_10_45_1
  doi: 10.1515/zna-1958-0609
– ident: e_1_2_10_14_1
  doi: 10.1038/s42254-021-00310-9
– ident: e_1_2_10_37_1
  doi: 10.1002/pssb.202000027
– ident: e_1_2_10_24_1
  doi: 10.1103/PhysRevB.33.6916
– ident: e_1_2_10_21_1
  doi: 10.1103/PhysRevLett.98.116802
– ident: e_1_2_10_13_1
  doi: 10.1038/nmat4787
– ident: e_1_2_10_5_1
  doi: 10.1038/nphys384
– ident: e_1_2_10_11_1
  doi: 10.1126/science.aad2713
– ident: e_1_2_10_32_1
  doi: 10.1073/pnas.1820331116
– volume: 5
  year: 2015
  ident: e_1_2_10_10_1
  publication-title: Phys. Rev. X
– ident: e_1_2_10_29_1
  doi: 10.1038/s41567-020-0859-z
– ident: e_1_2_10_39_1
  doi: 10.1103/PhysRevB.93.195119
SSID ssj0001537418
Score 2.330166
Snippet Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply...
Abstract Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2105720
SubjectTerms dirac and topological matter
Energy
infrared magneto‐spectroscopy
Landau level spectroscopy
Lorentz boost
Magnetic fields
nodal‐line semimetals
Physics
Radiation
Theory of relativity
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXRHkGShUQEnCIun7FybEFqkqUBakg9Rb5MaYrtUm1u90Dp_6E_sb-ks4k2WhXFeqFUyTbSSbjsecbZfwNY--JW9ISA4B3AJnKdcB90EPmDHdC5c7KPLTFJsx4XJyclD9XSn1RTlhHD9wpbjeEURF0LKOSUgF6J-5syPMCovBa-faYL6KelWCqOx8siZZlydI4Ers2LIidW1BdWyruveKFWrJ-9C2nlAp5F2feTZdchbGtHzp4zB71ADLd6wTfYg-gfsK2-iU6Sz_2PNKfnrJvRw1RL_29ubreb5rZHK9fprS5pd_tnxrmDTb8uCCa5nRSpzbF3c_6dNwEe4Y9GKRCegznk3NAfP6M_T74-uvzYdbXTsh8ThVqrQyl0RxGMQatCyis4VGWUmlnVUTUpSJlPkTPZeCKgkLQsbAieJy0qEA-Zxt1U8NLlrpSGCcNcB1ABQR0ypU2LzzeUgZpIWHZUpeV74nFqb7FWdVRIouKdF8Nuk_Yh2H8RUep8c-R-zQ1wyiiwm4b0ECq3kCq-wwkYe9wYteecbh3VFEb1f9FCGQWPGHby3mv-kWMchg6OVyOlErY26Eblx_9U7E1NJc4Bp29EgKDtoS96MxkeJXUBmP9Aj_DrBnQmizrPfXktKX4RtCYFxzFylpTu0dPFUKYY0TW-tX_UNhr9lDQGY82y3Gbbcynl_CGbfrFfDKb7rTr7BaMxi5y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQ4cAFWn5DCwoICThEXf_FzrEFqkqUpVJB6i1y7HG7UptUu9s9cOIReEaehJlsNm1UIYQ4RbInie3MjL9x7G8Ye03cko4YAHwFkKlcB_SDHrLK8EqovHIyD22yCTMe2-Pj4vDaKf4lP0S_4EaW0fprMnBXzbavSENdWBDdtqBEtQKD9tucS0vJG4Q6vFpl0ZLoWSjDHEbXmbRKrZgbR2J7-IjBzNQS-ON8c0rbI29iz5tbKK9D23Zu2rv__71aZ_c6XJruLBVpg92C-gHb6Cx_lr7t6KnfPWSfDhpidPr-68fP3aaZzfH6YUo-M_3sTmqYN1jw5YLYn9NJnboUnarz6bgJ7gxrMPaF9AjOJ-eAsP8R-7b38ev7_axLyZD5nBLfOhkKozmMYgxaW7DO8CgLqXTlVEQwpyJtqIiey8AVxZqgo3UieNSFqEA-Zmt1U8NTllaFMJU0wHUAFRAnqqpwufV4SxGkg4Rlq89R-o6vnNJmnJVLpmVR0liV_Vgl7E0vf7Fk6vij5C593V6KGLbbgmZ6UnYGW4YwskHHIiopFSAq4pULeW4hCq-Vtwl7hboxeMb-zkFJZZRWGJGVWfCEba1Up-x8A7bD0IHkYqRUwl721WjV9KvG1dBcogxiCCUExoIJe7LUtP5VUhsuhcVumIEODtoyrKknpy1zOGLR3HJsVtbq4F_GqURkdISAXT_7R_lNdlfQKZF2n-QWW5tPL-E5u-MX88ls-qK10N80Tz6-
  priority: 102
  providerName: Wiley-Blackwell
Title Lorentz‐Boost‐Driven Magneto‐Optics in a Dirac Nodal‐Line Semimetal
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202105720
https://www.ncbi.nlm.nih.gov/pubmed/35713280
https://www.proquest.com/docview/2702049044
https://www.proquest.com/docview/2678422768
https://hal.science/hal-03750827
https://pubmed.ncbi.nlm.nih.gov/PMC9376811
https://doaj.org/article/dd08d5f9f4334e1291bad668ef2c54c8
Volume 9
WOSCitedRecordID wos000812290100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZowoELUJ4LJVoQEnBYNevHrveEGmjViiaNKIj0tPL60UZqd0OS5sCJn8Bv5Jcws3GWRhVw4OJobW9iZ8bjz_b4G0JeIrekQgYAXVgb8UQYsIPaRkUaF5QnhWKJqYNNpIOBHI2yod9wm3m3ypVNrA21qTTukW_jvSk8peL87eRrhFGj8HTVh9DYIG1kKuMt0u7tDoYff--yCIb0LCu2xi7dVmaBLN0U49tikO8rs1FN2g9zzBm6RF7Hm9fdJq_C2Xo-2rvzvz25S257JBruLFVnk9yw5T2y6cf6LHztCanf3CcfDivkcPr28_uPXlXN5vD5fopWMuyr09LOK8g4miDfczguQxWCGVU6HFRGnUMJrHZteGwvxhcWgP4D8nlv99O7_cgHYYh0gqFuFTNZKmLbdc4IIa1UaexYxrgoFHcA37hDFwqnY2ZijqtLK5xU1GiQvuOWPSStsirtYxIWGU0LltpYGMsNIENeZCqRGl7JDFM2INFKGLn2DOUYKOM8X3Ir0xyFlzfCC8irpv5kyc3xx5o9lG1TCzm164xqepr7IZob05VGuMxxxrgFHBQXyiSJtI5qwbUMyAvQjLXv2N85zDEPAwkDlkoXcUC2VkLPvTWAdjQSD8jzphjGMR7OqNJWl1AHUAOnFFZ_AXm01LPmp5hIY0YldCNd08C1tqyXlOOzmisc0GciY2hWVOvqP_6nHLDQMUB08eTv3XhKblG8BlI7Qm6R1nx6aZ-Rm3oxH8-mHbJB-RDSdCQ7fkB26r0OSPv0qE6hvD086A9P4OnLweAXWQdEgg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRJsgPI0FDAIBCysxvPwY4FQS6kS5UGktlJZmfHMuI3U2iFJg2DFJ_AlfBRfwr2OYxpVwKoLVpFmxs6MfebOvZ475wA8I25JRQwAOrXWE4E0aAe19dLQT5kIUsUDU4pNhP1-dHAQD1bgx