An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc‐Based Batteries
Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by...
Uloženo v:
| Vydáno v: | Advanced science Ročník 8; číslo 11; s. e2100309 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
John Wiley & Sons, Inc
01.06.2021
John Wiley and Sons Inc Wiley |
| Témata: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.
A polyacrylonitrile (PAN)Z coating layer is employed to confine zinc dendrite growth for rechargeable aqueous zinc‐based batteries. The cyclability and Coulombic efficiency of the zinc anode porous PAN coating layer show that the polymer coating film is a feasible artificial membrane for a dendrite‐free zinc anode. |
|---|---|
| AbstractList | Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V 2 O 5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. A polyacrylonitrile (PAN)Z coating layer is employed to confine zinc dendrite growth for rechargeable aqueous zinc‐based batteries. The cyclability and Coulombic efficiency of the zinc anode porous PAN coating layer show that the polymer coating film is a feasible artificial membrane for a dendrite‐free zinc anode. Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. A polyacrylonitrile (PAN)Z coating layer is employed to confine zinc dendrite growth for rechargeable aqueous zinc‐based batteries. The cyclability and Coulombic efficiency of the zinc anode porous PAN coating layer show that the polymer coating film is a feasible artificial membrane for a dendrite‐free zinc anode. Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. Abstract Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. Aqueous rechargeable zinc-metal-based batteries are an attractive alternative to lithium-ion batteries for grid-scale energy-storage systems because of their high specific capacity, low cost, eco-friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc-ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer-coating-layer-modified Zn anode displays dendrite-free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn-doped V2 O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc-metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.Aqueous rechargeable zinc-metal-based batteries are an attractive alternative to lithium-ion batteries for grid-scale energy-storage systems because of their high specific capacity, low cost, eco-friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc-ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer-coating-layer-modified Zn anode displays dendrite-free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn-doped V2 O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc-metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. |
| Author | Yu, Nengfei Yuan, Xinhai Chen, Peng Liu, Lili Ree, Teunis Xia, Yingbin Zhang, Yi Hu, Xianwei Wu, Yuping Fu, Lijun Huang, Qinghong Wang, Bin |
| AuthorAffiliation | 3 National Energy Novel Materials Center Institute of Chemical Materials (ICM) China Academy of Engineering Physics (CAEP) Mianyang 621900 China 1 Key Laboratory for Ecological Metallurgy of Multimetallic Minerals (Ministry of Education) School of Metallurgy Northeastern University Shenyang 110819 China 4 Department of Chemistry University of Venda Thohoyandou 0950 South Africa 2 China State Key Laboratory of Materials‐Oriented Chemical Engineering School of Energy Science and Engineering Nanjing Tech University Nanjing 210009 China |
| AuthorAffiliation_xml | – name: 1 Key Laboratory for Ecological Metallurgy of Multimetallic Minerals (Ministry of Education) School of Metallurgy Northeastern University Shenyang 110819 China – name: 4 Department of Chemistry University of Venda Thohoyandou 0950 South Africa – name: 2 China State Key Laboratory of Materials‐Oriented Chemical Engineering School of Energy Science and Engineering Nanjing Tech University Nanjing 210009 China – name: 3 National Energy Novel Materials Center Institute of Chemical Materials (ICM) China Academy of Engineering Physics (CAEP) Mianyang 621900 China |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0001-6717-8514 surname: Chen fullname: Chen, Peng organization: Northeastern University – sequence: 2 givenname: Xinhai surname: Yuan fullname: Yuan, Xinhai organization: Nanjing Tech University – sequence: 3 givenname: Yingbin surname: Xia fullname: Xia, Yingbin organization: Nanjing Tech University – sequence: 4 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Nanjing Tech University – sequence: 5 givenname: Lijun surname: Fu fullname: Fu, Lijun email: l.fu@njtech.edu.cn organization: Nanjing Tech University – sequence: 6 givenname: Lili surname: Liu fullname: Liu, Lili organization: Nanjing Tech University – sequence: 7 givenname: Nengfei surname: Yu fullname: Yu, Nengfei organization: Nanjing Tech University – sequence: 8 givenname: Qinghong surname: Huang fullname: Huang, Qinghong organization: Nanjing Tech University – sequence: 9 givenname: Bin surname: Wang fullname: Wang, Bin organization: China Academy of Engineering Physics (CAEP) – sequence: 10 givenname: Xianwei surname: Hu fullname: Hu, Xianwei email: huxw@smm.neu.edu.cn organization: Northeastern University – sequence: 11 givenname: Yuping orcidid: 0000-0002-0833-1205 surname: Wu fullname: Wu, Yuping email: wuyp@njtech.edu.cn organization: China Academy of Engineering Physics (CAEP) – sequence: 12 givenname: Teunis surname: Ree fullname: Ree, Teunis organization: University of Venda |
| BookMark | eNqFUstuEzEUHaEiWkq3rEdiwybBr5mxN0jTFNpKkUBQsWBjefxIHDl2sSepZkf_oN_Il-BpAqKVgJV97XOO7z0-z4sDH7wuipcQTCEA6I1Q2zRFAOUCA_akOEKQ0QmmhBz8sT8sTlJaAQBghRsC6bPiEBMIKtTgo-K29WUbe2ustMKVH4MbhIyDC9720TpdzoLorV-UczHomCtvrB_rr9bL8kx7FW2vy_MYbvplaUIsL-xi6Ybyk97qmGyXJdpvGx026Z7y4_vdqUhalaei73W0Or0onhrhkj7Zr8fF1ft3V7OLyfzD-eWsnU9kncebIEUxxqISmAjBoCSVQRXDUhmj6g4okyfDNQFCKYA7hGHXKK0xrZTRkEB8XFzuZFUQK34d7VrEgQdh-f1BiAsusg_Sad4hJWpGJOxMQ6iEDKGuM6xmmGhKFclab3da15turZXUvo_CPRB9eOPtki_CllNIKWRVFni9F4ghm5N6vrZJaueEH53iqMKsQoiSOkNfPYKuwib67BRHdQMbhvP3_xOVtUA2oBr7JjuUjCGlqA2Xts_fG8YureMQ8DFXfMwV_52rTJs-ov2a9K-E_Ts3OUHDf9C8PfvyGeXu8E9QK-IF |
| CitedBy_id | crossref_primary_10_1016_j_jcis_2023_11_032 crossref_primary_10_1002_advs_202104866 crossref_primary_10_1002_asia_202500120 crossref_primary_10_1039_D3QI00279A crossref_primary_10_1002_adfm_202300952 crossref_primary_10_1016_j_cej_2023_143644 crossref_primary_10_1016_j_jechem_2023_01_037 crossref_primary_10_1002_ange_202308182 crossref_primary_10_1002_smtd_202300255 crossref_primary_10_1002_adfm_202214033 crossref_primary_10_1016_j_carbpol_2024_122444 crossref_primary_10_1016_j_jechem_2021_08_022 crossref_primary_10_1016_j_jechem_2023_12_005 crossref_primary_10_1039_D1NR07458J crossref_primary_10_1002_adma_202208764 crossref_primary_10_1002_adfm_202200429 crossref_primary_10_1016_j_jechem_2022_06_009 crossref_primary_10_1002_adfm_202502344 crossref_primary_10_1016_j_jcis_2022_05_168 crossref_primary_10_1016_j_jcis_2023_07_171 crossref_primary_10_1002_aenm_202301741 crossref_primary_10_1002_advs_202507377 crossref_primary_10_1002_smll_202304094 crossref_primary_10_1021_acsaem_4c02385 crossref_primary_10_1002_adfm_202401760 crossref_primary_10_3390_ma14164434 crossref_primary_10_1002_adma_202209288 crossref_primary_10_1016_j_jpowsour_2025_238071 crossref_primary_10_1002_adfm_202213510 crossref_primary_10_1039_D1SE01317C crossref_primary_10_1002_cssc_202400076 crossref_primary_10_1002_adfm_202418511 crossref_primary_10_1002_adfm_202314426 crossref_primary_10_1007_s40820_021_00782_5 crossref_primary_10_1016_j_cej_2024_153845 crossref_primary_10_1039_D2NH00354F crossref_primary_10_1039_D3QI01506H crossref_primary_10_1007_s11706_023_0668_2 crossref_primary_10_1039_D3EE01741A crossref_primary_10_1002_smll_202501293 crossref_primary_10_1016_j_nanoen_2022_107333 crossref_primary_10_1063_5_0074327 crossref_primary_10_1007_s40843_021_1841_5 crossref_primary_10_1002_smll_202410051 crossref_primary_10_1021_acsami_5c06192 crossref_primary_10_1002_smll_202503325 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1007_s10853_023_08139_6 crossref_primary_10_1016_j_jcis_2024_02_053 crossref_primary_10_1002_aenm_202403662 crossref_primary_10_1016_j_nanoen_2022_107805 crossref_primary_10_1002_cnl2_5 crossref_primary_10_1021_acs_jpclett_5c02245 crossref_primary_10_1016_j_cej_2021_134277 crossref_primary_10_1016_j_nanoen_2023_108858 crossref_primary_10_1039_D1EE02021H crossref_primary_10_1016_j_cej_2022_138116 crossref_primary_10_1002_smll_202203061 crossref_primary_10_1002_smll_202304640 crossref_primary_10_1002_adfm_202208288 crossref_primary_10_1002_advs_202104832 crossref_primary_10_1016_j_electacta_2025_145777 crossref_primary_10_1016_j_apsusc_2023_157634 crossref_primary_10_1002_celc_202101724 crossref_primary_10_1002_smll_202502128 crossref_primary_10_1002_gch2_202400105 crossref_primary_10_3390_inorganics11030118 crossref_primary_10_1038_s41467_025_56519_0 crossref_primary_10_1002_aenm_202203189 crossref_primary_10_1002_ange_202409303 crossref_primary_10_1016_j_est_2024_114642 crossref_primary_10_1002_anie_202402987 crossref_primary_10_1002_aenm_202300606 crossref_primary_10_1016_j_est_2025_117093 crossref_primary_10_1002_admi_202200564 crossref_primary_10_1016_j_cej_2025_166965 crossref_primary_10_3390_en18102592 crossref_primary_10_1149_1945_7111_addd6c crossref_primary_10_1016_j_scib_2023_09_034 crossref_primary_10_1039_D3EE02945J crossref_primary_10_1016_j_cej_2023_143607 crossref_primary_10_1002_smll_202103195 crossref_primary_10_1002_adma_202106937 crossref_primary_10_1039_D5EE00584A crossref_primary_10_1007_s42765_023_00323_2 crossref_primary_10_1002_adma_202419502 crossref_primary_10_1002_smtd_202200560 crossref_primary_10_1002_est2_70086 crossref_primary_10_1002_advs_202103845 crossref_primary_10_1039_D5TA02110C crossref_primary_10_1002_advs_202417121 crossref_primary_10_3390_membranes12101014 crossref_primary_10_1002_smll_202306195 crossref_primary_10_1016_j_electacta_2024_145059 crossref_primary_10_1002_tcr_202200114 crossref_primary_10_1002_adfm_202507730 crossref_primary_10_1002_aenm_202303967 crossref_primary_10_1002_adma_202412447 crossref_primary_10_1016_j_mtcomm_2022_103939 crossref_primary_10_1016_j_nxener_2024_100124 crossref_primary_10_1002_smtd_202300101 crossref_primary_10_1016_j_jallcom_2021_163023 crossref_primary_10_1021_acs_energyfuels_5c01140 crossref_primary_10_1002_adfm_202210290 crossref_primary_10_1016_j_jechem_2023_05_028 crossref_primary_10_1039_D5TA02048D crossref_primary_10_1002_adfm_202312564 crossref_primary_10_1016_j_jcis_2022_03_010 crossref_primary_10_1021_acsnano_4c11486 crossref_primary_10_1002_adma_202406093 crossref_primary_10_1016_j_apsusc_2023_158591 crossref_primary_10_1002_aenm_202203523 crossref_primary_10_1039_D3QM00003F crossref_primary_10_1039_D3RA05177C crossref_primary_10_1002_adfm_202418503 crossref_primary_10_1016_j_cej_2021_132576 crossref_primary_10_1002_advs_202304549 crossref_primary_10_1002_chem_202203973 crossref_primary_10_1016_j_cej_2025_168563 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1007_s12274_022_4916_z crossref_primary_10_1002_asia_202500810 crossref_primary_10_1016_j_est_2024_113635 crossref_primary_10_1016_j_jpowsour_2022_232173 crossref_primary_10_1002_smll_202300633 crossref_primary_10_1002_adma_202206239 crossref_primary_10_1007_s11431_022_2117_9 crossref_primary_10_1016_j_est_2023_109874 crossref_primary_10_1002_cssc_202200706 crossref_primary_10_1016_j_cej_2023_148267 crossref_primary_10_1002_smtd_202201683 crossref_primary_10_1016_j_jcis_2025_138633 crossref_primary_10_1039_D5TA05002B crossref_primary_10_1002_adma_202203905 crossref_primary_10_1039_D2NR06160K crossref_primary_10_1016_j_cej_2023_147846 crossref_primary_10_1007_s10854_023_11183_2 crossref_primary_10_1016_j_est_2024_112834 crossref_primary_10_1002_advs_202200155 crossref_primary_10_1016_j_ccr_2023_215142 crossref_primary_10_1007_s11426_025_2874_5 crossref_primary_10_1039_D2SE01398C crossref_primary_10_1002_adfm_202211290 crossref_primary_10_1002_anie_202405048 crossref_primary_10_1002_smtd_202201572 crossref_primary_10_1007_s12274_022_4619_5 crossref_primary_10_1002_adfm_202204066 crossref_primary_10_3390_molecules28041742 crossref_primary_10_3390_batteries9070340 crossref_primary_10_1039_D3QI01981K crossref_primary_10_1002_adfm_202400032 crossref_primary_10_1007_s10854_023_10722_1 crossref_primary_10_1016_j_jpowsour_2024_234134 crossref_primary_10_1002_smll_202405522 crossref_primary_10_1007_s11708_025_0999_z crossref_primary_10_1016_j_cej_2022_137653 crossref_primary_10_1016_j_jpowsour_2022_232622 crossref_primary_10_1016_j_jpowsour_2021_230861 crossref_primary_10_1002_smll_202302995 crossref_primary_10_1002_smll_202303963 crossref_primary_10_1002_smtd_202401499 crossref_primary_10_1002_smll_202201163 crossref_primary_10_1002_smll_202201284 crossref_primary_10_1016_j_colsurfa_2022_129970 crossref_primary_10_1016_j_jwpe_2025_107446 crossref_primary_10_1039_D5EE00737B crossref_primary_10_1016_j_jpowsour_2025_237355 crossref_primary_10_1149_1945_7111_ad281a crossref_primary_10_1002_ange_202402987 crossref_primary_10_1002_batt_202400365 crossref_primary_10_1016_j_est_2025_116266 crossref_primary_10_1002_adfm_202309350 crossref_primary_10_1002_adfm_202417189 crossref_primary_10_1002_adma_202500596 crossref_primary_10_1002_cssc_202301942 crossref_primary_10_1002_smll_202408138 crossref_primary_10_1007_s12598_023_02541_4 crossref_primary_10_1007_s40820_022_00969_4 crossref_primary_10_1002_anie_202308182 crossref_primary_10_1016_j_cej_2022_136217 crossref_primary_10_1016_j_cej_2025_166235 crossref_primary_10_1007_s12274_022_4370_y crossref_primary_10_1016_j_nxener_2023_100049 crossref_primary_10_1016_j_apsusc_2023_156384 crossref_primary_10_1002_anie_202409303 crossref_primary_10_1016_j_cej_2024_159088 crossref_primary_10_1002_adfm_202308015 crossref_primary_10_1007_s12613_024_3020_7 crossref_primary_10_1007_s40820_021_00764_7 crossref_primary_10_1016_j_cej_2023_141707 crossref_primary_10_1016_j_cej_2022_138769 crossref_primary_10_1016_j_fuel_2023_129417 crossref_primary_10_26599_NR_2025_94907037 crossref_primary_10_1002_advs_202411995 crossref_primary_10_1016_j_jpowsour_2024_235799 crossref_primary_10_1016_j_cej_2022_141016 crossref_primary_10_1016_j_jechem_2023_03_059 crossref_primary_10_1039_D2SC06276C crossref_primary_10_1039_D5GC01034A crossref_primary_10_1002_smll_202305687 crossref_primary_10_1016_j_apsusc_2021_152019 crossref_primary_10_1016_j_electacta_2023_143286 crossref_primary_10_1016_j_cej_2024_150139 crossref_primary_10_1007_s12598_024_03048_2 crossref_primary_10_1039_D4EE00721B crossref_primary_10_1016_j_jelechem_2024_118685 crossref_primary_10_1007_s12598_025_03386_9 crossref_primary_10_1016_j_jpowsour_2023_232711 crossref_primary_10_1039_D3EE00501A crossref_primary_10_1002_adfm_202303466 crossref_primary_10_1002_aenm_202401018 crossref_primary_10_1016_j_cej_2022_135822 crossref_primary_10_1002_adfm_202111635 crossref_primary_10_1002_cssc_202200656 crossref_primary_10_1038_s41598_023_43962_6 crossref_primary_10_1016_j_jcis_2023_08_047 crossref_primary_10_1002_smll_202306111 crossref_primary_10_1016_j_cej_2023_142105 crossref_primary_10_1016_j_jcis_2022_06_033 crossref_primary_10_1002_advs_202201433 crossref_primary_10_1002_inf2_12306 crossref_primary_10_20517_microstructures_2024_158 crossref_primary_10_1002_adma_202202188 crossref_primary_10_1002_bte2_20230024 crossref_primary_10_1002_adma_202106409 crossref_primary_10_1002_adma_202203153 crossref_primary_10_1002_ange_202405048 crossref_primary_10_1002_aenm_202502353 crossref_primary_10_1039_D4SC04611K crossref_primary_10_1002_smll_202403380 crossref_primary_10_1002_adfm_202412577 crossref_primary_10_1038_s41427_024_00537_9 crossref_primary_10_1016_j_jiec_2022_01_011 crossref_primary_10_1002_adfm_202313371 crossref_primary_10_1016_j_jpowsour_2025_236462 crossref_primary_10_1021_acsaem_5c00620 crossref_primary_10_1016_j_colsurfa_2023_130960 crossref_primary_10_1016_j_ssi_2024_116603 crossref_primary_10_1007_s40820_022_00846_0 crossref_primary_10_1016_j_jpowsour_2022_231122 crossref_primary_10_1016_j_nanoen_2022_107724 crossref_primary_10_1002_batt_202200237 crossref_primary_10_1016_j_cej_2024_152789 crossref_primary_10_1002_cnl2_109 crossref_primary_10_1007_s40820_022_00921_6 crossref_primary_10_1038_s41467_025_60190_w crossref_primary_10_1016_j_cej_2023_145955 crossref_primary_10_1002_aenm_202200665 crossref_primary_10_1002_smll_202404932 crossref_primary_10_3390_en16217443 crossref_primary_10_1002_aenm_202501359 crossref_primary_10_1016_j_pmatsci_2023_101171 crossref_primary_10_1002_anie_202406597 crossref_primary_10_3390_batteries10120420 crossref_primary_10_1016_j_mser_2024_100844 crossref_primary_10_1016_j_cej_2024_158634 crossref_primary_10_1002_ange_202406597 crossref_primary_10_1039_D5EE00650C crossref_primary_10_1002_smll_202104640 crossref_primary_10_1016_j_cej_2021_134227 crossref_primary_10_3390_ma14174895 crossref_primary_10_1002_smll_202105978 |
| Cites_doi | 10.1021/acsami.9b11243 10.1007/s41918-020-00075-2 10.1021/acsami.6b16560 10.1002/pi.4990300106 10.1002/adma.202001755 10.1016/j.nanoen.2020.104523 10.1039/C8EE01991F 10.1039/C8CC07730D 10.1016/j.ensm.2020.01.032 10.1126/science.aax6873 10.1016/j.joule.2020.03.002 10.1021/jacs.0c09794 10.1126/science.aam6284 10.1002/celc.201902030 10.1021/acsaem.9b01063 10.1021/jacs.0c07992 10.1021/cr300162p 10.1002/aenm.201904215 10.1021/acs.energyfuels.0c02349 10.1126/science.1212741 10.1126/science.aak9991 10.1016/j.jpowsour.2019.226986 10.1021/acs.nanolett.5b00600 10.1021/acsnano.9b09669 10.1002/anie.201907830 10.1002/aenm.202001583 10.1021/acs.chemrev.9b00535 10.1039/D0TA01297A 10.1002/adma.201903675 10.1021/acs.energyfuels.0c02367 10.1016/j.ensm.2020.01.023 10.1038/s41563-018-0063-z 10.1002/adma.202001854 10.1039/C7EE03232C 10.1021/acsami.8b07781 10.1002/smll.202001323 10.1039/C9EE00596J 10.1002/adfm.201902653 10.1002/adfm.202001867 10.1002/adfm.202006495 10.1002/anie.202001844 10.1039/C9EE03545A 10.1038/nenergy.2017.35 10.1073/pnas.1803385115 10.1002/adfm.202000599 10.1002/adma.202000287 10.1021/acsenergylett.0c02371 10.1002/app.47902 10.1039/D0TA00748J 10.1002/aenm.201801090 10.3390/coatings9110692 10.1016/j.ensm.2020.01.003 10.1016/j.joule.2018.11.002 10.1016/j.eurpolymj.2005.09.017 10.1038/s41467-020-17752-x 10.1002/smll.202001736 10.1002/adma.202003021 10.1021/acsaem.0c00489 10.1016/j.joule.2019.02.012 10.1021/acssuschemeng.8b05568 10.1016/j.cej.2020.125363 10.1021/acs.chemmater.5b02840 10.1002/anie.202000162 10.1002/admi.201800848 10.1002/adfm.201908528 10.1002/adma.201803181 10.1016/S0013-4686(99)00344-8 10.1021/acsami.8b04085 10.1002/adma.201908121 10.1016/j.nanoen.2018.12.086 10.1016/S0013-4686(99)00386-2 10.1002/aenm.201901469 10.1021/acsami.0c06009 10.1038/s41467-017-00467-x 10.1016/j.apsusc.2020.146079 10.1038/am.2015.32 10.1038/s41467-019-13436-3 10.1002/anie.202008634 10.1039/C9EE00956F 10.1016/j.ensm.2020.03.011 10.1002/adma.201800762 10.1039/D0SC00022A 10.1002/anie.202012030 10.1038/s41467-020-15478-4 10.1002/adma.201505370 10.1002/anie.201813223 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
| DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202100309 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_b2da694c1bf748c1922bbf96934e88d4 PMC8188195 10_1002_advs_202100309 ADVS2543 |
| Genre | article |
| GrantInformation_xml | – fundername: Jiangsu Provincial Innovation Foundation for Postgraduate funderid: KYCX20_1072 – fundername: Natural Science Foundation of Liaoning Province funderid: 2019‐MS‐129 – fundername: National Natural Science Foundation of China funderid: 51425301; U1601214; 51974081 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20200696 – fundername: State Key Lab Research Foundation funderid: ZK201805; ZK201717 – fundername: National Key R & D Program of China funderid: 2018YFB0104300 – fundername: ; grantid: 2019‐MS‐129 – fundername: ; grantid: BK20200696 – fundername: ; grantid: 51425301; U1601214; 51974081 – fundername: National Key R & D Program of China grantid: 2018YFB0104300 – fundername: Jiangsu Provincial Innovation Foundation for Postgraduate grantid: KYCX20_1072 – fundername: State Key Lab Research Foundation grantid: ZK201805; ZK201717 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c6003-2d8333a5a34aa91c45f2593cdffd6b0df4183640add03b231b7dee385dfe1413 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 448 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634747100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Mon Nov 10 04:33:12 EST 2025 Tue Nov 04 01:55:04 EST 2025 Fri Sep 05 08:50:12 EDT 2025 Sun Nov 09 06:28:39 EST 2025 Sun Nov 09 07:07:23 EST 2025 Sat Nov 29 07:24:56 EST 2025 Tue Nov 18 22:11:13 EST 2025 Wed Jan 22 16:30:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6003-2d8333a5a34aa91c45f2593cdffd6b0df4183640add03b231b7dee385dfe1413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6717-8514 0000-0002-0833-1205 |
| OpenAccessLink | https://doaj.org/article/b2da694c1bf748c1922bbf96934e88d4 |
| PMID | 34105273 |
| PQID | 2539041354 |
| PQPubID | 4365299 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b2da694c1bf748c1922bbf96934e88d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188195 proquest_miscellaneous_2539522846 proquest_journals_2671793210 proquest_journals_2539041354 crossref_citationtrail_10_1002_advs_202100309 crossref_primary_10_1002_advs_202100309 wiley_primary_10_1002_advs_202100309_ADVS2543 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2017; 8 2017; 2 2020; 120 2019; 11 2000; 45 2019; 10 2019; 57 2019; 12 2019; 58 2020; 16 2020; 59 2019; 366 2020; 14 2020; 13 2020; 56 2020; 12 2020; 11 2020; 10 2017; 355 2017; 356 2017; 9 2020; 8 2020; 7 2018; 8 2020; 4 2020; 3 2021; 31 2018; 5 1993; 30 2019; 29 2019; 438 2018; 30 2019; 7 2011; 334 2015; 15 2021; 6 2019; 9 2021; 4 2019; 3 2019; 31 2020; 142 2019; 2 2020; 34 2020; 32 2015; 7 2014; 114 2018; 17 2006; 42 2015; 27 2020; 30 2020; 396 2020; 70 2018; 115 2020; 28 2020; 27 2019; 136 2018; 11 2016; 28 2021; 60 2018; 54 2018; 10 2020; 517 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 Fan W. (e_1_2_7_47_1) 2020; 56 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – volume: 7 year: 2015 publication-title: NPG Asia Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 70 year: 2020 publication-title: Nano Energy – volume: 3 start-page: 485 year: 2019 publication-title: Joule – volume: 11 start-page: 3961 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 941 year: 2018 publication-title: Energy Environ. Sci. – volume: 3 start-page: 4931 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 8 start-page: 7836 year: 2020 publication-title: J. Mater. Chem. A – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 4 year: 2021 publication-title: Electrochem. Energy Rev. – volume: 28 start-page: 205 year: 2020 publication-title: Energy Storage Mater. – volume: 28 start-page: 4904 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 7331 year: 2015 publication-title: Chem. Mater. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 60 start-page: 990 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 5374 year: 2019 publication-title: Nat. Commun. – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 16 year: 2020 publication-title: Small – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 9377 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 120 start-page: 7020 year: 2020 publication-title: Chem. Rev. – volume: 14 start-page: 2404 year: 2020 publication-title: ACS Nano – volume: 45 start-page: 1237 year: 2000 publication-title: Electrochim. Acta – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1531 year: 2020 publication-title: ChemElectroChem – volume: 11 start-page: 1634 year: 2020 publication-title: Nat. Commun. – volume: 4 start-page: 771 year: 2020 publication-title: Joule – volume: 438 year: 2019 publication-title: J. Power Sources – volume: 27 start-page: 109 year: 2020 publication-title: Energy Storage Mater. – volume: 136 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 9 start-page: 9681 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 205 year: 2020 publication-title: Energy Storage Mater. – volume: 15 start-page: 2740 year: 2015 publication-title: Nano Lett. – volume: 42 start-page: 21 year: 2006 publication-title: Eur. Polym. J. – volume: 57 start-page: 625 year: 2019 publication-title: Nano Energy – volume: 366 start-page: 645 year: 2019 publication-title: Science – volume: 2 start-page: 6490 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 1289 year: 2019 publication-title: Joule – volume: 517 year: 2020 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 503 year: 2020 publication-title: Energy Environ. Sci. – volume: 9 start-page: 692 year: 2019 publication-title: Coatings – volume: 7 start-page: 3364 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 115 start-page: 6620 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 30 start-page: 25 year: 1993 publication-title: Polym. Int. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 356 start-page: 415 year: 2017 publication-title: Science – volume: 45 start-page: 1361 year: 2000 publication-title: Electrochim. Acta – volume: 34 year: 2020 publication-title: Energy Fuels – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 395 year: 2021 publication-title: ACS Energy Lett. – volume: 56 start-page: 2039 year: 2020 publication-title: ChemComm – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2028 year: 2020 publication-title: Chem. Sci. – volume: 11 start-page: 3075 year: 2018 publication-title: Energy Environ. Sci. – volume: 8 start-page: 9313 year: 2020 publication-title: J. Mater. Chem. A – volume: 12 start-page: 2273 year: 2019 publication-title: Energy Environ. Sci. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 355 start-page: 126 year: 2017 publication-title: Science – volume: 27 start-page: 1 year: 2020 publication-title: Energy Storage Mater. – ident: e_1_2_7_68_1 doi: 10.1021/acsami.9b11243 – ident: e_1_2_7_5_1 doi: 10.1007/s41918-020-00075-2 – ident: e_1_2_7_32_1 doi: 10.1021/acsami.6b16560 – ident: e_1_2_7_74_1 doi: 10.1002/pi.4990300106 – ident: e_1_2_7_81_1 doi: 10.1002/adma.202001755 – ident: e_1_2_7_7_1 doi: 10.1016/j.nanoen.2020.104523 – ident: e_1_2_7_8_1 doi: 10.1039/C8EE01991F – ident: e_1_2_7_35_1 doi: 10.1039/C8CC07730D – ident: e_1_2_7_53_1 doi: 10.1016/j.ensm.2020.01.032 – ident: e_1_2_7_49_1 doi: 10.1126/science.aax6873 – ident: e_1_2_7_14_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.0c09794 – ident: e_1_2_7_1_1 doi: 10.1126/science.aam6284 – ident: e_1_2_7_13_1 doi: 10.1002/celc.201902030 – ident: e_1_2_7_50_1 doi: 10.1021/acsaem.9b01063 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.0c07992 – ident: e_1_2_7_40_1 doi: 10.1021/cr300162p – volume: 56 start-page: 2039 year: 2020 ident: e_1_2_7_47_1 publication-title: ChemComm – ident: e_1_2_7_54_1 doi: 10.1002/aenm.201904215 – ident: e_1_2_7_12_1 doi: 10.1021/acs.energyfuels.0c02349 – ident: e_1_2_7_3_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_18_1 doi: 10.1126/science.aak9991 – ident: e_1_2_7_28_1 doi: 10.1016/j.jpowsour.2019.226986 – ident: e_1_2_7_72_1 doi: 10.1021/acs.nanolett.5b00600 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.9b09669 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201907830 – ident: e_1_2_7_46_1 doi: 10.1002/aenm.202001583 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.9b00535 – ident: e_1_2_7_11_1 doi: 10.1039/D0TA01297A – ident: e_1_2_7_25_1 doi: 10.1002/adma.201903675 – ident: e_1_2_7_26_1 doi: 10.1021/acs.energyfuels.0c02367 – ident: e_1_2_7_42_1 doi: 10.1016/j.ensm.2020.01.023 – ident: e_1_2_7_36_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_7_80_1 doi: 10.1002/adma.202001854 – ident: e_1_2_7_44_1 doi: 10.1039/C7EE03232C – ident: e_1_2_7_55_1 doi: 10.1021/acsami.8b07781 – ident: e_1_2_7_22_1 doi: 10.1002/smll.202001323 – ident: e_1_2_7_78_1 doi: 10.1039/C9EE00596J – ident: e_1_2_7_34_1 doi: 10.1002/adfm.201902653 – ident: e_1_2_7_64_1 doi: 10.1002/adfm.202001867 – ident: e_1_2_7_57_1 doi: 10.1002/adfm.202006495 – ident: e_1_2_7_69_1 doi: 10.1002/anie.202001844 – ident: e_1_2_7_83_1 doi: 10.1039/C9EE03545A – ident: e_1_2_7_70_1 doi: 10.1038/nenergy.2017.35 – ident: e_1_2_7_73_1 doi: 10.1073/pnas.1803385115 – ident: e_1_2_7_67_1 doi: 10.1002/adfm.202000599 – ident: e_1_2_7_6_1 doi: 10.1002/adma.202000287 – ident: e_1_2_7_33_1 doi: 10.1021/acsenergylett.0c02371 – ident: e_1_2_7_77_1 doi: 10.1002/app.47902 – ident: e_1_2_7_60_1 doi: 10.1039/D0TA00748J – ident: e_1_2_7_65_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_7_59_1 doi: 10.3390/coatings9110692 – ident: e_1_2_7_87_1 doi: 10.1016/j.ensm.2020.01.003 – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2018.11.002 – ident: e_1_2_7_71_1 doi: 10.1016/j.eurpolymj.2005.09.017 – ident: e_1_2_7_16_1 doi: 10.1038/s41467-020-17752-x – ident: e_1_2_7_52_1 doi: 10.1002/smll.202001736 – ident: e_1_2_7_61_1 doi: 10.1002/adma.202003021 – ident: e_1_2_7_19_1 doi: 10.1021/acsaem.0c00489 – ident: e_1_2_7_29_1 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_7_24_1 doi: 10.1021/acssuschemeng.8b05568 – ident: e_1_2_7_51_1 doi: 10.1016/j.cej.2020.125363 – ident: e_1_2_7_85_1 doi: 10.1021/acs.chemmater.5b02840 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202000162 – ident: e_1_2_7_58_1 doi: 10.1002/admi.201800848 – ident: e_1_2_7_66_1 doi: 10.1002/adfm.201908528 – ident: e_1_2_7_45_1 doi: 10.1002/adma.201803181 – ident: e_1_2_7_76_1 doi: 10.1016/S0013-4686(99)00344-8 – ident: e_1_2_7_37_1 doi: 10.1021/acsami.8b04085 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201908121 – ident: e_1_2_7_39_1 doi: 10.1016/j.nanoen.2018.12.086 – ident: e_1_2_7_75_1 doi: 10.1016/S0013-4686(99)00386-2 – ident: e_1_2_7_56_1 doi: 10.1002/aenm.201901469 – ident: e_1_2_7_62_1 doi: 10.1021/acsami.0c06009 – ident: e_1_2_7_4_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_7_79_1 doi: 10.1016/j.apsusc.2020.146079 – ident: e_1_2_7_17_1 doi: 10.1038/am.2015.32 – ident: e_1_2_7_82_1 doi: 10.1038/s41467-019-13436-3 – ident: e_1_2_7_63_1 doi: 10.1002/anie.202008634 – ident: e_1_2_7_84_1 doi: 10.1039/C9EE00956F – ident: e_1_2_7_38_1 doi: 10.1016/j.ensm.2020.03.011 – ident: e_1_2_7_86_1 doi: 10.1002/adma.201800762 – ident: e_1_2_7_9_1 doi: 10.1039/D0SC00022A – ident: e_1_2_7_41_1 doi: 10.1002/anie.202012030 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-020-15478-4 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201505370 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201813223 |
| SSID | ssj0001537418 |
| Score | 2.647277 |
| Snippet | Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their... Aqueous rechargeable zinc-metal-based batteries are an attractive alternative to lithium-ion batteries for grid-scale energy-storage systems because of their... Abstract Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because... |
| SourceID | doaj pubmedcentral proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2100309 |
| SubjectTerms | Carbon Contact angle dendrite suppression Electrolytes Energy Graphene polyacrylonitrile coating Polymers Scanning electron microscopy Spectrum analysis Zinc zinc anodes zinc‐ion batteries |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELUB4itCAjIQGHqEnsOM4J7ZYWDmi1Kj1UXCK_0q60Skp2W6m38g_4jfwSZhxvYBGPA9e14zieh7-xZ78h5AWAhpJxqWIrmYm5BlOETamMJShLlmiZ1Kn1xSaK6VSenJSzcOC2DGmVa5_oHbVtDZ6R72U5ROfgcXP-5vxzjFWj8HY1lNC4SbaQqYyPyNbkYDo7-nHKkjOkZ1mzNSbZnrKXyNINkQ5eLmzsRp60fwNp_pon-TN-9RvQ4d3_nfo9cidATzrudWWb3HDNfbIdjHtJXwUG6tcPyJdx47v17BJ01i6ulOkgtAf772BudL9VmC5NPyhA7BT_NejrTNBP88bQt66xHbyavoMQf3VGARZTTCdZXNEj57NANAwxhi9oL5b-kW_XXyewm1ras31C8P6QHB8eHO-_j0OthtgITG_LQNaMqVwxrlSZGp7XEFgxY-vaCp3YGqTABE_AnSZMA6jUhXWOydzWLoW1eURGTdu4x4TqFEIoJWSiBQMHk2lRpkoYC5EjDMZcROK1yCoTeMyxnMai6hmYswpFXA0ijsjLof95z-Dxx54T1IChFzJv-x_a7rQKhlzpzCpRcpPquuDSgK5nWtelAI13Uloekd21ElTBHcArBg34fbMo0E_CNCLyfGgGO8fLG9WgNPwQgJUBLkak2FDLjflutjTzM88YDqgM70th6bwC_2MdKkBEH5Ek4cnfv2WH3MZn-sS5XTJadRfuKbllLlfzZfcsmOJ3PnQ_Gg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cAFKA8RKMhISMAhahI7jnPcFgoHVK2gh4pL5FfalVYJym4r9Qb_gN_IL2HGyaYNUoUQ19hxYnse38STbwBeIWgouVA6dorbWBhURXRKZaxQWLLEqKROXSg2URwequPjcn7lL_6eH2L84EaaEew1Kbg2q91L0lDtzoluG0MWOiW4CbfSlCsq3pCJ-eVXlpwTPQtVmMPoOuZKiA1zY5LtToeYeKZA4D9BnX_mTF7FssEZHdz7_2nch7sDEGWzXnK24YZvHsD2oOor9mbgo377EH7MmtCt55pg83Z5oW2HgT5agw6fyfZbTcnT7JNG_M7oH8JQdYJ9XTSWvfON6xDXsg8Y8K9PGYJkRsklywv22YecEINDzHD67dkq3PLr-8899K2O9dyfGMo_gqOD90f7H-OhckNsJSW7ZbjznOtcc6F1mVqR1xhmcevq2kmTuBr3hEuRoHFNuEGIaQrnPVe5q32KbvUxbDVt458AMykGVFqqxEiO5iYzsky1tA7jSByM-wjizaZVdmA1p-Iay6rnY84qWuBqXOAIXo_9v_V8Htf23CMZGHsRD3e40HYn1aDWlcmclqWwqakLoSxKfmZMXUqUf6-UExHsbCSoGowDPiLnZYKzzK9plgVZTXyNCF6Ozaj1dJSjG9qNMAQiZwSPERQTwZy877SlWZwG_nDEaHR6iksXBPMv61AhPvpClAlP_7H_M7hDF_u8uh3YWndn_jnctufrxap7EfT0N-UdQJY priority: 102 providerName: Wiley-Blackwell |
| Title | An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc‐Based Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100309 https://www.proquest.com/docview/2539041354 https://www.proquest.com/docview/2671793210 https://www.proquest.com/docview/2539522846 https://pubmed.ncbi.nlm.nih.gov/PMC8188195 https://doaj.org/article/b2da694c1bf748c1922bbf96934e88d4 |
| Volume | 8 |
| WOSCitedRecordID | wos000634747100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest research library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLZg48AFMT5EYFRGQgIO0ZI4cZxjOzaYxEo0JlG4RP6KVqlKUdpN2g3-Ab-RX8JjJ61apGkXLpZau2_c98N-XvnNY0JeAzQULBUyNILpMFUIRWxKRSjgLEmkRFTHxl82kY_HYjIpyo2rvlxNWEcP3CnuQCVG8iLVsarzVGjITpSqC44nWCGMZwIF6tlIprr3g5mjZVmxNEbJgTRXjp0bGY47VNjahTxZ_xbC_Lc-chO3-o3n-CF50CNGOuxmukfu2OYR2etjckHf9sTR7x6TX8PGD-tIIWg5n11L3SIjR9i2EE0P59JVOdNPEkCbupf9_PUQ9Pu00fS9bUwLAEo_IDNfXlCgWeqqQGbX9Mz64g0FEUPMfX658D_58_P3CJugoR1JJ3LuJ-T8-Oj88GPYX7EQau6q0hKYiDGZSZZKWcQ6zWrkQ0ybujZcRaaGEhlPI6yCEVPAgio31jKRmdrG2P-ekp1m3thnhKoYmY_kIlKcYV1IFC9iybVBwgdhzAYkXGm80j39uLsFY1Z1xMlJ5SxUrS0UkDfr8T864o0bR46cAdejHGG2_wJuVPVuVN3mRgHZX5m_6qMYj8hYEeFfZjd089wtb5hGQF6tuxGe7sxFNs4aXgQgLlBeQPItr9qa73ZPM73wRN8AU-6YE6rz_neLHioAmS-O2-D5_1DIC3LfSe6q4vbJzrK9tC_JPX21nC7aAbmbpCXafCIGZHd0NC7PBj4C0Z4mn32L_t3y5LT8hk9fT8Z_Aas_N_U |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFAkuQPkRKQUWCQQcrNretbM-IJS2lEZNowhyaLlY--c2UmQXJ22VG7wBL8JL8STMrO1AED-nHrh61-v1eObbmd3xN4Q8BachYVxIzwimPa7AFGFRSjwByhL6SvhZYFyxic5gIA4Pk-EK-dr8C4NplQ0mOqA2hcY98s0wgugcEDfir08_elg1Ck9XmxIalVrs2_kFhGzTV70d-L7PwnD3zWh7z6urCng6xkSsEGbFmIwk41ImgeZRBiEA0ybLTKx8k3HQ8pj7YPg-U-D-qI6xlonIZDaACcCwV8gqB10XLbI67B0Mj35s6kQM2WAackg_3JTmHEnBIbDCs4ylxc_VCFhybH9Ny_zZXXbr3e7N_0xSt8iN2rGm3coS1siKzW-TtRq6pvRFza_98g753M1dt4o7gw6LyVzqcj5BdCtBFHS7kJgMTvsS4hGK_0S6Khr0wzjXdMfmpoQ3pW_L4mJ2QsHpp5gsM5nTd9bluCgYogsCK86m7pZvn75sga9gaMVlOrbTu2R0GZK4R1p5kdv7hKoAAkQZC1_FDOAzVHESyFgbiIthMGbbxGs0JNU1SzsWC5mkFb90mKJGpQuNapPni_6nFT_JH3tuocIteiGvuLtQlMdpDVOpCo2ME64DlXW40GDJoVJZEoM9WyEMb5ONRufSGuzgEQuF-31z3MFVAKbRJk8WzYBieDQlc_wabgiIBMAZbpPOkhUszXe5JR-fOD508DnxNBhE5-zlH3JIwd97jxQQ639_l8fk2t7ooJ_2e4P9B-Q63l-lCG6Q1qw8sw_JVX0-G0_LRzUKUJJesjV9BynOm00 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXoDyEocAigYCDFXt3_ToglDYEqlYhgh6qXqx9mUaK7OKkrXKDf8Df4e_wS5hZ24EgHqceuGbXm_V45psZ7_gbQh5D0JBxkUrfpFz7QoEpglPK_BSUhQUqDYrQuGYTyWiUHhxk4zXytfsWBssqO0x0QG0qje_IeyyC7BwQNxK9oi2LGA-GL48_-thBCk9au3YajYrs2sUZpG-zFzsDeNZPGBu-2t9-47cdBnwdY1EWgx1yLiPJhZRZqEVUQDrAtSkKE6vAFAI0PhYBgEDAFYRCKjHW8jQyhQ1hM7DsBXIxEeCTsWqQvf3xeifiyAvT0UQGrCfNKdKDQ4qFpxorbtB1C1gJcX8t0Pw5cHaeb3jtP5bZdXK1Dbdpv7GPDbJmyxtkowW0GX3Wsm4_v0k-90s3rWHUoONqupC6XkwR82oQC92uJJaI0z0JWQrFLyVdbw16OCk1HdjS1HCn9HVdnc2PKKQCFEtopgv6zrrKFwVL9EF41cnMXfLt05ctiCAMbRhOJ3Z2i-yfhyRuk_WyKu0dQlUIaaOM00DFHECVqTgLZawNZMuwGLce8TttyXXL3Y4tRKZ5wzrNctSufKldHnm6nH_csJb8ceYWKt9yFrKNux-q-kPegleumJFxJnSoikSkGuybKVVkMVi5TVMjPLLZ6V_eQiD8xVL5fj8cJ-gbYBseebQcBmzDAytZ4tNwS0B-ACGyR5IVi1jZ7-pIOTlyLOkQieIZMYjO2c4_5JBDFPgeiSHu_v1eHpLLYEL53s5o9x65gpc3dYObZH1en9j75JI-nU9m9QMHB5Tk52xK3wENwaKH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Polyacrylonitrile+Coating+Layer+Confining+Zinc+Dendrite+Growth+for+Highly+Reversible+Aqueous+Zinc%E2%80%90Based+Batteries&rft.jtitle=Advanced+science&rft.au=Chen%2C+Peng&rft.au=Yuan%2C+Xinhai&rft.au=Xia%2C+Yingbin&rft.au=Zhang%2C+Yi&rft.date=2021-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=11&rft_id=info:doi/10.1002%2Fadvs.202100309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202100309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |