Inference and learning in probabilistic logic programs using weighted Boolean formulas
Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as comput...
Uložené v:
| Vydané v: | Theory and practice of logic programming Ročník 15; číslo 3; s. 358 - 401 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge, UK
Cambridge University Press
01.05.2015
|
| Predmet: | |
| ISSN: | 1471-0684, 1475-3081, 1475-3081 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations. |
|---|---|
| AbstractList | Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations. Abstract Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations. |
| Author | VAN DEN BROECK, GUY RENKENS, JORIS THON, INGO SHTERIONOV, DIMITAR GUTMANN, BERND DE RAEDT, LUC FIERENS, DAAN JANSSENS, GERDA |
| Author_xml | – sequence: 1 givenname: DAAN surname: FIERENS fullname: FIERENS, DAAN email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be – sequence: 2 givenname: GUY surname: VAN DEN BROECK fullname: VAN DEN BROECK, GUY email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be – sequence: 3 givenname: JORIS surname: RENKENS fullname: RENKENS, JORIS email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be – sequence: 4 givenname: DIMITAR surname: SHTERIONOV fullname: SHTERIONOV, DIMITAR email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be – sequence: 5 givenname: BERND surname: GUTMANN fullname: GUTMANN, BERND email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be – sequence: 6 givenname: INGO surname: THON fullname: THON, INGO email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be – sequence: 7 givenname: GERDA surname: JANSSENS fullname: JANSSENS, GERDA email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be – sequence: 8 givenname: LUC surname: DE RAEDT fullname: DE RAEDT, LUC email: FirstName.LastName@cs.kuleuven.be organization: Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium FirstName.LastName@cs.kuleuven.be |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86193$$DView record from Swedish Publication Index (Örebro universitet) |
| BookMark | eNp9kctq3TAQhkVJobn0AbozZNNF3Gh8k7zMpU0PBLJocrZiLI1dBVs6lWxC3746OaGEhEQgjRh9v2Z-5oDtOe-IsS_AvwEHcfoLKgG8kRVUPC3RfGD7KVXnJZew93iHfPv-iR3EeM85NGVR7bP1yvUUyGnK0JlsJAzOuiGzLtsE32FnRxtnq7PRD-lMuSHgFLMlbqkHssPvmUx27n2Suqz3YVpGjEfsY49jpM9P8ZDd_fh-e_Ezv765Wl2cXee6bts5701bk9HIiaPpO6raUptKFIVpDSQ7XDdFXZOQsktET6YQCC1HlJLXlZblITvZ_RsfaLN0ahPshOGv8mjVpV2fKR-GtBclG2jLhH_d4cnHn4XirCYbNY0jOvJLVNDIOhUreJXQ4xfovV-CS2YSJQrgooZtfdhROvgYA_X_OwCutoNRrwaTNOKFRtsZZ-vdHNCO7yrLJyVOXbBmoGdNvan6B8yHoyY |
| CitedBy_id | crossref_primary_10_1002_spe_2386 crossref_primary_10_1016_j_artint_2022_103753 crossref_primary_10_1016_j_artint_2023_103997 crossref_primary_10_1017_S1471068423000133 crossref_primary_10_1016_j_artint_2015_12_001 crossref_primary_10_1145_3729334 crossref_primary_10_1145_3720482 crossref_primary_10_1145_3296979_3192417 crossref_primary_10_1016_j_ijar_2021_06_003 crossref_primary_10_1007_s10994_021_06069_5 crossref_primary_10_1017_S1471068424000036 crossref_primary_10_3390_ijgi8020092 crossref_primary_10_1016_j_ijar_2016_10_008 crossref_primary_10_1017_S1471068421000399 crossref_primary_10_1007_s10994_021_06086_4 crossref_primary_10_1016_j_ijar_2018_12_012 crossref_primary_10_1007_s13218_019_00580_7 crossref_primary_10_1017_S1471068422000412 crossref_primary_10_1017_S1471068418000522 crossref_primary_10_1145_3747534 crossref_primary_10_1016_j_artint_2016_06_008 crossref_primary_10_1017_S1471068421000260 crossref_primary_10_1145_3729325 crossref_primary_10_1016_j_artint_2019_103199 crossref_primary_10_1017_S1471068414000283 crossref_primary_10_1007_s10994_021_06016_4 crossref_primary_10_1016_j_ijar_2024_109130 crossref_primary_10_3389_frobt_2020_00100 crossref_primary_10_1002_mma_5616 crossref_primary_10_3233_IA_221072 crossref_primary_10_1016_j_artint_2019_04_003 crossref_primary_10_1109_TCDS_2019_2915763 crossref_primary_10_1007_s10994_015_5494_z crossref_primary_10_1016_j_ijar_2019_04_003 crossref_primary_10_1145_3649822 crossref_primary_10_3233_IA_170106 crossref_primary_10_1016_j_ijar_2019_12_003 crossref_primary_10_1145_3428208 crossref_primary_10_1145_3720500 crossref_primary_10_1016_j_ijar_2019_12_006 crossref_primary_10_1016_j_artint_2021_103650 crossref_primary_10_1007_s10994_019_05841_y crossref_primary_10_1007_s11704_024_3631_1 crossref_primary_10_1145_3656412 crossref_primary_10_1017_S1471068417000400 crossref_primary_10_1080_01691864_2019_1632223 crossref_primary_10_1109_TNNLS_2023_3246980 crossref_primary_10_1145_3588719 crossref_primary_10_1016_j_ijar_2016_06_009 crossref_primary_10_1016_j_artint_2024_104227 crossref_primary_10_1080_08839514_2024_2304942 crossref_primary_10_1007_s12652_020_01989_x crossref_primary_10_1007_s10994_023_06461_3 crossref_primary_10_1007_s10472_019_09620_2 crossref_primary_10_1016_j_artint_2024_104109 crossref_primary_10_1016_j_artint_2018_06_001 crossref_primary_10_1145_3720508 crossref_primary_10_1016_j_artint_2021_103504 crossref_primary_10_1007_s10994_021_06097_1 crossref_primary_10_1016_j_ijar_2016_10_002 crossref_primary_10_1017_S1471068420000174 crossref_primary_10_1016_j_ijar_2020_08_009 crossref_primary_10_1145_2914770_2837663 crossref_primary_10_1016_j_ijar_2024_109188 crossref_primary_10_1145_3559102 crossref_primary_10_1016_j_ijar_2023_108993 crossref_primary_10_1016_j_ijar_2020_07_004 crossref_primary_10_1145_3654988 crossref_primary_10_1016_j_artint_2025_104310 crossref_primary_10_1002_aaai_12053 crossref_primary_10_1017_S1471068424000449 |
| Cites_doi | 10.1017/S1471068411000664 10.1016/j.ijar.2005.10.001 10.1016/0196-6774(86)90023-4 10.1613/jair.989 10.1007/BFb0023764 10.1007/978-3-540-78652-8_5 10.1007/978-3-642-23780-5_47 10.1145/116825.116838 10.1007/978-3-540-78652-8_8 10.1007/978-3-540-68856-3 10.3166/jancl.11.11-34 10.1007/978-3-540-78652-8 10.1007/978-3-540-87479-9_49 10.7551/mitpress/7432.001.0001 10.1017/CBO9780511811357 10.1145/383779.383789 10.1007/978-3-642-83189-8 10.1017/S1471068409003767 10.1109/TC.1986.1676819 |
| ContentType | Journal Article |
| Copyright | Copyright © Cambridge University Press 2014 |
| Copyright_xml | – notice: Copyright © Cambridge University Press 2014 |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U AABEP ADTPV AOWAS D8T D91 ZZAVC |
| DOI | 10.1017/S1471068414000076 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SWEPUB Örebro universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Örebro universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | D. Fierens et al. Inference and learning in PLP using weighted formulas |
| EISSN | 1475-3081 |
| EndPage | 401 |
| ExternalDocumentID | oai_DiVA_org_oru_86193 3650515901 10_1017_S1471068414000076 |
| Genre | Feature |
| GroupedDBID | -E. .FH 09C 09E 0E1 0R~ 123 29Q 3V. 4.4 5VS 74X 74Y 7~V 8FE 8FG 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAFUK AAGFV AAKTX AANRG AARAB AASVR AAUKB AAYOK ABBXD ABITZ ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBMC ACCHT ACGFS ACIMK ACNCT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCTKK CFAFE CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EJD GNUQQ HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IPYYG IS6 I~P J36 J38 J3A J9A JHPGK JQKCU K6V K7- KCGVB KFECR L98 LW7 M-V M0N NIKVX O9- OK1 OYBOY P2P P62 PQQKQ PROAC PYCCK Q2X RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ WQ3 WXU WXY WYP ZYDXJ AAYXX ABGDZ ABVKB ABVZP ABXHF ACAJB ACDLN AFFHD AFZFC AKMAY CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U PUEGO AABEP ADTPV AOWAS D8T D91 ZZAVC |
| ID | FETCH-LOGICAL-c599t-fd95edca0e0adfbe493cd4722d9d11060c6255e788be0afed27a190aa88054c83 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 193 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351762100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0684 1475-3081 |
| IngestDate | Tue Nov 04 16:38:20 EST 2025 Fri Sep 05 13:50:51 EDT 2025 Fri Jul 25 04:47:41 EDT 2025 Sat Nov 29 04:58:35 EST 2025 Tue Nov 18 21:55:58 EST 2025 Wed Mar 13 05:51:43 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | probabilistic inference parameter learning probabilistic logic programming |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c599t-fd95edca0e0adfbe493cd4722d9d11060c6255e788be0afed27a190aa88054c83 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86193 |
| PQID | 1672107518 |
| PQPubID | 43613 |
| PageCount | 44 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_oru_86193 proquest_miscellaneous_1685788204 proquest_journals_1672107518 crossref_primary_10_1017_S1471068414000076 crossref_citationtrail_10_1017_S1471068414000076 cambridge_journals_10_1017_S1471068414000076 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-01 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Theory and practice of logic programming |
| PublicationTitleAlternate | Theory and Practice of Logic Programming |
| PublicationYear | 2015 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | Fierens (S1471068414000076_ref13) 2011 S1471068414000076_ref24 S1471068414000076_ref26 Meert (S1471068414000076_ref28) 2009 S1471068414000076_ref40 S1471068414000076_ref21 S1471068414000076_ref8 Lin (S1471068414000076_ref25) 2002 S1471068414000076_ref9 Van den Broeck (S1471068414000076_ref38) 2010 S1471068414000076_ref7 Sato (S1471068414000076_ref36) 1995 S1471068414000076_ref4 S1471068414000076_ref5 S1471068414000076_ref2 Darwiche (S1471068414000076_ref6) 2002; 17 S1471068414000076_ref3 S1471068414000076_ref1 Gutmann (S1471068414000076_ref17) 2008 Sang (S1471068414000076_ref35) 2005 Gutmann (S1471068414000076_ref20) 2011 S1471068414000076_ref34 S1471068414000076_ref12 S1471068414000076_ref33 Mantadelis (S1471068414000076_ref27) 2010 S1471068414000076_ref16 S1471068414000076_ref15 S1471068414000076_ref37 S1471068414000076_ref18 Domingos (S1471068414000076_ref11) 2008 S1471068414000076_ref39 Poon (S1471068414000076_ref32) 2006 Muise (S1471068414000076_ref29) 2012 Park (S1471068414000076_ref30) 2002 S1471068414000076_ref31 De Raedt (S1471068414000076_ref10) 2007 S1471068414000076_ref19 Getoor (S1471068414000076_ref14) 2007 Janhunen (S1471068414000076_ref22) 2004 Kersting (S1471068414000076_ref23) 2000 |
| References_xml | – start-page: 29 volume-title: Proceedings of the AAAI-2000 workshop on learning statistical models from relational data year: 2000 ident: S1471068414000076_ref23 – start-page: 2468 volume-title: Proceedings of 20th International Joint Conference on Artificial Intelligence year: 2007 ident: S1471068414000076_ref10 – ident: S1471068414000076_ref4 – ident: S1471068414000076_ref33 doi: 10.1017/S1471068411000664 – start-page: 682 volume-title: Proceedings of the 18th National Conference on Artificial Intelligence year: 2002 ident: S1471068414000076_ref30 – ident: S1471068414000076_ref2 doi: 10.1016/j.ijar.2005.10.001 – ident: S1471068414000076_ref34 doi: 10.1016/0196-6774(86)90023-4 – start-page: 473 volume-title: Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases year: 2008 ident: S1471068414000076_ref17 – ident: S1471068414000076_ref12 – start-page: 581 volume-title: Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD) year: 2011 ident: S1471068414000076_ref20 – volume: 17 start-page: 229 year: 2002 ident: S1471068414000076_ref6 article-title: A knowledge compilation map. publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.989 – ident: S1471068414000076_ref16 doi: 10.1007/BFb0023764 – ident: S1471068414000076_ref37 doi: 10.1007/978-3-540-78652-8_5 – ident: S1471068414000076_ref19 doi: 10.1007/978-3-642-23780-5_47 – ident: S1471068414000076_ref39 doi: 10.1145/116825.116838 – ident: S1471068414000076_ref31 doi: 10.1007/978-3-540-78652-8_8 – ident: S1471068414000076_ref8 doi: 10.1007/978-3-540-68856-3 – ident: S1471068414000076_ref3 doi: 10.3166/jancl.11.11-34 – start-page: 715 volume-title: Proceedings of the 12th International Conference on Logic Programming (ICLP95) year: 1995 ident: S1471068414000076_ref36 – start-page: 1217 volume-title: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence year: 2010 ident: S1471068414000076_ref38 – ident: S1471068414000076_ref24 – volume-title: Canadian Conference on Artificial Intelligence year: 2012 ident: S1471068414000076_ref29 – ident: S1471068414000076_ref9 doi: 10.1007/978-3-540-78652-8 – ident: S1471068414000076_ref15 – start-page: 96 volume-title: Proceedings of the 19th International Conference on Inductive Logic Programming year: 2009 ident: S1471068414000076_ref28 – start-page: 358 volume-title: Proceedings of the 16th European Conference on Artificial Intelligence year: 2004 ident: S1471068414000076_ref22 – ident: S1471068414000076_ref18 doi: 10.1007/978-3-540-87479-9_49 – volume-title: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) year: 2007 ident: S1471068414000076_ref14 doi: 10.7551/mitpress/7432.001.0001 – start-page: 475 volume-title: Proceedings of the 20th National Conference on Artificial Intelligence year: 2005 ident: S1471068414000076_ref35 – start-page: 211 volume-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI) year: 2011 ident: S1471068414000076_ref13 – volume-title: Chapter “Markov Logic,” Lecture Notes in Computer Science year: 2008 ident: S1471068414000076_ref11 – ident: S1471068414000076_ref5 doi: 10.1017/CBO9780511811357 – ident: S1471068414000076_ref7 doi: 10.1145/383779.383789 – start-page: 124 volume-title: Technical Communications of 26th International Conference on Logic Programming year: 2010 ident: S1471068414000076_ref27 – volume-title: Proceedings of the 21st National Conference on Artificial Intelligence year: 2006 ident: S1471068414000076_ref32 – ident: S1471068414000076_ref26 doi: 10.1007/978-3-642-83189-8 – ident: S1471068414000076_ref40 doi: 10.1017/S1471068409003767 – ident: S1471068414000076_ref1 doi: 10.1109/TC.1986.1676819 – ident: S1471068414000076_ref21 – start-page: 112 volume-title: Artificial Intelligence year: 2002 ident: S1471068414000076_ref25 |
| SSID | ssj0016324 |
| Score | 2.500228 |
| Snippet | Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference... Abstract Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical... |
| SourceID | swepub proquest crossref cambridge |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 358 |
| SubjectTerms | Algorithms Inference Learning Logic programming Mathematical models Parameter learn-ing Probabilistic inference Probabilistic logic programming Probabilistic methods Probability theory Regular Papers Tasks |
| Title | Inference and learning in probabilistic logic programs using weighted Boolean formulas |
| URI | https://www.cambridge.org/core/product/identifier/S1471068414000076/type/journal_article https://www.proquest.com/docview/1672107518 https://www.proquest.com/docview/1685788204 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86193 |
| Volume | 15 |
| WOSCitedRecordID | wos000351762100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1475-3081 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0016324 issn: 1475-3081 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1475-3081 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0016324 issn: 1475-3081 databaseCode: K7- dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1475-3081 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0016324 issn: 1475-3081 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED7WZg99Wbaupdm6okH3MibqxFZkP41kTWgZhDDaUvZiFEkOgWFnSbz9_d3JsvEo5KUP9oMsIWGdTne60_cBXJrQBXgMN4tEccoj5ErqgGfhQBkxJGqHimxCzmbx42My9wduW59WWetEp6hNoemM_Ko_RF8loCDB1_VvTqxRFF31FBoH0OkPBn2S8--SN1EEgiJ3t4skZffEUR3VJMhoKqQydDDcaNvYCv_vUS3Dsw0m6jagafe5Q38Nr7zpyUaVrLyBFzY_hm5N68D8Kn8LD7f1JUCmcsM8r8SSrXJG9DMOkpfQnZlTm8xneG0ZpdAv2V931moNGxcFNs0ZWcUl2ugncD-d3H274Z5-gWuRJDuemURYo1VgA2WyhY2SUBvCljSJQaNhGGj0nYRFH3qBNTJrBlKheaEUqgQR6Tg8hcO8yO0ZMCmzzEqRSUF3HrJQJZR-s0BXT8o4MqYHX5qfn_pFtE2rBDSZPpmrHgT1_KTaQ5kTo8avfU0-N03WFY7Hvsrn9US2RtPMYg8-Np9xMVKEReW2KKlOjBoQjaqoB58qYWl6Ixzv69XDKC02S3zKNEbfNXy3v6v3cIQWmnAZltE5HO42pf0AL_Wf3Wq7uYDOeDKb_7hwUo_vufj5Dy0HBWA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JSsRAEC3cQC_u4ri2oBcxGCfp6eQg4oqDOnhQES-xp7szDEiisyj-lN9oVWdhRJibBw-5JN1Zq2tJVb0HsK09m-DRjm6G0qE6QkcK5TqxV5Wa14jaISObEI1G8PgY3o7AV9ELQ2WVhU60ilqniv6R7x_UMFZxKUlw9PrmEGsUZVcLCo1MLK7M5weGbN3D-hl-351q9eL87vTSyVkFHMXDsOfEOuRGK-kaV-q4afzQU5ogE3Wo0RbWXIUhATcYGjZxRGx0VUi0mlKipHNfBR6edxTGfR9vB9fPLX8qsxYEfW67mQRVEwV-kUUliGraSfswoLFvZxDL4adNHHB0B8FLrcG7mPlvr2oWpnPXmh1na2EORkwyDzMFbQXLtdgCPNSLJkcmE81y3owWayeM6HUs5DChVzNrFlhewdZl1CLQYh_2X7LR7CRNcWrCyOvvYwyyCPd_8nRLMJakiVkGJkQcG8FjwamnI_ZkSOVFTQxlhQh8rSuwV37sKFcS3SgrsBPRL9mogFvIQ6RyqHZiDHkZNmW3nPKa4ZQMG7xWCM7A3ZRSU4Gt8jAqG8ogycSkfRoToIZHp9GvwE4mnOXVCKf8rP1wHKWdFm79KMDY3FsZfqlNmLy8u7mOruuNq1WYQm-UZ9WkazDW6_TNOkyo916729mwK43B81_L6zdIf2IH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+and+learning+in+probabilistic+logic+programs+using+weighted+Boolean+formulas&rft.jtitle=Theory+and+practice+of+logic+programming&rft.au=FIERENS%2C+DAAN&rft.au=VAN+DEN+BROECK%2C+GUY&rft.au=RENKENS%2C+JORIS&rft.au=SHTERIONOV%2C+DIMITAR&rft.date=2015-05-01&rft.issn=1471-0684&rft.eissn=1475-3081&rft.volume=15&rft.issue=3&rft.spage=358&rft.epage=401&rft_id=info:doi/10.1017%2FS1471068414000076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1471068414000076 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0684&client=summon |