Lorentz‐Boost‐Driven Magneto‐Optics in a Dirac Nodal‐Line Semimetal
Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any so...
Uložené v:
| Vydané v: | Advanced science Ročník 9; číslo 23; s. e2105720 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
John Wiley & Sons, Inc
01.08.2022
Wiley Open Access John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.
Here the authors show that the magneto‐optical response of a topological Dirac semimetal with a dispersive nodal line can be understood in terms of pseudo‐relativistic Lorentz transformation. The observed variation of the optical band gap Δ is interpreted as Lorentz‐boost‐driven renormalization of energy, Δ → Δ/γ, where γ stands for the Lorentz factor defined by the mutual orientation of the applied magnetic field and nodal‐line direction. |
|---|---|
| AbstractList | Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap-a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Here the authors show that the magneto‐optical response of a topological Dirac semimetal with a dispersive nodal line can be understood in terms of pseudo‐relativistic Lorentz transformation. The observed variation of the optical band gap Δ is interpreted as Lorentz‐boost‐driven renormalization of energy, Δ → Δ/γ, where γ stands for the Lorentz factor defined by the mutual orientation of the applied magnetic field and nodal‐line direction. Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Abstract Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies. Here the authors show that the magneto‐optical response of a topological Dirac semimetal with a dispersive nodal line can be understood in terms of pseudo‐relativistic Lorentz transformation. The observed variation of the optical band gap Δ is interpreted as Lorentz‐boost‐driven renormalization of energy, Δ → Δ/γ, where γ stands for the Lorentz factor defined by the mutual orientation of the applied magnetic field and nodal‐line direction. |
| Author | Mohelský, Ivan Krupko, Yuriy Potemski, Marek Mukherjee, Dibya Kanti Goerbig, Mark O. Santos‐Cottin, David Wyzula, Jan Orlita, Milan Sankar, Raman Le Mardelé, Florian Lee, Wei‐Li Akrap, Ana Novák, Jiří Novak, Mario Piot, Benjamin A. Lu, Xin |
| AuthorAffiliation | 1 LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3 INSA Toulouse EMFL 25 rue des Martyrs, BP166 Grenoble Cedex 9 38042 France 10 Institute of Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague 2 Czech Republic 5 Department of Condensed Matter Physics Masaryk University Kotlářská 2 611 37 Brno Czech Republic 9 Institute of Experimental Physics Faculty of Physics University of Warsaw ul. Pasteura 5 Warszawa 02‐093 Poland 7 Institute of Physics Academia Sinica Nankang Taipei 11529 Taiwan 2 Laboratoire de Physique des Solides Université Paris Saclay CNRS UMR 8502 Orsay Cedex 91405 France 8 Institut d'Electronique et des Systemes CNRS, UMR 5214, Université de Montpellier Montpellier 34000 France 4 Department of Physics Indiana University Bloomington IN 47405 USA 3 Department of Physics University of Fribourg Chemin du Musée 3 Fribourg 1700 Switzerland 6 Department of Physics Faculty of Science University of Zagreb Zagreb 10000 Croatia |
| AuthorAffiliation_xml | – name: 4 Department of Physics Indiana University Bloomington IN 47405 USA – name: 10 Institute of Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague 2 Czech Republic – name: 1 LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3 INSA Toulouse EMFL 25 rue des Martyrs, BP166 Grenoble Cedex 9 38042 France – name: 3 Department of Physics University of Fribourg Chemin du Musée 3 Fribourg 1700 Switzerland – name: 6 Department of Physics Faculty of Science University of Zagreb Zagreb 10000 Croatia – name: 2 Laboratoire de Physique des Solides Université Paris Saclay CNRS UMR 8502 Orsay Cedex 91405 France – name: 8 Institut d'Electronique et des Systemes CNRS, UMR 5214, Université de Montpellier Montpellier 34000 France – name: 9 Institute of Experimental Physics Faculty of Physics University of Warsaw ul. Pasteura 5 Warszawa 02‐093 Poland – name: 5 Department of Condensed Matter Physics Masaryk University Kotlářská 2 611 37 Brno Czech Republic – name: 7 Institute of Physics Academia Sinica Nankang Taipei 11529 Taiwan |
| Author_xml | – sequence: 1 givenname: Jan surname: Wyzula fullname: Wyzula, Jan organization: EMFL – sequence: 2 givenname: Xin surname: Lu fullname: Lu, Xin organization: Université Paris Saclay – sequence: 3 givenname: David surname: Santos‐Cottin fullname: Santos‐Cottin, David organization: University of Fribourg – sequence: 4 givenname: Dibya Kanti surname: Mukherjee fullname: Mukherjee, Dibya Kanti organization: Indiana University – sequence: 5 givenname: Ivan surname: Mohelský fullname: Mohelský, Ivan organization: EMFL – sequence: 6 givenname: Florian surname: Le Mardelé fullname: Le Mardelé, Florian organization: University of Fribourg – sequence: 7 givenname: Jiří surname: Novák fullname: Novák, Jiří organization: Masaryk University – sequence: 8 givenname: Mario surname: Novak fullname: Novak, Mario organization: University of Zagreb – sequence: 9 givenname: Raman surname: Sankar fullname: Sankar, Raman organization: Academia Sinica – sequence: 10 givenname: Yuriy surname: Krupko fullname: Krupko, Yuriy organization: CNRS, UMR 5214, Université de Montpellier – sequence: 11 givenname: Benjamin A. surname: Piot fullname: Piot, Benjamin A. organization: EMFL – sequence: 12 givenname: Wei‐Li surname: Lee fullname: Lee, Wei‐Li organization: Academia Sinica – sequence: 13 givenname: Ana surname: Akrap fullname: Akrap, Ana organization: University of Fribourg – sequence: 14 givenname: Marek surname: Potemski fullname: Potemski, Marek organization: University of Warsaw – sequence: 15 givenname: Mark O. surname: Goerbig fullname: Goerbig, Mark O. organization: Université Paris Saclay – sequence: 16 givenname: Milan orcidid: 0000-0002-9633-507X surname: Orlita fullname: Orlita, Milan email: milan.orlita@lncmi.cnrs.fr organization: Charles University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35713280$$D View this record in MEDLINE/PubMed https://hal.science/hal-03750827$$DView record in HAL |
| BookMark | eNqFks9uEzEQxleoiJbSK0e0Ehc4JIz_7XovSKEBWhHoocDVcuxx6mizTu1NUDnxCDwjT4JDStTm0pOtme_7zXg8T4uDLnRYFM8JDAkAfaPtOg0pUAKipvCoOKKkkQMmOT-4cz8sTlKaAwARrOZEPikOmagJoxKOik-TELHrf_759ftdCKnP5zj6NXblZz3rsA85cLHsvUml70pdjn3UpvwSrG5zZuI7LC9x4RfY6_ZZ8djpNuHJ7XlcfPvw_uvp2WBy8fH8dDQZmAqoGGhmm1oQBOesEBKlroljDeNiqrljgnJHAaQzhFnCCecVCic1tcZM0XFkx8X5lmuDnqtl9Asdb1TQXv0LhDhTOuaWW1TWgrTCNY4zxpHQhky1rSqJjhrBjcyst1vWcjVdoDV5FlG396D3M52_UrOwVg2rK0lIBrzeAq72bGejidrEgNUCJK3XG-2r22IxXK8w9Wrhk8G21R2GVVK0qiWnNIOz9OWedB5WsctjVbQGCrwBzrPqxd3ud_X__28WDLcCE0NKEd1OQkBtdkhtdkjtdigb-J7B-F73Pmxe79sHbT98izcPFFGj8fdLTirB_gLep9yW |
| CitedBy_id | crossref_primary_10_1103_PhysRevX_14_041057 crossref_primary_10_1021_acs_nanolett_4c06072 crossref_primary_10_1038_s41567_023_01978_9 crossref_primary_10_1016_j_aop_2025_169996 crossref_primary_10_1103_wfzd_7r9n |
| Cites_doi | 10.1038/s41598-018-24823-z 10.1103/PhysRevB.94.121108 10.1007/BF01339716 10.1103/RevModPhys.90.015001 10.1103/PhysRevB.93.195106 10.1088/0953-8984/28/15/155801 10.1103/PhysRevB.88.104412 10.1103/RevModPhys.88.035005 10.1126/science.aac6089 10.1103/PhysRevB.92.035306 10.1038/nphys2857 10.1103/PhysRevLett.108.017602 10.1038/nphys1198 10.1088/1367-2630/18/8/085006 10.1103/PhysRevLett.55.983 10.1038/ncomms11696 10.1073/pnas.1809631115 10.1103/PhysRevB.94.041103 10.1038/nature15768 10.1016/0370-2693(83)91529-0 10.1063/5.0042307 10.1103/PhysRevB.87.235121 10.1103/PhysRevB.93.121202 10.1107/S0108270195007062 10.1103/PhysRevE.66.037402 10.1209/0295-5075/85/57005 10.1103/RevModPhys.88.021004 10.1103/PhysRevLett.117.086402 10.1143/JPSJ.75.054705 10.1103/PhysRevB.104.L201115 10.1515/zna-1958-0609 10.1038/s42254-021-00310-9 10.1002/pssb.202000027 10.1103/PhysRevB.33.6916 10.1103/PhysRevLett.98.116802 10.1038/nmat4787 10.1038/nphys384 10.1126/science.aad2713 10.1073/pnas.1820331116 10.1038/s41567-020-0859-z 10.1103/PhysRevB.93.195119 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1002/advs.202105720 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_dd08d5f9f4334e1291bad668ef2c54c8 PMC9376811 oai:HAL:hal-03750827v1 35713280 10_1002_advs_202105720 ADVS4165 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Croatian Government + European regional development fund funderid: KK.01.1.1.02.0013 – fundername: ANR funderid: Colector ANR‐19‐CE30‐0032; DIRAC3D ANR‐17‐CE30‐0023 – fundername: Ministry of Science and Technology funderid: MOST‐110‐2112‐M‐001‐065‐MY3 – fundername: PHC ORCHID funderid: 47044XE – fundername: National Science Foundation funderid: DMR‐1914451 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: PP00P2‐170544 – fundername: ANR grantid: DIRAC3D ANR-17-CE30-0023 – fundername: PHC ORCHID grantid: 47044XE – fundername: ANR grantid: Colector ANR-19-CE30-0032 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: PP00P2-170544 – fundername: Ministry of Science and Technology grantid: MOST-110-2112-M-001-065-MY3 – fundername: National Science Foundation grantid: DMR-1914451 – fundername: Croatian Government + European regional development fund grantid: KK.01.1.1.02.0013 – fundername: ; grantid: PP00P2‐170544 – fundername: ; grantid: Colector ANR‐19‐CE30‐0032; DIRAC3D ANR‐17‐CE30‐0023 – fundername: ; grantid: MOST‐110‐2112‐M‐001‐065‐MY3 – fundername: ; grantid: DMR‐1914451 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c6025-a3d9751e0ffd558e8a71f39345ba4f3524f2008fc13d141446e5f8a2dccbef4e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812290100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Tue Oct 14 19:09:29 EDT 2025 Tue Nov 04 02:02:31 EST 2025 Sat Nov 22 06:20:22 EST 2025 Thu Oct 02 11:45:31 EDT 2025 Sat Jul 26 02:01:56 EDT 2025 Mon Jul 21 06:04:26 EDT 2025 Sat Nov 29 07:22:04 EST 2025 Tue Nov 18 21:51:56 EST 2025 Wed Jan 22 16:22:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Lorentz boost dirac and topological matter nodal-line semimetals Landau level spectroscopy infrared magneto-spectroscopy |
| Language | English |
| License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6025-a3d9751e0ffd558e8a71f39345ba4f3524f2008fc13d141446e5f8a2dccbef4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9633-507X |
| OpenAccessLink | https://doaj.org/article/dd08d5f9f4334e1291bad668ef2c54c8 |
| PMID | 35713280 |
| PQID | 2702049044 |
| PQPubID | 4365299 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dd08d5f9f4334e1291bad668ef2c54c8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9376811 hal_primary_oai_HAL_hal_03750827v1 proquest_miscellaneous_2678422768 proquest_journals_2702049044 pubmed_primary_35713280 crossref_primary_10_1002_advs_202105720 crossref_citationtrail_10_1002_advs_202105720 wiley_primary_10_1002_advs_202105720_ADVS4165 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Open Access John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Open Access – name: John Wiley and Sons Inc – name: Wiley |
| References | 1995; 51 2009; 85 2015; 5 2006; 75 2021; 3 2013; 88 2012 1983; 130 2015; 92 2013; 87 2021; 104 1986; 33 1958; 13 2021; 129 2020; 16 2015; 527 1967; 24 2016; 94 2016; 93 2006; 2 2016; 18 2007; 98 2016; 15 2012; 108 2015; 350 2016; 7 2018; 8 2021; 258 2002; 66 2019; 116 2018; 90 2016; 117 2009; 5 1985; 55 2016; 28 2014; 10 2016; 88 1929; 53 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Landwehr G. (e_1_2_10_42_1) 2012 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Huang X. (e_1_2_10_10_1) 2015; 5 e_1_2_10_29_1 e_1_2_10_27_1 Aronov A. G. (e_1_2_10_22_1) 1967; 24 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – volume: 55 start-page: 983 year: 1985 publication-title: Phys. Rev. Lett. – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 339 year: 1967 publication-title: Sov. Phys.– JETP – volume: 3 start-page: 394 year: 2021 publication-title: Nat. Rev. Phys. – volume: 28 year: 2016 publication-title: J. Phys.: Condens. Matter – volume: 90 year: 2018 publication-title: Rev. Mod. Phys. – volume: 88 year: 2013 publication-title: Phys. Rev. B – volume: 75 year: 2006 publication-title: J. Phys. Soc. Jpn. – volume: 116 start-page: 1168 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 53 start-page: 157 year: 1929 publication-title: Z. Phys. – volume: 88 year: 2016 publication-title: Rev. Mod. Phys. – volume: 258 year: 2021 publication-title: Phys. Status Solidi B – volume: 350 start-page: 413 year: 2015 publication-title: Science – volume: 5 year: 2015 publication-title: Phys. Rev. X – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 116 start-page: 1084 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – year: 2012 – volume: 8 start-page: 6414 year: 2018 publication-title: Sci. Rep. – volume: 10 start-page: 233 year: 2014 publication-title: Nat. Phys. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 620 year: 2006 publication-title: Nat. Phys. – volume: 5 start-page: 222 year: 2009 publication-title: Nat. Phys. – volume: 33 start-page: 6916 year: 1986 publication-title: Phys. Rev. B – volume: 18 year: 2016 publication-title: New J. Phys. – volume: 51 start-page: 2205 year: 1995 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 13 start-page: 484 year: 1958 publication-title: Z. Naturforsch., A: Phys. Sci. – volume: 527 start-page: 495 year: 2015 publication-title: Nature – volume: 66 year: 2002 publication-title: Phys. Rev. E – volume: 350 start-page: 378 year: 2015 publication-title: Science – volume: 15 start-page: 1140 year: 2016 publication-title: Nat. Mater. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 129 year: 2021 publication-title: J. Appl. Phys. – volume: 104 year: 2021 publication-title: Phys. Rev. B – volume: 130 start-page: 389 year: 1983 publication-title: Phys. Lett. B – volume: 85 year: 2009 publication-title: Europhys. Lett. – volume: 16 start-page: 636 year: 2020 publication-title: Nat. Phys. – ident: e_1_2_10_41_1 doi: 10.1038/s41598-018-24823-z – ident: e_1_2_10_33_1 – ident: e_1_2_10_31_1 doi: 10.1103/PhysRevB.94.121108 – ident: e_1_2_10_4_1 doi: 10.1007/BF01339716 – volume: 24 start-page: 339 year: 1967 ident: e_1_2_10_22_1 publication-title: Sov. Phys.– JETP – ident: e_1_2_10_3_1 doi: 10.1103/RevModPhys.90.015001 – ident: e_1_2_10_27_1 doi: 10.1103/PhysRevB.93.195106 – volume-title: Landau Level Spectroscopy year: 2012 ident: e_1_2_10_42_1 – ident: e_1_2_10_44_1 doi: 10.1088/0953-8984/28/15/155801 – ident: e_1_2_10_8_1 doi: 10.1103/PhysRevB.88.104412 – ident: e_1_2_10_2_1 doi: 10.1103/RevModPhys.88.035005 – ident: e_1_2_10_9_1 doi: 10.1126/science.aac6089 – ident: e_1_2_10_17_1 doi: 10.1103/PhysRevB.92.035306 – ident: e_1_2_10_35_1 doi: 10.1038/nphys2857 – ident: e_1_2_10_43_1 doi: 10.1103/PhysRevLett.108.017602 – ident: e_1_2_10_6_1 doi: 10.1038/nphys1198 – ident: e_1_2_10_12_1 doi: 10.1088/1367-2630/18/8/085006 – ident: e_1_2_10_23_1 doi: 10.1103/PhysRevLett.55.983 – ident: e_1_2_10_30_1 doi: 10.1038/ncomms11696 – ident: e_1_2_10_26_1 doi: 10.1073/pnas.1809631115 – ident: e_1_2_10_40_1 doi: 10.1103/PhysRevB.94.041103 – ident: e_1_2_10_18_1 doi: 10.1038/nature15768 – ident: e_1_2_10_7_1 doi: 10.1016/0370-2693(83)91529-0 – ident: e_1_2_10_20_1 doi: 10.1063/5.0042307 – ident: e_1_2_10_34_1 doi: 10.1103/PhysRevB.87.235121 – ident: e_1_2_10_36_1 doi: 10.1103/PhysRevB.93.121202 – ident: e_1_2_10_28_1 doi: 10.1107/S0108270195007062 – ident: e_1_2_10_25_1 doi: 10.1103/PhysRevE.66.037402 – ident: e_1_2_10_16_1 doi: 10.1209/0295-5075/85/57005 – ident: e_1_2_10_1_1 doi: 10.1103/RevModPhys.88.021004 – ident: e_1_2_10_19_1 doi: 10.1103/PhysRevLett.117.086402 – ident: e_1_2_10_15_1 doi: 10.1143/JPSJ.75.054705 – ident: e_1_2_10_38_1 doi: 10.1103/PhysRevB.104.L201115 – ident: e_1_2_10_45_1 doi: 10.1515/zna-1958-0609 – ident: e_1_2_10_14_1 doi: 10.1038/s42254-021-00310-9 – ident: e_1_2_10_37_1 doi: 10.1002/pssb.202000027 – ident: e_1_2_10_24_1 doi: 10.1103/PhysRevB.33.6916 – ident: e_1_2_10_21_1 doi: 10.1103/PhysRevLett.98.116802 – ident: e_1_2_10_13_1 doi: 10.1038/nmat4787 – ident: e_1_2_10_5_1 doi: 10.1038/nphys384 – ident: e_1_2_10_11_1 doi: 10.1126/science.aad2713 – ident: e_1_2_10_32_1 doi: 10.1073/pnas.1820331116 – volume: 5 year: 2015 ident: e_1_2_10_10_1 publication-title: Phys. Rev. X – ident: e_1_2_10_29_1 doi: 10.1038/s41567-020-0859-z – ident: e_1_2_10_39_1 doi: 10.1103/PhysRevB.93.195119 |
| SSID | ssj0001537418 |
| Score | 2.330166 |
| Snippet | Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply... Abstract Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2105720 |
| SubjectTerms | dirac and topological matter Energy infrared magneto‐spectroscopy Landau level spectroscopy Lorentz boost Magnetic fields nodal‐line semimetals Physics Radiation Theory of relativity Velocity |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMXoDxKoKCAkIBD1MSPxDmhFlpVoiwVBam3yPGjXalNlt3tHjjxE_iN_BJmst7QVQUcOK1kO7v2znj82Z58H8ALo1mdqoInHCNfIgrvE50ak7BSWdxh1EQh1YlNFMOhOj4uD8OB2zSkVS5jYheobWvojHyL3puiWyoh3oy_JqQaRberQULjOqwRU5kYwNrO7vDw0-9TFsmJnmXJ1piyLW3nxNLNSN-WRL4vrUYdaT-uMaeUEnkVb15Nm7wMZ7v1aO_2_47kDtwKSDTeXrjOOlxzzV1YD3N9Gr8KhNSv78H7g5Y4nL79_P5jp22nM_x8N6EoGX_QJ42btVjwcUx8z_GoiXWMYVSbeNhafYY1uNt18ZE7H507BPr34cve7ue3-0kQYUhMTlK3mtuykJlLvbdSKqd0kXleciFrLTzCN-EphcKbjNtM0O7SSa80s8bUzgvHH8CgaRv3EGKvUlHkdekEPprLWmlta2s0PqkZAqEIkqUxKhMYykko46xacCuzioxX9caL4GXffrzg5vhjyx2ybd-KOLW7gnZyUoUpWlmbKit96QXnwiEOympt81w5z4wURkXwHD1j5Tv2tw8qKiMhYcRSxTyLYHNp9CpEA-xHb_EInvXVOI_pckY3rr3ANogaBGO4-4tgY-Fn_U9xWWScKRxGseKBK31ZrWlGpx1XOKLPXGXYraTz1X_8TxVioSOE6PLR34fxGG4yeg2kS4TchMFscuGewA0zn42mk6dhEv4CrHw87A priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQ4cAFWp6hBQWEBByixq_YObZAVYmyVCpIvUWOH-1KbVLtbvfAiZ_Ab-SXMONk00YVQohTJHuS2M7M-BvH_oaQ19awOteKZxw8XyZUCJnJrc1YqR1EGDVSSMVkE2oy0cfH5eG1U_wdP8Sw4IaWEf01Grip59tXpKHGLZFum2GiWgZB-21KucbkDUwcXq2ySI70LJhhDqLrjGshVsyNOdseP2I0M0UCf5hvTnF75E3seXML5XVoG-emvfv_36t1cq_HpelOp0gb5JZvHpCN3vLn6duenvrdQ_LpoEVGp--_fvzcbdv5Aq4fZugz08_mpPGLFgq-XCD7czptUpOCUzU2nbTOnEENxL4-PfLn03MPsP8R-bb38ev7_axPyZDZAhPfGu5KJanPQ3BSaq-NooGXXMjaiABgTgTcUBEs5Y4KjDW9DNowZ23tg_D8MVlr2sY_JWnQuVBFXXoBtxay1sa42lkDdxoGsCgh2epzVLbnK8e0GWdVx7TMKhyrahirhLwZ5C86po4_Su7i1x2kkGE7FrSzk6o32Mq5XDsZyiA4Fx5QEa2NKwrtA7NSWJ2QV6Abo2fs7xxUWIZphQFZqSVNyNZKdareN0A7FB5ILnMBXXw5VINV468a0_j2EmQAQwjGIBZMyJNO04ZXcakoZxq6oUY6OGrLuKaZnkbmcMCihabQrCzq4F_GqQJkdASAXT77R_lNcpfhKZG4T3KLrC1ml_45uWOXi-l89iJa6G-O9T58 priority: 102 providerName: Wiley-Blackwell |
| Title | Lorentz‐Boost‐Driven Magneto‐Optics in a Dirac Nodal‐Line Semimetal |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202105720 https://www.ncbi.nlm.nih.gov/pubmed/35713280 https://www.proquest.com/docview/2702049044 https://www.proquest.com/docview/2678422768 https://hal.science/hal-03750827 https://pubmed.ncbi.nlm.nih.gov/PMC9376811 https://doaj.org/article/dd08d5f9f4334e1291bad668ef2c54c8 |
| Volume | 9 |
| WOSCitedRecordID | wos000812290100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest research library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELag5cAF0fLTQFkFhAQcoia2EzvHLm3Vim4aURDLKXL8Q1dqk2p3uwdOPALPyJMwk2SjXVWoFy6OYjtZZzz2fKMdf0PIW61oGUrBAgY7X8CFc4EKtQ5oKg14GCVSSDXJJkSWyfE4zVdSfWFMWEsP3Apuz5hQmtiljjPGLVinqFQmSaR1VMdcN8d8AfWsOFPt-WCGtCxLlsaQ7imzQHZuinltMbn3ihVqyPrBtlxgKORtnHk7XHIVxjZ26OgxedQBSH-_HfgWuWerbbLVLdGZ_77jkf7whHw6rZF66eefX7-HdT2bw_VgipubP1I_KjuvoeLsGmma_UnlKx92P6X9rDbqElrASbX-ub2aXFnA50_J16PDLx-Pgy53QqATzFCrmElFHNnQORPH0kolIsdSxuNScQeoizuMfHA6Yibi6BTa2ElFjdalddyyZ2Sjqiu7Q3wnQy6SMrUcHk3iUiplSqMVPKko4BePBEtZFrojFsf8FpdFS4lMC5R90cveI-_6_tctpcY_ew5xavpeSIXdVICCFJ2CFHcpiEfewMSuveN4_7TAOsz_CxBILCKP7C7nvegWMYxD4MnhNOTwia_7Zlh--J-Kqmx9A33A2HNKwWnzyPNWTfqfYrEAX1_CZ4g1BVoby3pLNbloKL4BNCYygmEFjardIacCIMw5IOv4xf8Q2EvykOIZjybKcZdszKc39hV5oBfzyWw6IPcpz6EUYzkgm8PDLP88aNYelCN61pTQvpmfjPLvcPftJPsLCw82KQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtMwGLZGhwQ3wDgGBgQEAi6iJbaTOBcIbYypVQ9U2iaNq-D4sFXaktJ2RXDFI_AkPBRPwv-nSVg1AVe74KqS7aR28vk_xPb3EfJMSZr5ImYeA8vn8dhaT_pKeTQRGjKMDCmkSrGJeDAQBwfJcIX8qM_C4LbK2iaWhloXCr-Rb-C5KVyl4vzN-JOHqlG4ulpLaCxg0TVfPkPKNn3d2Yb3-5zSnXd7b9tepSrgqQi1WyXTSRwGxrdWh6EwQsaBZQnjYSa5hXiEW9wTYFXAdMAxXTKhFZJqpTJjuWFw30tklQPYRYusDjv94YffX3VChnQwNTukTzekniMrOEU9XRQVP-P9SpEA8GlHuAXzfHx7fpvm2fC59H871_-3J3eDXKsibXdzMTXWyIrJb5K1ypZN3ZcV4farW6TbK5Cj6uvPb9-3imI6g9_tCXoBty8PczMroOD9GPms3VHuShfchFTuoNDyGGogmzfurjkZnRhIZG6T_QsZ1B3Syovc3COuFT6PoywxHC6NwkxIqTOtJFwpASzcIV798lNVMbCjEMhxuuCOpimCJW3A4pAXTfvxgnvkjy23EEtNK-QMLwuKyWFamaBUa1_o0CaWM8YNxHlBJnUUCWOpCrkSDnkKSFy6R3uzl2IZCiVDrBjPA4es1yBLK2sH_WgQ5pAnTTXYKVx8krkpTqENREWcUshuHXJ3gevmr1gYB4wKGEa8hPilvizX5KOjkgsdoutIBNAtr5wb_3hOKcR6u5CChPf_PozH5Ep7r99Le51B9wG5SvHIS7npc520ZpNT85BcVvPZaDp5VBkAl3y86JnzCyaImg8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYgNUJ6BAgGBgEU0iR-Js0CoZRi1mmFaqSB1Fxw_2pHaZJiZDoIVn8D38Dl8CfdmktBRBay6YBXJdhI7ub4P-_ocQp5qRfNQJixgoPkCnjgXqFDrgKbSQISRI4RURTaRDIdyfz_dXSE_mrMwmFbZ6MRKUZtS4xp5B89N4S4V5x1Xp0Xsdnuvx58CZJDCndaGTmMhIn375TOEb9NX2134188o7b19_2YrqBkGAh0jj6tiJk1EZEPnjBDSSpVEjqWMi1xxB74Jd5gf4HTETMQxdLLCSUWN1rl13DJ47gVyMeFglDFtkO78Xt8RDIFhGpzIkHaUmSM-OEVmXaQXP2UHK7oAsG6HmIx51tM9m7B52pGuLGHv2v_8Da-Tq7X_7W8sJswaWbHFDbJWa7ip_6KG4X55k_QHJSJXff357ftmWU5ncO1O0Db479RBYWclFOyMEeXaHxW-8sF4KO0PS6OOoAZifOvv2ePRsYXw5hb5cC6Duk1Wi7Kwd4nvZMiTOE8th1tjkUulTG60gjsVBffPI0EjCJmucdmRHuQoWyBK0wwFJ2sFxyPP2_bjBSLJH1tuoly1rRBJvCooJwdZrZgyY0JphEsdZ4xb8P6iXJk4ltZRLbiWHnkCUrn0jK2NQYZlSJ8MHmQyjzyy3ghcVutA6EcrbR553FaD9sItKVXY8gTagK_EKYWY1yN3FjLevoqJJGJUwjCSJelf6styTTE6rBDSweeOZQTdCqp58o_vlIEHuAeBibj392E8IpdhumSD7WH_PrlC8RxMlQm6TlZnkxP7gFzS89loOnlYaQKffDzvafML6AahSQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lorentz%E2%80%90Boost%E2%80%90Driven+Magneto%E2%80%90Optics+in+a+Dirac+Nodal%E2%80%90Line+Semimetal&rft.jtitle=Advanced+science&rft.au=Jan+Wyzula&rft.au=Xin+Lu&rft.au=David+Santos%E2%80%90Cottin&rft.au=Dibya+Kanti+Mukherjee&rft.date=2022-08-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=9&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202105720&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd08d5f9f4334e1291bad668ef2c54c8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |