Discovering local patterns of co - evolution: computational aspects and biological examples

Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. Mor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 11; číslo 1; s. 43
Hlavní autoři: Tuller, Tamir, Felder, Yifat, Kupiec, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 22.01.2010
BioMed Central Ltd
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems. Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local. Results In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above. We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets. In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate subtree. Conclusions We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.
AbstractList Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems.Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local.BACKGROUNDCo-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems.Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local.In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above.We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets.In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate subtree.RESULTSIn this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above.We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets.In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate subtree.We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.CONCLUSIONSWe show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.
Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems. In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above. We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.
Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems.Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local. In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above.We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets.In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate subtree. We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.
Abstract Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems. Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local. Results In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above. We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets. In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate subtree. Conclusions We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.
Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems. Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local. Results In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above. We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets. In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate subtree. Conclusions We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.
Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems. Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local. Results In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above. We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets. In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate subtree. Conclusions We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.
ArticleNumber 43
Audience Academic
Author Tuller, Tamir
Felder, Yifat
Kupiec, Martin
AuthorAffiliation 1 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
4 Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
2 Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
3 Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
AuthorAffiliation_xml – name: 3 Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
– name: 2 Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
– name: 4 Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
– name: 1 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
Author_xml – sequence: 1
  givenname: Tamir
  surname: Tuller
  fullname: Tuller, Tamir
  email: tamirtul@post.tau.ac.il
  organization: School of Computer Science, Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Sackler School of Medicine, Tel-Aviv University, Faculty of Mathematics and Computer Science, Weizmann Institute of Science
– sequence: 2
  givenname: Yifat
  surname: Felder
  fullname: Felder, Yifat
  organization: School of Computer Science, Tel Aviv University
– sequence: 3
  givenname: Martin
  surname: Kupiec
  fullname: Kupiec, Martin
  organization: Department of Molecular Microbiology and Biotechnology, Tel Aviv University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20096103$$D View this record in MEDLINE/PubMed
BookMark eNp9ksuL1TAUxouMOA9du5OCC3HRmaRNH3EhDOPrwoDgY-Ui5HFSc0mbTpJexv_e1I6XuaKSRXJOft_HSfhOs6PRjZBlTzE6x7hrLjBpcVFiVBcYF6R6kJ3sO0f3zsfZaQhbhHDbofpRdlwiRBuMqpPs2xsTpNuBN2OfWye5zSceI_gx5E7n0uVFDjtn52jc-CrVwzRHvhSJ5GECGUPOR5UL46zrzWIAt3yYLITH2UPNbYAnd_tZ9vXd2y9XH4rrj-83V5fXhWwQigWnjZKgallhTLEqS1W3HCOlUY1p1-pOQqdKhamotEBdozSXDRUd0SqdsajOss3qqxzfssmbgfsfzHHDfjWc7xn30UgLrC6F0LLRSNCOEElES5FAUpKu6ShgSF6vV69pFgOkucbouT0wPbwZzXfWux2rypI0hCaDF3cG3t3MECIb0g-DtXwENwfWVlWFCaU4kc9XsudpMjNqlwzlQrPLskRNW1GyUOd_odJSMBiZ0qBN6h8IXh4IEhPhNvZ8DoFtPn86ZJ_df-3-mb_zkYCLFZDeheBB7xGM2JJAtmSMLRlLJSOLov5DIc0amDS3sf_RoVUXpiWL4NnWzT6lLPxT8hNy1uzj
CitedBy_id crossref_primary_10_1109_TCBB_2010_124
crossref_primary_10_1016_j_neuint_2015_03_009
crossref_primary_10_1039_c2ib20081c
crossref_primary_10_1016_j_biosystems_2012_06_006
crossref_primary_10_1111_1462_2920_16322
crossref_primary_10_3389_fcell_2014_00014
Cites_doi 10.1093/nar/gkg500
10.1111/j.1469-8137.1912.tb05611.x
10.1093/protein/14.9.609
10.1007/978-3-642-86659-3
10.1186/gb-2009-10-5-r48
10.1016/j.tig.2006.06.008
10.1093/bioinformatics/btl558
10.1093/bioinformatics/btl097
10.1038/msb4100150
10.1006/jmbi.1997.1198
10.1101/gr.1969504
10.1371/journal.pcbi.0010003
10.1038/nature02579
10.1006/jmbi.2000.3732
10.1101/gr.096115.109
10.1093/oxfordjournals.molbev.a026369
10.1073/pnas.0709671105
10.1038/nature06107
10.1073/pnas.0806627105
10.1093/oxfordjournals.molbev.a026236
10.1093/bioinformatics/btg187
10.1038/42711
10.1016/S0960-9822(02)00775-3
10.1186/1471-2148-1-4
10.1038/ng1967
10.1073/pnas.0501761102
10.1186/gb-2004-5-5-r35
10.1093/bioinformatics/18.suppl_1.S136
10.1101/gr.1589103
10.1093/molbev/msl150
10.1002/yea.1515
10.1074/jbc.M207112200
ContentType Journal Article
Copyright Tuller et al; licensee BioMed Central Ltd. 2010
COPYRIGHT 2010 BioMed Central Ltd.
Copyright ©2010 Tuller et al; licensee BioMed Central Ltd. 2010 Tuller et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Tuller et al; licensee BioMed Central Ltd. 2010
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: Copyright ©2010 Tuller et al; licensee BioMed Central Ltd. 2010 Tuller et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2105-11-43
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 43
ExternalDocumentID oai_doaj_org_article_52bbfc6f0b9844c4b790b0cc48689e1e
PMC3224649
A220673941
20096103
10_1186_1471_2105_11_43
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Israel
GeographicLocations_xml – name: Israel
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c600t-a96dced5c31191d22d57a10df051987f8ce8d2d19b3fb086dfac69b84fd6df1b3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275547100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:46:35 EDT 2025
Tue Nov 04 01:56:45 EST 2025
Sun Nov 09 14:17:37 EST 2025
Tue Nov 11 10:34:16 EST 2025
Tue Nov 04 17:57:20 EST 2025
Thu Nov 13 15:07:15 EST 2025
Mon Jul 21 05:59:13 EDT 2025
Tue Nov 18 21:53:55 EST 2025
Sat Nov 29 05:39:49 EST 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tree Splitter
Internal Node
Evolutionary Tree
Gene Copy Number
Biological Dataset
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-a96dced5c31191d22d57a10df051987f8ce8d2d19b3fb086dfac69b84fd6df1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/1471-2105-11-43
PMID 20096103
PQID 733314991
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_52bbfc6f0b9844c4b790b0cc48689e1e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3224649
proquest_miscellaneous_733314991
gale_infotracmisc_A220673941
gale_infotracacademiconefile_A220673941
gale_incontextgauss_ISR_A220673941
pubmed_primary_20096103
crossref_primary_10_1186_1471_2105_11_43
crossref_citationtrail_10_1186_1471_2105_11_43
springer_journals_10_1186_1471_2105_11_43
PublicationCentury 2000
PublicationDate 2010-01-22
PublicationDateYYYYMMDD 2010-01-22
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References 3500_CR24
S Ohno (3500_CR35) 1970
P Jaccard (3500_CR32) 1912; 11
D Barker (3500_CR13) 2007; 23
S Grossmann (3500_CR21) 2006
B Snel (3500_CR8) 2004; 14
B Dujon (3500_CR36) 2004; 430
R Singh (3500_CR40) 2008; 105
Z Yang (3500_CR28) 1997; 13
TD Bie (3500_CR23) 2006; 22
T Tuller (3500_CR6) 2009; 10
J Wu (3500_CR7) 2003; 19
C Goh (3500_CR11) 2000; 299
A Tanay (3500_CR29) 2002; 18
D Scannell (3500_CR37) 2007; 24
F Pazos (3500_CR10) 2001; 14
T Tuller (3500_CR15) 2009; 20
D Barker (3500_CR12) 2005; 1
JB MacQueen (3500_CR20) 1967
M Benton (3500_CR31) 2007; 24
T Pupko (3500_CR26) 2000; 17
T Przytycka (3500_CR18) 2008
Y Cheng (3500_CR30) 2000
RL Tatusov (3500_CR22) 2003
R Chenna (3500_CR25) 2003; 31
I Wapinski (3500_CR14) 2007; 449
D Juan (3500_CR5) 2008; 105
PM Bowers (3500_CR9) 2004; 5
Z Yang (3500_CR27) 2000; 17
Y Chena (3500_CR1) 2006; 22
D Ober (3500_CR17) 2003; 278
F Pazos (3500_CR4) 1997; 271
E Oron (3500_CR38) 2007; 3
D Chamovitz (3500_CR39) 2002; 12
DM Krylov (3500_CR16) 2003; 13
DP Wall (3500_CR2) 2005; 102
LM o Rami'rez (3500_CR3) 2006
3500_CR19
O Man (3500_CR33) 2007; 39
K Wolfe (3500_CR34) 1997; 387
11580860 - BMC Evol Biol. 2001;1:4
19416514 - Genome Biol. 2009;10(5):R48
10833195 - Mol Biol Evol. 2000 Jun;17(6):890-6
12562768 - J Biol Chem. 2003 Apr 11;278(15):12805-12
17090580 - Bioinformatics. 2007 Jan 1;23(1):14-20
17486136 - Mol Syst Biol. 2007;3:108
11707606 - Protein Eng. 2001 Sep;14(9):609-14
16797778 - Trends Genet. 2006 Aug;22(8):416-9
17805289 - Nature. 2007 Sep 6;449(7158):54-61
15800036 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5483-8
12969510 - BMC Bioinformatics. 2003 Sep 11;4:41
10977070 - Proc Int Conf Intell Syst Mol Biol. 2000;8:93-103
17621376 - Yeast. 2007 Nov;24(11):929-42
17047029 - Mol Biol Evol. 2007 Jan;24(1):26-53
12912833 - Bioinformatics. 2003 Aug 12;19(12):1524-30
12824352 - Nucleic Acids Res. 2003 Jul 1;31(13):3497-500
15229592 - Nature. 2004 Jul 1;430(6995):35-44
12169541 - Bioinformatics. 2002;18 Suppl 1:S136-44
10860738 - J Mol Biol. 2000 Jun 2;299(2):283-93
18345352 - Evol Bioinform Online. 2006;2:271-6
9281423 - J Mol Biol. 1997 Aug 29;271(4):511-23
18199838 - Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):934-9
9192896 - Nature. 1997 Jun 12;387(6634):708-13
14993205 - Genome Res. 2004 Mar;14(3):391-7
15128449 - Genome Biol. 2004;5(5):R35
16103904 - PLoS Comput Biol. 2005 Jun;1(1):e3
18637201 - BMC Evol Biol. 2008;8:208
19948819 - Genome Res. 2010 Jan;20(1):122-32
10666704 - Mol Biol Evol. 2000 Jan;17(1):32-43
16543274 - Bioinformatics. 2006 May 15;22(10):1269-71
18725631 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12763-8
17277776 - Nat Genet. 2007 Mar;39(3):415-21
11937035 - Curr Biol. 2002 Apr 2;12(7):R232
14525925 - Genome Res. 2003 Oct;13(10):2229-35
9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6
References_xml – volume: 31
  start-page: 3497
  issue: 13
  year: 2003
  ident: 3500_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg500
– volume: 11
  start-page: 37
  year: 1912
  ident: 3500_CR32
  publication-title: The New Phytologist
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 13
  start-page: 555
  issue: 5
  year: 1997
  ident: 3500_CR28
  publication-title: Comput Appl Biosci
– volume: 14
  start-page: 609
  issue: 9
  year: 2001
  ident: 3500_CR10
  publication-title: Protein Engineering
  doi: 10.1093/protein/14.9.609
– volume-title: Evolution by gene duplication
  year: 1970
  ident: 3500_CR35
  doi: 10.1007/978-3-642-86659-3
– volume: 10
  start-page: R48
  issue: 5
  year: 2009
  ident: 3500_CR6
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-5-r48
– ident: 3500_CR19
– volume: 22
  start-page: 416
  issue: 8
  year: 2006
  ident: 3500_CR1
  publication-title: Trends in Genetics
  doi: 10.1016/j.tig.2006.06.008
– volume: 23
  start-page: 14
  year: 2007
  ident: 3500_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl558
– volume: 22
  start-page: 1269
  year: 2006
  ident: 3500_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl097
– volume: 3
  start-page: 108
  year: 2007
  ident: 3500_CR38
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100150
– volume-title: The COG database: an updated version includes eukaryotes.
  year: 2003
  ident: 3500_CR22
– volume: 271
  start-page: 511
  year: 1997
  ident: 3500_CR4
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1997.1198
– volume: 14
  start-page: 391
  issue: 3
  year: 2004
  ident: 3500_CR8
  publication-title: Genome Res
  doi: 10.1101/gr.1969504
– volume: 1
  start-page: 24
  year: 2005
  ident: 3500_CR12
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0010003
– volume: 430
  start-page: 35
  year: 2004
  ident: 3500_CR36
  publication-title: Nature
  doi: 10.1038/nature02579
– volume: 299
  start-page: 283
  issue: 2
  year: 2000
  ident: 3500_CR11
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3732
– volume: 20
  start-page: 122
  year: 2009
  ident: 3500_CR15
  publication-title: Genome Res
  doi: 10.1101/gr.096115.109
– volume: 17
  start-page: 890
  year: 2000
  ident: 3500_CR26
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026369
– volume: 105
  start-page: 934
  issue: 3
  year: 2008
  ident: 3500_CR5
  publication-title: PNAS
  doi: 10.1073/pnas.0709671105
– volume: 449
  start-page: 54
  year: 2007
  ident: 3500_CR14
  publication-title: Nature
  doi: 10.1038/nature06107
– volume: 105
  start-page: 12763
  issue: 35
  year: 2008
  ident: 3500_CR40
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0806627105
– volume: 17
  start-page: 32
  year: 2000
  ident: 3500_CR27
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026236
– start-page: 93
  volume-title: Proc 8th Int Conf Intell Syst Mol Biol
  year: 2000
  ident: 3500_CR30
– volume: 19
  start-page: 1524
  year: 2003
  ident: 3500_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg187
– start-page: 85
  volume-title: RECOMB06
  year: 2006
  ident: 3500_CR21
– volume: 387
  start-page: 708
  issue: 6634
  year: 1997
  ident: 3500_CR34
  publication-title: Nature
  doi: 10.1038/42711
– volume: 12
  start-page: R232
  issue: 7
  year: 2002
  ident: 3500_CR39
  publication-title: Current Biol
  doi: 10.1016/S0960-9822(02)00775-3
– ident: 3500_CR24
  doi: 10.1186/1471-2148-1-4
– volume: 39
  start-page: 415
  year: 2007
  ident: 3500_CR33
  publication-title: Nature Genetics
  doi: 10.1038/ng1967
– volume: 102
  start-page: 5483
  issue: 15
  year: 2005
  ident: 3500_CR2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0501761102
– volume: 5
  start-page: R35
  year: 2004
  ident: 3500_CR9
  publication-title: Genome Biology
  doi: 10.1186/gb-2004-5-5-r35
– volume-title: Differences in evolutionary pressure acting within highly conserved ortholog groups
  year: 2008
  ident: 3500_CR18
– volume: 18
  start-page: S136
  year: 2002
  ident: 3500_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S136
– volume: 13
  start-page: 2229
  issue: 10
  year: 2003
  ident: 3500_CR16
  publication-title: Genome Res
  doi: 10.1101/gr.1589103
– volume: 24
  start-page: 26
  year: 2007
  ident: 3500_CR31
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msl150
– volume: 24
  start-page: 929
  issue: 11
  year: 2007
  ident: 3500_CR37
  publication-title: Yeast
  doi: 10.1002/yea.1515
– start-page: 281
  volume-title: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley
  year: 1967
  ident: 3500_CR20
– start-page: 2295
  volume-title: Evolutionary Bioinformatics
  year: 2006
  ident: 3500_CR3
– volume: 278
  start-page: 12805
  issue: 15
  year: 2003
  ident: 3500_CR17
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M207112200
– reference: 16543274 - Bioinformatics. 2006 May 15;22(10):1269-71
– reference: 9192896 - Nature. 1997 Jun 12;387(6634):708-13
– reference: 11707606 - Protein Eng. 2001 Sep;14(9):609-14
– reference: 10860738 - J Mol Biol. 2000 Jun 2;299(2):283-93
– reference: 12912833 - Bioinformatics. 2003 Aug 12;19(12):1524-30
– reference: 16797778 - Trends Genet. 2006 Aug;22(8):416-9
– reference: 10977070 - Proc Int Conf Intell Syst Mol Biol. 2000;8:93-103
– reference: 17621376 - Yeast. 2007 Nov;24(11):929-42
– reference: 12969510 - BMC Bioinformatics. 2003 Sep 11;4:41
– reference: 11937035 - Curr Biol. 2002 Apr 2;12(7):R232
– reference: 18725631 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12763-8
– reference: 12169541 - Bioinformatics. 2002;18 Suppl 1:S136-44
– reference: 15800036 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5483-8
– reference: 11580860 - BMC Evol Biol. 2001;1:4
– reference: 17486136 - Mol Syst Biol. 2007;3:108
– reference: 12562768 - J Biol Chem. 2003 Apr 11;278(15):12805-12
– reference: 18345352 - Evol Bioinform Online. 2006;2:271-6
– reference: 15128449 - Genome Biol. 2004;5(5):R35
– reference: 16103904 - PLoS Comput Biol. 2005 Jun;1(1):e3
– reference: 10666704 - Mol Biol Evol. 2000 Jan;17(1):32-43
– reference: 18637201 - BMC Evol Biol. 2008;8:208
– reference: 9281423 - J Mol Biol. 1997 Aug 29;271(4):511-23
– reference: 18199838 - Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):934-9
– reference: 17047029 - Mol Biol Evol. 2007 Jan;24(1):26-53
– reference: 9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6
– reference: 12824352 - Nucleic Acids Res. 2003 Jul 1;31(13):3497-500
– reference: 17277776 - Nat Genet. 2007 Mar;39(3):415-21
– reference: 14525925 - Genome Res. 2003 Oct;13(10):2229-35
– reference: 17090580 - Bioinformatics. 2007 Jan 1;23(1):14-20
– reference: 19416514 - Genome Biol. 2009;10(5):R48
– reference: 14993205 - Genome Res. 2004 Mar;14(3):391-7
– reference: 15229592 - Nature. 2004 Jul 1;430(6995):35-44
– reference: 10833195 - Mol Biol Evol. 2000 Jun;17(6):890-6
– reference: 19948819 - Genome Res. 2010 Jan;20(1):122-32
– reference: 17805289 - Nature. 2007 Sep 6;449(7158):54-61
SSID ssj0017805
Score 1.978626
Snippet Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a...
Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to...
Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a...
Abstract Background Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Evolution, Molecular
Gene Expression Profiling
Genes
Genetic algorithms
Life Sciences
Microarrays
Phylogeny
Physiological aspects
Research Article
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKngRW7-e1hJEUA9rdzfZbOKt2hYFKeIXBQ8hn_WB7Jbue0X_e2eyeY9upXjxtruZQDIzycxsJr8h5JkRxgYwHEUL3kbBlReFEi4WIlawPnyULmHpffvQHh_LkxP18VKpL8wJG-GBR8btNbW10YlYWiU5d9y2qrSlc1wKqUIVcPctW7UKpvL5ASL1p3tFbVVAUNNkUJ9Kir31N7xRxtnEHiXY_r8350vW6Wrm5JXj02SVju6Q29mdpPvjNLbIjdBtk5tjgcnfd8n3g_ngMEkTOtNktuhZAtTsBtpH6npa0HCRte81danEQ_49SE26hTlQ03k6YjWhQGn4ZRBReLhHvh4dfnn7rsjlFAoHXs2iMErAuH3jGIK6-br2TWuq0kf04mQLYgnS175SlkULkY6PxgllJY8enivL7pONru_CQ0KNYOAnyEZ6bzg4EAbCrNBU3pSBxejZjLxaMVW7jDWOJS9-6hRzSKFRChqlAK-aQ4cX6w5nI8zG9aRvUEprMsTHTh9Aa3TWGv0vrZmRpyhjjQgYHabYnJrlMOj3nz_p_RoR7Zni1Yw8z0Sxh9E7k28sAA8QNGtCuTOhhCXqJs10pUoamzCvrQv9ctAtYwxiVAUkD0bNWs-rTtV4SphvO9G5ycSnLd38RwIIZ4gSyNWMvFxpp84703AdVx_9D64-JrfG5ApYYPUO2VicL8MTsukuFvPhfDet0D-YnTx7
  priority: 102
  providerName: Directory of Open Access Journals
Title Discovering local patterns of co - evolution: computational aspects and biological examples
URI https://link.springer.com/article/10.1186/1471-2105-11-43
https://www.ncbi.nlm.nih.gov/pubmed/20096103
https://www.proquest.com/docview/733314991
https://pubmed.ncbi.nlm.nih.gov/PMC3224649
https://doaj.org/article/52bbfc6f0b9844c4b790b0cc48689e1e
Volume 11
WOSCitedRecordID wos000275547100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6AIkL78dCWVkICTgEkthxbG4ttKICVtEWqi0cLMePshJKqs1uBf-esZOsSKEHuFhJPI5ie8YzE4-_QeipYqq0oDiiHKyNiArDIsG0i5hLQD6M4zpg6R1_yCcTPpuJYgMl_VmYEO3eb0mGlTqINWevElhGI3BQMn8SjJJNtA26jvtsDdOj4_XGgYfo7xB8_tJooHwCRv-fK_FvquhimOSFvdKggg5u_MfH30TXO3sT77YMcgtt2Oo2utpmoPx5B319O2-0j-KEl-Gg1_BZQNysGlw7rGscYXvesedrrEMOiO7_IVbhmGaDVWVwC-bkZxzbH8pDDjd30eeD_U9v3kVdvoVIg9mzjJRg0FeTaeJR30yamixXSWycN_N4DvNmuUlNIkriSnCFjFOaiZJTZ-A6Kck9tFXVlX2AsGIEDAmecWMUBQtDgR9ms8So2BLnDBmhl_1ESN2BkfucGN9lcEo4k37EpB8xuJUUGjxfNzhrcTguJ93zM7sm8wDa4UG9OJWdPMosLUunmYtLwSnVtMxFXMZaU864sIkdoSeeL6SHyKh8DM6pWjWNPDyayt3UQ94TQZMRetYRuRq-XqvuSAOMgUfVGlDuDChBhvWgGvfsJ32VD3yrbL1qZE4IASdWAMn9lhvX_UpDup4Y-psP-HTQ8WFNNf8WEMSJhxGkYoRe9Nwqu6WruWxUH_4D7SN0rQ2yAJ5Pd9DWcrGyj9EVfb6cN4sx2sxneSj5GG3v7U-K6Tj8CoHyfR6NffhtAWWRfYH64vBjcTIOQv4LRDlEbg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKAcGFd2GhgIWQgENoEjuOza08qlYsK9SWqhIHy_GjrISSarNbwb9nxsmuSKEHuCXxOMrYM56ZePwNIc-NMJUHw5GU4G0kXDmRKGFDIkIG-uGCtBFL72hcTiby-Fh9XiPZ8ixMzHZfbknGlTqqtRRbGSyjCQQoBZ4E4-wSuczBXCFc_v7B0WrjACH6ewSfv3QaGJ-I0f_nSvybKTqfJnlurzSaoJ2b__Hxt8iN3t-k252A3CZrvr5DrnYVKH_eJV_fT1uLWZzwMhrtGj2NiJt1S5tAbUMT6s968XxDbawB0f8_pCYe02ypqR3twJxwxqn_YRByuL1Hvux8OHy3m_T1FhILbs88MUoAr66wDFHfXJ67ojRZ6gK6ebKEefPS5S5TFQsVhEIuGCtUJXlwcJ1VbIOs103tHxBqBANHQhbSOcPBwzAQh_kicyb1LATHRuT1ciK07cHIsSbGdx2DEik0jpjGEYNbzaHDy1WH0w6H42LStzizKzIE0I4PmtmJ7vVRF3lVBStCWinJueVVqdIqtZZLIZXP_Ig8Q7nQCJFRYw7OiVm0rd472NfbOULeM8WzEXnRE4UGvt6a_kgDjAGiag0oNweUoMN20EyX4qexCRPfat8sWl0yxiCIVUByv5PGFV95LNeTAr_lQE4HjA9b6um3iCDOEEaQqxF5tZRW3S9d7UWj-vAfaJ-Sa7uHn8Z6vDf5-Ihc7xIuQP7zTbI-ny38Y3LFns2n7exJVN5fIc8-fQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPMSFN2WhgIWQgENoEjuOza1QVlRUq4pCVYmD5fjRroSS1Wa3gn_PjJNdkUIPiFsSj6OMPeOZicffEPLCCFN5MBxJCd5GwpUTiRI2JCJkoB8uSBux9I72y8lEHh-rgz43p11lu6-2JLszDYjSVC-2Zy50Ki7FdgZLagLBSoGnwji7TK5wzKLHYP3waL2JgHD9PZrPXzoNDFHE6_9zVf7NLJ1PmTy3bxrN0fjWfzJym9zs_VC60wnOHXLJ13fJta4y5c975NvutLWY3QkvptHe0VlE4qxb2gRqG5pQf9aL7VtqY22I_r8iNfH4ZktN7WgH8oSSQP0Pg1DE7X3ydfzhy_uPSV-HIbHgDi0SowTw7QrLEA3O5bkrSpOlLqD7J0uYTy9d7jJVsVBBiOSCsUJVkgcH11nFHpCNuqn9Q0KNYOBgyEI6Zzh4HgbiM19kzqSeheDYiLxZTYq2PUg51sr4rmOwIoXGEdM4YnCrOXR4te4w6_A5LiZ9h7O8JkNg7figmZ_oXk91kVdVsCKklZKcW16VKq1Sa7kUUvnMj8hzlBGN0Bk15uacmGXb6r3Dz3onRyh8png2Ii97otDA11vTH3WAMUC0rQHl1oASdNsOmulKFDU2YUJc7Ztlq0vGGAS3Ckg2O8lc85XHMj4p8FsOZHbA-LClnp5GZHGG8IJcjcjrleTqfklrLxrVR_9A-4xcP9gd6_29yafH5EaXhwHin2-RjcV86Z-Qq_ZsMW3nT6Me_wIXRUdh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+local+patterns+of+co-evolution%3A+computational+aspects+and+biological+examples&rft.jtitle=BMC+bioinformatics&rft.au=Tuller%2C+Tamir&rft.au=Felder%2C+Yifat&rft.au=Kupiec%2C+Martin&rft.date=2010-01-22&rft.eissn=1471-2105&rft.volume=11&rft.spage=43&rft_id=info:doi/10.1186%2F1471-2105-11-43&rft_id=info%3Apmid%2F20096103&rft.externalDocID=20096103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon