An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc‐Based Batteries

Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 8; číslo 11; s. e2100309 - n/a
Hlavní autoři: Chen, Peng, Yuan, Xinhai, Xia, Yingbin, Zhang, Yi, Fu, Lijun, Liu, Lili, Yu, Nengfei, Huang, Qinghong, Wang, Bin, Hu, Xianwei, Wu, Yuping, Ree, Teunis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim John Wiley & Sons, Inc 01.06.2021
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. A polyacrylonitrile (PAN)Z coating layer is employed to confine zinc dendrite growth for rechargeable aqueous zinc‐based batteries. The cyclability and Coulombic efficiency of the zinc anode porous PAN coating layer show that the polymer coating film is a feasible artificial membrane for a dendrite‐free zinc anode.
AbstractList Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V 2 O 5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.
Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. A polyacrylonitrile (PAN)Z coating layer is employed to confine zinc dendrite growth for rechargeable aqueous zinc‐based batteries. The cyclability and Coulombic efficiency of the zinc anode porous PAN coating layer show that the polymer coating film is a feasible artificial membrane for a dendrite‐free zinc anode.
Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries. A polyacrylonitrile (PAN)Z coating layer is employed to confine zinc dendrite growth for rechargeable aqueous zinc‐based batteries. The cyclability and Coulombic efficiency of the zinc anode porous PAN coating layer show that the polymer coating film is a feasible artificial membrane for a dendrite‐free zinc anode.
Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.
Abstract Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.
Aqueous rechargeable zinc-metal-based batteries are an attractive alternative to lithium-ion batteries for grid-scale energy-storage systems because of their high specific capacity, low cost, eco-friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc-ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer-coating-layer-modified Zn anode displays dendrite-free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn-doped V2 O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc-metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.Aqueous rechargeable zinc-metal-based batteries are an attractive alternative to lithium-ion batteries for grid-scale energy-storage systems because of their high specific capacity, low cost, eco-friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc-ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer-coating-layer-modified Zn anode displays dendrite-free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn-doped V2 O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc-metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.
Author Yu, Nengfei
Yuan, Xinhai
Chen, Peng
Liu, Lili
Ree, Teunis
Xia, Yingbin
Zhang, Yi
Hu, Xianwei
Wu, Yuping
Fu, Lijun
Huang, Qinghong
Wang, Bin
AuthorAffiliation 3 National Energy Novel Materials Center Institute of Chemical Materials (ICM) China Academy of Engineering Physics (CAEP) Mianyang 621900 China
1 Key Laboratory for Ecological Metallurgy of Multimetallic Minerals (Ministry of Education) School of Metallurgy Northeastern University Shenyang 110819 China
4 Department of Chemistry University of Venda Thohoyandou 0950 South Africa
2 China State Key Laboratory of Materials‐Oriented Chemical Engineering School of Energy Science and Engineering Nanjing Tech University Nanjing 210009 China
AuthorAffiliation_xml – name: 1 Key Laboratory for Ecological Metallurgy of Multimetallic Minerals (Ministry of Education) School of Metallurgy Northeastern University Shenyang 110819 China
– name: 4 Department of Chemistry University of Venda Thohoyandou 0950 South Africa
– name: 2 China State Key Laboratory of Materials‐Oriented Chemical Engineering School of Energy Science and Engineering Nanjing Tech University Nanjing 210009 China
– name: 3 National Energy Novel Materials Center Institute of Chemical Materials (ICM) China Academy of Engineering Physics (CAEP) Mianyang 621900 China
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-6717-8514
  surname: Chen
  fullname: Chen, Peng
  organization: Northeastern University
– sequence: 2
  givenname: Xinhai
  surname: Yuan
  fullname: Yuan, Xinhai
  organization: Nanjing Tech University
– sequence: 3
  givenname: Yingbin
  surname: Xia
  fullname: Xia, Yingbin
  organization: Nanjing Tech University
– sequence: 4
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: Nanjing Tech University
– sequence: 5
  givenname: Lijun
  surname: Fu
  fullname: Fu, Lijun
  email: l.fu@njtech.edu.cn
  organization: Nanjing Tech University
– sequence: 6
  givenname: Lili
  surname: Liu
  fullname: Liu, Lili
  organization: Nanjing Tech University
– sequence: 7
  givenname: Nengfei
  surname: Yu
  fullname: Yu, Nengfei
  organization: Nanjing Tech University
– sequence: 8
  givenname: Qinghong
  surname: Huang
  fullname: Huang, Qinghong
  organization: Nanjing Tech University
– sequence: 9
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: China Academy of Engineering Physics (CAEP)
– sequence: 10
  givenname: Xianwei
  surname: Hu
  fullname: Hu, Xianwei
  email: huxw@smm.neu.edu.cn
  organization: Northeastern University
– sequence: 11
  givenname: Yuping
  orcidid: 0000-0002-0833-1205
  surname: Wu
  fullname: Wu, Yuping
  email: wuyp@njtech.edu.cn
  organization: China Academy of Engineering Physics (CAEP)
– sequence: 12
  givenname: Teunis
  surname: Ree
  fullname: Ree, Teunis
  organization: University of Venda
BookMark eNqFUstuEzEUHaEiWkq3rEdiwybBr5mxN0jTFNpKkUBQsWBjefxIHDl2sSepZkf_oN_Il-BpAqKVgJV97XOO7z0-z4sDH7wuipcQTCEA6I1Q2zRFAOUCA_akOEKQ0QmmhBz8sT8sTlJaAQBghRsC6bPiEBMIKtTgo-K29WUbe2ustMKVH4MbhIyDC9720TpdzoLorV-UczHomCtvrB_rr9bL8kx7FW2vy_MYbvplaUIsL-xi6Ybyk97qmGyXJdpvGx026Z7y4_vdqUhalaei73W0Or0onhrhkj7Zr8fF1ft3V7OLyfzD-eWsnU9kncebIEUxxqISmAjBoCSVQRXDUhmj6g4okyfDNQFCKYA7hGHXKK0xrZTRkEB8XFzuZFUQK34d7VrEgQdh-f1BiAsusg_Sad4hJWpGJOxMQ6iEDKGuM6xmmGhKFclab3da15turZXUvo_CPRB9eOPtki_CllNIKWRVFni9F4ghm5N6vrZJaueEH53iqMKsQoiSOkNfPYKuwib67BRHdQMbhvP3_xOVtUA2oBr7JjuUjCGlqA2Xts_fG8YureMQ8DFXfMwV_52rTJs-ov2a9K-E_Ts3OUHDf9C8PfvyGeXu8E9QK-IF
CitedBy_id crossref_primary_10_1016_j_jcis_2023_11_032
crossref_primary_10_1002_advs_202104866
crossref_primary_10_1002_asia_202500120
crossref_primary_10_1039_D3QI00279A
crossref_primary_10_1002_adfm_202300952
crossref_primary_10_1016_j_cej_2023_143644
crossref_primary_10_1016_j_jechem_2023_01_037
crossref_primary_10_1002_ange_202308182
crossref_primary_10_1002_smtd_202300255
crossref_primary_10_1002_adfm_202214033
crossref_primary_10_1016_j_carbpol_2024_122444
crossref_primary_10_1016_j_jechem_2021_08_022
crossref_primary_10_1016_j_jechem_2023_12_005
crossref_primary_10_1039_D1NR07458J
crossref_primary_10_1002_adma_202208764
crossref_primary_10_1002_adfm_202200429
crossref_primary_10_1016_j_jechem_2022_06_009
crossref_primary_10_1002_adfm_202502344
crossref_primary_10_1016_j_jcis_2022_05_168
crossref_primary_10_1016_j_jcis_2023_07_171
crossref_primary_10_1002_aenm_202301741
crossref_primary_10_1002_advs_202507377
crossref_primary_10_1002_smll_202304094
crossref_primary_10_1021_acsaem_4c02385
crossref_primary_10_1002_adfm_202401760
crossref_primary_10_3390_ma14164434
crossref_primary_10_1002_adma_202209288
crossref_primary_10_1016_j_jpowsour_2025_238071
crossref_primary_10_1002_adfm_202213510
crossref_primary_10_1039_D1SE01317C
crossref_primary_10_1002_cssc_202400076
crossref_primary_10_1002_adfm_202418511
crossref_primary_10_1002_adfm_202314426
crossref_primary_10_1007_s40820_021_00782_5
crossref_primary_10_1016_j_cej_2024_153845
crossref_primary_10_1039_D2NH00354F
crossref_primary_10_1039_D3QI01506H
crossref_primary_10_1007_s11706_023_0668_2
crossref_primary_10_1039_D3EE01741A
crossref_primary_10_1002_smll_202501293
crossref_primary_10_1016_j_nanoen_2022_107333
crossref_primary_10_1063_5_0074327
crossref_primary_10_1007_s40843_021_1841_5
crossref_primary_10_1002_smll_202410051
crossref_primary_10_1021_acsami_5c06192
crossref_primary_10_1002_smll_202503325
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1007_s10853_023_08139_6
crossref_primary_10_1016_j_jcis_2024_02_053
crossref_primary_10_1002_aenm_202403662
crossref_primary_10_1016_j_nanoen_2022_107805
crossref_primary_10_1002_cnl2_5
crossref_primary_10_1021_acs_jpclett_5c02245
crossref_primary_10_1016_j_cej_2021_134277
crossref_primary_10_1016_j_nanoen_2023_108858
crossref_primary_10_1039_D1EE02021H
crossref_primary_10_1016_j_cej_2022_138116
crossref_primary_10_1002_smll_202203061
crossref_primary_10_1002_smll_202304640
crossref_primary_10_1002_adfm_202208288
crossref_primary_10_1002_advs_202104832
crossref_primary_10_1016_j_electacta_2025_145777
crossref_primary_10_1016_j_apsusc_2023_157634
crossref_primary_10_1002_celc_202101724
crossref_primary_10_1002_smll_202502128
crossref_primary_10_1002_gch2_202400105
crossref_primary_10_3390_inorganics11030118
crossref_primary_10_1038_s41467_025_56519_0
crossref_primary_10_1002_aenm_202203189
crossref_primary_10_1002_ange_202409303
crossref_primary_10_1016_j_est_2024_114642
crossref_primary_10_1002_anie_202402987
crossref_primary_10_1002_aenm_202300606
crossref_primary_10_1016_j_est_2025_117093
crossref_primary_10_1002_admi_202200564
crossref_primary_10_1016_j_cej_2025_166965
crossref_primary_10_3390_en18102592
crossref_primary_10_1149_1945_7111_addd6c
crossref_primary_10_1016_j_scib_2023_09_034
crossref_primary_10_1039_D3EE02945J
crossref_primary_10_1016_j_cej_2023_143607
crossref_primary_10_1002_smll_202103195
crossref_primary_10_1002_adma_202106937
crossref_primary_10_1039_D5EE00584A
crossref_primary_10_1007_s42765_023_00323_2
crossref_primary_10_1002_adma_202419502
crossref_primary_10_1002_smtd_202200560
crossref_primary_10_1002_est2_70086
crossref_primary_10_1002_advs_202103845
crossref_primary_10_1039_D5TA02110C
crossref_primary_10_1002_advs_202417121
crossref_primary_10_3390_membranes12101014
crossref_primary_10_1002_smll_202306195
crossref_primary_10_1016_j_electacta_2024_145059
crossref_primary_10_1002_tcr_202200114
crossref_primary_10_1002_adfm_202507730
crossref_primary_10_1002_aenm_202303967
crossref_primary_10_1002_adma_202412447
crossref_primary_10_1016_j_mtcomm_2022_103939
crossref_primary_10_1016_j_nxener_2024_100124
crossref_primary_10_1002_smtd_202300101
crossref_primary_10_1016_j_jallcom_2021_163023
crossref_primary_10_1021_acs_energyfuels_5c01140
crossref_primary_10_1002_adfm_202210290
crossref_primary_10_1016_j_jechem_2023_05_028
crossref_primary_10_1039_D5TA02048D
crossref_primary_10_1002_adfm_202312564
crossref_primary_10_1016_j_jcis_2022_03_010
crossref_primary_10_1021_acsnano_4c11486
crossref_primary_10_1002_adma_202406093
crossref_primary_10_1016_j_apsusc_2023_158591
crossref_primary_10_1002_aenm_202203523
crossref_primary_10_1039_D3QM00003F
crossref_primary_10_1039_D3RA05177C
crossref_primary_10_1002_adfm_202418503
crossref_primary_10_1016_j_cej_2021_132576
crossref_primary_10_1002_advs_202304549
crossref_primary_10_1002_chem_202203973
crossref_primary_10_1016_j_cej_2025_168563
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1007_s12274_022_4916_z
crossref_primary_10_1002_asia_202500810
crossref_primary_10_1016_j_est_2024_113635
crossref_primary_10_1016_j_jpowsour_2022_232173
crossref_primary_10_1002_smll_202300633
crossref_primary_10_1002_adma_202206239
crossref_primary_10_1007_s11431_022_2117_9
crossref_primary_10_1016_j_est_2023_109874
crossref_primary_10_1002_cssc_202200706
crossref_primary_10_1016_j_cej_2023_148267
crossref_primary_10_1002_smtd_202201683
crossref_primary_10_1016_j_jcis_2025_138633
crossref_primary_10_1039_D5TA05002B
crossref_primary_10_1002_adma_202203905
crossref_primary_10_1039_D2NR06160K
crossref_primary_10_1016_j_cej_2023_147846
crossref_primary_10_1007_s10854_023_11183_2
crossref_primary_10_1016_j_est_2024_112834
crossref_primary_10_1002_advs_202200155
crossref_primary_10_1016_j_ccr_2023_215142
crossref_primary_10_1007_s11426_025_2874_5
crossref_primary_10_1039_D2SE01398C
crossref_primary_10_1002_adfm_202211290
crossref_primary_10_1002_anie_202405048
crossref_primary_10_1002_smtd_202201572
crossref_primary_10_1007_s12274_022_4619_5
crossref_primary_10_1002_adfm_202204066
crossref_primary_10_3390_molecules28041742
crossref_primary_10_3390_batteries9070340
crossref_primary_10_1039_D3QI01981K
crossref_primary_10_1002_adfm_202400032
crossref_primary_10_1007_s10854_023_10722_1
crossref_primary_10_1016_j_jpowsour_2024_234134
crossref_primary_10_1002_smll_202405522
crossref_primary_10_1007_s11708_025_0999_z
crossref_primary_10_1016_j_cej_2022_137653
crossref_primary_10_1016_j_jpowsour_2022_232622
crossref_primary_10_1016_j_jpowsour_2021_230861
crossref_primary_10_1002_smll_202302995
crossref_primary_10_1002_smll_202303963
crossref_primary_10_1002_smtd_202401499
crossref_primary_10_1002_smll_202201163
crossref_primary_10_1002_smll_202201284
crossref_primary_10_1016_j_colsurfa_2022_129970
crossref_primary_10_1016_j_jwpe_2025_107446
crossref_primary_10_1039_D5EE00737B
crossref_primary_10_1016_j_jpowsour_2025_237355
crossref_primary_10_1149_1945_7111_ad281a
crossref_primary_10_1002_ange_202402987
crossref_primary_10_1002_batt_202400365
crossref_primary_10_1016_j_est_2025_116266
crossref_primary_10_1002_adfm_202309350
crossref_primary_10_1002_adfm_202417189
crossref_primary_10_1002_adma_202500596
crossref_primary_10_1002_cssc_202301942
crossref_primary_10_1002_smll_202408138
crossref_primary_10_1007_s12598_023_02541_4
crossref_primary_10_1007_s40820_022_00969_4
crossref_primary_10_1002_anie_202308182
crossref_primary_10_1016_j_cej_2022_136217
crossref_primary_10_1016_j_cej_2025_166235
crossref_primary_10_1007_s12274_022_4370_y
crossref_primary_10_1016_j_nxener_2023_100049
crossref_primary_10_1016_j_apsusc_2023_156384
crossref_primary_10_1002_anie_202409303
crossref_primary_10_1016_j_cej_2024_159088
crossref_primary_10_1002_adfm_202308015
crossref_primary_10_1007_s12613_024_3020_7
crossref_primary_10_1007_s40820_021_00764_7
crossref_primary_10_1016_j_cej_2023_141707
crossref_primary_10_1016_j_cej_2022_138769
crossref_primary_10_1016_j_fuel_2023_129417
crossref_primary_10_26599_NR_2025_94907037
crossref_primary_10_1002_advs_202411995
crossref_primary_10_1016_j_jpowsour_2024_235799
crossref_primary_10_1016_j_cej_2022_141016
crossref_primary_10_1016_j_jechem_2023_03_059
crossref_primary_10_1039_D2SC06276C