-IsDKVVLmxiaahNoekb-Qadm6JdKiHejD55pBpFu6sLCY05LDr2y2cM2Sav29v4fp8ztvNu723Lq1QFPB2QdqviJg6lb5tZZqSMbKRCP-MxFzJVIkN_RGSUE5BpnxtfULhkZRYpZjQOJxOW430vwapAsEcNWB20e4MPv7_qSE50MAt2yCbbUGZGrOCM9HRJVPzM6leKBOCadkQpmOf92_Npmmfd53L927n-vz25G3Ct8rTdzfnUWIMVm9-EtcqWTdyXFeH2q1vQ6RbEUfX157fvW0UxmeLv9phWAbenDnM7LbDg_Yj4rN1h7ioXlwml3X5h1DHWYDRv3V17MjyxGMjchv0LGdQdaORFbu-Bm8YsTHlofWmsMOj5ijRWQaTxkthwZR3wFi8_0RUDOwmBHCdz7miWEFiSGiwOvKjbj-bcI39suUVYqlsRZ3hZUIwPk8oEJcY0IyOzOBOcC4t-np8qEwSRzZiWQkcOPEUkLt2jtdlNqIyEktFXDGe-A-sLkCWVtcN-1Ahz4EldjXaKNp9UbotTbINekWAMo1sH7s5xXf8Vl6HPWYTDCJcQv9SX5Zp8eFRyoaN3HUQ-dssr58Y_nlOCvt4uhiDy_t-H8RiutPZ63aTb7ncewFVGR17KpM91aEzHp_YhXNaz6XAyflQZABc-XvTM-QVZHppR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXoDwNBQwCAQcr8T78OCDUEqJWCWmlgtSbWe-jjdTaIUmD4MRP4Pfwc_glzDiOaVQBpx44RVpvnF3n25lvvLPfADwlbUlFCgA6tzYQkTRoB7UN8jjMmYhyxSNTFZuIB4Nkfz_dXYEfi7MwlFa5sImVoTalpnfkLTo3RbtUQrRcnRax2-m-Hn0KqIIU7bQuymnMIdKzXz5j-DZ5td3B__oZY923799sBXWFgUBHVMdVcZPGMrRt54yUiU1UHDqeciFzJRxyE-EoP8DpkJtQUOhkpUsUMxqn5oTleN8LcDEW6JQpbZDt_H6_IzkJwyx0ItuspcyM9MEZVdal8uKn_GBVLgC92yElY55lumcTNk8T6coTdq_9z8_wOlyt-be_MV8wa7BiixuwVlu4if-iluF-eRN6_ZKUq77-_PZ9sywnU_zsjMk3-O_UQWGnJTbsjEjl2h8WvvLReSjtD0qjjvAKxvjW37PHw2OL4c0t-HAuk7oNq0VZ2Lvg5ymLcx7bUBorDPJhkacqSjR-JTVcWQ-CBRAyXeuyU3mQo2yuKM0yAk7WAMeD503_0VyR5I89NwlXTS9SEq8ayvFBVhumzJh2YqRLneBcWGR_Ya5MFCXWMS2FTjx4gqhcusfWRj-jNiqfjAwynoUerC8Al9U2EMfRoM2Dx81ltF60JaUKW55gH-RKgjGMeT24M8d481NcxiFnCU4jXkL_0liWrxTDw0ohHTl3lIQ4rKBaJ_94ThkywD0MTOS9v0_jEVzG5ZL1twe9-3CF0TmYKhN0HVan4xP7AC7p2XQ4GT-sLIEPH8972fwCJhmhiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lorentz%E2%80%90Boost%E2%80%90Driven+Magneto%E2%80%90Optics+in+a+Dirac+Nodal%E2%80%90Line+Semimetal&rft.jtitle=Advanced+science&rft.au=Wyzula%2C+Jan&rft.au=Lu%2C+Xin&rft.au=Santos%E2%80%90Cottin%2C+David&rft.au=Mukherjee%2C+Dibya+Kanti&rft.date=2022-08-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=23&rft_id=info:doi/10.1002%2Fadvs.202105720&rft_id=info%3Apmid%2F35713280&rft.externalDocID=PMC9376811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon