Inference and learning in probabilistic logic programs using weighted Boolean formulas

Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as comput...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theory and practice of logic programming Ročník 15; číslo 3; s. 358 - 401
Hlavní autori: FIERENS, DAAN, VAN DEN BROECK, GUY, RENKENS, JORIS, SHTERIONOV, DIMITAR, GUTMANN, BERND, THON, INGO, JANSSENS, GERDA, DE RAEDT, LUC
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.05.2015
Predmet:
ISSN:1471-0684, 1475-3081, 1475-3081
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations.
AbstractList Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations.
Abstract Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations.
Author VAN DEN BROECK, GUY
RENKENS, JORIS
THON, INGO
SHTERIONOV, DIMITAR
GUTMANN, BERND
DE RAEDT, LUC
FIERENS, DAAN
JANSSENS, GERDA
Author_xml – sequence: 1
  givenname: DAAN
  surname: FIERENS
  fullname: FIERENS, DAAN
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
– sequence: 2
  givenname: GUY
  surname: VAN DEN BROECK
  fullname: VAN DEN BROECK, GUY
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
– sequence: 3
  givenname: JORIS
  surname: RENKENS
  fullname: RENKENS, JORIS
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
– sequence: 4
  givenname: DIMITAR
  surname: SHTERIONOV
  fullname: SHTERIONOV, DIMITAR
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
– sequence: 5
  givenname: BERND
  surname: GUTMANN
  fullname: GUTMANN, BERND
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
– sequence: 6
  givenname: INGO
  surname: THON
  fullname: THON, INGO
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
– sequence: 7
  givenname: GERDA
  surname: JANSSENS
  fullname: JANSSENS, GERDA
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
– sequence: 8
  givenname: LUC
  surname: DE RAEDT
  fullname: DE RAEDT, LUC
  email: FirstName.LastName@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86193$$DView record from Swedish Publication Index (Örebro universitet)
BookMark eNp9kctq3TAQhkVJobn0AbozZNNF3Gh8k7zMpU0PBLJocrZiLI1dBVs6lWxC3746OaGEhEQgjRh9v2Z-5oDtOe-IsS_AvwEHcfoLKgG8kRVUPC3RfGD7KVXnJZew93iHfPv-iR3EeM85NGVR7bP1yvUUyGnK0JlsJAzOuiGzLtsE32FnRxtnq7PRD-lMuSHgFLMlbqkHssPvmUx27n2Suqz3YVpGjEfsY49jpM9P8ZDd_fh-e_Ezv765Wl2cXee6bts5701bk9HIiaPpO6raUptKFIVpDSQ7XDdFXZOQsktET6YQCC1HlJLXlZblITvZ_RsfaLN0ahPshOGv8mjVpV2fKR-GtBclG2jLhH_d4cnHn4XirCYbNY0jOvJLVNDIOhUreJXQ4xfovV-CS2YSJQrgooZtfdhROvgYA_X_OwCutoNRrwaTNOKFRtsZZ-vdHNCO7yrLJyVOXbBmoGdNvan6B8yHoyY
CitedBy_id crossref_primary_10_1002_spe_2386
crossref_primary_10_1016_j_artint_2022_103753
crossref_primary_10_1016_j_artint_2023_103997
crossref_primary_10_1017_S1471068423000133
crossref_primary_10_1016_j_artint_2015_12_001
crossref_primary_10_1145_3729334
crossref_primary_10_1145_3720482
crossref_primary_10_1145_3296979_3192417
crossref_primary_10_1016_j_ijar_2021_06_003
crossref_primary_10_1007_s10994_021_06069_5
crossref_primary_10_1017_S1471068424000036
crossref_primary_10_3390_ijgi8020092
crossref_primary_10_1016_j_ijar_2016_10_008
crossref_primary_10_1017_S1471068421000399
crossref_primary_10_1007_s10994_021_06086_4
crossref_primary_10_1016_j_ijar_2018_12_012
crossref_primary_10_1007_s13218_019_00580_7
crossref_primary_10_1017_S1471068422000412
crossref_primary_10_1017_S1471068418000522
crossref_primary_10_1145_3747534
crossref_primary_10_1016_j_artint_2016_06_008
crossref_primary_10_1017_S1471068421000260
crossref_primary_10_1145_3729325
crossref_primary_10_1016_j_artint_2019_103199
crossref_primary_10_1017_S1471068414000283
crossref_primary_10_1007_s10994_021_06016_4
crossref_primary_10_1016_j_ijar_2024_109130
crossref_primary_10_3389_frobt_2020_00100
crossref_primary_10_1002_mma_5616
crossref_primary_10_3233_IA_221072
crossref_primary_10_1016_j_artint_2019_04_003
crossref_primary_10_1109_TCDS_2019_2915763
crossref_primary_10_1007_s10994_015_5494_z
crossref_primary_10_1016_j_ijar_2019_04_003
crossref_primary_10_1145_3649822
crossref_primary_10_3233_IA_170106
crossref_primary_10_1016_j_ijar_2019_12_003
crossref_primary_10_1145_3428208
crossref_primary_10_1145_3720500
crossref_primary_10_1016_j_ijar_2019_12_006
crossref_primary_10_1016_j_artint_2021_103650
crossref_primary_10_1007_s10994_019_05841_y
crossref_primary_10_1007_s11704_024_3631_1
crossref_primary_10_1145_3656412
crossref_primary_10_1017_S1471068417000400
crossref_primary_10_1080_01691864_2019_1632223
crossref_primary_10_1109_TNNLS_2023_3246980
crossref_primary_10_1145_3588719
crossref_primary_10_1016_j_ijar_2016_06_009
crossref_primary_10_1016_j_artint_2024_104227
crossref_primary_10_1080_08839514_2024_2304942
crossref_primary_10_1007_s12652_020_01989_x
crossref_primary_10_1007_s10994_023_06461_3
crossref_primary_10_1007_s10472_019_09620_2
crossref_primary_10_1016_j_artint_2024_104109
crossref_primary_10_1016_j_artint_2018_06_001
crossref_primary_10_1145_3720508
crossref_primary_10_1016_j_artint_2021_103504
crossref_primary_10_1007_s10994_021_06097_1
crossref_primary_10_1016_j_ijar_2016_10_002
crossref_primary_10_1017_S1471068420000174
crossref_primary_10_1016_j_ijar_2020_08_009
crossref_primary_10_1145_2914770_2837663
crossref_primary_10_1016_j_ijar_2024_109188
crossref_primary_10_1145_3559102
crossref_primary_10_1016_j_ijar_2023_108993
crossref_primary_10_1016_j_ijar_2020_07_004
crossref_primary_10_1145_3654988
crossref_primary_10_1016_j_artint_2025_104310
crossref_primary_10_1002_aaai_12053
crossref_primary_10_1017_S1471068424000449
Cites_doi 10.1017/S1471068411000664
10.1016/j.ijar.2005.10.001
10.1016/0196-6774(86)90023-4
10.1613/jair.989
10.1007/BFb0023764
10.1007/978-3-540-78652-8_5
10.1007/978-3-642-23780-5_47
10.1145/116825.116838
10.1007/978-3-540-78652-8_8
10.1007/978-3-540-68856-3
10.3166/jancl.11.11-34
10.1007/978-3-540-78652-8
10.1007/978-3-540-87479-9_49
10.7551/mitpress/7432.001.0001
10.1017/CBO9780511811357
10.1145/383779.383789
10.1007/978-3-642-83189-8
10.1017/S1471068409003767
10.1109/TC.1986.1676819
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2014
Copyright_xml – notice: Copyright © Cambridge University Press 2014
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
DOI 10.1017/S1471068414000076
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SWEPUB Örebro universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Örebro universitet
SwePub Articles full text
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate D. Fierens et al.
Inference and learning in PLP using weighted formulas
EISSN 1475-3081
EndPage 401
ExternalDocumentID oai_DiVA_org_oru_86193
3650515901
10_1017_S1471068414000076
Genre Feature
GroupedDBID -E.
.FH
09C
09E
0E1
0R~
123
29Q
3V.
4.4
5VS
74X
74Y
7~V
8FE
8FG
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAFUK
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
AAYOK
ABBXD
ABITZ
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBMC
ACCHT
ACGFS
ACIMK
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CFAFE
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IPYYG
IS6
I~P
J36
J38
J3A
J9A
JHPGK
JQKCU
K6V
K7-
KCGVB
KFECR
L98
LW7
M-V
M0N
NIKVX
O9-
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PYCCK
Q2X
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WQ3
WXU
WXY
WYP
ZYDXJ
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACAJB
ACDLN
AFFHD
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
ID FETCH-LOGICAL-c599t-fd95edca0e0adfbe493cd4722d9d11060c6255e788be0afed27a190aa88054c83
IEDL.DBID K7-
ISICitedReferencesCount 193
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351762100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0684
1475-3081
IngestDate Tue Nov 04 16:38:20 EST 2025
Fri Sep 05 13:50:51 EDT 2025
Fri Jul 25 04:47:41 EDT 2025
Sat Nov 29 04:58:35 EST 2025
Tue Nov 18 21:55:58 EST 2025
Wed Mar 13 05:51:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords probabilistic inference
parameter learning
probabilistic logic programming
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c599t-fd95edca0e0adfbe493cd4722d9d11060c6255e788be0afed27a190aa88054c83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86193
PQID 1672107518
PQPubID 43613
PageCount 44
ParticipantIDs swepub_primary_oai_DiVA_org_oru_86193
proquest_miscellaneous_1685788204
proquest_journals_1672107518
crossref_primary_10_1017_S1471068414000076
crossref_citationtrail_10_1017_S1471068414000076
cambridge_journals_10_1017_S1471068414000076
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Theory and practice of logic programming
PublicationTitleAlternate Theory and Practice of Logic Programming
PublicationYear 2015
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Fierens (S1471068414000076_ref13) 2011
S1471068414000076_ref24
S1471068414000076_ref26
Meert (S1471068414000076_ref28) 2009
S1471068414000076_ref40
S1471068414000076_ref21
S1471068414000076_ref8
Lin (S1471068414000076_ref25) 2002
S1471068414000076_ref9
Van den Broeck (S1471068414000076_ref38) 2010
S1471068414000076_ref7
Sato (S1471068414000076_ref36) 1995
S1471068414000076_ref4
S1471068414000076_ref5
S1471068414000076_ref2
Darwiche (S1471068414000076_ref6) 2002; 17
S1471068414000076_ref3
S1471068414000076_ref1
Gutmann (S1471068414000076_ref17) 2008
Sang (S1471068414000076_ref35) 2005
Gutmann (S1471068414000076_ref20) 2011
S1471068414000076_ref34
S1471068414000076_ref12
S1471068414000076_ref33
Mantadelis (S1471068414000076_ref27) 2010
S1471068414000076_ref16
S1471068414000076_ref15
S1471068414000076_ref37
S1471068414000076_ref18
Domingos (S1471068414000076_ref11) 2008
S1471068414000076_ref39
Poon (S1471068414000076_ref32) 2006
Muise (S1471068414000076_ref29) 2012
Park (S1471068414000076_ref30) 2002
S1471068414000076_ref31
De Raedt (S1471068414000076_ref10) 2007
S1471068414000076_ref19
Getoor (S1471068414000076_ref14) 2007
Janhunen (S1471068414000076_ref22) 2004
Kersting (S1471068414000076_ref23) 2000
References_xml – start-page: 29
  volume-title: Proceedings of the AAAI-2000 workshop on learning statistical models from relational data
  year: 2000
  ident: S1471068414000076_ref23
– start-page: 2468
  volume-title: Proceedings of 20th International Joint Conference on Artificial Intelligence
  year: 2007
  ident: S1471068414000076_ref10
– ident: S1471068414000076_ref4
– ident: S1471068414000076_ref33
  doi: 10.1017/S1471068411000664
– start-page: 682
  volume-title: Proceedings of the 18th National Conference on Artificial Intelligence
  year: 2002
  ident: S1471068414000076_ref30
– ident: S1471068414000076_ref2
  doi: 10.1016/j.ijar.2005.10.001
– ident: S1471068414000076_ref34
  doi: 10.1016/0196-6774(86)90023-4
– start-page: 473
  volume-title: Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases
  year: 2008
  ident: S1471068414000076_ref17
– ident: S1471068414000076_ref12
– start-page: 581
  volume-title: Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD)
  year: 2011
  ident: S1471068414000076_ref20
– volume: 17
  start-page: 229
  year: 2002
  ident: S1471068414000076_ref6
  article-title: A knowledge compilation map.
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.989
– ident: S1471068414000076_ref16
  doi: 10.1007/BFb0023764
– ident: S1471068414000076_ref37
  doi: 10.1007/978-3-540-78652-8_5
– ident: S1471068414000076_ref19
  doi: 10.1007/978-3-642-23780-5_47
– ident: S1471068414000076_ref39
  doi: 10.1145/116825.116838
– ident: S1471068414000076_ref31
  doi: 10.1007/978-3-540-78652-8_8
– ident: S1471068414000076_ref8
  doi: 10.1007/978-3-540-68856-3
– ident: S1471068414000076_ref3
  doi: 10.3166/jancl.11.11-34
– start-page: 715
  volume-title: Proceedings of the 12th International Conference on Logic Programming (ICLP95)
  year: 1995
  ident: S1471068414000076_ref36
– start-page: 1217
  volume-title: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
  year: 2010
  ident: S1471068414000076_ref38
– ident: S1471068414000076_ref24
– volume-title: Canadian Conference on Artificial Intelligence
  year: 2012
  ident: S1471068414000076_ref29
– ident: S1471068414000076_ref9
  doi: 10.1007/978-3-540-78652-8
– ident: S1471068414000076_ref15
– start-page: 96
  volume-title: Proceedings of the 19th International Conference on Inductive Logic Programming
  year: 2009
  ident: S1471068414000076_ref28
– start-page: 358
  volume-title: Proceedings of the 16th European Conference on Artificial Intelligence
  year: 2004
  ident: S1471068414000076_ref22
– ident: S1471068414000076_ref18
  doi: 10.1007/978-3-540-87479-9_49
– volume-title: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning)
  year: 2007
  ident: S1471068414000076_ref14
  doi: 10.7551/mitpress/7432.001.0001
– start-page: 475
  volume-title: Proceedings of the 20th National Conference on Artificial Intelligence
  year: 2005
  ident: S1471068414000076_ref35
– start-page: 211
  volume-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI)
  year: 2011
  ident: S1471068414000076_ref13
– volume-title: Chapter “Markov Logic,” Lecture Notes in Computer Science
  year: 2008
  ident: S1471068414000076_ref11
– ident: S1471068414000076_ref5
  doi: 10.1017/CBO9780511811357
– ident: S1471068414000076_ref7
  doi: 10.1145/383779.383789
– start-page: 124
  volume-title: Technical Communications of 26th International Conference on Logic Programming
  year: 2010
  ident: S1471068414000076_ref27
– volume-title: Proceedings of the 21st National Conference on Artificial Intelligence
  year: 2006
  ident: S1471068414000076_ref32
– ident: S1471068414000076_ref26
  doi: 10.1007/978-3-642-83189-8
– ident: S1471068414000076_ref40
  doi: 10.1017/S1471068409003767
– ident: S1471068414000076_ref1
  doi: 10.1109/TC.1986.1676819
– ident: S1471068414000076_ref21
– start-page: 112
  volume-title: Artificial Intelligence
  year: 2002
  ident: S1471068414000076_ref25
SSID ssj0016324
Score 2.500228
Snippet Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference...
Abstract Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical...
SourceID swepub
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 358
SubjectTerms Algorithms
Inference
Learning
Logic programming
Mathematical models
Parameter learn-ing
Probabilistic inference
Probabilistic logic programming
Probabilistic methods
Probability theory
Regular Papers
Tasks
Title Inference and learning in probabilistic logic programs using weighted Boolean formulas
URI https://www.cambridge.org/core/product/identifier/S1471068414000076/type/journal_article
https://www.proquest.com/docview/1672107518
https://www.proquest.com/docview/1685788204
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86193
Volume 15
WOSCitedRecordID wos000351762100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1475-3081
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016324
  issn: 1475-3081
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1475-3081
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016324
  issn: 1475-3081
  databaseCode: K7-
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-3081
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016324
  issn: 1475-3081
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED7WZg99Wbaupdm6okH3MibqxFZkP41kTWgZhDDaUvZiFEkOgWFnSbz9_d3JsvEo5KUP9oMsIWGdTne60_cBXJrQBXgMN4tEccoj5ErqgGfhQBkxJGqHimxCzmbx42My9wduW59WWetEp6hNoemM_Ko_RF8loCDB1_VvTqxRFF31FBoH0OkPBn2S8--SN1EEgiJ3t4skZffEUR3VJMhoKqQydDDcaNvYCv_vUS3Dsw0m6jagafe5Q38Nr7zpyUaVrLyBFzY_hm5N68D8Kn8LD7f1JUCmcsM8r8SSrXJG9DMOkpfQnZlTm8xneG0ZpdAv2V931moNGxcFNs0ZWcUl2ugncD-d3H274Z5-gWuRJDuemURYo1VgA2WyhY2SUBvCljSJQaNhGGj0nYRFH3qBNTJrBlKheaEUqgQR6Tg8hcO8yO0ZMCmzzEqRSUF3HrJQJZR-s0BXT8o4MqYHX5qfn_pFtE2rBDSZPpmrHgT1_KTaQ5kTo8avfU0-N03WFY7Hvsrn9US2RtPMYg8-Np9xMVKEReW2KKlOjBoQjaqoB58qYWl6Ixzv69XDKC02S3zKNEbfNXy3v6v3cIQWmnAZltE5HO42pf0AL_Wf3Wq7uYDOeDKb_7hwUo_vufj5Dy0HBWA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JSsRAEC3cQC_u4ri2oBcxGCfp6eQg4oqDOnhQES-xp7szDEiisyj-lN9oVWdhRJibBw-5JN1Zq2tJVb0HsK09m-DRjm6G0qE6QkcK5TqxV5Wa14jaISObEI1G8PgY3o7AV9ELQ2WVhU60ilqniv6R7x_UMFZxKUlw9PrmEGsUZVcLCo1MLK7M5weGbN3D-hl-351q9eL87vTSyVkFHMXDsOfEOuRGK-kaV-q4afzQU5ogE3Wo0RbWXIUhATcYGjZxRGx0VUi0mlKipHNfBR6edxTGfR9vB9fPLX8qsxYEfW67mQRVEwV-kUUliGraSfswoLFvZxDL4adNHHB0B8FLrcG7mPlvr2oWpnPXmh1na2EORkwyDzMFbQXLtdgCPNSLJkcmE81y3owWayeM6HUs5DChVzNrFlhewdZl1CLQYh_2X7LR7CRNcWrCyOvvYwyyCPd_8nRLMJakiVkGJkQcG8FjwamnI_ZkSOVFTQxlhQh8rSuwV37sKFcS3SgrsBPRL9mogFvIQ6RyqHZiDHkZNmW3nPKa4ZQMG7xWCM7A3ZRSU4Gt8jAqG8ogycSkfRoToIZHp9GvwE4mnOXVCKf8rP1wHKWdFm79KMDY3FsZfqlNmLy8u7mOruuNq1WYQm-UZ9WkazDW6_TNOkyo916729mwK43B81_L6zdIf2IH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+and+learning+in+probabilistic+logic+programs+using+weighted+Boolean+formulas&rft.jtitle=Theory+and+practice+of+logic+programming&rft.au=FIERENS%2C+DAAN&rft.au=VAN+DEN+BROECK%2C+GUY&rft.au=RENKENS%2C+JORIS&rft.au=SHTERIONOV%2C+DIMITAR&rft.date=2015-05-01&rft.issn=1471-0684&rft.eissn=1475-3081&rft.volume=15&rft.issue=3&rft.spage=358&rft.epage=401&rft_id=info:doi/10.1017%2FS1471068414000076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1471068414000076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0684&client=summon