crossref_primary_10_1039_D5GC01034A
crossref_primary_10_1002_smll_202305687
crossref_primary_10_1016_j_apsusc_2021_152019
crossref_primary_10_1016_j_electacta_2023_143286
crossref_primary_10_1016_j_cej_2024_150139
crossref_primary_10_1007_s12598_024_03048_2
crossref_primary_10_1039_D4EE00721B
crossref_primary_10_1016_j_jelechem_2024_118685
crossref_primary_10_1007_s12598_025_03386_9
crossref_primary_10_1016_j_jpowsour_2023_232711
crossref_primary_10_1039_D3EE00501A
crossref_primary_10_1002_adfm_202303466
crossref_primary_10_1002_aenm_202401018
crossref_primary_10_1016_j_cej_2022_135822
crossref_primary_10_1002_adfm_202111635
crossref_primary_10_1002_cssc_202200656
crossref_primary_10_1038_s41598_023_43962_6
crossref_primary_10_1016_j_jcis_2023_08_047
crossref_primary_10_1002_smll_202306111
crossref_primary_10_1016_j_cej_2023_142105
crossref_primary_10_1016_j_jcis_2022_06_033
crossref_primary_10_1002_advs_202201433
crossref_primary_10_1002_inf2_12306
crossref_primary_10_20517_microstructures_2024_158
crossref_primary_10_1002_adma_202202188
crossref_primary_10_1002_bte2_20230024
crossref_primary_10_1002_adma_202106409
crossref_primary_10_1002_adma_202203153
crossref_primary_10_1002_ange_202405048
crossref_primary_10_1002_aenm_202502353
crossref_primary_10_1039_D4SC04611K
crossref_primary_10_1002_smll_202403380
crossref_primary_10_1002_adfm_202412577
crossref_primary_10_1038_s41427_024_00537_9
crossref_primary_10_1016_j_jiec_2022_01_011
crossref_primary_10_1002_adfm_202313371
crossref_primary_10_1016_j_jpowsour_2025_236462
crossref_primary_10_1021_acsaem_5c00620
crossref_primary_10_1016_j_colsurfa_2023_130960
crossref_primary_10_1016_j_ssi_2024_116603
crossref_primary_10_1007_s40820_022_00846_0
crossref_primary_10_1016_j_jpowsour_2022_231122
crossref_primary_10_1016_j_nanoen_2022_107724
crossref_primary_10_1002_batt_202200237
crossref_primary_10_1016_j_cej_2024_152789
crossref_primary_10_1002_cnl2_109
crossref_primary_10_1007_s40820_022_00921_6
crossref_primary_10_1038_s41467_025_60190_w
crossref_primary_10_1016_j_cej_2023_145955
crossref_primary_10_1002_aenm_202200665
crossref_primary_10_1002_smll_202404932
crossref_primary_10_3390_en16217443
crossref_primary_10_1002_aenm_202501359
crossref_primary_10_1016_j_pmatsci_2023_101171
crossref_primary_10_1002_anie_202406597
crossref_primary_10_3390_batteries10120420
crossref_primary_10_1016_j_mser_2024_100844
crossref_primary_10_1016_j_cej_2024_158634
crossref_primary_10_1002_ange_202406597
crossref_primary_10_1039_D5EE00650C
crossref_primary_10_1002_smll_202104640
crossref_primary_10_1016_j_cej_2021_134227
crossref_primary_10_3390_ma14174895
crossref_primary_10_1002_smll_202105978
Cites_doi 10.1021/acsami.9b11243
10.1007/s41918-020-00075-2
10.1021/acsami.6b16560
10.1002/pi.4990300106
10.1002/adma.202001755
10.1016/j.nanoen.2020.104523
10.1039/C8EE01991F
10.1039/C8CC07730D
10.1016/j.ensm.2020.01.032
10.1126/science.aax6873
10.1016/j.joule.2020.03.002
10.1021/jacs.0c09794
10.1126/science.aam6284
10.1002/celc.201902030
10.1021/acsaem.9b01063
10.1021/jacs.0c07992
10.1021/cr300162p
10.1002/aenm.201904215
10.1021/acs.energyfuels.0c02349
10.1126/science.1212741
10.1126/science.aak9991
10.1016/j.jpowsour.2019.226986
10.1021/acs.nanolett.5b00600
10.1021/acsnano.9b09669
10.1002/anie.201907830
10.1002/aenm.202001583
10.1021/acs.chemrev.9b00535
10.1039/D0TA01297A
10.1002/adma.201903675
10.1021/acs.energyfuels.0c02367
10.1016/j.ensm.2020.01.023
10.1038/s41563-018-0063-z
10.1002/adma.202001854
10.1039/C7EE03232C
10.1021/acsami.8b07781
10.1002/smll.202001323
10.1039/C9EE00596J
10.1002/adfm.201902653
10.1002/adfm.202001867
10.1002/adfm.202006495
10.1002/anie.202001844
10.1039/C9EE03545A
10.1038/nenergy.2017.35
10.1073/pnas.1803385115
10.1002/adfm.202000599
10.1002/adma.202000287
10.1021/acsenergylett.0c02371
10.1002/app.47902
10.1039/D0TA00748J
10.1002/aenm.201801090
10.3390/coatings9110692
10.1016/j.ensm.2020.01.003
10.1016/j.joule.2018.11.002
10.1016/j.eurpolymj.2005.09.017
10.1038/s41467-020-17752-x
10.1002/smll.202001736
10.1002/adma.202003021
10.1021/acsaem.0c00489
10.1016/j.joule.2019.02.012
10.1021/acssuschemeng.8b05568
10.1016/j.cej.2020.125363
10.1021/acs.chemmater.5b02840
10.1002/anie.202000162
10.1002/admi.201800848
10.1002/adfm.201908528
10.1002/adma.201803181
10.1016/S0013-4686(99)00344-8
10.1021/acsami.8b04085
10.1002/adma.201908121
10.1016/j.nanoen.2018.12.086
10.1016/S0013-4686(99)00386-2
10.1002/aenm.201901469
10.1021/acsami.0c06009
10.1038/s41467-017-00467-x
10.1016/j.apsusc.2020.146079
10.1038/am.2015.32
10.1038/s41467-019-13436-3
10.1002/anie.202008634
10.1039/C9EE00956F
10.1016/j.ensm.2020.03.011
10.1002/adma.201800762
10.1039/D0SC00022A
10.1002/anie.202012030
10.1038/s41467-020-15478-4
10.1002/adma.201505370
10.1002/anie.201813223
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202100309
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_b2da694c1bf748c1922bbf96934e88d4
PMC8188195
10_1002_advs_202100309
ADVS2543
Genre article
GrantInformation_xml – fundername: Jiangsu Provincial Innovation Foundation for Postgraduate
  funderid: KYCX20_1072
– fundername: Natural Science Foundation of Liaoning Province
  funderid: 2019‐MS‐129
– fundername: National Natural Science Foundation of China
  funderid: 51425301; U1601214; 51974081
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20200696
– fundername: State Key Lab Research Foundation
  funderid: ZK201805; ZK201717
– fundername: National Key R & D Program of China
  funderid: 2018YFB0104300
– fundername: ;
  grantid: 2019‐MS‐129
– fundername: ;
  grantid: BK20200696
– fundername: ;
  grantid: 51425301; U1601214; 51974081
– fundername: National Key R & D Program of China
  grantid: 2018YFB0104300
– fundername: Jiangsu Provincial Innovation Foundation for Postgraduate
  grantid: KYCX20_1072
– fundername: State Key Lab Research Foundation
  grantid: ZK201805; ZK201717
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6003-2d8333a5a34aa91c45f2593cdffd6b0df4183640add03b231b7dee385dfe1413
IEDL.DBID DOA
ISICitedReferencesCount 448
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634747100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Mon Nov 10 04:33:12 EST 2025
Tue Nov 04 01:55:04 EST 2025
Fri Sep 05 08:50:12 EDT 2025
Sun Nov 09 06:28:39 EST 2025
Sun Nov 09 07:07:23 EST 2025
Sat Nov 29 07:24:56 EST 2025
Tue Nov 18 22:11:13 EST 2025
Wed Jan 22 16:30:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6003-2d8333a5a34aa91c45f2593cdffd6b0df4183640add03b231b7dee385dfe1413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6717-8514
0000-0002-0833-1205
OpenAccessLink https://doaj.org/article/b2da694c1bf748c1922bbf96934e88d4
PMID 34105273
PQID 2539041354
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b2da694c1bf748c1922bbf96934e88d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188195
proquest_miscellaneous_2539522846
proquest_journals_2671793210
proquest_journals_2539041354
crossref_citationtrail_10_1002_advs_202100309
crossref_primary_10_1002_advs_202100309
wiley_primary_10_1002_advs_202100309_ADVS2543
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 8
2017; 2
2020; 120
2019; 11
2000; 45
2019; 10
2019; 57
2019; 12
2019; 58
2020; 16
2020; 59
2019; 366
2020; 14
2020; 13
2020; 56
2020; 12
2020; 11
2020; 10
2017; 355
2017; 356
2017; 9
2020; 8
2020; 7
2018; 8
2020; 4
2020; 3
2021; 31
2018; 5
1993; 30
2019; 29
2019; 438
2018; 30
2019; 7
2011; 334
2015; 15
2021; 6
2019; 9
2021; 4
2019; 3
2019; 31
2020; 142
2019; 2
2020; 34
2020; 32
2015; 7
2014; 114
2018; 17
2006; 42
2015; 27
2020; 30
2020; 396
2020; 70
2018; 115
2020; 28
2020; 27
2019; 136
2018; 11
2016; 28
2021; 60
2018; 54
2018; 10
2020; 517
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
Fan W. (e_1_2_7_47_1) 2020; 56
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 7
  year: 2015
  publication-title: NPG Asia Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 3
  start-page: 485
  year: 2019
  publication-title: Joule
– volume: 11
  start-page: 3961
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 941
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 4931
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 7836
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 4
  year: 2021
  publication-title: Electrochem. Energy Rev.
– volume: 28
  start-page: 205
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 4904
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 7331
  year: 2015
  publication-title: Chem. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 60
  start-page: 990
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 9377
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 120
  start-page: 7020
  year: 2020
  publication-title: Chem. Rev.
– volume: 14
  start-page: 2404
  year: 2020
  publication-title: ACS Nano
– volume: 45
  start-page: 1237
  year: 2000
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 1938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1531
  year: 2020
  publication-title: ChemElectroChem
– volume: 11
  start-page: 1634
  year: 2020
  publication-title: Nat. Commun.
– volume: 4
  start-page: 771
  year: 2020
  publication-title: Joule
– volume: 438
  year: 2019
  publication-title: J. Power Sources
– volume: 27
  start-page: 109
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 136
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– volume: 9
  start-page: 9681
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 205
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 15
  start-page: 2740
  year: 2015
  publication-title: Nano Lett.
– volume: 42
  start-page: 21
  year: 2006
  publication-title: Eur. Polym. J.
– volume: 57
  start-page: 625
  year: 2019
  publication-title: Nano Energy
– volume: 366
  start-page: 645
  year: 2019
  publication-title: Science
– volume: 2
  start-page: 6490
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 1289
  year: 2019
  publication-title: Joule
– volume: 517
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 503
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 692
  year: 2019
  publication-title: Coatings
– volume: 7
  start-page: 3364
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 405
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 115
  start-page: 6620
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 25
  year: 1993
  publication-title: Polym. Int.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 356
  start-page: 415
  year: 2017
  publication-title: Science
– volume: 45
  start-page: 1361
  year: 2000
  publication-title: Electrochim. Acta
– volume: 34
  year: 2020
  publication-title: Energy Fuels
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 395
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 56
  start-page: 2039
  year: 2020
  publication-title: ChemComm
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2028
  year: 2020
  publication-title: Chem. Sci.
– volume: 11
  start-page: 3075
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 9313
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 2273
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 355
  start-page: 126
  year: 2017
  publication-title: Science
– volume: 27
  start-page: 1
  year: 2020
  publication-title: Energy Storage Mater.
– ident: e_1_2_7_68_1
  doi: 10.1021/acsami.9b11243
– ident: e_1_2_7_5_1
  doi: 10.1007/s41918-020-00075-2
– ident: e_1_2_7_32_1
  doi: 10.1021/acsami.6b16560
– ident: e_1_2_7_74_1
  doi: 10.1002/pi.4990300106
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.202001755
– ident: e_1_2_7_7_1
  doi: 10.1016/j.nanoen.2020.104523
– ident: e_1_2_7_8_1
  doi: 10.1039/C8EE01991F
– ident: e_1_2_7_35_1
  doi: 10.1039/C8CC07730D
– ident: e_1_2_7_53_1
  doi: 10.1016/j.ensm.2020.01.032
– ident: e_1_2_7_49_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_7_14_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.0c09794
– ident: e_1_2_7_1_1
  doi: 10.1126/science.aam6284
– ident: e_1_2_7_13_1
  doi: 10.1002/celc.201902030
– ident: e_1_2_7_50_1
  doi: 10.1021/acsaem.9b01063
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.0c07992
– ident: e_1_2_7_40_1
  doi: 10.1021/cr300162p
– volume: 56
  start-page: 2039
  year: 2020
  ident: e_1_2_7_47_1
  publication-title: ChemComm
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.201904215
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.energyfuels.0c02349
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aak9991
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jpowsour.2019.226986
– ident: e_1_2_7_72_1
  doi: 10.1021/acs.nanolett.5b00600
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.9b09669
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201907830
– ident: e_1_2_7_46_1
  doi: 10.1002/aenm.202001583
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.9b00535
– ident: e_1_2_7_11_1
  doi: 10.1039/D0TA01297A
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201903675
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.energyfuels.0c02367
– ident: e_1_2_7_42_1
  doi: 10.1016/j.ensm.2020.01.023
– ident: e_1_2_7_36_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_7_80_1
  doi: 10.1002/adma.202001854
– ident: e_1_2_7_44_1
  doi: 10.1039/C7EE03232C
– ident: e_1_2_7_55_1
  doi: 10.1021/acsami.8b07781
– ident: e_1_2_7_22_1
  doi: 10.1002/smll.202001323
– ident: e_1_2_7_78_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.201902653
– ident: e_1_2_7_64_1
  doi: 10.1002/adfm.202001867
– ident: e_1_2_7_57_1
  doi: 10.1002/adfm.202006495
– ident: e_1_2_7_69_1
  doi: 10.1002/anie.202001844
– ident: e_1_2_7_83_1
  doi: 10.1039/C9EE03545A
– ident: e_1_2_7_70_1
  doi: 10.1038/nenergy.2017.35
– ident: e_1_2_7_73_1
  doi: 10.1073/pnas.1803385115
– ident: e_1_2_7_67_1
  doi: 10.1002/adfm.202000599
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.202000287
– ident: e_1_2_7_33_1
  doi: 10.1021/acsenergylett.0c02371
– ident: e_1_2_7_77_1
  doi: 10.1002/app.47902
– ident: e_1_2_7_60_1
  doi: 10.1039/D0TA00748J
– ident: e_1_2_7_65_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_7_59_1
  doi: 10.3390/coatings9110692
– ident: e_1_2_7_87_1
  doi: 10.1016/j.ensm.2020.01.003
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2018.11.002
– ident: e_1_2_7_71_1
  doi: 10.1016/j.eurpolymj.2005.09.017
– ident: e_1_2_7_16_1
  doi: 10.1038/s41467-020-17752-x
– ident: e_1_2_7_52_1
  doi: 10.1002/smll.202001736
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.202003021
– ident: e_1_2_7_19_1
  doi: 10.1021/acsaem.0c00489
– ident: e_1_2_7_29_1
  doi: 10.1016/j.joule.2019.02.012
– ident: e_1_2_7_24_1
  doi: 10.1021/acssuschemeng.8b05568
– ident: e_1_2_7_51_1
  doi: 10.1016/j.cej.2020.125363
– ident: e_1_2_7_85_1
  doi: 10.1021/acs.chemmater.5b02840
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202000162
– ident: e_1_2_7_58_1
  doi: 10.1002/admi.201800848
– ident: e_1_2_7_66_1
  doi: 10.1002/adfm.201908528
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201803181
– ident: e_1_2_7_76_1
  doi: 10.1016/S0013-4686(99)00344-8
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.8b04085
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201908121
– ident: e_1_2_7_39_1
  doi: 10.1016/j.nanoen.2018.12.086
– ident: e_1_2_7_75_1
  doi: 10.1016/S0013-4686(99)00386-2
– ident: e_1_2_7_56_1
  doi: 10.1002/aenm.201901469
– ident: e_1_2_7_62_1
  doi: 10.1021/acsami.0c06009
– ident: e_1_2_7_4_1
  doi: 10.1038/s41467-017-00467-x
– ident: e_1_2_7_79_1
  doi: 10.1016/j.apsusc.2020.146079
– ident: e_1_2_7_17_1
  doi: 10.1038/am.2015.32
– ident: e_1_2_7_82_1
  doi: 10.1038/s41467-019-13436-3
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.202008634
– ident: e_1_2_7_84_1
  doi: 10.1039/C9EE00956F
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ensm.2020.03.011
– ident: e_1_2_7_86_1
  doi: 10.1002/adma.201800762
– ident: e_1_2_7_9_1
  doi: 10.1039/D0SC00022A
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.202012030
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-020-15478-4
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201505370
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201813223
SSID ssj0001537418
Score 2.647277
Snippet Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their...
Aqueous rechargeable zinc-metal-based batteries are an attractive alternative to lithium-ion batteries for grid-scale energy-storage systems because of their...
Abstract Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2100309
SubjectTerms Carbon
Contact angle
dendrite suppression
Electrolytes
Energy
Graphene
polyacrylonitrile coating
Polymers
Scanning electron microscopy
Spectrum analysis
Zinc
zinc anodes
zinc‐ion batteries
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELUB4itCAjIQGHqEnsOM4J7ZYWDmi1Kj1UXCK_0q60Skp2W6m38g_4jfwSZhxvYBGPA9e14zieh7-xZ78h5AWAhpJxqWIrmYm5BlOETamMJShLlmiZ1Kn1xSaK6VSenJSzcOC2DGmVa5_oHbVtDZ6R72U5ROfgcXP-5vxzjFWj8HY1lNC4SbaQqYyPyNbkYDo7-nHKkjOkZ1mzNSbZnrKXyNINkQ5eLmzsRp60fwNp_pon-TN-9RvQ4d3_nfo9cidATzrudWWb3HDNfbIdjHtJXwUG6tcPyJdx47v17BJ01i6ulOkgtAf772BudL9VmC5NPyhA7BT_NejrTNBP88bQt66xHbyavoMQf3VGARZTTCdZXNEj57NANAwxhi9oL5b-kW_XXyewm1ras31C8P6QHB8eHO-_j0OthtgITG_LQNaMqVwxrlSZGp7XEFgxY-vaCp3YGqTABE_AnSZMA6jUhXWOydzWLoW1eURGTdu4x4TqFEIoJWSiBQMHk2lRpkoYC5EjDMZcROK1yCoTeMyxnMai6hmYswpFXA0ijsjLof95z-Dxx54T1IChFzJv-x_a7rQKhlzpzCpRcpPquuDSgK5nWtelAI13Uloekd21ElTBHcArBg34fbMo0E_CNCLyfGgGO8fLG9WgNPwQgJUBLkak2FDLjflutjTzM88YDqgM70th6bwC_2MdKkBEH5Ek4cnfv2WH3MZn-sS5XTJadRfuKbllLlfzZfcsmOJ3PnQ_Gg
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cAFKA8RKMhISMAhahI7jnPcFgoHVK2gh4pL5FfalVYJym4r9Qb_gN_IL2HGyaYNUoUQ19hxYnse38STbwBeIWgouVA6dorbWBhURXRKZaxQWLLEqKROXSg2URwequPjcn7lL_6eH2L84EaaEew1Kbg2q91L0lDtzoluG0MWOiW4CbfSlCsq3pCJ-eVXlpwTPQtVmMPoOuZKiA1zY5LtToeYeKZA4D9BnX_mTF7FssEZHdz7_2nch7sDEGWzXnK24YZvHsD2oOor9mbgo377EH7MmtCt55pg83Z5oW2HgT5agw6fyfZbTcnT7JNG_M7oH8JQdYJ9XTSWvfON6xDXsg8Y8K9PGYJkRsklywv22YecEINDzHD67dkq3PLr-8899K2O9dyfGMo_gqOD90f7H-OhckNsJSW7ZbjznOtcc6F1mVqR1xhmcevq2kmTuBr3hEuRoHFNuEGIaQrnPVe5q32KbvUxbDVt458AMykGVFqqxEiO5iYzsky1tA7jSByM-wjizaZVdmA1p-Iay6rnY84qWuBqXOAIXo_9v_V8Htf23CMZGHsRD3e40HYn1aDWlcmclqWwqakLoSxKfmZMXUqUf6-UExHsbCSoGowDPiLnZYKzzK9plgVZTXyNCF6Ozaj1dJSjG9qNMAQiZwSPERQTwZy877SlWZwG_nDEaHR6iksXBPMv61AhPvpClAlP_7H_M7hDF_u8uh3YWndn_jnctufrxap7EfT0N-UdQJY
  priority: 102
  providerName: Wiley-Blackwell
Title An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc‐Based Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100309
https://www.proquest.com/docview/2539041354
https://www.proquest.com/docview/2671793210
https://www.proquest.com/docview/2539522846
https://pubmed.ncbi.nlm.nih.gov/PMC8188195
https://doaj.org/article/b2da694c1bf748c1922bbf96934e88d4
Volume 8
WOSCitedRecordID wos000634747100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest research library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLZg48AFMT5EYFRGQgIO0ZI4cZxjOzaYxEo0JlG4RP6KVqlKUdpN2g3-Ab-RX8JjJ61apGkXLpZau2_c98N-XvnNY0JeAzQULBUyNILpMFUIRWxKRSjgLEmkRFTHxl82kY_HYjIpyo2rvlxNWEcP3CnuQCVG8iLVsarzVGjITpSqC44nWCGMZwIF6tlIprr3g5mjZVmxNEbJgTRXjp0bGY47VNjahTxZ_xbC_Lc-chO3-o3n-CF50CNGOuxmukfu2OYR2etjckHf9sTR7x6TX8PGD-tIIWg5n11L3SIjR9i2EE0P59JVOdNPEkCbupf9_PUQ9Pu00fS9bUwLAEo_IDNfXlCgWeqqQGbX9Mz64g0FEUPMfX658D_58_P3CJugoR1JJ3LuJ-T8-Oj88GPYX7EQau6q0hKYiDGZSZZKWcQ6zWrkQ0ybujZcRaaGEhlPI6yCEVPAgio31jKRmdrG2P-ekp1m3thnhKoYmY_kIlKcYV1IFC9iybVBwgdhzAYkXGm80j39uLsFY1Z1xMlJ5SxUrS0UkDfr8T864o0bR46cAdejHGG2_wJuVPVuVN3mRgHZX5m_6qMYj8hYEeFfZjd089wtb5hGQF6tuxGe7sxFNs4aXgQgLlBeQPItr9qa73ZPM73wRN8AU-6YE6rz_neLHioAmS-O2-D5_1DIC3LfSe6q4vbJzrK9tC_JPX21nC7aAbmbpCXafCIGZHd0NC7PBj4C0Z4mn32L_t3y5LT8hk9fT8Z_Aas_N_U
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFAkuQPkRKQUWCQQcrNretbM-IJS2lEZNowhyaLlY--c2UmQXJ22VG7wBL8JL8STMrO1AED-nHrh61-v1eObbmd3xN4Q8BachYVxIzwimPa7AFGFRSjwByhL6SvhZYFyxic5gIA4Pk-EK-dr8C4NplQ0mOqA2hcY98s0wgugcEDfir08_elg1Ck9XmxIalVrs2_kFhGzTV70d-L7PwnD3zWh7z6urCng6xkSsEGbFmIwk41ImgeZRBiEA0ybLTKx8k3HQ8pj7YPg-U-D-qI6xlonIZDaACcCwV8gqB10XLbI67B0Mj35s6kQM2WAackg_3JTmHEnBIbDCs4ylxc_VCFhybH9Ny_zZXXbr3e7N_0xSt8iN2rGm3coS1siKzW-TtRq6pvRFza_98g753M1dt4o7gw6LyVzqcj5BdCtBFHS7kJgMTvsS4hGK_0S6Khr0wzjXdMfmpoQ3pW_L4mJ2QsHpp5gsM5nTd9bluCgYogsCK86m7pZvn75sga9gaMVlOrbTu2R0GZK4R1p5kdv7hKoAAkQZC1_FDOAzVHESyFgbiIthMGbbxGs0JNU1SzsWC5mkFb90mKJGpQuNapPni_6nFT_JH3tuocIteiGvuLtQlMdpDVOpCo2ME64DlXW40GDJoVJZEoM9WyEMb5ONRufSGuzgEQuF-31z3MFVAKbRJk8WzYBieDQlc_wabgiIBMAZbpPOkhUszXe5JR-fOD508DnxNBhE5-zlH3JIwd97jxQQ639_l8fk2t7ooJ_2e4P9B-Q63l-lCG6Q1qw8sw_JVX0-G0_LRzUKUJJesjV9BynOm00
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXoDyEocAigYCDFXt3_ToglDYEqlYhgh6qXqx9mUaK7OKkrXKDf8Df4e_wS5hZ24EgHqceuGbXm_V45psZ7_gbQh5D0JBxkUrfpFz7QoEpglPK_BSUhQUqDYrQuGYTyWiUHhxk4zXytfsWBssqO0x0QG0qje_IeyyC7BwQNxK9oi2LGA-GL48_-thBCk9au3YajYrs2sUZpG-zFzsDeNZPGBu-2t9-47cdBnwdY1EWgx1yLiPJhZRZqEVUQDrAtSkKE6vAFAI0PhYBgEDAFYRCKjHW8jQyhQ1hM7DsBXIxEeCTsWqQvf3xeifiyAvT0UQGrCfNKdKDQ4qFpxorbtB1C1gJcX8t0Pw5cHaeb3jtP5bZdXK1Dbdpv7GPDbJmyxtkowW0GX3Wsm4_v0k-90s3rWHUoONqupC6XkwR82oQC92uJJaI0z0JWQrFLyVdbw16OCk1HdjS1HCn9HVdnc2PKKQCFEtopgv6zrrKFwVL9EF41cnMXfLt05ctiCAMbRhOJ3Z2i-yfhyRuk_WyKu0dQlUIaaOM00DFHECVqTgLZawNZMuwGLce8TttyXXL3Y4tRKZ5wzrNctSufKldHnm6nH_csJb8ceYWKt9yFrKNux-q-kPegleumJFxJnSoikSkGuybKVVkMVi5TVMjPLLZ6V_eQiD8xVL5fj8cJ-gbYBseebQcBmzDAytZ4tNwS0B-ACGyR5IVi1jZ7-pIOTlyLOkQieIZMYjO2c4_5JBDFPgeiSHu_v1eHpLLYEL53s5o9x65gpc3dYObZH1en9j75JI-nU9m9QMHB5Tk52xK3wENwaKH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Polyacrylonitrile+Coating+Layer+Confining+Zinc+Dendrite+Growth+for+Highly+Reversible+Aqueous+Zinc%E2%80%90Based+Batteries&rft.jtitle=Advanced+science&rft.au=Chen%2C+Peng&rft.au=Yuan%2C+Xinhai&rft.au=Xia%2C+Yingbin&rft.au=Zhang%2C+Yi&rft.date=2021-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=11&rft_id=info:doi/10.1002%2Fadvs.202100309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202100309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon