Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling

Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8 +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature immunology Jg. 20; H. 12; S. 1668 - 1680
Hauptverfasser: Brown, Flavian D., Sen, Debattama R., LaFleur, Martin W., Godec, Jernej, Lukacs-Kornek, Veronika, Schildberg, Frank A., Kim, Hye-Jung, Yates, Kathleen B., Ricoult, Stéphane J. H., Bi, Kevin, Trombley, Justin D., Kapoor, Varun N., Stanley, Illana A., Cremasco, Viviana, Danial, Nika N., Manning, Brendan D., Sharpe, Arlene H., Haining, W. Nicholas, Turley, Shannon J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Nature Publishing Group US 01.12.2019
Nature Publishing Group
Schlagworte:
ISSN:1529-2908, 1529-2916, 1529-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8 + T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8 + T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8 + T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion—they can also shape the fate and function of CD8 + T cells. Fibroblastic reticular cells (FRCs) are dynamic regulators of lymphoid tissue structure. Turley and colleagues show FRCs also support activated T cells by producing IL-6, which confers an advantage to CD8+ T cell memory responses.
AbstractList Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8.sup.+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8.sup.+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8.sup.+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion--they can also shape the fate and function of CD8.sup.+ T cells.
Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8.sup.+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8.sup.+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8.sup.+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion--they can also shape the fate and function of CD8.sup.+ T cells. Fibroblastic reticular cells (FRCs) are dynamic regulators of lymphoid tissue structure. Turley and colleagues show FRCs also support activated T cells by producing IL-6, which confers an advantage to CD8+ T cell memory responses.
Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion—they can also shape the fate and function of CD8+ T cells.
Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion—they can also shape the fate and function of CD8+ T cells.Fibroblastic reticular cells (FRCs) are dynamic regulators of lymphoid tissue structure. Turley and colleagues show FRCs also support activated T cells by producing IL-6, which confers an advantage to CD8+ T cell memory responses.
Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion-they can also shape the fate and function of CD8+ T cells.Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion-they can also shape the fate and function of CD8+ T cells.
Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8 T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8 T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8 T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion-they can also shape the fate and function of CD8 T cells.
Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8 + T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8 + T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8 + T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion—they can also shape the fate and function of CD8 + T cells. Fibroblastic reticular cells (FRCs) are dynamic regulators of lymphoid tissue structure. Turley and colleagues show FRCs also support activated T cells by producing IL-6, which confers an advantage to CD8+ T cell memory responses.
Audience Academic
Author Godec, Jernej
Cremasco, Viviana
Lukacs-Kornek, Veronika
Sharpe, Arlene H.
Kim, Hye-Jung
Trombley, Justin D.
Turley, Shannon J.
Stanley, Illana A.
Danial, Nika N.
Yates, Kathleen B.
LaFleur, Martin W.
Haining, W. Nicholas
Manning, Brendan D.
Brown, Flavian D.
Bi, Kevin
Ricoult, Stéphane J. H.
Kapoor, Varun N.
Sen, Debattama R.
Schildberg, Frank A.
AuthorAffiliation 4 Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
11 Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
9 Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
10 Department of Cell Biology, Harvard Medical School, Boston, MA, USA
14 Present address: Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
16 Present address: Immuno-Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
7 Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
12 Division of Pediatric Hematology and Oncology, Children’s Hospital, Boston, MA, USA
2 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
6 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
15 Present address: Clinic for Orthopedics and Trauma Surger
AuthorAffiliation_xml – name: 2 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
– name: 8 Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
– name: 5 Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
– name: 6 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 10 Department of Cell Biology, Harvard Medical School, Boston, MA, USA
– name: 15 Present address: Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
– name: 12 Division of Pediatric Hematology and Oncology, Children’s Hospital, Boston, MA, USA
– name: 4 Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
– name: 13 Present address: Neon Therapeutics Inc., Cambridge, MA, USA
– name: 1 Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
– name: 16 Present address: Immuno-Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
– name: 11 Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
– name: 9 Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
– name: 14 Present address: Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
– name: 3 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
– name: 17 Present address: Merck Research Laboratories, Boston, MA, USA
– name: 7 Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
Author_xml – sequence: 1
  givenname: Flavian D.
  surname: Brown
  fullname: Brown, Flavian D.
  organization: Division of Medical Sciences, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Neon Therapeutics Inc
– sequence: 2
  givenname: Debattama R.
  orcidid: 0000-0002-0947-8284
  surname: Sen
  fullname: Sen, Debattama R.
  organization: Division of Medical Sciences, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute
– sequence: 3
  givenname: Martin W.
  orcidid: 0000-0002-5017-774X
  surname: LaFleur
  fullname: LaFleur, Martin W.
  organization: Division of Medical Sciences, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 4
  givenname: Jernej
  surname: Godec
  fullname: Godec, Jernej
  organization: Division of Medical Sciences, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 5
  givenname: Veronika
  surname: Lukacs-Kornek
  fullname: Lukacs-Kornek, Veronika
  organization: Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University
– sequence: 6
  givenname: Frank A.
  orcidid: 0000-0003-0797-1945
  surname: Schildberg
  fullname: Schildberg, Frank A.
  organization: Department of Microbiology and Immunobiology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn
– sequence: 7
  givenname: Hye-Jung
  surname: Kim
  fullname: Kim, Hye-Jung
  organization: Department of Microbiology and Immunobiology, Harvard Medical School, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute
– sequence: 8
  givenname: Kathleen B.
  surname: Yates
  fullname: Yates, Kathleen B.
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Broad Institute of Harvard and Massachusetts Institute of Technology
– sequence: 9
  givenname: Stéphane J. H.
  surname: Ricoult
  fullname: Ricoult, Stéphane J. H.
  organization: Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health
– sequence: 10
  givenname: Kevin
  surname: Bi
  fullname: Bi, Kevin
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Broad Institute of Harvard and Massachusetts Institute of Technology
– sequence: 11
  givenname: Justin D.
  surname: Trombley
  fullname: Trombley, Justin D.
  organization: Department of Microbiology and Immunobiology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 12
  givenname: Varun N.
  surname: Kapoor
  fullname: Kapoor, Varun N.
  organization: Department of Cancer Immunology, Genentech
– sequence: 13
  givenname: Illana A.
  surname: Stanley
  fullname: Stanley, Illana A.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School
– sequence: 14
  givenname: Viviana
  surname: Cremasco
  fullname: Cremasco, Viviana
  organization: Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Immuno-Oncology, Novartis Institutes for BioMedical Research
– sequence: 15
  givenname: Nika N.
  surname: Danial
  fullname: Danial, Nika N.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School
– sequence: 16
  givenname: Brendan D.
  surname: Manning
  fullname: Manning, Brendan D.
  organization: Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health
– sequence: 17
  givenname: Arlene H.
  orcidid: 0000-0002-9736-2109
  surname: Sharpe
  fullname: Sharpe, Arlene H.
  email: arlene_sharpe@hms.harvard.edu
  organization: Department of Microbiology and Immunobiology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Broad Institute of Harvard and Massachusetts Institute of Technology, Department of Pathology, Brigham and Women’s Hospital
– sequence: 18
  givenname: W. Nicholas
  orcidid: 0000-0001-7871-3762
  surname: Haining
  fullname: Haining, W. Nicholas
  email: nick.haining@merck.com
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Broad Institute of Harvard and Massachusetts Institute of Technology, Division of Pediatric Hematology and Oncology, Children’s Hospital, Merck Research Laboratories
– sequence: 19
  givenname: Shannon J.
  orcidid: 0000-0002-0444-3031
  surname: Turley
  fullname: Turley, Shannon J.
  email: turley.shannon@gene.com
  organization: Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Cancer Immunology, Genentech
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31636464$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEYhYNUbLv6A7yRAW_qxdR8Z3IjlGJtoSBovZSQyWamKZlkTWaW9d-bcdvVLVqGyXzkOW_ynpxjcBBisAC8RvAUQdK8zxQxCWuIZA0ZYvXmGThCDMsaS8QPdu-wOQTHOd9BiKjg9AU4JIgTTjk9At8vXJti63UenamSLePkdaqM9T5XNtzqYGx18_u7Guyo2-hdHiodllWe0tqtta_WTld25Xob7LbKEJfWu9C_BM877bN9df9cgG8XH2_OL-vrz5-uzs-ua8OkHOvWGsE7zbAWHdMSc8kpJRJL2onSCWcYMrhsm9Z0DW_K3TYEY0ylpIyXkSzAh23d1dQOdmlsGJP2apXcoNNPFbVT-zPB3ao-rpUoJvDi5QKc3BdI8cdk86gGl-eedbBxygoTKARuBBEFffsIvYtTCqU9halgkFIB8ZMUKafGyXwGO6rX3ioXulh2Z-al1RmHnEAOyby5039Q5VrawZkSic6V_3uCd3uCwox2M_Z6ylldff2yz77527qdZw8RKQDaAibFnJPtdgiCao6h2sZQlRiqOYZqUzTikca4UY8uzu47_6QSb5W5rBJ6m_749n_RL04j7f8
CitedBy_id crossref_primary_10_3390_cells10051150
crossref_primary_10_1016_j_cellimm_2020_104068
crossref_primary_10_1038_s41590_021_00878_5
crossref_primary_10_3389_fimmu_2022_728455
crossref_primary_10_3390_cancers13040641
crossref_primary_10_1016_j_coi_2021_10_005
crossref_primary_10_1093_intimm_dxae033
crossref_primary_10_1016_j_arcmed_2023_102927
crossref_primary_10_1038_s41568_023_00549_7
crossref_primary_10_1111_imr_12981
crossref_primary_10_1016_j_coi_2020_04_007
crossref_primary_10_3389_fcell_2021_658984
crossref_primary_10_1038_s41590_020_0635_3
crossref_primary_10_1016_j_ijmm_2021_151492
crossref_primary_10_4049_jimmunol_2100396
crossref_primary_10_1016_j_it_2021_03_001
crossref_primary_10_3389_fimmu_2022_1063711
crossref_primary_10_3389_fimmu_2022_887380
crossref_primary_10_1038_s41590_023_01502_4
crossref_primary_10_1016_j_cmet_2023_03_010
crossref_primary_10_1084_jem_20210815
crossref_primary_10_1016_j_critrevonc_2025_104854
crossref_primary_10_1093_jleuko_qiae040
crossref_primary_10_1146_annurev_immunol_101320_020220
crossref_primary_10_1126_sciimmunol_abb7066
crossref_primary_10_1126_sciimmunol_aao3669
crossref_primary_10_1016_j_actbio_2021_07_075
crossref_primary_10_1038_s41389_023_00495_x
crossref_primary_10_1172_JCI171310
crossref_primary_10_1016_j_oor_2025_100718
crossref_primary_10_1038_s41590_020_0741_2
crossref_primary_10_4049_jimmunol_2000914
crossref_primary_10_3390_ijms21207785
crossref_primary_10_1084_jem_20221220
crossref_primary_10_3389_fimmu_2022_949423
crossref_primary_10_3389_fimmu_2022_1103823
crossref_primary_10_1002_advs_202203842
crossref_primary_10_3390_biomedicines12081667
crossref_primary_10_3389_fimmu_2025_1605972
crossref_primary_10_1111_imr_13051
crossref_primary_10_1172_JCI159672
crossref_primary_10_3389_fimmu_2021_710375
crossref_primary_10_1002_eji_202250362
crossref_primary_10_1111_imr_12945
crossref_primary_10_1111_imr_12989
crossref_primary_10_1084_jem_20231758
crossref_primary_10_1242_dmm_049256
crossref_primary_10_1172_JCI166070
crossref_primary_10_1016_j_hpb_2024_04_009
crossref_primary_10_1007_s13402_024_00975_1
crossref_primary_10_1016_j_immuni_2022_03_002
crossref_primary_10_1111_imr_13044
crossref_primary_10_1016_j_oraloncology_2023_106524
crossref_primary_10_1016_j_it_2021_06_006
crossref_primary_10_1002_eji_202048977
crossref_primary_10_1016_j_celrep_2024_114114
crossref_primary_10_1172_JCI156994
Cites_doi 10.1038/342559a0
10.1016/j.immuni.2005.02.010
10.1038/nri2588
10.1038/ni1513
10.1111/imr.12023
10.1126/science.1948068
10.1016/j.cell.2013.05.016
10.1038/ni.2965
10.1111/imr.12748
10.1084/jem.20062079
10.1002/eji.201243018
10.1371/journal.pone.0026138
10.1038/nri2886
10.1038/ni.3035
10.1038/ng.3646
10.1038/ni.2834
10.1038/nri3846
10.1016/j.bbamcr.2010.10.010
10.1038/nature21379
10.1016/j.immuni.2018.04.006
10.1038/ni.2112
10.1111/imr.12641
10.1038/ni.2262
10.1038/nature11247
10.1038/368339a0
10.1073/pnas.97.23.12694
10.1084/jem.20061706
10.1371/journal.pone.0027618
10.1189/jlb.0409221
10.1038/nmeth.2688
10.1073/pnas.1712628115
10.1016/j.imlet.2011.02.006
10.1084/jem.20151159
10.1038/ni.3153
10.1016/j.immuni.2016.10.028
10.1371/journal.pbio.2005046
10.1016/j.immuni.2006.10.011
10.1038/nature20165
10.1016/j.immuni.2010.04.017
10.1016/S0005-2728(00)00238-3
10.1016/j.it.2014.11.003
10.3389/fimmu.2011.00035
10.1016/j.cels.2015.12.004
10.4049/jimmunol.1402520
10.1038/ni.3706
10.1038/ni.3441
10.1126/science.aae0491
10.1073/pnas.0506580102
10.1073/pnas.1412910111
10.1084/jem.20112607
10.1016/j.immuni.2011.12.007
10.1084/jem.20160832
10.1016/j.celrep.2015.09.069
10.1038/s41598-017-03459-5
10.1038/nature13814
10.1016/j.immuni.2011.09.021
10.1016/j.immuni.2017.03.012
10.1371/journal.ppat.1003207
10.4049/jimmunol.1001142
10.4049/jimmunol.1602086
10.1128/IAI.65.11.4843-4849.1997
10.1146/annurev-immunol-031210-101357
10.1146/annurev-immunol-032712-095956
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
COPYRIGHT 2019 Nature Publishing Group
Copyright Nature Publishing Group Dec 2019
The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 2019
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7T5
7TK
7TM
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41590-019-0515-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



ProQuest Central Student
MEDLINE - Academic
MEDLINE

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1529-2916
EndPage 1680
ExternalDocumentID PMC7464610
A606306030
31636464
10_1038_s41590_019_0515_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Massachusetts
GeographicLocations_xml – name: Massachusetts
GrantInformation_xml – fundername: Howard Hughes Medical Institute (HHMI)
  funderid: https://doi.org/10.13039/100000011
– fundername: NIDDK NIH HHS
  grantid: R01 DK074500
– fundername: NIAID NIH HHS
  grantid: P01 AI108545
– fundername: NCI NIH HHS
  grantid: R35 CA197459
– fundername: NCI NIH HHS
  grantid: T32 CA207021
GroupedDBID ---
.55
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABOCM
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ISR
ITC
L-9
LK8
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WH7
X7M
Y6R
ZXP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
AGQPQ
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QP
7QR
7T5
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c599t-bec76fa52a7f5a926964439294f7916652050db8bcf868f86b832224994564993
IEDL.DBID 8C1
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497949800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1529-2908
1529-2916
IngestDate Tue Nov 04 01:59:00 EST 2025
Sun Nov 09 10:16:38 EST 2025
Sun Nov 30 04:27:45 EST 2025
Tue Oct 07 05:33:03 EDT 2025
Tue Nov 11 10:01:54 EST 2025
Tue Nov 04 17:35:04 EST 2025
Thu Nov 13 15:00:41 EST 2025
Mon Jul 21 05:46:50 EDT 2025
Sat Nov 29 02:12:22 EST 2025
Tue Nov 18 22:00:49 EST 2025
Fri Feb 21 02:38:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c599t-bec76fa52a7f5a926964439294f7916652050db8bcf868f86b832224994564993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
F.D.B. conceived and conducted most of the experiments, analyzed and interpreted data and wrote the manuscript. D.R.S. conducted experiments and analyzed and interpreted data. J.G., M.W.L., V.L.-K., F.A.S., H-J.K., K.B.Y., S.J.H.R., K.B. and V.N.K. conducted experiments and interpreted data. J.D.T. and I.A.S. discussed data and provided technical assistance. V.C., N.N.D. and B.D.M. discussed and interpreted data. A.H.S., W.N.H. and S.J.T. directed the study, analyzed and interpreted results and wrote the manuscript.
Author contributions
ORCID 0000-0001-7871-3762
0000-0003-0797-1945
0000-0002-0444-3031
0000-0002-5017-774X
0000-0002-0947-8284
0000-0002-9736-2109
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7464610
PMID 31636464
PQID 2315963316
PQPubID 45782
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7464610
proquest_miscellaneous_2307728737
proquest_journals_2475044702
proquest_journals_2315963316
gale_infotracmisc_A606306030
gale_infotracacademiconefile_A606306030
gale_incontextgauss_ISR_A606306030
pubmed_primary_31636464
crossref_primary_10_1038_s41590_019_0515_x
crossref_citationtrail_10_1038_s41590_019_0515_x
springer_journals_10_1038_s41590_019_0515_x
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature immunology
PublicationTitleAbbrev Nat Immunol
PublicationTitleAlternate Nat Immunol
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Wink (CR29) 1991; 254
Fletcher (CR54) 2011; 2
Knoblich (CR56) 2018; 16
Kurachi (CR39) 2014; 15
Hunter, Jones (CR49) 2015; 16
Marsland (CR18) 2005; 22
Kopf (CR50) 1994; 368
Mueller, Germain (CR1) 2009; 9
Zhang (CR26) 2018; 215
Brown (CR28) 2001; 1504
Acton (CR20) 2014; 514
CR32
Pan (CR48) 2017; 543
Huang (CR27) 2018; 115
Finlay (CR36) 2012; 209
Malhotra (CR4) 2012; 13
Yu (CR45) 2017; 18
Scharer, Bally, Gandham, Boss (CR46) 2017; 198
Pircher, Burki, Lang, Hengartner, Zinkernagel (CR60) 1989; 342
Ladel (CR51) 1997; 65
Buck, O’Sullivan, Pearce (CR31) 2015; 212
Chang (CR33) 2013; 153
Khan (CR24) 2011; 6
Worbs, Mempel, Bolter, von Andrian, Forster (CR15) 2007; 204
Liberzon (CR59) 2015; 1
CR3
Luther, Vogt, Siegert (CR6) 2011; 138
Turley, Fletcher, Elpek (CR2) 2010; 10
Tyrakis (CR35) 2016; 540
Lauder (CR52) 2013; 43
Laidlaw (CR61) 2013; 9
Schumann (CR17) 2010; 32
Malhotra, Fletcher, Turley (CR5) 2013; 251
Rodda (CR57) 2018; 48
Fletcher, Acton, Knoblich (CR10) 2015; 15
Portt, Norman, Clapp, Greenwood, Greenwood (CR43) 2011; 1813
Wang (CR34) 2011; 35
Yu (CR55) 2017; 7
CR53
Scott-Browne (CR44) 2016; 45
Mueller (CR62) 2010; 185
Link (CR19) 2007; 8
Buenrostro, Giresi, Zaba, Chang, Greenleaf (CR30) 2013; 10
Cremasco (CR25) 2014; 15
van der Windt (CR47) 2012; 36
Chang, Turley (CR11) 2015; 36
Gray, Amezquita, Guan, Kleinstein, Kaech (CR41) 2017; 46
Luther, Tang, Hyman, Farr, Cyster (CR12) 2000; 97
Lukacs-Kornek (CR22) 2011; 12
Subramanian (CR58) 2005; 102
Xin (CR40) 2015; 13
Denton, Roberts, Linterman, Fearon (CR16) 2014; 111
Perez-Shibayama, Gil-Cruz, Ludewig (CR7) 2019; 289
Li, Eppolito, Odunsi, Shrikant (CR38) 2010; 87
Dunham (CR64) 2012; 489
Brown, Turley (CR9) 2015; 194
Siegert (CR23) 2011; 6
Bajenoff (CR13) 2006; 25
Alexandre, Mueller (CR8) 2018; 283
Sen (CR42) 2016; 354
Roychoudhuri (CR37) 2016; 17
Asperti-Boursin, Real, Bismuth, Trautmann, Donnadieu (CR14) 2007; 204
Astarita (CR21) 2015; 16
Corces (CR63) 2016; 48
A Fletcher (515_CR54) 2011; 2
M Bajenoff (515_CR13) 2006; 25
A Link (515_CR19) 2007; 8
Y Zhang (515_CR26) 2018; 215
C-H Chang (515_CR33) 2013; 153
LB Rodda (515_CR57) 2018; 48
BJ Laidlaw (515_CR61) 2013; 9
BF Yu (515_CR45) 2017; 18
SJ Turley (515_CR2) 2010; 10
GJW van der Windt (515_CR47) 2012; 36
SN Lauder (515_CR52) 2013; 43
515_CR32
AE Denton (515_CR16) 2014; 111
YO Alexandre (515_CR8) 2018; 283
D Malhotra (515_CR5) 2013; 251
DA Wink (515_CR29) 1991; 254
V Lukacs-Kornek (515_CR22) 2011; 12
RN Wang (515_CR34) 2011; 35
515_CR3
SA Luther (515_CR6) 2011; 138
H Pircher (515_CR60) 1989; 342
R Roychoudhuri (515_CR37) 2016; 17
M Kopf (515_CR50) 1994; 368
QS Li (515_CR38) 2010; 87
HY Huang (515_CR27) 2018; 115
A Liberzon (515_CR59) 2015; 1
S Siegert (515_CR23) 2011; 6
AL Fletcher (515_CR10) 2015; 15
K Schumann (515_CR17) 2010; 32
I Dunham (515_CR64) 2012; 489
CA Hunter (515_CR49) 2015; 16
MD Buck (515_CR31) 2015; 212
515_CR53
C Perez-Shibayama (515_CR7) 2019; 289
T Worbs (515_CR15) 2007; 204
MR Corces (515_CR63) 2016; 48
SM Gray (515_CR41) 2017; 46
A Subramanian (515_CR58) 2005; 102
F Asperti-Boursin (515_CR14) 2007; 204
FD Brown (515_CR9) 2015; 194
BJ Marsland (515_CR18) 2005; 22
DR Sen (515_CR42) 2016; 354
G Xin (515_CR40) 2015; 13
L Portt (515_CR43) 2011; 1813
K Knoblich (515_CR56) 2018; 16
O Khan (515_CR24) 2011; 6
DK Finlay (515_CR36) 2012; 209
JD Buenrostro (515_CR30) 2013; 10
D Malhotra (515_CR4) 2012; 13
PA Tyrakis (515_CR35) 2016; 540
JL Astarita (515_CR21) 2015; 16
YD Pan (515_CR48) 2017; 543
SN Mueller (515_CR1) 2009; 9
JP Scott-Browne (515_CR44) 2016; 45
CH Ladel (515_CR51) 1997; 65
V Cremasco (515_CR25) 2014; 15
SE Acton (515_CR20) 2014; 514
SN Mueller (515_CR62) 2010; 185
JE Chang (515_CR11) 2015; 36
M Kurachi (515_CR39) 2014; 15
CD Scharer (515_CR46) 2017; 198
SA Luther (515_CR12) 2000; 97
M Yu (515_CR55) 2017; 7
GC Brown (515_CR28) 2001; 1504
References_xml – volume: 342
  start-page: 559
  year: 1989
  end-page: 561
  ident: CR60
  article-title: Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen
  publication-title: Nature
  doi: 10.1038/342559a0
– volume: 22
  start-page: 493
  year: 2005
  end-page: 505
  ident: CR18
  article-title: CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.02.010
– volume: 9
  start-page: 618
  year: 2009
  end-page: 629
  ident: CR1
  article-title: Stromal cell contributions to the homeostasis and functionality of the immune system
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2588
– volume: 8
  start-page: 1255
  year: 2007
  end-page: 1265
  ident: CR19
  article-title: Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1513
– volume: 251
  start-page: 160
  year: 2013
  end-page: 176
  ident: CR5
  article-title: Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12023
– volume: 254
  start-page: 1001
  year: 1991
  end-page: 1003
  ident: CR29
  article-title: DNA deaminating ability and genotoxicity of nitric-oxide and its progenitors
  publication-title: Science
  doi: 10.1126/science.1948068
– volume: 153
  start-page: 1239
  year: 2013
  end-page: 1251
  ident: CR33
  article-title: Posttranscriptional control of T cell effector function by aerobic glycolysis
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.016
– volume: 15
  start-page: 973
  year: 2014
  end-page: 981
  ident: CR25
  article-title: B cell homeostasis and follicle confines are governed by fibroblastic reticular cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2965
– volume: 289
  start-page: 31
  year: 2019
  end-page: 41
  ident: CR7
  article-title: Fibroblastic reticular cells at the nexus of innate and adaptive immune responses
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12748
– volume: 204
  start-page: 1167
  year: 2007
  end-page: 1179
  ident: CR14
  article-title: CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase independent manner
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20062079
– volume: 43
  start-page: 2613
  year: 2013
  end-page: 2625
  ident: CR52
  article-title: Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201243018
– volume: 6
  start-page: e26138
  year: 2011
  ident: CR24
  article-title: Regulation of T cell priming by lymphoid stroma
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0026138
– volume: 10
  start-page: 813
  year: 2010
  end-page: 825
  ident: CR2
  article-title: The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2886
– volume: 16
  start-page: 75–84
  year: 2015
  ident: CR21
  article-title: The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3035
– volume: 48
  start-page: 1193
  year: 2016
  end-page: 1203
  ident: CR63
  article-title: Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3646
– volume: 15
  start-page: 373–383
  year: 2014
  ident: CR39
  article-title: The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8(+) T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2834
– volume: 15
  start-page: 350
  year: 2015
  end-page: 361
  ident: CR10
  article-title: Lymph node fibroblastic reticular cells in health and disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3846
– volume: 1813
  start-page: 238
  year: 2011
  end-page: 259
  ident: CR43
  article-title: Anti-apoptosis and cell survival: a review
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2010.10.010
– volume: 543
  start-page: 252–256
  year: 2017
  ident: CR48
  article-title: Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism
  publication-title: Nature
  doi: 10.1038/nature21379
– volume: 48
  start-page: 1014–1028
  year: 2018
  ident: CR57
  article-title: Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.006
– volume: 12
  start-page: 1096
  year: 2011
  end-page: 1104
  ident: CR22
  article-title: Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2112
– volume: 283
  start-page: 77
  year: 2018
  end-page: 85
  ident: CR8
  article-title: Stromal cell networks coordinate immune response generation and maintenance
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12641
– volume: 13
  start-page: 499
  year: 2012
  end-page: 510
  ident: CR4
  article-title: Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2262
– volume: 489
  start-page: 57
  year: 2012
  end-page: 74
  ident: CR64
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 368
  start-page: 339
  year: 1994
  end-page: 342
  ident: CR50
  article-title: Impaired immune and acute-phase responses in interleukin-6-deficient mice
  publication-title: Nature
  doi: 10.1038/368339a0
– volume: 97
  start-page: 12694
  year: 2000
  end-page: 12699
  ident: CR12
  article-title: Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.23.12694
– volume: 204
  start-page: 489
  year: 2007
  end-page: 495
  ident: CR15
  article-title: CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061706
– volume: 6
  start-page: e27618
  year: 2011
  ident: CR23
  article-title: Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0027618
– volume: 87
  start-page: 257
  year: 2010
  end-page: 263
  ident: CR38
  article-title: Antigen-induced Erk1/2 activation regulates Ets-1-mediated sensitization of CD8+ T cells for IL-12 responses
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0409221
– volume: 10
  start-page: 1213–1218
  year: 2013
  ident: CR30
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2688
– volume: 115
  start-page: E6826
  year: 2018
  end-page: E6835
  ident: CR27
  article-title: Identification of a new subset of lymph node stromal cells involved in regulating plasma cell homeostasis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1712628115
– volume: 138
  start-page: 9
  year: 2011
  end-page: 11
  ident: CR6
  article-title: Guiding blind T cells and dendritic cells: a closer look at fibroblastic reticular cells found within lymph node T zones
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2011.02.006
– volume: 212
  start-page: 1345
  year: 2015
  end-page: 1360
  ident: CR31
  article-title: T cell metabolism drives immunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151159
– ident: CR32
– volume: 16
  start-page: 448
  year: 2015
  end-page: 457
  ident: CR49
  article-title: IL-6 as a keystone cytokine in health and disease
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3153
– volume: 45
  start-page: 1327
  year: 2016
  end-page: 1340
  ident: CR44
  article-title: Dynamic changes in chromatin accessibility occur in CD8(+) T cells responding to viral infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.10.028
– volume: 16
  start-page: 24
  year: 2018
  ident: CR56
  article-title: The human lymph node microenvironment unilaterally regulates T-cell activation and differentiation
  publication-title: PloS Biol.
  doi: 10.1371/journal.pbio.2005046
– volume: 25
  start-page: 989
  year: 2006
  end-page: 1001
  ident: CR13
  article-title: Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.10.011
– volume: 540
  start-page: 236–241
  year: 2016
  ident: CR35
  article-title: S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate
  publication-title: Nature
  doi: 10.1038/nature20165
– volume: 32
  start-page: 703
  year: 2010
  end-page: 713
  ident: CR17
  article-title: Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.04.017
– volume: 1504
  start-page: 46
  year: 2001
  end-page: 57
  ident: CR28
  article-title: Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/S0005-2728(00)00238-3
– volume: 36
  start-page: 30
  year: 2015
  end-page: 39
  ident: CR11
  article-title: Stromal infrastructure of the lymph node and coordination of immunity
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.11.003
– volume: 2
  start-page: 35
  year: 2011
  ident: CR54
  article-title: Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2011.00035
– volume: 1
  start-page: 417
  year: 2015
  end-page: 425
  ident: CR59
  article-title: The molecular signatures database hallmark gene set collection
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 194
  start-page: 1389
  year: 2015
  end-page: 1394
  ident: CR9
  article-title: Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402520
– volume: 18
  start-page: 573
  year: 2017
  end-page: 582
  ident: CR45
  article-title: Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3706
– ident: CR53
– volume: 17
  start-page: 851–860
  year: 2016
  ident: CR37
  article-title: BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3441
– volume: 354
  start-page: 1165
  year: 2016
  end-page: 1169
  ident: CR42
  article-title: The epigenetic landscape of T cell exhaustion
  publication-title: Science
  doi: 10.1126/science.aae0491
– volume: 65
  start-page: 4843
  year: 1997
  end-page: 4849
  ident: CR51
  article-title: Lethal tuberculosis in interleukin-6-deficient mutant mice
  publication-title: Infect. Immun.
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: CR58
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 111
  start-page: 12139
  year: 2014
  end-page: 12144
  ident: CR16
  article-title: Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8(+) T cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1412910111
– volume: 209
  start-page: 2441
  year: 2012
  end-page: 2453
  ident: CR36
  article-title: PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8(+) T cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20112607
– volume: 36
  start-page: 68
  year: 2012
  end-page: 78
  ident: CR47
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8(+) T cell memory development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.007
– volume: 215
  start-page: 1227
  year: 2018
  end-page: 1243
  ident: CR26
  article-title: Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160832
– volume: 13
  start-page: 1118
  year: 2015
  end-page: 1124
  ident: CR40
  article-title: A critical role of IL-21-induced BATF in sustaining CD8-T-cell-mediated chronic viral control
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.09.069
– volume: 7
  year: 2017
  ident: CR55
  article-title: Fibroblastic reticular cells of the lymphoid tissues modulate T cell activation threshold during homeostasis via hyperactive cyclooxygenase-2/prostaglandin E-2 axis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03459-5
– ident: CR3
– volume: 514
  start-page: 498–502
  year: 2014
  ident: CR20
  article-title: Dendritic cells control fibroblastic reticular network tension and lymph node expansion
  publication-title: Nature
  doi: 10.1038/nature13814
– volume: 35
  start-page: 871
  year: 2011
  end-page: 882
  ident: CR34
  article-title: The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.021
– volume: 46
  start-page: 596
  year: 2017
  end-page: 608
  ident: CR41
  article-title: Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.03.012
– volume: 9
  start-page: e1003207
  year: 2013
  ident: CR61
  article-title: Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity
  publication-title: PloS Pathog.
  doi: 10.1371/journal.ppat.1003207
– volume: 185
  start-page: 2182
  year: 2010
  end-page: 2190
  ident: CR62
  article-title: Qualitatively different memory CD8+ T cells are generated after lymphocytic choriomeningitis virus and influenza virus infections
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1001142
– volume: 198
  start-page: 2238
  year: 2017
  end-page: 2243
  ident: CR46
  article-title: Cutting edge: chromatin accessibility programs CD8 T cell memory
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1602086
– volume: 16
  start-page: 24
  year: 2018
  ident: 515_CR56
  publication-title: PloS Biol.
  doi: 10.1371/journal.pbio.2005046
– ident: 515_CR53
– volume: 289
  start-page: 31
  year: 2019
  ident: 515_CR7
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12748
– volume: 9
  start-page: e1003207
  year: 2013
  ident: 515_CR61
  publication-title: PloS Pathog.
  doi: 10.1371/journal.ppat.1003207
– volume: 15
  start-page: 350
  year: 2015
  ident: 515_CR10
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3846
– volume: 48
  start-page: 1014–1028
  year: 2018
  ident: 515_CR57
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.006
– volume: 283
  start-page: 77
  year: 2018
  ident: 515_CR8
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12641
– volume: 368
  start-page: 339
  year: 1994
  ident: 515_CR50
  publication-title: Nature
  doi: 10.1038/368339a0
– volume: 543
  start-page: 252–256
  year: 2017
  ident: 515_CR48
  publication-title: Nature
  doi: 10.1038/nature21379
– volume: 65
  start-page: 4843
  year: 1997
  ident: 515_CR51
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.65.11.4843-4849.1997
– volume: 36
  start-page: 30
  year: 2015
  ident: 515_CR11
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.11.003
– volume: 185
  start-page: 2182
  year: 2010
  ident: 515_CR62
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1001142
– volume: 115
  start-page: E6826
  year: 2018
  ident: 515_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1712628115
– volume: 251
  start-page: 160
  year: 2013
  ident: 515_CR5
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12023
– volume: 8
  start-page: 1255
  year: 2007
  ident: 515_CR19
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1513
– ident: 515_CR3
  doi: 10.1146/annurev-immunol-031210-101357
– volume: 7
  year: 2017
  ident: 515_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03459-5
– volume: 540
  start-page: 236–241
  year: 2016
  ident: 515_CR35
  publication-title: Nature
  doi: 10.1038/nature20165
– volume: 35
  start-page: 871
  year: 2011
  ident: 515_CR34
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.021
– volume: 215
  start-page: 1227
  year: 2018
  ident: 515_CR26
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160832
– volume: 10
  start-page: 1213–1218
  year: 2013
  ident: 515_CR30
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2688
– volume: 1813
  start-page: 238
  year: 2011
  ident: 515_CR43
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2010.10.010
– volume: 138
  start-page: 9
  year: 2011
  ident: 515_CR6
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2011.02.006
– volume: 25
  start-page: 989
  year: 2006
  ident: 515_CR13
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.10.011
– volume: 212
  start-page: 1345
  year: 2015
  ident: 515_CR31
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151159
– ident: 515_CR32
  doi: 10.1146/annurev-immunol-032712-095956
– volume: 16
  start-page: 75–84
  year: 2015
  ident: 515_CR21
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3035
– volume: 6
  start-page: e26138
  year: 2011
  ident: 515_CR24
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0026138
– volume: 36
  start-page: 68
  year: 2012
  ident: 515_CR47
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.007
– volume: 489
  start-page: 57
  year: 2012
  ident: 515_CR64
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 6
  start-page: e27618
  year: 2011
  ident: 515_CR23
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0027618
– volume: 16
  start-page: 448
  year: 2015
  ident: 515_CR49
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3153
– volume: 102
  start-page: 15545
  year: 2005
  ident: 515_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 2
  start-page: 35
  year: 2011
  ident: 515_CR54
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2011.00035
– volume: 1
  start-page: 417
  year: 2015
  ident: 515_CR59
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 9
  start-page: 618
  year: 2009
  ident: 515_CR1
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2588
– volume: 12
  start-page: 1096
  year: 2011
  ident: 515_CR22
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2112
– volume: 46
  start-page: 596
  year: 2017
  ident: 515_CR41
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.03.012
– volume: 204
  start-page: 1167
  year: 2007
  ident: 515_CR14
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20062079
– volume: 22
  start-page: 493
  year: 2005
  ident: 515_CR18
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.02.010
– volume: 209
  start-page: 2441
  year: 2012
  ident: 515_CR36
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20112607
– volume: 514
  start-page: 498–502
  year: 2014
  ident: 515_CR20
  publication-title: Nature
  doi: 10.1038/nature13814
– volume: 13
  start-page: 1118
  year: 2015
  ident: 515_CR40
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.09.069
– volume: 10
  start-page: 813
  year: 2010
  ident: 515_CR2
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2886
– volume: 32
  start-page: 703
  year: 2010
  ident: 515_CR17
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.04.017
– volume: 342
  start-page: 559
  year: 1989
  ident: 515_CR60
  publication-title: Nature
  doi: 10.1038/342559a0
– volume: 15
  start-page: 973
  year: 2014
  ident: 515_CR25
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2965
– volume: 254
  start-page: 1001
  year: 1991
  ident: 515_CR29
  publication-title: Science
  doi: 10.1126/science.1948068
– volume: 17
  start-page: 851–860
  year: 2016
  ident: 515_CR37
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3441
– volume: 13
  start-page: 499
  year: 2012
  ident: 515_CR4
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2262
– volume: 198
  start-page: 2238
  year: 2017
  ident: 515_CR46
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1602086
– volume: 97
  start-page: 12694
  year: 2000
  ident: 515_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.23.12694
– volume: 354
  start-page: 1165
  year: 2016
  ident: 515_CR42
  publication-title: Science
  doi: 10.1126/science.aae0491
– volume: 48
  start-page: 1193
  year: 2016
  ident: 515_CR63
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3646
– volume: 43
  start-page: 2613
  year: 2013
  ident: 515_CR52
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201243018
– volume: 1504
  start-page: 46
  year: 2001
  ident: 515_CR28
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/S0005-2728(00)00238-3
– volume: 87
  start-page: 257
  year: 2010
  ident: 515_CR38
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0409221
– volume: 204
  start-page: 489
  year: 2007
  ident: 515_CR15
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061706
– volume: 45
  start-page: 1327
  year: 2016
  ident: 515_CR44
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.10.028
– volume: 18
  start-page: 573
  year: 2017
  ident: 515_CR45
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3706
– volume: 153
  start-page: 1239
  year: 2013
  ident: 515_CR33
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.016
– volume: 15
  start-page: 373–383
  year: 2014
  ident: 515_CR39
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2834
– volume: 194
  start-page: 1389
  year: 2015
  ident: 515_CR9
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402520
– volume: 111
  start-page: 12139
  year: 2014
  ident: 515_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1412910111
SSID ssj0014764
Score 2.5368936
Snippet Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1668
SubjectTerms 631/1647
631/250
Animals
Biomedical and Life Sciences
Biomedicine
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
Cell Differentiation
Cell Proliferation
Cell Survival
Cells, Cultured
Cellular Reprogramming
Chromatin
Chromatin Assembly and Disassembly
Cytotoxicity, Immunologic
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Fibroblasts - physiology
Gene Expression Regulation
Immunologic Memory
Immunological memory
Immunology
Infectious Diseases
Interleukin 6
Interleukin-6 - genetics
Interleukin-6 - metabolism
Interleukins
Lymph nodes
Lymph Nodes - immunology
Lymphocyte Activation
Lymphocytes
Lymphocytes T
Lymphoid tissue
Memory cells
Mice
Mice, Inbred C57BL
Mice, Knockout
Nitric oxide
Nitric Oxide - metabolism
T cells
Title Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling
URI https://link.springer.com/article/10.1038/s41590-019-0515-x
https://www.ncbi.nlm.nih.gov/pubmed/31636464
https://www.proquest.com/docview/2315963316
https://www.proquest.com/docview/2475044702
https://www.proquest.com/docview/2307728737
https://pubmed.ncbi.nlm.nih.gov/PMC7464610
Volume 20
WOSCitedRecordID wos000497949800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1529-2916
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014764
  issn: 1529-2908
  databaseCode: M7P
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl:
  eissn: 1529-2916
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014764
  issn: 1529-2908
  databaseCode: BENPR
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1529-2916
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014764
  issn: 1529-2908
  databaseCode: 7X7
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1529-2916
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014764
  issn: 1529-2908
  databaseCode: 8C1
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFhAXHuUVKCuDkJBAUbN5-HFCpeoKDqxWpUh7QZbjJHSlNlma3ar8e2acB2QFvXDYSCtPnExmPDO2x98AvKazntYq6yc2kDhB4cY3hcj8LDVBWuQYoGaZKzYhplM5n6tZu-BWt2mVnU10hjqrLK2R74cxAZHHIgjfL3_4VDWKdlfbEhpbsDMOg5gGpjzsUzzGsXDwUeiilB-qQHa7mpHcr9FxKUrJUj5VOfGvBn5p0zr_4Z42Uyc39k-dW5rc-1-G7sPdNiBlB40GPYAbebkLt5oSlT934fbndvP9IXyb4NS6SjHcRlLmTj9SDiujtf-a5eUpKRA7cf_Zeb5C9Tpb1OfMlBmr12iSUKnZ5cKwfEkQoHnTiyvFg6w9gq-To5PDj35bncG3iVIrH4UveGGS0IgiMSrkCkMrirbiQmDMyZMwSIIslaktJJf4S8l44GxPEYINhkWPYbusyvwpsHGc2jgL4pTQ_ZXBKAUtRRbhcyzqEjceBJ1stG2hy6mCxpl2W-iR1I04NYpTkzj1lQdv-1uWDW7HdcSvSOCa8DBKSrj5btZ1rT99OdYHnEDJOJpCD960REWFD7emPb-ALBCE1oByb0CJA9YOmzuF0K3BqDWG2chpFI3535t7ZfHgZd9MHVOOXJlXa-oiwKmSFJHw4EmjpT3r2G_EYx57IAb62xMQyviwpVycOrRxgbdhjO3Bu07Tf7_WP7_os-uZeA53Qhp6Li1oD7ZXF-v8Bdy0l6tFfTGCLTEX7ipHbkCPYOfD0XR2PKLM3NkvAmhPFg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V5XnhUSgYCiwIhERl1fFj13tAqAKiRm0jBEHKBS3rtU0jtU6ok9L-KX4jM-sHOILeeuDgg7XjtWczz-zsNwDP6aynMdK4kfFiTFC4dnUuUjdNtJfkGQaoaWqbTYjhMB6P5YcV-NmchaGyysYmWkOdTg39R77lhwREHgrPfzP77lLXKNpdbVpoVGKxm539wJStfD14h7_vC9_vvx-93XHrrgKuiaScu_jRguc68rXIIy19LjEkoCghzAXGSjzyvchLkzgxecxjvBISesxSJCGvSAJfQpN_Ce24oBIyMW4TvF4oLFwVukTp-tKLm13UIN4q0VFKKgGTLnVVcU87fnDZG_zhDpdLNZf2a60b7N_83xbwFtyoA262XWnIbVjJijW4UrXgPFuDq_t1ccEd-NKfJNReRxN0NbOnO6lGl9HeRsmy4oAUhI3sPTvK5qg-h5PyiOkiZeUCTS4qLTuZaJbNCOI0q2axrYZwKe_C5wthcx1Wi2mR3QfWCxMTpl6YUPcCqTEKQ0uYBvgeg7rCtQNeIwvK1NDs1CHkUNkSgSBWlfgoFB9F4qNOHXjVPjKrcEnOI35GAqYI76OggqJvelGWavDpo9rmBLrG0dQ78LImyqf4cqPr8xnIAkGEdSg3OpRokEx3uBFAVRvEUmEagZwGQY__fbgVTgeetsM0MdUAFtl0QVN4mArGIhAO3Ku0omUd5w14yEMHREdfWgJCUe-OFJMDi6Yu8DHMIRzYbDTr92f9c0UfnM_EE7i2M9rfU3uD4e5DuO6T2tsSqA1YnR8vskdw2ZzMJ-XxY2tAGHy9aIX7BQMJo-E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VLVRceJSXocCCQEigVVw_dr0HhAptRFSIotJKvaBlvbZppNYJdVLav8avY8YvcAS99cAhh2gf9m7mm0d29huA53TX01pleWjdCAMUYbjJZMKT2LhxlqKDmiRlsQk5HEYHB2q0BD-buzCUVtnoxFJRJxNL_5H3vICIyAPper2sTosYbfXfTr9zqiBFJ61NOY1KRHbS8x8YvhVvBlv4W7_wvP723vsPvK4wwG2o1IzjAqTITOgZmYVGeUKhe0AeQ5BJ9JtE6Lmhm8RRbLNIRPiJCQAYsShiYVFExITqf0XiEETXyrvt4Wi3PcMIZElehQZScU-5UXOm6ke9As2mooQwxanGCj_rWMVF2_CHcVxM3Fw4vS2NYv_G_7ydN-F67YqzzQo7t2ApzdfgalWc83wNVj_VaQe34Ut_HFPhHUOk1qy890nZu4xOPQqW5ocEHbZXfmfH6QyBdTQujpnJE1bMURkjnNnp2LB0SuSnaTVLWYQIt_UO7F_KMu_Ccj7J0_vANoLYBokbxFTXQBn0z1BHJj4-xyKKhHHAbeRC25q0nWqHHOkyecCPdCVKGkVJkyjpMwdetUOmFWPJRZ2fkbBpYgLJSQi-mXlR6MHnXb0piI5NoBFw4GXdKZvgw62pb27gEog8rNNzvdMTVZXtNjfCqGtVWWgMMHClvr8h_t7cCqoDT9tmmpiyA_N0MqcpXAwSI-lLB-5VCGmXjvP6IhCBA7KDnbYD8at3W_LxYcmzLnEYRhcOvG5Q9vu1_rmjDy5exBNYRZzpj4PhzkO45pEGKHOj1mF5djJPH8EVezobFyePa23C4OtlI-4XZVGuAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibroblastic+reticular+cells+enhance+T+cell+metabolism+and+survival+via+epigenetic+remodeling&rft.jtitle=Nature+immunology&rft.au=Brown%2C+Flavian+D.&rft.au=Sen%2C+Debattama+R.&rft.au=LaFleur%2C+Martin+W.&rft.au=Godec%2C+Jernej&rft.date=2019-12-01&rft.issn=1529-2908&rft.eissn=1529-2916&rft.volume=20&rft.issue=12&rft.spage=1668&rft.epage=1680&rft_id=info:doi/10.1038%2Fs41590-019-0515-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41590_019_0515_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon