Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic fi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical physics (Lancaster) Ročník 38; číslo 11; s. 5896 - 5909
Hlavní autori: Maier, Andreas, Wigström, Lars, Hofmann, Hannes G., Hornegger, Joachim, Zhu, Lei, Strobel, Norbert, Fahrig, Rebecca
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Association of Physicists in Medicine 01.11.2011
Predmet:
ISSN:0094-2405, 2473-4209, 0094-2405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.
AbstractList Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidias CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.
The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain.PURPOSEThe combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain.3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability.METHODS3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability.The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s).RESULTSThe adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s).Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.CONCLUSIONSAdaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.
The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and∕or reduce the radiation dose required for obtaining 3D image data using cone beam CT.
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.
Author Hofmann, Hannes G.
Zhu, Lei
Hornegger, Joachim
Wigström, Lars
Maier, Andreas
Strobel, Norbert
Fahrig, Rebecca
Author_xml – sequence: 1
  givenname: Andreas
  surname: Maier
  fullname: Maier, Andreas
  email: akmaier@stanford.edu
  organization: Department of Radiology, Stanford University, Stanford, California 94305
– sequence: 2
  givenname: Lars
  surname: Wigström
  fullname: Wigström, Lars
  organization: Department of Radiology, Stanford University, Stanford, California 94305 and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping, Sweden
– sequence: 3
  givenname: Hannes G.
  surname: Hofmann
  fullname: Hofmann, Hannes G.
  organization: Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
– sequence: 4
  givenname: Joachim
  surname: Hornegger
  fullname: Hornegger, Joachim
  organization: Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
– sequence: 5
  givenname: Lei
  surname: Zhu
  fullname: Zhu, Lei
  organization: Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
– sequence: 6
  givenname: Norbert
  surname: Strobel
  fullname: Strobel, Norbert
  organization: Siemens AG Healthcare, Forchheim 91301, Germany
– sequence: 7
  givenname: Rebecca
  surname: Fahrig
  fullname: Fahrig, Rebecca
  organization: Department of Radiology, Stanford University, Stanford, California 94305
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22047354$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22098662$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73594$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNqNkktv1DAUhS1URKeFBX8AWWKBQKT1K55kg1QNT6kIFgNby-Ncz7jK2MFOpuq_xyUZNEUUsfLifuf43McJOvLBA0JPKTmjlFbn9IxLzmtCH6AZE3NeCEbqIzQjpBYFE6Q8RicpXRFCJC_JI3TMGMlYKWZovdxEgKJxW_DJBa9brL1LoY-hcwbrRne92wG2ru0hOr_GweIuhiswfcZxo3uNbYjYB5cAR2iGseA8NjklXoHe4sXyMXpodZvgyfSeom_v3y0XH4vLLx8-LS4uCyMJo4WppSC0mhvCKz3XzDKoiOC5CKVZCWNJDdwyrUvZGCorUeqqktaWpTDU2JKfotejb7qGblipLrqtjjcqaKfeuu8XKsS1at2gcvu1yPibEc_sFhoDvo-6vaO6W_Fuo9ZhpzijhNYkGzwfDULqnUrG9WA2uXGf56PymOtKSpapF9M3MfwYIPVq65KBttUewpBUTZnM-yM0k88OA_1Ost9YBs5HwMSQUgSr8p_6duQ5n2sVJer2JhRV001kxcs_FHvTv7HFyF67Fm7uB9XnrxM_zS_tU9yv-XVp6uDSlPbZ4NV_G_wL3oV4kK5rLP8Juez2HA
CODEN MPHYA6
CitedBy_id crossref_primary_10_1002_mp_17680
crossref_primary_10_3390_app142310886
crossref_primary_10_1088_1742_6596_1126_1_012071
crossref_primary_10_1016_j_sigpro_2019_06_031
crossref_primary_10_1118_1_4824926
crossref_primary_10_1002_mp_15643
crossref_primary_10_1118_1_4915542
crossref_primary_10_1016_j_displa_2024_102835
crossref_primary_10_1038_s41598_018_19426_7
crossref_primary_10_1002_mp_15718
crossref_primary_10_1002_mp_12097
crossref_primary_10_1007_s13534_014_0165_8
crossref_primary_10_1002_mp_12094
crossref_primary_10_1088_0031_9155_57_19_6193
crossref_primary_10_1088_1361_6560_aa86e9
crossref_primary_10_1038_s41598_022_22530_4
crossref_primary_10_1177_08953996251337889
crossref_primary_10_1118_1_4745564
crossref_primary_10_1016_j_medengphy_2022_103897
crossref_primary_10_2217_iim_12_45
crossref_primary_10_1088_0031_9155_59_4_R151
crossref_primary_10_1089_big_2024_0071
crossref_primary_10_1016_j_media_2018_06_002
crossref_primary_10_1088_1742_6596_1448_1_012019
crossref_primary_10_3390_data7080115
crossref_primary_10_1002_mrm_24811
Cites_doi 10.2214/AJR.08.1025
10.1109/TMI.2006.875429
10.1109/34.56205
10.1118/1.3063001
10.1109/TMI.2009.2022368
10.1118/1.2370508
10.1161/CIRCULATIONAHA.105.602490
10.1001/jama.2009.54
10.1118/1.1358303
10.1118/1.1915015
10.1007/s00330-001-1278-x
10.1109/TNS.2004.834824
10.1006/jvci.2001.0495
10.1109/TMI.2008.923983
10.1109/TCOM.1983.1095832
10.1007/BF01420591
10.1109/42.141646
10.1016/S1361-8415(00)00011-6
10.1109/TMI.2006.876166
10.1117/12.430964
10.1109/TMI.2006.882141
10.1118/1.598410
10.1088/0031-9155/53/11/009
10.1148/radiol.2371041227
10.1002/jmri.v14:1
10.1118/1.2230762
10.1117/12.593433
10.1109/IEMBS.2008.4649759
10.1109/ICCV.1998.710815
10.1002/jmri.1152
10.1109/ICASSP.1992.226174
10.1007/978-1-4757-2377-9
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2011 American Association of Physicists in Medicine
Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2011 American Association of Physicists in Medicine
– notice: Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
ADTPV
AOWAS
DG8
DOI 10.1118/1.3633901
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE





Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage 5909
ExternalDocumentID oai_DiVA_org_liu_73594
PMC3210190
22098662
22047354
10_1118_1_3633901
MP3901
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB003524
– fundername: NIBIB NIH HHS
  grantid: R01EB003524
– fundername: NHLBI NIH HHS
  grantid: R01 HL087917
– fundername: NHLBI NIH HHS
  grantid: R01HL087917
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
5PM
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c6021-c9640187c038a7a2f2e8043c60e5cb4cf09e3f2aa56dc16845a886ff554c1cf53
IEDL.DBID DRFUL
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296534000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Tue Nov 04 17:02:44 EST 2025
Tue Nov 04 02:05:34 EST 2025
Thu May 18 22:38:18 EDT 2023
Sun Nov 09 14:21:59 EST 2025
Thu Apr 03 06:59:13 EDT 2025
Tue Nov 18 22:42:54 EST 2025
Sat Nov 29 08:07:49 EST 2025
Wed Jan 22 16:25:11 EST 2025
Fri Jun 21 00:20:00 EDT 2024
Fri Jun 21 00:28:31 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords image enhancement
noise
low dose
hardware acceleration
GPU
C-arm computed tomography (CT)
artifacts
Language English
License 0094-2405/2011/38(11)/5896/14/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6021-c9640187c038a7a2f2e8043c60e5cb4cf09e3f2aa56dc16845a886ff554c1cf53
Notes Author to whom correspondence should be addressed. Electronic mail
akmaier@stanford.edu
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: akmaier@stanford.edu
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.3633901
PMID 22047354
PQID 912639001
PQPubID 23479
PageCount 14
ParticipantIDs osti_scitechconnect_22098662
scitation_primary_10_1118_1_3633901
crossref_citationtrail_10_1118_1_3633901
swepub_primary_oai_DiVA_org_liu_73594
wiley_primary_10_1118_1_3633901_MP3901
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3210190
proquest_miscellaneous_912639001
crossref_primary_10_1118_1_3633901
scitation_primary_10_1118_1_3633901Three_dimensional_an
pubmed_primary_22047354
PublicationCentury 2000
PublicationDate November 2011
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: November 2011
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2011
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Lauritsch, Boese, Wigström, Kemeth, Fahrig (c40) 2006; 25
Wang, Li, Liang, Xing (c22) 2008; 53
Benndorf, Strother, Claus, Naeini, Morsi, Klucznik, Mawad (c3) 2005; 26
Kalra, Rizzo, Maher, Halpern, Toth, Shepard, Aquino (c4) 2005; 237
Jakobs, Becker, Ohnesorge, Flohr, Suess, Schoepf, Reiser (c5) 2002; 12
Weickert, Scharr (c9) 2002; 13
Sapiro, Tannenbaum (c27) 1993; 11
Perona, Malik (c24) 1990; 12
Demirkaya (c28) 2001; 4322
Fahrig, Dixon, Payne, Morin, Ganguly, Strobel (c39) 2006; 33
Kachelriess, Watzke, Kalender (c17) 2001; 28
Zellerhoff, Scholz, Rührnschopf, Brunner (c2) 2005; 5745
Bian, Vargas, La Rivière (c14) 2006; 25
Li, Li, Wang, Wen, Lu, Hsieh, Liang (c19) 2004; 51
Westin, Richolt, Moharir, Kikinis (c34) 2000; 4
Mendrik, Vonken, Rutten, Viergever, van Ginneken (c10) 2009; 28
Massoumzadeh, Earl, Whiting (c13) 2006; 33
Hausleiter, Meyer, Hermann, Hadamitzky, Krebs, Gerber, McCollough, Martinoff, Kastrati, Schömig, Achenbach (c6) 2009; 301
Wang, Li, Lu, Liang (c20) 2006; 25
Zhu, Wang, Xing (c15) 2009; 36
Fahrig, Fox, Lownie, Holdsworth (c1) 1997; 18
Raupach, Flohr, Hornegger, Borsdorf (c18) 2008; 27
Pflederer, Rudofsky, Ropers, Bachmann, Marwan, Daniel, Achenbach (c7) 2009; 192
Hausleiter, Meyer, Hadamitzky, Huber, Zankl, Martinoff, Kastrati, t Schömig (c41) 2006; 113
La Riviere (c21) 2005; 32
Westin, Wigström, Loock, Sjöqvist, Kikinis, Knutsson (c33) 2001; 14
Hsieh (c25) 1998; 25
Knutsson, Wilson, Granlund (c29) 1983; 31
Gerig, Kubler, Kikinis, Jolesz (c26) 1992; 11
Weickert, J.; Scharr, H. 2002; 13
Perona, P.; Malik, J. 1990; 12
Gerig, G.; Kubler, O.; Kikinis, R.; Jolesz, F. 1992; 11
Fahrig, R.; Fox, A.; Lownie, S.; Holdsworth, D. 1997; 18
Hsieh, J. 1998; 25
Massoumzadeh, P.; Earl, O.; Whiting, B. 2006; 33
Wang, J.; Li, T.; Liang, Z.; Xing, L. 2008; 53
Knutsson, H.; Wilson, R.; Granlund, G. 1983; 31
Westin, C.; Richolt, J.; Moharir, V.; Kikinis, R. 2000; 4
Kalra, M.; Rizzo, S.; Maher, M.; Halpern, E.; Toth, T.; Shepard, J.; Aquino, S. 2005; 237
Westin, C.; Wigström, L.; Loock, T.; Sjöqvist, L.; Kikinis, R.; Knutsson, H. 2001; 14
Pflederer, T.; Rudofsky, L.; Ropers, D.; Bachmann, S.; Marwan, M.; Daniel, W.; Achenbach, S. 2009; 192
Demirkaya, O. 2001; 4322
Zellerhoff, M.; Scholz, B.; Rührnschopf, E.; Brunner, T. 2005; 5745
Li, T.; Li, X.; Wang, J.; Wen, J.; Lu, H.; Hsieh, J.; Liang, Z. 2004; 51
Raupach, R.; Flohr, T.; Hornegger, J.; Borsdorf, A. 2008; 27
Hausleiter, J.; Meyer, T.; Hadamitzky, M.; Huber, E.; Zankl, M.; Martinoff, S.; Kastrati, A.; t Schömig, A. 2006; 113
Bian, J.; Vargas, P.; La Rivière, P. 2006; 25
Zhu, L.; Wang, J.; Xing, L. 2009; 36
Sapiro, G.; Tannenbaum, A. 1993; 11
Fahrig, R.; Dixon, R.; Payne, T.; Morin, R.; Ganguly, A.; Strobel, N. 2006; 33
Wang, J.; Li, T.; Lu, H.; Liang, Z. 2006; 25
Lauritsch, G.; Boese, J.; Wigström, L.; Kemeth, H.; Fahrig, R. 2006; 25
Benndorf, G.; Strother, C.; Claus, B.; Naeini, R.; Morsi, H.; Klucznik, R.; Mawad, M. 2005; 26
Jakobs, T.; Becker, C.; Ohnesorge, B.; Flohr, T.; Suess, C.; Schoepf, U.; Reiser, M. 2002; 12
Hausleiter, J.; Meyer, T.; Hermann, F.; Hadamitzky, M.; Krebs, M.; Gerber, T.; McCollough, C.; Martinoff, S.; Kastrati, A.; Schömig, A.; Achenbach, S. 2009; 301
Kachelriess, M.; Watzke, O.; Kalender, W. 2001; 28
La Riviere, P. 2005; 32
Mendrik, A.; Vonken, E.; Rutten, A.; Viergever, M.; van Ginneken, B. 2009; 28
1990; 12
2010
2000; 4
2006; 33
2002; 12
2002; 13
2005; 237
1983; 31
1998
2008
1995
1994
2003
2001; 28
1992
2008; 53
2005; 26
1992; 11
1998; 25
2009; 28
2006; 113
2009; 36
2004; 51
2009; 192
1993; 11
2006; 25
2008; 27
1987
1997; 18
2005; 5745
2005; 32
2001; 14
2009; 301
2001; 4322
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Buzug T. (e_1_2_8_13_1) 2008
e_1_2_8_3_1
Benndorf G. (e_1_2_8_4_1) 2005; 26
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Fahrig R. (e_1_2_8_2_1) 1997; 18
Hsieh J. (e_1_2_8_9_1) 2003
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
Westin C.‐F. (e_1_2_8_36_1) 1994
Haglund L. (e_1_2_8_33_1) 1992
e_1_2_8_30_1
9296192 - AJNR Am J Neuroradiol. 1997 Sep;18(8):1507-14
16013726 - Med Phys. 2005 Jun;32(6):1676-83
10972328 - Med Image Anal. 2000 Jun;4(2):161-77
18460749 - Phys Med Biol. 2008 Jun 7;53(11):2897-909
19783496 - IEEE Trans Med Imaging. 2009 Oct;28(10):1585-94
17022224 - Med Phys. 2006 Sep;33(9):3290-303
16183938 - Radiology. 2005 Oct;237(1):303-8
9829238 - Med Phys. 1998 Nov;25(11):2139-47
19033085 - IEEE Trans Med Imaging. 2008 Dec;27(12):1685-703
17278805 - Med Phys. 2006 Dec;33(12):4541-50
11339744 - Med Phys. 2001 Apr;28(4):475-90
19163262 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2701-4
17024831 - IEEE Trans Med Imaging. 2006 Oct;25(10):1272-83
11976849 - Eur Radiol. 2002 May;12(5):1081-6
18218376 - IEEE Trans Med Imaging. 1992;11(2):221-32
19304712 - AJR Am J Roentgenol. 2009 Apr;192(4):1045-50
16894995 - IEEE Trans Med Imaging. 2006 Aug;25(8):1022-36
19190314 - JAMA. 2009 Feb 4;301(5):500-7
19378735 - Med Phys. 2009 Mar;36(3):741-52
16520411 - Circulation. 2006 Mar 14;113(10):1305-10
11436216 - J Magn Reson Imaging. 2001 Jul;14(1):63-71
16827492 - IEEE Trans Med Imaging. 2006 Jul;25(7):922-34
16091535 - AJNR Am J Neuroradiol. 2005 Aug;26(7):1813-8
References_xml – volume: 36
  start-page: 741
  year: 2009
  ident: c15
  article-title: Noise suppression in scatter correction for cone-beam CT
  publication-title: Med. Phys.
– volume: 4322
  start-page: 917
  year: 2001
  ident: c28
  article-title: Reduction of noise and image artifacts in computed tomography by nonlinear filtration of the projection images
  publication-title: Proc. SPIE
– volume: 301
  start-page: 500
  year: 2009
  ident: c6
  article-title: Estimated Radiation Dose Associated With Cardiac CT Angiography
  publication-title: JAMA, J. Am. Med. Assoc.
– volume: 13
  start-page: 103
  year: 2002
  ident: c9
  article-title: A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance
  publication-title: J. Visual Commun. Image Represent.
– volume: 53
  start-page: 2897
  year: 2008
  ident: c22
  article-title: Dose reduction for kilovotage cone-beam computed tomography in radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 1022
  year: 2006
  ident: c14
  article-title: Penalized-likelihood sinogram restoration for computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 12
  start-page: 629
  year: 1990
  ident: c24
  article-title: Scale space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 221
  year: 1992
  ident: c26
  article-title: Nonlinear anisotropic filtering of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 28
  start-page: 1585
  year: 2009
  ident: c10
  article-title: Noise reduction in computed tomography scans using 3D anisotropic hybrid diffusion with continuous switch
  publication-title: IEEE Trans. Med. Imaging
– volume: 33
  start-page: 4541
  year: 2006
  ident: c39
  article-title: Dose and image quality for a cone-beam C-arm CT system
  publication-title: Med. Phys.
– volume: 4
  start-page: 161
  year: 2000
  ident: c34
  article-title: Affine adaptive filtering of CT data
  publication-title: Med. Image Anal.
– volume: 5745
  start-page: 646
  year: 2005
  ident: c2
  article-title: Low contrast 3-D reconstruction from C-arm data
  publication-title: Proc. SPIE
– volume: 18
  start-page: 1507
  year: 1997
  ident: c1
  article-title: Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 28
  start-page: 475
  year: 2001
  ident: c17
  article-title: Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT
  publication-title: Med. Phys.
– volume: 192
  start-page: 1045
  year: 2009
  ident: c7
  article-title: Image Quality in a Low Radiation Exposure Protocol for Retrospectively ECG-Gated Coronary CT Angiography
  publication-title: AJR, Am. J. Roentgenol.
– volume: 12
  start-page: 1081
  year: 2002
  ident: c5
  article-title: Multislice helical CT of the heart with retrospective ECG gating: Reduction of radiation exposure by ECG-controlled tube current modulation
  publication-title: Eur. Radiol.
– volume: 14
  start-page: 63
  year: 2001
  ident: c33
  article-title: Three-dimensional adaptive filtering in magnetic resonance angiography
  publication-title: J. Magn. Reson. Imaging
– volume: 25
  start-page: 1272
  year: 2006
  ident: c20
  article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 113
  start-page: 1305
  year: 2006
  ident: c41
  article-title: Radiation Dose Estimates From Cardiac Multislice Computed Tomography in Daily Practice
  publication-title: Circulation
– volume: 33
  start-page: 3290
  year: 2006
  ident: c13
  article-title: Properties of preprocessed sinogram data in x-ray computed tomography
  publication-title: Med. Phys.
– volume: 32
  start-page: 1676
  year: 2005
  ident: c21
  article-title: Penalized-likelihood sinogram smoothing for low-dose CT
  publication-title: Med. Phys.
– volume: 27
  start-page: 1685
  year: 2008
  ident: c18
  article-title: Wavelet based Noise Reduction in CT-Images Using Correlation Analysis
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  start-page: 25
  year: 1993
  ident: c27
  article-title: Affine invariant scale space
  publication-title: Int J Comput. Vis.
– volume: 237
  start-page: 303
  year: 2005
  ident: c4
  article-title: Chest CT performed with z-axis modulation: scanning protocol and radiation dose
  publication-title: Radiology
– volume: 31
  start-page: 388
  year: 1983
  ident: c29
  article-title: Anisotropic non-stationary image estimation and its applications - Part I: Restoration of noisy images
  publication-title: IEEE Trans. Commun.
– volume: 51
  start-page: 2505
  year: 2004
  ident: c19
  article-title: Nonlinear sinogram smoothing for low-dose x-ray CT
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 25
  start-page: 2139
  year: 1998
  ident: c25
  article-title: Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise
  publication-title: Med. Phys.
– volume: 25
  start-page: 922
  year: 2006
  ident: c40
  article-title: Towards cardiac C-arm computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 1813
  year: 2005
  ident: c3
  article-title: Angiographic CT in cerebrovascular stenting
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 192
  start-page: 1045-1050
  year: 2009
  publication-title: AJR, Am. J. Roentgenol.
  doi: 10.2214/AJR.08.1025
– volume: 25
  start-page: 1022-1036
  year: 2006
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.875429
– volume: 12
  start-page: 629-639
  year: 1990
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.56205
– volume: 36
  start-page: 741-752
  year: 2009
  publication-title: Med. Phys.
  doi: 10.1118/1.3063001
– volume: 28
  start-page: 1585-1594
  year: 2009
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2022368
– volume: 33
  start-page: 4541-4550
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2370508
– volume: 113
  start-page: 1305-1310
  year: 2006
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.602490
– volume: 301
  start-page: 500-5007
  year: 2009
  publication-title: JAMA, J. Am. Med. Assoc.
  doi: 10.1001/jama.2009.54
– volume: 18
  start-page: 1507-1514
  year: 1997
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 28
  start-page: 475-490
  year: 2001
  publication-title: Med. Phys.
  doi: 10.1118/1.1358303
– volume: 32
  start-page: 1676-1683
  year: 2005
  publication-title: Med. Phys.
  doi: 10.1118/1.1915015
– volume: 12
  start-page: 1081-1086
  year: 2002
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-001-1278-x
– volume: 51
  start-page: 2505-2513
  year: 2004
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2004.834824
– volume: 13
  start-page: 103-118
  year: 2002
  publication-title: J. Visual Commun. Image Represent.
  doi: 10.1006/jvci.2001.0495
– volume: 27
  start-page: 1685-1703
  year: 2008
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.923983
– volume: 31
  start-page: 388-397
  year: 1983
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1983.1095832
– volume: 11
  start-page: 25-44
  year: 1993
  publication-title: Int J Comput. Vis.
  doi: 10.1007/BF01420591
– volume: 11
  start-page: 221-232
  year: 1992
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.141646
– volume: 4
  start-page: 161-177
  year: 2000
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00011-6
– volume: 26
  start-page: 1813-1818
  year: 2005
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 25
  start-page: 922-934
  year: 2006
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.876166
– volume: 4322
  start-page: 917-923
  year: 2001
  publication-title: Proc. SPIE
  doi: 10.1117/12.430964
– volume: 25
  start-page: 1272-1283
  year: 2006
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882141
– volume: 25
  start-page: 2139-2147
  year: 1998
  publication-title: Med. Phys.
  doi: 10.1118/1.598410
– volume: 53
  start-page: 2897-2909
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/11/009
– volume: 237
  start-page: 303-308
  year: 2005
  publication-title: Radiology
  doi: 10.1148/radiol.2371041227
– volume: 14
  start-page: 63-71
  year: 2001
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.v14:1
– volume: 33
  start-page: 3290-3303
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2230762
– volume: 5745
  start-page: 646-655
  year: 2005
  publication-title: Proc. SPIE
  doi: 10.1117/12.593433
– volume: 36
  start-page: 741
  year: 2009
  end-page: 752
  article-title: Noise suppression in scatter correction for cone‐beam CT
  publication-title: Med. Phys.
– volume: 237
  start-page: 303
  year: 2005
  end-page: 308
  article-title: Chest CT performed with z‐axis modulation: scanning protocol and radiation dose
  publication-title: Radiology
– volume: 12
  start-page: 629
  year: 1990
  end-page: 639
  article-title: Scale space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 1676
  year: 2005
  end-page: 1683
  article-title: Penalized‐likelihood sinogram smoothing for low‐dose CT
  publication-title: Med. Phys.
– start-page: 2701
  year: 2008
  end-page: 2704
  article-title: Analytic Noise‐Propagation in Indirect Fan‐Beam FBP Reconstruction
– volume: 26
  start-page: 1813
  year: 2005
  end-page: 1818
  article-title: Angiographic CT in cerebrovascular stenting
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 25
  start-page: 922
  year: 2006
  end-page: 934
  article-title: Towards cardiac C‐arm computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 113
  start-page: 1305
  year: 2006
  end-page: 1310
  article-title: Radiation Dose Estimates From Cardiac Multislice Computed Tomography in Daily Practice
  publication-title: Circulation
– volume: 25
  start-page: 1272
  year: 2006
  end-page: 1283
  article-title: Penalized weighted least‐squares approach to sinogram noise reduction and image reconstruction for low‐dose x‐ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 25
  start-page: 2139
  year: 1998
  end-page: 2147
  article-title: Adaptive streak artifact reduction in computed tomography resulting from excessive x‐ray photon noise
  publication-title: Med. Phys.
– year: 1987
– year: 2003
– start-page: 839
  year: 1998
  end-page: 846
  article-title: Bilateral Filtering for Gray and Color Images
– start-page: 140
  year: 2010
  end-page: 143
  article-title: Enhancement of CT Image Quality via Bilateral Filtering of Projections
– volume: 13
  start-page: 103
  issue: 1
  year: 2002
  end-page: 118
  article-title: A Scheme for Coherence‐Enhancing Diffusion Filtering with Optimized Rotation Invariance
  publication-title: J. Visual Commun. Image Represent.
– volume: 51
  start-page: 2505
  year: 2004
  end-page: 2513
  article-title: Nonlinear sinogram smoothing for low‐dose x‐ray CT
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 192
  start-page: 1045
  year: 2009
  end-page: 1050
  article-title: Image Quality in a Low Radiation Exposure Protocol for Retrospectively ECG‐Gated Coronary CT Angiography
  publication-title: AJR, Am. J. Roentgenol.
– year: 1992
– volume: 301
  start-page: 500
  issue: 5
  year: 2009
  end-page: 5007
  article-title: Estimated Radiation Dose Associated With Cardiac CT Angiography
  publication-title: JAMA, J. Am. Med. Assoc.
– volume: 14
  start-page: 63
  year: 2001
  end-page: 71
  article-title: Three‐dimensional adaptive filtering in magnetic resonance angiography
  publication-title: J. Magn. Reson. Imaging
– year: 1994
– volume: 33
  start-page: 4541
  year: 2006
  end-page: 4550
  article-title: Dose and image quality for a cone‐beam C‐arm CT system
  publication-title: Med. Phys.
– year: 1992
  article-title: Robust orientation estimation in 2D, 3D and 4D using tensors
– volume: 27
  start-page: 1685
  issue: 12
  year: 2008
  end-page: 1703
  article-title: Wavelet based Noise Reduction in CT‐Images Using Correlation Analysis
  publication-title: IEEE Trans. Med. Imaging
– volume: 12
  start-page: 1081
  year: 2002
  end-page: 1086
  article-title: Multislice helical CT of the heart with retrospective ECG gating: Reduction of radiation exposure by ECG‐controlled tube current modulation
  publication-title: Eur. Radiol.
– volume: 53
  start-page: 2897
  year: 2008
  end-page: 2909
  article-title: Dose reduction for kilovotage cone‐beam computed tomography in radiation therapy
  publication-title: Phys. Med. Biol.
– start-page: 469
  year: 1992
  end-page: 472
  article-title: A framework for anisotropic adaptive filtering and analysis of image sequences and volumes
– year: 2008
– volume: 28
  start-page: 1585
  issue: 10
  year: 2009
  end-page: 1594
  article-title: Noise reduction in computed tomography scans using 3D anisotropic hybrid diffusion with continuous switch
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  start-page: 221
  year: 1992
  end-page: 232
  article-title: Nonlinear anisotropic filtering of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 4322
  start-page: 917
  year: 2001
  end-page: 923
  article-title: Reduction of noise and image artifacts in computed tomography by nonlinear filtration of the projection images
  publication-title: Proc. SPIE
– year: 1995
– volume: 18
  start-page: 1507
  year: 1997
  end-page: 1514
  article-title: Use of a C‐arm system to generate true three‐dimensional computed rotational angiograms: preliminary in vitro and in vivo results
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 28
  start-page: 475
  year: 2001
  end-page: 490
  article-title: Generalized multi‐dimensional adaptive filtering for conventional and spiral single‐slice, multi‐slice, and cone‐beam CT
  publication-title: Med. Phys.
– volume: 4
  start-page: 161
  year: 2000
  end-page: 177
  article-title: Affine adaptive filtering of CT data
  publication-title: Med. Image Anal.
– volume: 33
  start-page: 3290
  issue: 9
  year: 2006
  end-page: 3303
  article-title: Properties of preprocessed sinogram data in x‐ray computed tomography
  publication-title: Med. Phys.
– volume: 25
  start-page: 1022
  year: 2006
  end-page: 1036
  article-title: Penalized‐likelihood sinogram restoration for computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 388
  year: 1983
  end-page: 397
  article-title: Anisotropic non‐stationary image estimation and its applications ‐ Part I: Restoration of noisy images
  publication-title: IEEE Trans. Commun.
– volume: 5745
  start-page: 646
  year: 2005
  end-page: 655
  article-title: Low contrast 3‐D reconstruction from C‐arm data
  publication-title: Proc. SPIE
– volume: 11
  start-page: 25
  year: 1993
  end-page: 44
  article-title: Affine invariant scale space
  publication-title: Int J Comput. Vis.
– ident: e_1_2_8_12_1
  doi: 10.1109/IEMBS.2008.4649759
– ident: e_1_2_8_18_1
  doi: 10.1118/1.1358303
– ident: e_1_2_8_22_1
  doi: 10.1118/1.1915015
– ident: e_1_2_8_6_1
  doi: 10.1007/s00330-001-1278-x
– ident: e_1_2_8_11_1
  doi: 10.1109/TMI.2009.2022368
– ident: e_1_2_8_21_1
  doi: 10.1109/TMI.2006.882141
– ident: e_1_2_8_14_1
  doi: 10.1118/1.2230762
– ident: e_1_2_8_16_1
  doi: 10.1118/1.3063001
– ident: e_1_2_8_17_1
– ident: e_1_2_8_26_1
  doi: 10.1118/1.598410
– ident: e_1_2_8_15_1
  doi: 10.1109/TMI.2006.875429
– ident: e_1_2_8_29_1
  doi: 10.1117/12.430964
– ident: e_1_2_8_39_1
  doi: 10.1109/ICCV.1998.710815
– ident: e_1_2_8_23_1
  doi: 10.1088/0031-9155/53/11/009
– ident: e_1_2_8_32_1
– ident: e_1_2_8_10_1
  doi: 10.1006/jvci.2001.0495
– ident: e_1_2_8_40_1
  doi: 10.1118/1.2370508
– ident: e_1_2_8_41_1
  doi: 10.1109/TMI.2006.876166
– ident: e_1_2_8_30_1
  doi: 10.1109/TCOM.1983.1095832
– ident: e_1_2_8_35_1
  doi: 10.1016/S1361-8415(00)00011-6
– ident: e_1_2_8_8_1
  doi: 10.2214/AJR.08.1025
– volume: 26
  start-page: 1813
  year: 2005
  ident: e_1_2_8_4_1
  article-title: Angiographic CT in cerebrovascular stenting
  publication-title: AJNR Am. J. Neuroradiol.
– ident: e_1_2_8_24_1
– volume: 18
  start-page: 1507
  year: 1997
  ident: e_1_2_8_2_1
  article-title: Use of a C‐arm system to generate true three‐dimensional computed rotational angiograms: preliminary in vitro and in vivo results
  publication-title: AJNR Am. J. Neuroradiol.
– ident: e_1_2_8_7_1
  doi: 10.1001/jama.2009.54
– ident: e_1_2_8_34_1
  doi: 10.1002/jmri.1152
– ident: e_1_2_8_28_1
  doi: 10.1007/BF01420591
– ident: e_1_2_8_20_1
  doi: 10.1109/TNS.2004.834824
– ident: e_1_2_8_31_1
  doi: 10.1109/ICASSP.1992.226174
– ident: e_1_2_8_27_1
  doi: 10.1109/42.141646
– ident: e_1_2_8_38_1
– ident: e_1_2_8_19_1
  doi: 10.1109/TMI.2008.923983
– ident: e_1_2_8_37_1
  doi: 10.1007/978-1-4757-2377-9
– volume-title: Computed tomography: Principles, design, artifacts, and recent advances
  year: 2003
  ident: e_1_2_8_9_1
– ident: e_1_2_8_25_1
  doi: 10.1109/34.56205
– ident: e_1_2_8_3_1
  doi: 10.1117/12.593433
– volume-title: Adaptive multidimensional filtering
  year: 1992
  ident: e_1_2_8_33_1
– ident: e_1_2_8_5_1
  doi: 10.1148/radiol.2371041227
– volume-title: Computed Tomography—From Photon Statistics to Modern Cone‐Beam CT
  year: 2008
  ident: e_1_2_8_13_1
– ident: e_1_2_8_42_1
  doi: 10.1161/CIRCULATIONAHA.105.602490
– volume-title: Linkoeping Studies in Science and Technology
  year: 1994
  ident: e_1_2_8_36_1
– reference: 9829238 - Med Phys. 1998 Nov;25(11):2139-47
– reference: 16013726 - Med Phys. 2005 Jun;32(6):1676-83
– reference: 16091535 - AJNR Am J Neuroradiol. 2005 Aug;26(7):1813-8
– reference: 16894995 - IEEE Trans Med Imaging. 2006 Aug;25(8):1022-36
– reference: 17278805 - Med Phys. 2006 Dec;33(12):4541-50
– reference: 9296192 - AJNR Am J Neuroradiol. 1997 Sep;18(8):1507-14
– reference: 11436216 - J Magn Reson Imaging. 2001 Jul;14(1):63-71
– reference: 19190314 - JAMA. 2009 Feb 4;301(5):500-7
– reference: 17024831 - IEEE Trans Med Imaging. 2006 Oct;25(10):1272-83
– reference: 19163262 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2701-4
– reference: 11339744 - Med Phys. 2001 Apr;28(4):475-90
– reference: 19378735 - Med Phys. 2009 Mar;36(3):741-52
– reference: 11976849 - Eur Radiol. 2002 May;12(5):1081-6
– reference: 18460749 - Phys Med Biol. 2008 Jun 7;53(11):2897-909
– reference: 16827492 - IEEE Trans Med Imaging. 2006 Jul;25(7):922-34
– reference: 17022224 - Med Phys. 2006 Sep;33(9):3290-303
– reference: 18218376 - IEEE Trans Med Imaging. 1992;11(2):221-32
– reference: 19033085 - IEEE Trans Med Imaging. 2008 Dec;27(12):1685-703
– reference: 16520411 - Circulation. 2006 Mar 14;113(10):1305-10
– reference: 10972328 - Med Image Anal. 2000 Jun;4(2):161-77
– reference: 16183938 - Radiology. 2005 Oct;237(1):303-8
– reference: 19304712 - AJR Am J Roentgenol. 2009 Apr;192(4):1045-50
– reference: 19783496 - IEEE Trans Med Imaging. 2009 Oct;28(10):1585-94
SSID ssj0006350
Score 2.2650027
Snippet Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the...
Purpose: The combination of quickly rotating C‐arm gantry with digital flat panel has enabled the acquisition of three‐dimensional data (3D) in the...
The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional...
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the...
SourceID swepub
pubmedcentral
osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5896
SubjectTerms ALGORITHMS
Animals
Anisotropy
BEAMS
C-arm computed tomography (CT)
Computed tomography
computerised tomography
COMPUTERIZED SIMULATION
COMPUTERIZED TOMOGRAPHY
Cone-Beam Computed Tomography - methods
DATA ACQUISITION
DIFFERENTIAL THERMAL ANALYSIS
DOSIMETRY
filtering theory
FILTERS
GPU
hardware acceleration
Heart - diagnostic imaging
image enhancement
IMAGE PROCESSING
image reconstruction
image resolution
Imaging, Three-Dimensional - methods
IN VIVO
INTERFACES
low dose
Medical image noise
Medical image reconstruction
Medical imaging
MEDICIN
MEDICINE
Modulation transfer functions
NOISE
numerical analysis
Numerical approximation and analysis
optical transfer function
PHANTOMS
Phantoms, Imaging
RADIATION DOSES
Radiation Imaging Physics
Radiographic Image Enhancement - methods
RADIOLOGY AND NUCLEAR MEDICINE
Reconstruction
SPATIAL RESOLUTION
Tensor methods
TRAJECTORIES
TRANSFER FUNCTIONS
X RADIATION
X‐ray imaging
Title Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT
URI http://dx.doi.org/10.1118/1.3633901
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3633901
https://www.ncbi.nlm.nih.gov/pubmed/22047354
https://www.proquest.com/docview/912639001
https://www.osti.gov/biblio/22098662
https://pubmed.ncbi.nlm.nih.gov/PMC3210190
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73594
Volume 38
WOSCitedRecordID wos000296534000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61W14XHuUVKJXFo-KykDiJ44hT1bLi0FYV2lZ7sxzHppFKssru9sxP4DfyS5hJsoEVC6rEKQePEzszY3_2vABeG0S51vjpMJNJPoxEbIba-ajuXEgeOGxuwsfOj5KTEzmZpKcb8GEZC9Pmh-gv3EgzmvWaFFxnXRWSgBzXg3ehCOnEvglbHOU2HsDW4efR2VG_EONe2kagpBEZEeIusRB2f993XtmOBhWq1Tqo-afH5G3coFpbeZ9jdBXeNvvT6N5_zew-3O1gKdtv5egBbNhyG24dd4b3bbjZeIqa2UMoxsh9--Pb95zqArQ5PZgui1k1r6tpYZjO9ZTWUOYKssTj1sgqx7obHyRn5JTKECuzsipmltWUPLZpKEqGp3PLMqu_soPxIzgbfRwffBp29RqGRpCnh0lFRDX-jB9KnWjuuJV-FGKjjU0WGeenNnRc61jkJhAyirWUwjlENCYwLg4fw6DEzzwFJrRLgjzkWWTzyPixRqTkYl8LX2uLEMiDt0u2qSUjqKbGpWoPNVIFqvuJHrzsSadtBo91RDvEe0VctebCkJORmSvO_VQKwT1gS5lQqH5kU9GlrRYzlQYcMZ5Pb3jSikj_EexMdZ0jD5IV4ekJKLP3aktZXDQZvimwCpGaB696MfvX2JNrUDXCoX4TDaXLte-_qupfvdQ0dx68aQV8ZeCHxfm-quov6rJYKJxmivPca6T672NQx6f0eHZdwudwp7nCb0I_d2Awrxf2BdwwV_NiVu_CZjKRu53S_wQOPFdc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLbRceJQCgQIWL3EJ5OkkEpeqZVXE7qpC26o3y-vYNFJJVsluz_wEfiO_hJkkG4hYUCVOOXic2Jlv7LHnBfBSoZarlZPYszhK7YCHypbGQXH3eOy5Bpvr8LHTUTSZxGdnyfEGvF_FwjT5IboLN5KMer0mAacL6VbKyXPdfetzn47s12AzQBghvjcPPw9PRt1KjJtpE4KSBGRFCNvMQtj9Xde5tx8NCpSrdbrmny6T27hDNcbyLsloX7-tN6jh7f-b2h241SqmbL9B0l3Y0PkObI1b0_sO3Kh9RVV1D7Ip8l__-PY9pcoATVYPJvOsKhZlMc8Uk6mc0yrKTEa2eNwcWWFYe-eD5IzcUhlqyywvskqzktLH1g1ZzvB8rtlMy6_sYLoLJ8MP04Mju63YYCtOvh4q4QFV-VOOH8tIesbTsRP42KhDNQuUcRLtG0_KkKfK5XEQyjjmxqBOo1xlQv8-DHL8zENgXJrITX1vFug0UE4oUVcyoSO5I6VGJciCNyu-iRUnqKrGhWiONbFwRfsTLXjekc6bHB7riPaI-YLYqtW5IjcjtRCe5yQx554FbAUKgQJIVhWZ62JZicT1UMtz6A0PGox0H8HOVNk5sCDqoacjoNze_ZY8O69zfFNoFepqFrzocPavsUdXoKrBIX6DhpD52vdfFuWvXmKeGgteNQjvDfwwO90XRflFXGRLgdNMcJ6va1j_fQxifEyPR1clfAbbR9PxSIw-Tj49hpv1hX4dCLoHg0W51E_gurpcZFX5tJX9n2oAWmQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRQuPMorUMACirgE8nQSiUvVZQViu1qhbdWb5XVsGqkkq2S3Z34Cv5FfwkySDUQsqBKnHDxO7MyM_dnzAnipEOVq5ST2PI5SO-ChsqVxUN09HnuuweY6fOxkHE0m8elpMt2Cd-tYmCY_RHfhRppRr9ek4HqRmlbLyXPdfeNzn47sV2A7oCIyA9gefh4dj7uVGDfTJgQlCciKELaZhbD7265zbz8aFKhXm7Dmny6T13GHaozlXZLRPr6tN6jRrf-b2m242QJTdtBI0h3Y0vku7By1pvdduFb7iqrqLmQz5L_-8e17SpUBmqweTOZZVSzLYpEpJlO5oFWUmYxs8bg5ssKw9s4HyRm5pTJEyywvskqzktLH1g1ZzvB8rtlcy6_scHYPjkfvZ4cf7LZig604-XqohAdU5U85fiwj6RlPx07gY6MO1TxQxkm0bzwpQ54ql8dBKOOYG4OYRrnKhP59GOT4mYfAuDSRm_rePNBpoJxQIlYyoSO5I6VGEGTB6zXfxJoTVFXjXDTHmli4ov2JFjzvSBdNDo9NRHvEfEFs1epMkZuRWgrPc5KYc88CthYKgQpIVhWZ62JVicT1EOU59IYHjYx0H8HOVNk5sCDqSU9HQLm9-y15dlbn-KbQKsRqFrzo5OxfY48uQVULh_hNNITMN77_oih_9RIomRbsNxLeG_gwOzkQRflFnGcrgdNMcJ6varH--xjE0ZQejy5L-Ax2psORGH-cfHoMN-r7_DoOdA8Gy3Kln8BVdbHMqvJpq_o_AXIoWd8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+anisotropic+adaptive+filtering+of+projection+data+for+noise+reduction+in+cone+beam+CT&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Maier%2C+Andreas&rft.au=Wigstrom%2C+Lars&rft.au=Hofmann%2C+Hannes+G&rft.au=Hornegger%2C+Joachim&rft.date=2011-11-01&rft.issn=0094-2405&rft.volume=38&rft.issue=11&rft.spage=5896&rft_id=info:doi/10.1118%2F1.3633901&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon