MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing

Background Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a co...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 15; no. 1; p. 224
Main Authors: Kalari, Krishna R, Nair, Asha A, Bhavsar, Jaysheel D, O’Brien, Daniel R, Davila, Jaime I, Bockol, Matthew A, Nie, Jinfu, Tang, Xiaojia, Baheti, Saurabh, Doughty, Jay B, Middha, Sumit, Sicotte, Hugues, Thompson, Aubrey E, Asmann, Yan W, Kocher, Jean-Pierre A
Format: Journal Article
Language:English
Published: London BioMed Central 27.06.2014
BioMed Central Ltd
Springer Nature B.V
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. Results For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. Conclusions Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/ .
AbstractList Doc number: 224 Abstract Background: Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. Results: For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. Conclusions: Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/ .
Background Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. Results For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. Conclusions Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from Keywords: Transcriptomic sequencing, RNA-Seq, Bioinformatics workflow, Gene expression, Exon counts, Fusion transcripts, Expressed single nucleotide variants, RNA-Seq reports
Background: Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. Results: For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. Conclusions: Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/ .
Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome.BACKGROUNDAlthough the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome.For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients.RESULTSFor optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients.Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.CONCLUSIONSOur software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.
Background Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. Results For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. Conclusions Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/ .
Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.
Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.
ArticleNumber 224
Audience Academic
Author Bhavsar, Jaysheel D
Doughty, Jay B
Davila, Jaime I
O’Brien, Daniel R
Kalari, Krishna R
Bockol, Matthew A
Tang, Xiaojia
Middha, Sumit
Sicotte, Hugues
Nair, Asha A
Baheti, Saurabh
Asmann, Yan W
Kocher, Jean-Pierre A
Nie, Jinfu
Thompson, Aubrey E
AuthorAffiliation 1 Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
4 Present Address: Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
2 Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
3 Department of Health Sciences Research, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
AuthorAffiliation_xml – name: 3 Department of Health Sciences Research, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
– name: 1 Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
– name: 2 Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
– name: 4 Present Address: Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
Author_xml – sequence: 1
  givenname: Krishna R
  surname: Kalari
  fullname: Kalari, Krishna R
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 2
  givenname: Asha A
  surname: Nair
  fullname: Nair, Asha A
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 3
  givenname: Jaysheel D
  surname: Bhavsar
  fullname: Bhavsar, Jaysheel D
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 4
  givenname: Daniel R
  surname: O’Brien
  fullname: O’Brien, Daniel R
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 5
  givenname: Jaime I
  surname: Davila
  fullname: Davila, Jaime I
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 6
  givenname: Matthew A
  surname: Bockol
  fullname: Bockol, Matthew A
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 7
  givenname: Jinfu
  surname: Nie
  fullname: Nie, Jinfu
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 8
  givenname: Xiaojia
  surname: Tang
  fullname: Tang, Xiaojia
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 9
  givenname: Saurabh
  surname: Baheti
  fullname: Baheti, Saurabh
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 10
  givenname: Jay B
  surname: Doughty
  fullname: Doughty, Jay B
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 11
  givenname: Sumit
  surname: Middha
  fullname: Middha, Sumit
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 12
  givenname: Hugues
  surname: Sicotte
  fullname: Sicotte, Hugues
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 13
  givenname: Aubrey E
  surname: Thompson
  fullname: Thompson, Aubrey E
  organization: Department of Cancer Biology, Mayo Clinic
– sequence: 14
  givenname: Yan W
  surname: Asmann
  fullname: Asmann, Yan W
  organization: Department of Health Sciences Research, Mayo Clinic
– sequence: 15
  givenname: Jean-Pierre A
  surname: Kocher
  fullname: Kocher, Jean-Pierre A
  email: kocher.jeanpierre@mayo.edu
  organization: Department of Health Sciences Research, Mayo Clinic, Department of Health Sciences Research, Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24972667$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gzglF4kIPKR7HdhIOSFFVoFJLqy2cLdeZBFdZexsnVfff47Bl2a2gQj7YGj_vfO-THecdEvIa6BFAId8DzyFlQEUKImWMPyN7a9POxnuX7IdwQynkBRUvyC7jZc6kzPdIdl5dprMrvP2QnOulTyqnu2WwIbm0C-ysw6TxfTL7WiUBb0d0xrr2JXne6C7gq4f7gHz_dPLt-Et6dvH59Lg6S42kdEh1JqHQQgqMgSHjCNTwEoDVyDKstWiyQhswZV7nJa2BymuDBZOmKWta8Cw7IB9Xfhfj9Rxrg27odacWvZ3rfqm8tmr7x9kfqvV3ijNWCArRwbsHB72PyYdBzW0w2HXaoR-DAsHzQpZQsP9Bec5jGXlE3z5Cb_zYx76tKJ4JUfI_VKs7VNY1PqZoJqeqElnJJaO_Mjz6CxVPjXNr4rAbG-1bgsMtQWQGvB9aPYagTq9m2-ybzf6tG_d7-hGgK8D0PoQemzUCVE0LpqYNUtMGxdJUXLAokY8kxg56sH6agO2eEsJKGGIM12K_0bV_aX4CdLbccA
CitedBy_id crossref_primary_10_3390_ijms252212130
crossref_primary_10_1097_CMR_0000000000000921
crossref_primary_10_1038_s41598_020_76881_x
crossref_primary_10_1080_15592294_2020_1819663
crossref_primary_10_1093_ecco_jcc_jjad093
crossref_primary_10_1016_j_cgh_2024_06_028
crossref_primary_10_1681_ASN_2019020150
crossref_primary_10_1016_j_jid_2025_01_015
crossref_primary_10_1016_j_ebiom_2022_103929
crossref_primary_10_1038_s41551_019_0460_x
crossref_primary_10_1007_s10875_018_0499_6
crossref_primary_10_1186_s13059_021_02498_6
crossref_primary_10_1016_j_euf_2016_03_008
crossref_primary_10_1016_j_gene_2018_05_034
crossref_primary_10_1126_science_abj2890
crossref_primary_10_1186_s12859_015_0873_9
crossref_primary_10_1007_s00401_024_02720_2
crossref_primary_10_1158_0008_5472_CAN_16_3011
crossref_primary_10_1002_jcp_26211
crossref_primary_10_1002_rco2_14
crossref_primary_10_1186_s12974_021_02360_3
crossref_primary_10_1002_jcp_30933
crossref_primary_10_1038_s41467_019_09964_7
crossref_primary_10_1186_s12859_019_3219_1
crossref_primary_10_1016_j_yexcr_2021_112779
crossref_primary_10_1111_acel_13606
crossref_primary_10_1111_his_14961
crossref_primary_10_1016_j_modpat_2023_100246
crossref_primary_10_1186_s12859_017_1770_1
crossref_primary_10_1038_s41598_024_75250_2
crossref_primary_10_1186_s13098_018_0359_9
crossref_primary_10_1371_journal_pone_0200005
crossref_primary_10_1002_lary_30109
crossref_primary_10_1016_j_scr_2019_101423
crossref_primary_10_1038_srep25749
crossref_primary_10_1038_s41380_023_02372_w
crossref_primary_10_1038_s41379_021_00843_5
crossref_primary_10_1002_jcp_29927
crossref_primary_10_1038_s41467_022_31890_4
crossref_primary_10_1016_j_jpi_2025_100443
crossref_primary_10_1016_j_mimet_2018_10_008
crossref_primary_10_1186_s13287_023_03269_9
crossref_primary_10_1038_s41593_022_01127_0
crossref_primary_10_1002_1878_0261_12414
crossref_primary_10_1089_scd_2019_0030
crossref_primary_10_1016_j_gene_2014_08_041
crossref_primary_10_1136_gutjnl_2022_327471
crossref_primary_10_3389_falgy_2025_1606255
crossref_primary_10_1093_bib_bbv036
crossref_primary_10_1016_j_cell_2020_08_007
crossref_primary_10_2106_JBJS_22_00605
crossref_primary_10_1111_his_13649
crossref_primary_10_1038_s41431_018_0222_3
crossref_primary_10_1186_s13287_023_03372_x
crossref_primary_10_3389_fgene_2024_1412767
crossref_primary_10_1093_nargab_lqaf053
crossref_primary_10_1096_fj_202001192R
crossref_primary_10_3390_cells10040763
crossref_primary_10_1016_j_omtn_2023_05_026
crossref_primary_10_1681_ASN_0000000000000440
crossref_primary_10_3389_fcell_2021_681153
crossref_primary_10_1093_brain_awaa141
crossref_primary_10_1016_j_gene_2022_146400
crossref_primary_10_1093_bib_bbae164
crossref_primary_10_1186_s12859_021_04211_7
crossref_primary_10_1186_s12920_018_0391_5
crossref_primary_10_1016_j_cels_2016_10_018
crossref_primary_10_1038_s41380_022_01769_3
crossref_primary_10_2217_epi_2023_0026
crossref_primary_10_1016_j_jacep_2025_03_039
crossref_primary_10_1016_j_genrep_2019_100363
crossref_primary_10_1371_journal_pone_0145176
crossref_primary_10_1038_s41434_022_00369_8
crossref_primary_10_1002_jbmr_3975
crossref_primary_10_1038_s41467_020_19264_0
crossref_primary_10_1186_s12859_019_3251_1
crossref_primary_10_3389_fgene_2022_836841
crossref_primary_10_1038_s43856_024_00728_z
crossref_primary_10_3389_fgene_2016_00080
crossref_primary_10_1038_s41598_022_24550_6
crossref_primary_10_1002_jor_23834
crossref_primary_10_1002_hep4_1311
crossref_primary_10_1002_hep4_1315
crossref_primary_10_1186_s13024_023_00599_3
crossref_primary_10_1523_JNEUROSCI_2264_20_2021
crossref_primary_10_1016_j_humpath_2023_11_008
crossref_primary_10_1016_j_ygeno_2018_09_013
crossref_primary_10_1097_AS9_0000000000000444
crossref_primary_10_1016_j_cgh_2020_02_027
crossref_primary_10_1016_j_humpath_2019_03_007
crossref_primary_10_1016_j_ygyno_2019_06_010
crossref_primary_10_1016_j_nbd_2021_105294
crossref_primary_10_1002_anbr_202100127
crossref_primary_10_1212_NXG_0000000000000126
crossref_primary_10_1128_spectrum_04307_23
crossref_primary_10_1038_s41467_022_30056_6
crossref_primary_10_1016_j_eururo_2025_03_012
crossref_primary_10_3390_cancers15020477
crossref_primary_10_1016_j_gene_2020_144634
crossref_primary_10_1093_neuonc_noz129
crossref_primary_10_1016_j_bbrc_2017_03_033
crossref_primary_10_1038_s41467_023_42626_3
crossref_primary_10_1093_ajcp_aqac125
crossref_primary_10_1084_jem_20180484
crossref_primary_10_1167_iovs_18_25067
crossref_primary_10_3390_genes16080988
crossref_primary_10_1136_jitc_2022_006035
crossref_primary_10_1038_s41591_018_0071_1
crossref_primary_10_1158_1078_0432_CCR_22_2215
crossref_primary_10_1002_hep_27687
crossref_primary_10_1186_s12864_016_3329_3
crossref_primary_10_1186_s12885_018_4594_0
crossref_primary_10_1038_s41467_024_48926_6
crossref_primary_10_1038_s41588_021_00886_z
crossref_primary_10_1038_s41540_022_00235_8
crossref_primary_10_1111_jnc_70047
crossref_primary_10_1371_journal_pone_0315285
crossref_primary_10_3389_fimmu_2024_1358477
crossref_primary_10_3390_app13042698
crossref_primary_10_1186_s13287_021_02241_9
crossref_primary_10_1186_s13287_024_03847_5
crossref_primary_10_1177_0963689718780942
crossref_primary_10_1186_s40169_016_0133_2
crossref_primary_10_1016_j_jid_2022_01_015
crossref_primary_10_1002_gcc_22742
crossref_primary_10_3390_ncrna8010015
crossref_primary_10_1016_j_modpat_2024_100598
crossref_primary_10_1186_s13059_021_02418_8
crossref_primary_10_1158_1541_7786_MCR_17_0063
crossref_primary_10_1016_j_jmoldx_2018_03_007
crossref_primary_10_1186_1471_2164_16_S6_S3
crossref_primary_10_1002_gcc_23045
crossref_primary_10_1038_s41408_019_0173_0
crossref_primary_10_1038_s41467_019_14003_6
crossref_primary_10_1038_s41564_022_01121_z
crossref_primary_10_3390_genes13020241
crossref_primary_10_1016_j_matbio_2020_02_004
crossref_primary_10_1016_j_ymeth_2015_04_018
crossref_primary_10_1074_jbc_M115_684399
crossref_primary_10_1186_s13000_019_0809_1
crossref_primary_10_1096_fj_201901719RR
crossref_primary_10_1038_s41408_019_0233_5
crossref_primary_10_1111_acel_12352
crossref_primary_10_1158_1541_7786_MCR_19_1026
crossref_primary_10_1038_s41467_019_12610_x
crossref_primary_10_1038_s41408_018_0160_x
crossref_primary_10_1167_iovs_19_27689
crossref_primary_10_1158_2326_6066_CIR_21_0539
crossref_primary_10_1007_s00395_022_00932_9
crossref_primary_10_1016_j_bbadis_2019_165630
crossref_primary_10_1177_09636897241290367
crossref_primary_10_1186_s13287_024_03778_1
crossref_primary_10_1038_s41467_021_23186_w
crossref_primary_10_3389_fbioe_2022_903907
crossref_primary_10_1038_s42003_019_0460_0
crossref_primary_10_1042_CS20230555
crossref_primary_10_1186_s12864_016_3161_9
crossref_primary_10_1186_s13024_018_0289_x
crossref_primary_10_1016_j_gene_2020_144437
crossref_primary_10_1161_CIRCGEN_122_003756
crossref_primary_10_1186_s12920_018_0379_1
crossref_primary_10_1016_j_ejca_2024_113914
crossref_primary_10_1007_s00401_021_02361_9
crossref_primary_10_1016_j_jcjp_2021_100003
crossref_primary_10_1002_jcp_31168
crossref_primary_10_1016_j_cmet_2023_10_010
crossref_primary_10_1016_j_ajhg_2015_04_015
crossref_primary_10_1038_s41467_018_04383_6
crossref_primary_10_1038_nn_4065
crossref_primary_10_1371_journal_pone_0214588
crossref_primary_10_1016_j_ygeno_2020_03_004
crossref_primary_10_1093_function_zqac034
crossref_primary_10_1038_labinvest_2015_51
crossref_primary_10_1016_j_gene_2022_146928
crossref_primary_10_1371_journal_pcbi_1004393
crossref_primary_10_1016_j_scr_2020_101877
crossref_primary_10_3390_ijms22126580
crossref_primary_10_1038_s41467_021_22399_3
crossref_primary_10_1016_j_mayocp_2022_03_034
crossref_primary_10_1002_adbi_202000119
crossref_primary_10_1186_s12859_016_0923_y
crossref_primary_10_1016_j_heliyon_2024_e39607
crossref_primary_10_1097_HC9_0000000000000613
crossref_primary_10_1002_jcp_29415
crossref_primary_10_1016_j_bbrc_2018_01_092
crossref_primary_10_1109_TNB_2018_2851997
crossref_primary_10_1016_j_jid_2023_11_027
crossref_primary_10_3389_fncel_2024_1368018
crossref_primary_10_3390_v14122763
crossref_primary_10_1093_bib_bbz110
crossref_primary_10_1002_alz_70112
crossref_primary_10_1093_ajcp_aqaa136
crossref_primary_10_1016_j_genrep_2024_101989
crossref_primary_10_1093_pnasnexus_pgae096
crossref_primary_10_1002_eji_202049054
crossref_primary_10_1063_1_5064596
crossref_primary_10_1002_jbmr_4537
crossref_primary_10_1371_journal_pone_0251732
crossref_primary_10_1186_s12859_019_3015_y
crossref_primary_10_1371_journal_pone_0308711
crossref_primary_10_1007_s00401_023_02655_0
crossref_primary_10_1016_j_jmoldx_2025_07_008
crossref_primary_10_1093_jnen_nlab075
crossref_primary_10_1242_jcs_233486
crossref_primary_10_3390_ijms26136182
crossref_primary_10_1038_s41598_024_56920_7
crossref_primary_10_1111_apt_16591
crossref_primary_10_1002_bit_28356
crossref_primary_10_1016_j_neuron_2020_02_034
crossref_primary_10_1158_1078_0432_CCR_20_1232
crossref_primary_10_1186_s12920_022_01355_0
crossref_primary_10_1038_s41408_024_01207_3
crossref_primary_10_3389_fnins_2016_00071
crossref_primary_10_1016_j_humpath_2023_07_004
crossref_primary_10_1053_j_gastro_2022_10_011
crossref_primary_10_1038_s41467_022_29142_6
crossref_primary_10_1177_00220345221132268
crossref_primary_10_1210_clinem_dgac038
crossref_primary_10_1155_2020_8845635
crossref_primary_10_1002_lary_30544
crossref_primary_10_1016_j_jtho_2021_10_022
crossref_primary_10_3390_cells12101442
crossref_primary_10_1038_s41408_020_0320_7
crossref_primary_10_1186_s12864_024_10240_2
crossref_primary_10_1093_ajcp_aqaa115
crossref_primary_10_2337_db19_1268
crossref_primary_10_1186_s12920_021_01017_7
crossref_primary_10_1016_j_ajhg_2019_05_011
crossref_primary_10_1093_ecco_jcc_jjz109
crossref_primary_10_1038_s41523_022_00387_0
crossref_primary_10_1371_journal_pone_0266454
crossref_primary_10_1126_scitranslmed_aay1809
crossref_primary_10_1016_j_bbadis_2023_166784
crossref_primary_10_1016_j_jmoldx_2021_01_008
crossref_primary_10_1126_science_aaf7463
crossref_primary_10_1002_hep4_1861
crossref_primary_10_1371_journal_pone_0174303
crossref_primary_10_7554_eLife_43821
crossref_primary_10_1002_jbmr_3236
crossref_primary_10_1002_2211_5463_13901
crossref_primary_10_1177_1176935118755341
crossref_primary_10_1016_j_trsl_2023_12_004
crossref_primary_10_1038_nrg_2016_10
crossref_primary_10_1158_1078_0432_CCR_21_0343
crossref_primary_10_1038_s41467_025_60049_0
crossref_primary_10_3390_ijms20205069
crossref_primary_10_1002_ana_26537
crossref_primary_10_1016_j_trsl_2017_06_013
crossref_primary_10_4049_jimmunol_1900454
crossref_primary_10_1242_bio_060542
crossref_primary_10_1038_ncomms9653
crossref_primary_10_1093_neuonc_noac051
crossref_primary_10_1097_PAS_0000000000001574
crossref_primary_10_1038_s41467_022_32576_7
crossref_primary_10_1080_10428194_2018_1498492
crossref_primary_10_3389_fimmu_2023_1168784
Cites_doi 10.1093/bioinformatics/btt656
10.1186/gb-2013-14-9-r95
10.1371/journal.pone.0081925
10.1093/bioinformatics/btq033
10.1093/bioinformatics/btq643
10.1371/journal.pone.0058714
10.1101/gr.107524.110
10.1093/bioinformatics/btr441
10.1186/1471-2105-11-422
10.1186/gb-2011-12-8-r72
10.2202/1544-6115.1027
10.1093/bioinformatics/btp352
10.1093/bioinformatics/bts356
10.1093/bioinformatics/btp120
10.1186/gb-2009-10-3-r25
10.1371/journal.pone.0087113
10.1093/bioinformatics/btp615
10.1101/gr.092759.109
10.1093/nar/gkq622
10.1007/978-1-62703-493-7_25
10.1093/bioinformatics/btp616
10.1186/gb-2010-11-10-r106
10.1093/bioinformatics/btr427
10.1101/gr.229202. Article published online before March 2002
10.1093/bioinformatics/btp486
10.1186/1471-2105-14-91
10.1093/bioinformatics/btr012
ContentType Journal Article
Copyright Kalari et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
COPYRIGHT 2014 BioMed Central Ltd.
2014 Kalari et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright © 2014 Kalari et al.; licensee BioMed Central Ltd. 2014 Kalari et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Kalari et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Kalari et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright © 2014 Kalari et al.; licensee BioMed Central Ltd. 2014 Kalari et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TM
5PM
DOI 10.1186/1471-2105-15-224
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Nucleic Acids Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList Publicly Available Content Database

Engineering Research Database
MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 224
ExternalDocumentID PMC4228501
3369317531
A539462001
24972667
10_1186_1471_2105_15_224
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7TM
5PM
ID FETCH-LOGICAL-c600t-a3618a565e001134e10c49112de23eda5f38ac1c97d790d106bce826cf9d08433
IEDL.DBID K7-
ISICitedReferencesCount 297
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338733500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 01:56:01 EST 2025
Tue Oct 07 09:25:07 EDT 2025
Thu Sep 04 19:33:10 EDT 2025
Mon Oct 06 18:24:02 EDT 2025
Tue Nov 11 10:56:05 EST 2025
Tue Nov 04 18:15:21 EST 2025
Thu Nov 13 16:20:14 EST 2025
Mon Jul 21 05:59:52 EDT 2025
Tue Nov 18 22:07:43 EST 2025
Sat Nov 29 05:39:56 EST 2025
Sat Sep 06 07:27:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transcriptomic sequencing
Fusion transcripts
RNA-Seq reports
RNA-Seq
Bioinformatics workflow
Exon counts
Gene expression
Expressed single nucleotide variants
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-a3618a565e001134e10c49112de23eda5f38ac1c97d790d106bce826cf9d08433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1544435594?pq-origsite=%requestingapplication%
PMID 24972667
PQID 1544435594
PQPubID 44065
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4228501
proquest_miscellaneous_1547869182
proquest_miscellaneous_1544741137
proquest_journals_1544435594
gale_infotracmisc_A539462001
gale_infotracacademiconefile_A539462001
gale_incontextgauss_ISR_A539462001
pubmed_primary_24972667
crossref_primary_10_1186_1471_2105_15_224
crossref_citationtrail_10_1186_1471_2105_15_224
springer_journals_10_1186_1471_2105_15_224
PublicationCentury 2000
PublicationDate 2014-06-27
PublicationDateYYYYMMDD 2014-06-27
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References Y Wang (6491_CR9) 2011; 27
YH Chen (6491_CR2) 2009; 25
A Goncalves (6491_CR6) 2011; 27
GK Smyth (6491_CR32) 2004; 3
C Soneson (6491_CR33) 2013; 14
F Seyednasrollah (6491_CR34) 2013
SR Head (6491_CR3) 2013; 1034
A McKenna (6491_CR18) 2010; 20
F Rapaport (6491_CR35) 2013; 14
6491_CR20
D Kim (6491_CR36) 2011; 12
L Habegger (6491_CR7) 2011; 27
6491_CR28
T Sakuma (6491_CR26) 2014
CL Barrett (6491_CR1) 2013; 8
GR Grant (6491_CR29) 2011; 27
S Anders (6491_CR31) 2010; 11
TJ Hardcastle (6491_CR30) 2010; 11
N Norton (6491_CR25) 2013; 8
WJ Kent (6491_CR14) 2002; 12
LG Wang (6491_CR21) 2012; 28
B Langmead (6491_CR15) 2009; 10
C Trapnell (6491_CR23) 2009; 25
6491_CR10
M Krzywinski (6491_CR16) 2009; 19
K Wang (6491_CR5) 2010; 38
MD Robinson (6491_CR4) 2010; 26
S Anders (6491_CR19) 2014
6491_CR17
Y Liao (6491_CR27) 2014; 30
JB Egan (6491_CR24) 2014; 9
J Qi (6491_CR8) 2010; 26
6491_CR12
6491_CR11
AR Quinlan (6491_CR13) 2010; 26
H Li (6491_CR22) 2009; 25
20979621 - Genome Biol. 2010;11(10):R106
23527012 - PLoS One. 2013;8(3):e58714
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
20802226 - Nucleic Acids Res. 2010 Oct;38(18):e178
24478440 - J Virol. 2014 Apr;88(8):4069-82
20644199 - Genome Res. 2010 Sep;20(9):1297-303
21835007 - Genome Biol. 2011;12(8):R72
19880367 - Bioinformatics. 2010 Jan 1;26(1):127-9
24300110 - Brief Bioinform. 2015 Jan;16(1):59-70
22743226 - Bioinformatics. 2012 Aug 15;28(16):2184-5
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
21795323 - Bioinformatics. 2011 Sep 15;27(18):2598-600
19541911 - Genome Res. 2009 Sep;19(9):1639-45
24278466 - PLoS One. 2013;8(11):e81925
24505276 - PLoS One. 2014;9(2):e87113
20698981 - BMC Bioinformatics. 2010;11:422
24227677 - Bioinformatics. 2014 Apr 1;30(7):923-30
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
19261174 - Genome Biol. 2009;10(3):R25
19675096 - Bioinformatics. 2009 Oct 1;25(19):2514-21
23497356 - BMC Bioinformatics. 2013;14:91
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
21134889 - Bioinformatics. 2011 Jan 15;27(2):281-3
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
23775753 - Methods Mol Biol. 2013;1034:385-403
21233166 - Bioinformatics. 2011 Mar 15;27(6):867-9
24020486 - Genome Biol. 2013;14(9):R95
11932250 - Genome Res. 2002 Apr;12(4):656-64
21775302 - Bioinformatics. 2011 Sep 15;27(18):2518-28
References_xml – volume: 30
  start-page: 923
  issue: 7
  year: 2014
  ident: 6491_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 14
  start-page: R95
  issue: 9
  year: 2013
  ident: 6491_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-9-r95
– ident: 6491_CR20
– volume: 8
  start-page: e81925
  issue: 11
  year: 2013
  ident: 6491_CR25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081925
– volume: 26
  start-page: 841
  issue: 6
  year: 2010
  ident: 6491_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– ident: 6491_CR28
– volume: 27
  start-page: 281
  issue: 2
  year: 2011
  ident: 6491_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq643
– volume: 8
  start-page: e58714
  issue: 3
  year: 2013
  ident: 6491_CR1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058714
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  ident: 6491_CR18
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 27
  start-page: 2598
  issue: 18
  year: 2011
  ident: 6491_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr441
– volume: 11
  start-page: 422
  year: 2010
  ident: 6491_CR30
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-422
– volume: 12
  start-page: 1
  issue: 8
  year: 2011
  ident: 6491_CR36
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-8-r72
– ident: 6491_CR12
– ident: 6491_CR10
– volume: 3
  start-page: Article 3
  year: 2004
  ident: 6491_CR32
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1027
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: 6491_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume-title: bioRxiv preprintbioRxiv preprint
  year: 2014
  ident: 6491_CR19
– volume: 28
  start-page: 2184
  issue: 16
  year: 2012
  ident: 6491_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts356
– volume: 25
  start-page: 1105
  issue: 9
  year: 2009
  ident: 6491_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 10
  start-page: R25
  issue: 3
  year: 2009
  ident: 6491_CR15
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 9
  start-page: e87113
  issue: 2
  year: 2014
  ident: 6491_CR24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087113
– ident: 6491_CR17
– volume: 26
  start-page: 127
  issue: 1
  year: 2010
  ident: 6491_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp615
– volume-title: Brief Bioinform
  year: 2013
  ident: 6491_CR34
– volume: 19
  start-page: 1639
  issue: 9
  year: 2009
  ident: 6491_CR16
  publication-title: Genome Res
  doi: 10.1101/gr.092759.109
– volume: 38
  start-page: e178
  issue: 18
  year: 2010
  ident: 6491_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq622
– volume-title: J Virol
  year: 2014
  ident: 6491_CR26
– ident: 6491_CR11
– volume: 1034
  start-page: 385
  year: 2013
  ident: 6491_CR3
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-493-7_25
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  ident: 6491_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 11
  start-page: R106
  issue: 10
  year: 2010
  ident: 6491_CR31
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– volume: 27
  start-page: 2518
  issue: 18
  year: 2011
  ident: 6491_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr427
– volume: 12
  start-page: 656
  issue: 4
  year: 2002
  ident: 6491_CR14
  publication-title: Genome Res
  doi: 10.1101/gr.229202. Article published online before March 2002
– volume: 25
  start-page: 2514
  issue: 19
  year: 2009
  ident: 6491_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp486
– volume: 14
  start-page: 91
  year: 2013
  ident: 6491_CR33
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-91
– volume: 27
  start-page: 867
  issue: 6
  year: 2011
  ident: 6491_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr012
– reference: 21233166 - Bioinformatics. 2011 Mar 15;27(6):867-9
– reference: 24478440 - J Virol. 2014 Apr;88(8):4069-82
– reference: 21795323 - Bioinformatics. 2011 Sep 15;27(18):2598-600
– reference: 21775302 - Bioinformatics. 2011 Sep 15;27(18):2518-28
– reference: 20644199 - Genome Res. 2010 Sep;20(9):1297-303
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 24020486 - Genome Biol. 2013;14(9):R95
– reference: 24505276 - PLoS One. 2014;9(2):e87113
– reference: 22743226 - Bioinformatics. 2012 Aug 15;28(16):2184-5
– reference: 19675096 - Bioinformatics. 2009 Oct 1;25(19):2514-21
– reference: 21835007 - Genome Biol. 2011;12(8):R72
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 11932250 - Genome Res. 2002 Apr;12(4):656-64
– reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45
– reference: 23497356 - BMC Bioinformatics. 2013;14:91
– reference: 24278466 - PLoS One. 2013;8(11):e81925
– reference: 21134889 - Bioinformatics. 2011 Jan 15;27(2):281-3
– reference: 20698981 - BMC Bioinformatics. 2010;11:422
– reference: 19880367 - Bioinformatics. 2010 Jan 1;26(1):127-9
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 23527012 - PLoS One. 2013;8(3):e58714
– reference: 23775753 - Methods Mol Biol. 2013;1034:385-403
– reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
– reference: 24300110 - Brief Bioinform. 2015 Jan;16(1):59-70
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 20802226 - Nucleic Acids Res. 2010 Oct;38(18):e178
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 24227677 - Bioinformatics. 2014 Apr 1;30(7):923-30
SSID ssj0017805
Score 2.575848
Snippet Background Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications,...
Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a...
Background Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications,...
Doc number: 224 Abstract Background: Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of...
Background: Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 224
SubjectTerms Algorithms
Analysis
Base Sequence
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Exons - genetics
Gene Expression Profiling
Genes
Genomics - methods
Health Facilities
High-Throughput Nucleotide Sequencing - methods
Humans
Life Sciences
Microarrays
Research projects
RNA sequencing
Sequence Analysis, RNA - methods
Software
Transcriptome analysis
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1KvSlfrY9rbKKIAqhl83my7dDLAr2OO609C1kk6welL22dyf0v3dmv-geWtDnzLCzyUzmN2TyCyFvgmQuplCdQPERaJYXjuZDbLBBIjwTgvHV0wmnX9V4rM_OzGSLpO1dmKrbvT2SrHbqKqy1PGKwjVIoUARlgkLiuUPuQrLTGIzT2Wl3coAc_e1x5B-0eulncxO-kYU2OyQ3jkmr7HP84H_sfkh2G6yZjGrneES2YvmY3K9fn7x-QvjJaEKns3j5ITlx14uk5SdJJvMLvKUeEwC0yXQ8Spp-a_jqU_L9-NO3j59p84YC9QBlVtRxybQD1BYR_PEssqHPYINLQ0x5DE4UXDvPvFFBmWGAAjH3EUoOX5gw1Bnne2S7XJTxgCQyZzE1mdQ5LKAJ0uTCALrIsiBVkKIYkKN2aq1vCMbxnYtzWxUaWlqcCotTYZmwoDkg7zqNi5pc4xbZ17haFjkrSmyK-eHWy6X9MpvakeBgFjaHDcjbRqhYwKe9a-4YwA8gzVVP8rAnCUHl-8OtU9gmqJcWiYsAXQoDxrzqhlETG9XKuFjXMgDSGFe3yigtDVR2A7Jf-1n3-1ANK8BMoK16HtgJIB14f6Sc_6xowZHMTaDp71s_vGH6X2b12b8IPyc7ABczbJRL1SHZXl2t4wtyz_9azZdXL6sw_A1suifW
  priority: 102
  providerName: Springer Nature
Title MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing
URI https://link.springer.com/article/10.1186/1471-2105-15-224
https://www.ncbi.nlm.nih.gov/pubmed/24972667
https://www.proquest.com/docview/1544435594
https://www.proquest.com/docview/1544741137
https://www.proquest.com/docview/1547869182
https://pubmed.ncbi.nlm.nih.gov/PMC4228501
Volume 15
WOSCitedRecordID wos000338733500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA_enYIvfutVz1JFEIWwm36l8UVWucNDdyldPVZfQpuk3oK0e9dd4f57Z_rldcF98aWwZMImnclkJvn1N4S80iFLjQvZCSQfmvpZntJsjAAbJMITWgtVl044-8Jns2ixEHF74Fa1sMrOJ9aOWpcKz8hHyBoDW3sg_PerC4pVo_B2tS2hsUcOmOsytPPPnPa3CMjX311NRuGIgSOmkOIElAXUdf3BVrTtkK_tSNtoya0r03onOrn7v3O4R-60MagzaYzmPrlhigfkVlOV8uoh8aaTmCZzc_HOmaZXpdPxljjxcoVfrxsHAl0nmU2cFocNo3xEvp0cf_34iba1FaiCEGdNUy9kUQrRnMGg0PMNGysfHJ-rjesZnQa5F6WKKcE1F2MNiWOmDKQiKhd6HPme95jsF2VhDokTZsy4wg-jDBQrdCiyQEDU4fs65DoMcouMutcsVUs8jvUvfsk6AYlCiYqRqBjJAgk9LfKm77FqSDd2yL5EzUnksigQLPMz3VSVPJ0nchJ4MCwEjVnkdSuUl_DXKm2_PYAJIP3VQPJoIAmLTQ2bO83KdrFX8q9aLfKib8aeCGArTLlpZCB4Yx7fKcOjUEDGZ5Enjc3104csmUMsBb35wBp7AaQJH7YUy_OaLhxJ3gIc-tvObq8N_R9v9enueT4jtyFw9BEy5_Ijsr--3Jjn5Kb6vV5WlzbZ4wtePyObHHw4nsWJXZ912PXytBFfG8MzDn5Ae3w6jb_Dr2R-9geO6Dyn
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAWIv3BmBAQGBEEhWG8eJYySEKmBa1YuqbqC9mcR2oBJKuqUF9U_xGzknl7JUom974NnHii-fzyU-_g4hL0zoxZZBdALBh6E8SWOadDHBBonwpDFSl6UTvgzFeBydnsrJDvndvIXBtMpGJ5aK2uQa_5F3kDUGTHsg-fv5GcWqUXi72pTQqGAxsKtfELIV7_ofYX9fMnb46eTDEa2rClANxn1BYz_0ohj8GIvukM-t19UcjjwzlvnWxEHqR7H2tBRGyK6BkCnRFpxwnUrTjTj-AAWVf4X7kUCu_oGg61sLrA_QXIVGYccDxU8hpAqoF1DGeMv0bRqACxZwMztz44q2tHyHN_-3NbtFbtQ-tturDsVtsmOzO-RaVXVzdZf4o96ETo_t2Vt3FK9yt-FlcSezOb7Oty448u503HPrPHNYlXvk86WM-D7ZzfLMPiBumHiWSR5GCQBXmlAmgQSvinMTChMGqUM6zbYqXROrY32PH6oMsKJQIRAUAkF5gYKeDnm97jGvSEW2yD5HpCjk6sgwGehbvCwK1T-eql7gw7AwKc4hr2qhNIdP67h-WwETQHqvluRBSxKUiW43N0hStTIr1F8YOeTZuhl7YoJeZvNlJQPOqeeLrTIiCiVEtA7ZrzC-nj7jUoCvCL1FC_1rAaRBb7dks-8lHTqS2AU49DfNObkw9H-s6sPt83xKrh-djIZq2B8PHpE9cJI5pgcycUB2F-dL-5hc1T8Xs-L8SakAXPL1sk_PH1XWjr8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rixMxEA96PvCL70f11FUEUQhtNptk47eiFg_vSmn1uG8hm2S1INt62wr33zuzL26LHoifM8NOkknym83kN4S88pLZEEN0AsGHp0mWW5qNMMEGifC099pVpROOD9V0mp6c6Fnzw61ss93bK8n6TQOyNBWb4drn9RJP5ZDBlkohWBGUCQqH0GVyJcGSQRitL467WwTk62-vJv-g1TuKdjfkcyfSbrbkzpVpdRJNbv1vH26Tmw0Gjca109whl0Jxl1yrq1Ke3SP8aDyj80X4-S46smerqOUtiWbLNb5eDxEA3Wg-HUdNHjZYcJ98nXz88v4TbWorUAcQZ0Mtlyy1gOYCgkKeBDZyCWx8sQ8xD96KnKfWMaeVV3rkIXDMXIBQxOXaj9KE8wdkr1gV4RGJZMZCrBOZZjCx2kudCQ2oI0m8VF6KfECG7TAb1xCPY_2LH6YKQFJpcCgMDoVhwoDmgLzpNNY16cYFsi9x5gxyWRSYLPPNbsvSHCzmZiw4mIVJYwPyuhHKV_BpZ5u3B9ABpL_qSe73JGGxuX5z6yCmWeylQUIjQJ1CgzEvumbUxAS2Iqy2tQyAN8bVhTIqlRoivgF5WPtc132IkhVgKdBWPW_sBJAmvN9SLL9XdOFI8ibQ9LetT54z_S-j-vhfhJ-T67MPE3N4MP38hNwARJlgLl2s9sne5nQbnpKr7tdmWZ4-q1bnb-G9M54
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAP-RSeq%3A+Mayo+Analysis+Pipeline+for+RNA+sequencing&rft.jtitle=BMC+bioinformatics&rft.au=Kalari%2C+Krishna+R&rft.au=Nair%2C+Asha+A&rft.au=Bhavsar%2C+Jaysheel+D&rft.au=O%27Brien%2C+Daniel+R&rft.date=2014-06-27&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=15&rft_id=info:doi/10.1186%2F1471-2105-15-224&rft.externalDocID=3369317531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon