ARMA based approaches for forecasting the tuple of wind speed and direction
Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the forecasting of wind speed and direction tuple is performed. Four approaches based on autoregressive moving average (ARMA) method are employed for th...
Saved in:
| Published in: | Applied energy Vol. 88; no. 4; pp. 1405 - 1414 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.04.2011
Elsevier |
| Series: | Applied Energy |
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the forecasting of wind speed and direction tuple is performed. Four approaches based on autoregressive moving average (ARMA) method are employed for this purpose. The first approach features the decomposition of the wind speed into lateral and longitudinal components. Each component is represented by an ARMA model, and the results are combined to obtain the wind direction and speed forecasts. The second approach employs two independent ARMA models – a traditional ARMA model for predicting wind speed and a linked ARMA model for wind direction. The third approach features vector autoregression (VAR) models to forecast the tuple of wind attributes. The fourth approach involves employing a restricted version of the VAR approach to predict the same. By employing these four approaches, the hourly mean wind attributes are forecasted 1-h ahead for two wind observation sites in North Dakota, USA. The results are compared using the mean absolute error (MAE) as a measure for forecasting quality. It is found that the component model is better at predicting the wind direction than the traditional-linked ARMA model, whereas the opposite is observed for wind speed forecasting. Utilizing VAR approaches rather than the univariate counterparts brings modest improvement in wind direction prediction but not in wind speed prediction. Between restricted and unrestricted versions of VAR models, there is little difference in terms of forecasting performance. |
|---|---|
| AbstractList | Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the forecasting of wind speed and direction tuple is performed. Four approaches based on autoregressive moving average (ARMA) method are employed for this purpose. The first approach features the decomposition of the wind speed into lateral and longitudinal components. Each component is represented by an ARMA model, and the results are combined to obtain the wind direction and speed forecasts. The second approach employs two independent ARMA models - a traditional ARMA model for predicting wind speed and a linked ARMA model for wind direction. The third approach features vector autoregression (VAR) models to forecast the tuple of wind attributes. The fourth approach involves employing a restricted version of the VAR approach to predict the same. By employing these four approaches, the hourly mean wind attributes are forecasted 1-h ahead for two wind observation sites in North Dakota, USA. The results are compared using the mean absolute error (MAE) as a measure for forecasting quality. It is found that the component model is better at predicting the wind direction than the traditional-linked ARMA model, whereas the opposite is observed for wind speed forecasting. Utilizing VAR approaches rather than the univariate counterparts brings modest improvement in wind direction prediction but not in wind speed prediction. Between restricted and unrestricted versions of VAR models, there is little difference in terms of forecasting performance. |
| Author | Erdem, Ergin Shi, Jing |
| Author_xml | – sequence: 1 givenname: Ergin surname: Erdem fullname: Erdem, Ergin – sequence: 2 givenname: Jing surname: Shi fullname: Shi, Jing email: jing.shi@ndsu.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23824184$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405-1414.htm$$DView record in RePEc |
| BookMark | eNqFUk2P0zAQjdAi0V34C5ALYi8tHtuxE4kD1YovUYQE7NlynHHrKk2CnS7qv2dCdjlwoIdnW9Z7M6M37zK76PoOs-w5sBUwUK_3Kztgh3F7WnH253PFBDzKFlBqvqwAyotswQRTS66gepJdprRnjHHgbJF9Xn_7ss5rm7DJ7TDE3rodptz3cQI6m8bQbfNxh_l4HFrMe5__Cl2TpwEnCb2aQLwx9N3T7LG3bcJn9_dVdvv-3Y-bj8vN1w-fbtabpSuqalxKK8BaL7wQpa6VRA2oVFky4XxVsUYVjFvNmAIuHNZK2wLqWpZNozxXtRdX2au5Lo3784hpNIeQHLat7bA_JlMWhQbJi4qY1_9lcjYZIaTSZ6mgtQZWaF4QdTNTIw7ozBDDwcaTQURykDZh7oywZUnHiUA7AboCQRIGAkhWGJAgzW48ULmX951tcrb10XYupL9luSi5hFIS783Mc7FPKaI3Lox2Mn6MNrQGmJnyYPbmIQ9mysP0T3kgufpH_tDhrPDFLPS2N3Ybabbb70RQ5B2QLdNkb2cG0tbvAkaTXMDO4RwN0_ThXJPfiQ7cDA |
| CODEN | APENDX |
| CitedBy_id | crossref_primary_10_3390_en13071666 crossref_primary_10_1080_10584587_2022_2065585 crossref_primary_10_1155_2019_9240317 crossref_primary_10_1016_j_enconman_2013_01_033 crossref_primary_10_1016_j_rser_2015_10_071 crossref_primary_10_1016_j_renene_2023_03_094 crossref_primary_10_3390_app12136396 crossref_primary_10_3390_en16237915 crossref_primary_10_3390_cleantechnol5020037 crossref_primary_10_1016_j_asoc_2019_02_034 crossref_primary_10_3389_fenvs_2022_1034536 crossref_primary_10_1016_j_apenergy_2017_11_071 crossref_primary_10_1016_j_jclepro_2021_129255 crossref_primary_10_3390_en17091996 crossref_primary_10_1016_j_eswa_2023_119636 crossref_primary_10_1016_j_compeleceng_2023_108784 crossref_primary_10_1049_rpg2_12132 crossref_primary_10_1051_e3sconf_202131901111 crossref_primary_10_1109_TII_2017_2730846 crossref_primary_10_1049_iet_rpg_2015_0477 crossref_primary_10_1007_s12667_022_00502_x crossref_primary_10_3233_JIFS_200205 crossref_primary_10_1016_j_enconman_2017_08_014 crossref_primary_10_1038_s41598_024_74714_9 crossref_primary_10_1016_j_energy_2025_137654 crossref_primary_10_3390_s21030983 crossref_primary_10_1016_j_apenergy_2025_126234 crossref_primary_10_1016_j_enconman_2020_112956 crossref_primary_10_1016_j_seta_2022_101980 crossref_primary_10_1177_0309524X18780401 crossref_primary_10_3390_en11113197 crossref_primary_10_3390_math10111943 crossref_primary_10_1109_ACCESS_2020_3041533 crossref_primary_10_3389_fenrg_2024_1277464 crossref_primary_10_3390_en12122322 crossref_primary_10_1007_s13369_024_09203_2 crossref_primary_10_1016_j_eswa_2022_119223 crossref_primary_10_1016_j_egyr_2021_11_247 crossref_primary_10_1016_j_apenergy_2023_121587 crossref_primary_10_1016_j_enconman_2014_10_001 crossref_primary_10_1016_j_enconman_2021_114162 crossref_primary_10_3390_en15124221 crossref_primary_10_3390_asi7060105 crossref_primary_10_1016_j_renene_2012_02_015 crossref_primary_10_1049_iet_rpg_2020_0366 crossref_primary_10_1016_j_egyr_2014_11_003 crossref_primary_10_3390_en81212428 crossref_primary_10_1016_j_rser_2012_10_009 crossref_primary_10_1016_j_istruc_2025_108650 crossref_primary_10_1016_j_renene_2022_07_123 crossref_primary_10_1145_3696661 crossref_primary_10_3390_su11030650 crossref_primary_10_32604_cmes_2022_019245 crossref_primary_10_1016_j_energy_2018_05_157 crossref_primary_10_1155_2022_4014048 crossref_primary_10_1007_s11269_012_0194_y crossref_primary_10_1016_j_energy_2022_124509 crossref_primary_10_1016_j_energy_2025_136660 crossref_primary_10_1049_rpg2_13003 crossref_primary_10_3390_pr9020387 crossref_primary_10_1016_j_cscee_2023_100594 crossref_primary_10_1016_j_renene_2016_02_003 crossref_primary_10_3390_su11030652 crossref_primary_10_1016_j_apenergy_2020_115034 crossref_primary_10_1016_j_oceaneng_2022_111352 crossref_primary_10_1016_j_apenergy_2021_116545 crossref_primary_10_1016_j_renene_2020_11_038 crossref_primary_10_3390_su8080754 crossref_primary_10_1049_rpg2_12157 crossref_primary_10_1016_j_renene_2021_06_092 crossref_primary_10_1016_j_eswa_2020_114364 crossref_primary_10_1016_j_energy_2022_123785 crossref_primary_10_1109_ACCESS_2025_3549035 crossref_primary_10_1007_s12667_019_00347_x crossref_primary_10_1093_ce_zkad042 crossref_primary_10_3390_en15124361 crossref_primary_10_1016_j_rser_2016_01_106 crossref_primary_10_1016_j_apenergy_2013_02_044 crossref_primary_10_1016_j_ifacol_2020_06_108 crossref_primary_10_1038_s41598_024_83836_z crossref_primary_10_4028_www_scientific_net_AMM_246_247_496 crossref_primary_10_1016_j_engstruct_2018_08_035 crossref_primary_10_1016_j_envpol_2023_121061 crossref_primary_10_1002_we_2906 crossref_primary_10_1049_rpg2_13016 crossref_primary_10_1016_j_apenergy_2011_07_044 crossref_primary_10_1016_j_seta_2021_101794 crossref_primary_10_1063_5_0246082 crossref_primary_10_1016_j_jweia_2017_12_019 crossref_primary_10_1016_j_apenergy_2024_125058 crossref_primary_10_1016_j_enconman_2017_09_034 crossref_primary_10_3390_info11120558 crossref_primary_10_1016_j_apenergy_2023_121014 crossref_primary_10_3390_en17133313 crossref_primary_10_1016_j_apenergy_2018_04_101 crossref_primary_10_1016_j_apenergy_2017_09_063 crossref_primary_10_1016_j_energy_2025_137979 crossref_primary_10_1109_TCYB_2013_2259229 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_1016_j_energy_2023_128565 crossref_primary_10_4316_AECE_2019_02001 crossref_primary_10_3390_su151410816 crossref_primary_10_1063_5_0060920 crossref_primary_10_3389_fenrg_2021_788320 crossref_primary_10_1155_er_3098062 crossref_primary_10_1016_j_apenergy_2025_126318 crossref_primary_10_1109_TSTE_2018_2844102 crossref_primary_10_3390_atmos14121787 crossref_primary_10_1016_j_enconman_2021_114002 crossref_primary_10_1016_j_apenergy_2012_09_055 crossref_primary_10_1016_j_engstruct_2023_115663 crossref_primary_10_1016_j_apenergy_2019_113833 crossref_primary_10_3389_fenrg_2021_780928 crossref_primary_10_1016_j_apenergy_2021_117449 crossref_primary_10_1016_j_renene_2025_123657 crossref_primary_10_1016_j_neucom_2019_06_001 crossref_primary_10_1007_s11269_014_0875_9 crossref_primary_10_1155_2016_3623412 crossref_primary_10_1016_j_enconman_2020_113731 crossref_primary_10_3390_su152416921 crossref_primary_10_1016_j_apenergy_2016_03_096 crossref_primary_10_1016_j_jeconom_2023_02_016 crossref_primary_10_1016_j_apenergy_2023_122248 crossref_primary_10_1016_j_energy_2024_134044 crossref_primary_10_1109_ACCESS_2018_2844278 crossref_primary_10_1016_j_energy_2025_137716 crossref_primary_10_1016_j_enconman_2025_119752 crossref_primary_10_1016_j_enconman_2019_112461 crossref_primary_10_1016_j_enconman_2020_112779 crossref_primary_10_1016_j_epsr_2025_111466 crossref_primary_10_1016_j_seta_2021_101780 crossref_primary_10_1109_ACCESS_2020_3043812 crossref_primary_10_1155_stc_3650202 crossref_primary_10_1016_j_apenergy_2025_126419 crossref_primary_10_1016_j_jksuci_2013_01_002 crossref_primary_10_1016_j_apenergy_2025_126536 crossref_primary_10_1016_j_renene_2022_02_095 crossref_primary_10_3390_en10122001 crossref_primary_10_1080_15567036_2021_2006370 crossref_primary_10_1016_j_enconman_2021_113917 crossref_primary_10_1002_joc_6037 crossref_primary_10_1016_j_renene_2020_09_031 crossref_primary_10_1016_j_ijhydene_2017_03_006 crossref_primary_10_1080_15567036_2021_1916657 crossref_primary_10_3389_fenrg_2022_928063 crossref_primary_10_1016_j_egyr_2022_12_062 crossref_primary_10_1016_j_engappai_2023_107613 crossref_primary_10_3390_su17146339 crossref_primary_10_1007_s11431_013_5195_4 crossref_primary_10_1051_matecconf_201823203013 crossref_primary_10_3390_en11071638 crossref_primary_10_1016_j_esr_2020_100613 crossref_primary_10_1155_2016_8395751 crossref_primary_10_1109_TSTE_2021_3131522 crossref_primary_10_3389_feart_2023_1297690 crossref_primary_10_3389_fenrg_2023_1078751 crossref_primary_10_1007_s11042_022_12992_z crossref_primary_10_1016_j_eswa_2024_126038 crossref_primary_10_1007_s40565_017_0365_1 crossref_primary_10_1016_j_ecolind_2022_109771 crossref_primary_10_1007_s11356_022_22959_0 crossref_primary_10_1007_s13253_019_00369_z crossref_primary_10_1016_j_engstruct_2012_07_019 crossref_primary_10_1080_01430750_2025_2507808 crossref_primary_10_1016_j_renene_2017_03_064 crossref_primary_10_1155_2015_815253 crossref_primary_10_1016_j_egyr_2022_10_342 crossref_primary_10_1016_j_ijhydene_2015_03_133 crossref_primary_10_1016_j_energy_2023_129171 crossref_primary_10_1016_j_esr_2022_100864 crossref_primary_10_1088_1755_1315_127_1_012012 crossref_primary_10_1007_s12204_022_2477_7 crossref_primary_10_1109_TSTE_2018_2789685 crossref_primary_10_3390_en18071713 crossref_primary_10_1016_j_measurement_2018_04_014 crossref_primary_10_1016_j_enconman_2017_06_021 crossref_primary_10_1016_j_apenergy_2017_04_017 crossref_primary_10_3390_jmse12020283 crossref_primary_10_1016_j_apenergy_2021_117248 crossref_primary_10_1017_S1751731119000363 crossref_primary_10_1016_j_energy_2025_137229 crossref_primary_10_1016_j_ijepes_2021_106954 crossref_primary_10_1016_j_apm_2016_01_002 crossref_primary_10_1016_j_asoc_2014_06_027 crossref_primary_10_1007_s00477_019_01675_1 crossref_primary_10_1016_j_ref_2025_100739 crossref_primary_10_1016_j_rser_2024_114623 crossref_primary_10_1016_j_jclepro_2021_125981 crossref_primary_10_1016_j_enconman_2023_117868 crossref_primary_10_1109_ACCESS_2019_2957174 crossref_primary_10_1016_j_apenergy_2015_01_038 crossref_primary_10_1155_2023_6328119 crossref_primary_10_1007_s12555_017_0289_6 crossref_primary_10_1016_j_enconman_2021_115086 crossref_primary_10_1016_j_physa_2025_130839 crossref_primary_10_1016_j_apenergy_2013_08_025 crossref_primary_10_4316_AECE_2017_03014 crossref_primary_10_1177_0309524X221078536 crossref_primary_10_3390_app10134416 crossref_primary_10_1016_j_jweia_2014_10_012 crossref_primary_10_1109_TCST_2015_2389031 crossref_primary_10_3390_en10101518 crossref_primary_10_1016_j_jweia_2020_104361 crossref_primary_10_1016_j_renene_2017_10_111 crossref_primary_10_1016_j_apenergy_2018_05_130 crossref_primary_10_1016_j_apenergy_2012_10_006 crossref_primary_10_1007_s11356_021_16997_3 crossref_primary_10_1049_iet_gtd_2018_0054 crossref_primary_10_1175_JCLI_D_17_0090_1 crossref_primary_10_1088_1755_1315_295_2_012030 crossref_primary_10_1016_j_enconman_2021_115196 crossref_primary_10_3390_en11092340 crossref_primary_10_1002_ente_202400990 crossref_primary_10_3390_en9110894 crossref_primary_10_1016_j_epsr_2022_108960 crossref_primary_10_1016_j_energy_2024_133920 crossref_primary_10_1016_j_matpr_2020_02_464 crossref_primary_10_1016_j_renene_2020_09_078 crossref_primary_10_1080_15325008_2023_2173828 crossref_primary_10_3390_en15114067 crossref_primary_10_1016_j_apenergy_2018_06_117 crossref_primary_10_1016_j_asoc_2022_109010 crossref_primary_10_1016_j_enconman_2021_115189 crossref_primary_10_1080_15435075_2021_1875470 crossref_primary_10_1016_j_enconman_2022_115583 crossref_primary_10_1080_15567036_2020_1822956 crossref_primary_10_1016_j_jpowsour_2018_06_098 crossref_primary_10_1080_23737484_2023_2217137 crossref_primary_10_1002_ente_202101061 crossref_primary_10_1016_j_bica_2018_07_019 crossref_primary_10_1016_j_apenergy_2022_120601 crossref_primary_10_1016_j_energy_2024_130404 crossref_primary_10_1016_j_renene_2023_05_048 crossref_primary_10_1080_00401706_2014_988291 crossref_primary_10_3390_fi15010017 crossref_primary_10_3390_su15021730 crossref_primary_10_1016_j_ijepes_2021_107937 crossref_primary_10_1016_j_apenergy_2024_124356 crossref_primary_10_1016_j_energy_2019_05_101 crossref_primary_10_1016_j_energy_2021_122333 crossref_primary_10_1016_j_apenergy_2011_04_051 crossref_primary_10_1155_2021_5516909 crossref_primary_10_1016_j_energy_2022_123848 crossref_primary_10_1109_ACCESS_2018_2869981 crossref_primary_10_1016_j_enconman_2022_115590 crossref_primary_10_1016_j_neucom_2018_07_053 crossref_primary_10_1016_j_renene_2023_118991 crossref_primary_10_1016_j_iswa_2022_200138 crossref_primary_10_1177_0309524X20972115 crossref_primary_10_3389_fenrg_2023_1336675 crossref_primary_10_1016_j_asoc_2020_106996 crossref_primary_10_1016_j_epsr_2020_107011 crossref_primary_10_3233_JIFS_220230 crossref_primary_10_3390_en15082881 crossref_primary_10_1038_s41467_025_58456_4 crossref_primary_10_1016_j_rser_2018_09_046 crossref_primary_10_1016_j_energy_2024_131964 crossref_primary_10_1016_j_energy_2024_131963 crossref_primary_10_56294_dm2025589 crossref_primary_10_1016_j_engstruct_2013_09_014 crossref_primary_10_3390_en14092352 crossref_primary_10_1016_j_enconman_2022_115322 crossref_primary_10_1016_j_energy_2019_116316 crossref_primary_10_1016_j_energy_2021_122128 crossref_primary_10_1016_j_renene_2017_05_093 crossref_primary_10_1109_ACCESS_2024_3435674 crossref_primary_10_1016_j_energy_2015_08_045 crossref_primary_10_1016_j_eswa_2025_128200 crossref_primary_10_1016_j_engappai_2023_105987 crossref_primary_10_1155_2013_548370 crossref_primary_10_1016_j_enconman_2015_03_013 crossref_primary_10_3390_s24196254 crossref_primary_10_1016_j_apenergy_2018_07_032 crossref_primary_10_3390_data9120146 crossref_primary_10_22581_muet1982_1603_08 crossref_primary_10_1016_j_asoc_2019_105587 crossref_primary_10_1002_we_2030 crossref_primary_10_3389_fenrg_2021_754274 crossref_primary_10_1007_s00202_025_02983_2 crossref_primary_10_1016_j_oceaneng_2025_122771 crossref_primary_10_1007_s11071_024_09595_8 crossref_primary_10_1016_j_energy_2015_08_039 crossref_primary_10_1016_j_ijepes_2025_110833 crossref_primary_10_1016_j_apenergy_2012_06_044 crossref_primary_10_1016_j_energy_2017_04_094 crossref_primary_10_3390_su10124338 crossref_primary_10_1016_j_rser_2014_03_033 crossref_primary_10_1016_j_energy_2020_119016 crossref_primary_10_1109_ACCESS_2018_2877735 crossref_primary_10_1007_s00477_014_0901_8 crossref_primary_10_1016_j_renene_2014_03_068 crossref_primary_10_1063_5_0257465 crossref_primary_10_20965_jaciii_2018_p0900 crossref_primary_10_1016_j_energy_2022_126589 crossref_primary_10_1049_cit2_12076 crossref_primary_10_1007_s00521_019_04290_x crossref_primary_10_3390_su9040596 crossref_primary_10_1007_s13253_018_0331_z crossref_primary_10_1029_2023JD040134 crossref_primary_10_1016_j_renene_2021_01_003 crossref_primary_10_1155_2020_9601763 crossref_primary_10_1109_JIOT_2023_3324546 crossref_primary_10_1109_TSTE_2025_3543420 crossref_primary_10_1177_0309524X221108423 crossref_primary_10_1016_j_renene_2023_119097 crossref_primary_10_1088_1755_1315_93_1_012020 crossref_primary_10_1016_j_asoc_2020_106463 crossref_primary_10_1016_j_renene_2019_04_158 crossref_primary_10_1007_s41870_024_02157_6 crossref_primary_10_1016_j_renene_2019_04_157 crossref_primary_10_1016_j_apenergy_2021_118029 crossref_primary_10_1016_j_jweia_2021_104561 crossref_primary_10_1088_1742_6596_910_1_012020 crossref_primary_10_1109_TSTE_2021_3069111 crossref_primary_10_3390_en11081958 crossref_primary_10_1016_j_energy_2016_05_133 crossref_primary_10_1016_j_energy_2024_132228 crossref_primary_10_1016_j_apenergy_2013_05_002 crossref_primary_10_1155_2013_461983 crossref_primary_10_3390_en12040712 crossref_primary_10_1177_0309524X21998263 crossref_primary_10_1016_j_apenergy_2024_123589 crossref_primary_10_1016_j_apenergy_2016_05_071 crossref_primary_10_1016_j_apenergy_2019_01_105 crossref_primary_10_1007_s00500_018_3566_2 crossref_primary_10_1016_j_neucom_2019_08_108 crossref_primary_10_1016_j_enconman_2019_02_086 crossref_primary_10_1016_j_energy_2020_119397 crossref_primary_10_1109_ACCESS_2020_2978169 crossref_primary_10_15446_dyna_v84n201_59541 crossref_primary_10_1016_j_energy_2023_126738 crossref_primary_10_1016_j_renene_2017_08_071 crossref_primary_10_1016_j_knosys_2020_106052 crossref_primary_10_1016_j_enconman_2022_116296 crossref_primary_10_1016_j_jweia_2020_104198 crossref_primary_10_1007_s11356_022_23454_2 crossref_primary_10_1002_met_70050 crossref_primary_10_1016_j_apenergy_2012_04_001 crossref_primary_10_1111_anzs_12340 crossref_primary_10_1029_2021EA001865 crossref_primary_10_1016_j_apenergy_2016_06_098 crossref_primary_10_1002_env_2655 crossref_primary_10_1016_j_renene_2021_08_013 crossref_primary_10_1007_s12517_015_1829_0 crossref_primary_10_1016_j_energy_2024_131230 crossref_primary_10_1016_j_renene_2018_03_064 crossref_primary_10_1109_TGRS_2024_3369640 crossref_primary_10_1515_tjj_2017_0003 crossref_primary_10_1016_j_enconman_2016_03_078 crossref_primary_10_1109_JSTARS_2024_3386629 crossref_primary_10_3390_en11020321 crossref_primary_10_1007_s11356_021_13516_2 crossref_primary_10_1016_j_renene_2024_120157 crossref_primary_10_1080_15567036_2018_1495782 crossref_primary_10_4316_AECE_2021_04001 crossref_primary_10_1007_s11356_019_07402_1 crossref_primary_10_1016_j_renene_2016_05_023 crossref_primary_10_1016_j_energy_2021_121981 crossref_primary_10_20965_jaciii_2025_p0592 crossref_primary_10_3390_en9080585 crossref_primary_10_1016_j_eswa_2023_122477 crossref_primary_10_1016_j_renene_2022_10_123 crossref_primary_10_1016_j_energy_2013_07_051 crossref_primary_10_1016_j_cie_2024_110477 crossref_primary_10_1111_jbg_12664 crossref_primary_10_1016_j_energy_2024_131345 crossref_primary_10_3390_en9010007 crossref_primary_10_1007_s00477_024_02881_2 crossref_primary_10_1016_j_renene_2022_09_114 crossref_primary_10_1016_j_energy_2017_01_150 crossref_primary_10_1016_j_jweia_2013_10_004 crossref_primary_10_1016_j_renene_2014_12_074 crossref_primary_10_1109_ACCESS_2020_3025811 crossref_primary_10_1002_ente_202100700 crossref_primary_10_1016_j_ifacol_2018_07_253 crossref_primary_10_1016_j_apenergy_2018_02_070 crossref_primary_10_3390_su11061804 crossref_primary_10_1007_s10668_021_01419_8 crossref_primary_10_1016_j_apenergy_2021_118191 crossref_primary_10_1016_j_renene_2013_08_011 crossref_primary_10_1016_j_renene_2022_04_017 crossref_primary_10_1016_j_neucom_2015_12_081 crossref_primary_10_3233_HIS_230004 crossref_primary_10_1016_j_apenergy_2019_114259 crossref_primary_10_1016_j_energy_2024_131590 crossref_primary_10_1007_s13042_021_01340_6 crossref_primary_10_1016_j_energy_2024_133511 crossref_primary_10_1016_j_engstruct_2023_117285 crossref_primary_10_1016_j_renene_2021_07_119 crossref_primary_10_1177_0309524X19849843 crossref_primary_10_1016_j_energy_2014_12_074 crossref_primary_10_3390_en11081992 crossref_primary_10_1007_s11269_019_02270_3 crossref_primary_10_1016_j_apenergy_2015_10_052 crossref_primary_10_1016_j_apenergy_2018_01_094 crossref_primary_10_1093_jrsssc_qlaf003 crossref_primary_10_1155_2020_5396473 crossref_primary_10_1007_s11783_023_1621_4 crossref_primary_10_1007_s11356_020_08452_6 crossref_primary_10_1155_2018_1936565 crossref_primary_10_1016_j_energy_2021_121764 crossref_primary_10_1080_0954898X_2023_2213756 crossref_primary_10_1016_j_apenergy_2022_119692 crossref_primary_10_1016_j_compeleceng_2025_110700 crossref_primary_10_1049_tje2_12201 crossref_primary_10_1016_j_eswa_2024_124764 crossref_primary_10_1016_j_renene_2021_07_126 crossref_primary_10_1016_j_asoc_2020_106116 crossref_primary_10_1002_we_2207 crossref_primary_10_1016_j_asoc_2021_107848 crossref_primary_10_1016_j_apenergy_2018_09_037 crossref_primary_10_1016_j_energy_2024_132899 crossref_primary_10_1016_j_enconman_2016_02_013 crossref_primary_10_1016_j_ins_2014_02_159 crossref_primary_10_1002_ese3_1742 crossref_primary_10_1109_TSTE_2021_3086851 crossref_primary_10_1016_j_renene_2020_07_081 crossref_primary_10_1049_iet_gtd_2016_1822 crossref_primary_10_1155_2015_740490 crossref_primary_10_1016_j_asoc_2019_105976 crossref_primary_10_1177_0309524X221106184 crossref_primary_10_3390_su10124601 crossref_primary_10_1002_we_2564 crossref_primary_10_3390_app12126085 crossref_primary_10_1002_jsfa_11588 crossref_primary_10_1016_j_energy_2024_130580 crossref_primary_10_3390_su10051443 crossref_primary_10_1016_j_enconman_2023_117896 crossref_primary_10_3389_fenrg_2022_937240 crossref_primary_10_1016_j_seta_2020_100946 crossref_primary_10_1177_0309524X19849867 crossref_primary_10_1002_etep_2466 crossref_primary_10_1109_ACCESS_2020_2984851 crossref_primary_10_1109_ACCESS_2020_3025967 crossref_primary_10_1016_j_apenergy_2019_03_088 crossref_primary_10_1155_2019_8503252 crossref_primary_10_1016_j_heliyon_2024_e33945 crossref_primary_10_1016_j_renene_2021_08_044 crossref_primary_10_1016_j_comnet_2024_110172 crossref_primary_10_1016_j_energy_2021_122630 crossref_primary_10_1016_j_energy_2022_126179 crossref_primary_10_3390_agriculture11040323 crossref_primary_10_1016_j_apenergy_2015_08_014 crossref_primary_10_1109_TSG_2018_2847223 crossref_primary_10_1016_j_asoc_2020_106350 crossref_primary_10_1016_j_apenergy_2019_114345 crossref_primary_10_1016_j_apenergy_2018_08_114 crossref_primary_10_1016_j_renene_2018_09_080 crossref_primary_10_1109_ACCESS_2024_3524608 crossref_primary_10_1016_j_apenergy_2018_09_012 crossref_primary_10_1016_j_knosys_2021_107009 crossref_primary_10_1016_j_apenergy_2017_01_063 crossref_primary_10_1007_s11004_020_09880_3 crossref_primary_10_1016_j_ijar_2016_10_010 crossref_primary_10_1007_s10489_022_03644_8 crossref_primary_10_1016_j_apenergy_2016_05_111 crossref_primary_10_1016_j_renene_2022_09_036 crossref_primary_10_1016_j_apenergy_2024_122785 crossref_primary_10_1016_j_enconman_2014_05_058 crossref_primary_10_1016_j_enconman_2021_114451 crossref_primary_10_1002_we_2422 crossref_primary_10_1080_15435075_2025_2520464 crossref_primary_10_3390_en15196919 crossref_primary_10_1061_JLEED9_EYENG_5474 crossref_primary_10_1155_2020_8303152 crossref_primary_10_1016_j_ins_2024_121736 crossref_primary_10_1016_j_energy_2025_136725 crossref_primary_10_1016_j_jweia_2023_105499 crossref_primary_10_1016_j_renene_2021_04_041 crossref_primary_10_1109_JSYST_2022_3150749 crossref_primary_10_1016_j_energy_2018_07_005 crossref_primary_10_3390_en12020254 crossref_primary_10_1016_j_energy_2024_133277 crossref_primary_10_1007_s12145_024_01388_2 crossref_primary_10_1109_ACCESS_2020_3011060 crossref_primary_10_3389_feart_2021_731803 crossref_primary_10_1016_j_asoc_2023_110294 crossref_primary_10_1016_j_enconman_2018_10_089 crossref_primary_10_1016_j_enconman_2019_06_024 crossref_primary_10_1016_j_energy_2022_125784 crossref_primary_10_1088_1742_6596_2131_5_052050 crossref_primary_10_1016_j_asoc_2020_106294 crossref_primary_10_1016_j_energy_2015_10_026 crossref_primary_10_3390_en9040261 crossref_primary_10_1016_j_energy_2023_129604 crossref_primary_10_1016_j_neucom_2022_06_117 crossref_primary_10_1080_15435075_2025_2471997 crossref_primary_10_1109_TIE_2023_3294607 crossref_primary_10_1155_2021_9200560 crossref_primary_10_1016_j_apenergy_2011_01_037 crossref_primary_10_1016_j_ijepes_2021_107365 crossref_primary_10_1007_s11069_016_2163_x crossref_primary_10_1016_j_energy_2024_132056 crossref_primary_10_1111_exsy_12868 crossref_primary_10_1016_j_asoc_2025_113651 crossref_primary_10_1016_j_renene_2024_121992 crossref_primary_10_3390_app11209383 crossref_primary_10_1016_j_enconman_2017_04_064 crossref_primary_10_3389_fceng_2021_665415 crossref_primary_10_1080_10298436_2018_1512712 crossref_primary_10_1155_2022_3672905 crossref_primary_10_3390_en15155472 crossref_primary_10_1016_j_renene_2025_123966 crossref_primary_10_3390_app15010138 crossref_primary_10_1109_TNNLS_2021_3100902 crossref_primary_10_1109_TSG_2022_3175451 crossref_primary_10_1177_0954406217752746 crossref_primary_10_1016_j_epsr_2022_108174 crossref_primary_10_1051_e3sconf_202018501052 crossref_primary_10_1080_15435075_2024_2326052 crossref_primary_10_1111_exsy_12511 crossref_primary_10_1080_14786451_2015_1026906 crossref_primary_10_32604_ee_2023_040887 crossref_primary_10_3390_en15196942 crossref_primary_10_1016_j_enconman_2018_10_068 crossref_primary_10_1109_TITS_2021_3058608 crossref_primary_10_3390_en15218107 crossref_primary_10_1016_j_energy_2020_118441 crossref_primary_10_1016_j_energy_2023_129823 crossref_primary_10_1016_j_jksuci_2020_09_009 crossref_primary_10_1016_j_enconman_2016_01_007 crossref_primary_10_1109_ACCESS_2019_2922662 crossref_primary_10_1016_j_apenergy_2015_07_043 crossref_primary_10_1109_ACCESS_2023_3335629 crossref_primary_10_1007_s00202_023_02005_z crossref_primary_10_1016_j_engappai_2020_103573 crossref_primary_10_1016_j_engappai_2024_108501 crossref_primary_10_1016_j_chaos_2023_114222 crossref_primary_10_1016_j_energy_2022_124250 crossref_primary_10_1080_00051144_2020_1811571 crossref_primary_10_1016_j_renene_2025_122983 crossref_primary_10_3390_app11209441 crossref_primary_10_1016_j_compeleceng_2024_109715 crossref_primary_10_1016_j_apm_2021_07_024 crossref_primary_10_3390_s24155035 crossref_primary_10_1016_j_energy_2017_06_137 crossref_primary_10_1016_j_enconman_2020_113680 crossref_primary_10_1016_j_renene_2022_06_143 crossref_primary_10_1016_j_rser_2016_01_114 crossref_primary_10_1177_0958305X221084078 crossref_primary_10_1007_s00202_024_02685_1 crossref_primary_10_1016_j_physa_2021_126045 crossref_primary_10_1016_j_energy_2019_02_194 crossref_primary_10_1049_cit2_12157 crossref_primary_10_14710_ijred_2023_48672 crossref_primary_10_3389_fenrg_2024_1474969 crossref_primary_10_1016_j_cie_2023_109237 crossref_primary_10_1016_j_energy_2021_119848 crossref_primary_10_1016_j_enconman_2023_117590 crossref_primary_10_1155_2017_6856139 crossref_primary_10_1007_s00500_020_05222_x crossref_primary_10_1016_j_renene_2022_12_120 crossref_primary_10_1016_j_asoc_2018_07_041 crossref_primary_10_1016_j_apenergy_2014_05_026 crossref_primary_10_1061__ASCE_EY_1943_7897_0000823 crossref_primary_10_1016_j_compeleceng_2024_109820 crossref_primary_10_1016_j_energy_2023_126778 crossref_primary_10_1016_j_ijforecast_2020_09_009 crossref_primary_10_1016_j_renene_2020_05_182 crossref_primary_10_1016_j_engappai_2024_107891 crossref_primary_10_1016_j_seta_2019_07_003 crossref_primary_10_3390_math11102223 crossref_primary_10_3390_math8101795 crossref_primary_10_1007_s10661_020_08399_8 crossref_primary_10_1016_j_energy_2015_04_075 crossref_primary_10_3390_en10070922 crossref_primary_10_3390_en12020329 crossref_primary_10_1016_j_oceaneng_2019_106300 crossref_primary_10_1080_15567036_2025_2540055 crossref_primary_10_1080_15435075_2016_1278373 crossref_primary_10_1177_0020294021997491 crossref_primary_10_1016_j_energy_2024_133103 crossref_primary_10_1109_ACCESS_2020_3035121 crossref_primary_10_1155_2014_972580 crossref_primary_10_1016_j_apenergy_2018_10_080 crossref_primary_10_1016_j_enconman_2020_113456 crossref_primary_10_1016_j_apenergy_2017_01_043 crossref_primary_10_1108_IJESM_06_2018_0002 crossref_primary_10_1109_ACCESS_2020_3027977 crossref_primary_10_1080_02664763_2013_839634 crossref_primary_10_1007_s10618_023_00929_5 crossref_primary_10_1016_j_engappai_2023_106273 crossref_primary_10_1051_epjconf_202532605003 crossref_primary_10_1016_j_apenergy_2019_04_047 crossref_primary_10_1016_j_jweia_2024_105898 crossref_primary_10_1016_j_epsr_2023_109502 crossref_primary_10_1016_j_enconman_2019_05_005 crossref_primary_10_1016_j_energy_2015_10_041 crossref_primary_10_1016_j_knosys_2025_113739 crossref_primary_10_1016_j_enconman_2020_113346 crossref_primary_10_1016_j_renene_2024_120350 crossref_primary_10_1080_08839514_2021_1994217 crossref_primary_10_1016_j_seta_2021_101940 crossref_primary_10_1016_j_enconman_2019_06_041 crossref_primary_10_1016_j_energy_2022_125248 crossref_primary_10_1016_j_asoc_2018_07_027 crossref_primary_10_1016_j_enconman_2020_113234 crossref_primary_10_1016_j_enconman_2017_10_085 crossref_primary_10_1007_s40899_020_00430_7 crossref_primary_10_1016_j_apenergy_2013_02_002 crossref_primary_10_1016_j_egyr_2024_04_013 crossref_primary_10_1016_j_rser_2013_12_054 crossref_primary_10_3390_en8076585 crossref_primary_10_3390_rs10111701 crossref_primary_10_1016_j_energy_2023_129904 crossref_primary_10_1080_15567036_2024_2318485 |
| Cites_doi | 10.1016/j.atmosenv.2004.10.047 10.1016/j.solener.2004.09.013 10.1016/j.apenergy.2009.10.001 10.1109/TEC.2003.821865 10.1175/2009MWR3138.1 10.1016/j.cageo.2008.06.002 10.1016/j.insmatheco.2007.05.004 10.1002/we.400 10.1198/073500101681019972 10.1109/TPWRS.2006.873421 10.1016/S0038-092X(97)00037-6 10.1016/j.renene.2007.06.013 10.1093/biomet/65.2.297 10.1016/j.apenergy.2009.09.022 10.1002/met.158 10.1016/j.apenergy.2009.12.013 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 10.1016/j.apenergy.2009.03.017 10.1007/BF00712528 10.1016/j.enconman.2008.01.010 10.1111/j.2517-6161.1994.tb01981.x 10.1162/003355398555793 10.1016/S0167-6105(00)00079-9 10.1016/0004-6981(78)90020-3 10.1109/TPWRD.2002.1022802 10.2307/2335637 10.1016/S0167-6105(98)00192-5 10.1080/00036849100000070 10.1016/j.econmod.2007.04.003 10.1016/j.jweia.2009.07.011 10.1016/j.neucom.2006.01.032 10.1007/978-1-4612-3688-7_10 10.1016/j.rser.2008.02.002 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW DKI X2L 7SU 7TA 8FD C1K FR3 JG9 7S9 L.6 7ST SOI |
| DOI | 10.1016/j.apenergy.2010.10.031 |
| DatabaseName | AGRIS CrossRef Pascal-Francis RePEc IDEAS RePEc Environmental Engineering Abstracts Materials Business File Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database AGRICOLA AGRICOLA - Academic Environment Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Engineering Research Database Technology Research Database Materials Business File Environmental Engineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Environment Abstracts |
| DatabaseTitleList | Materials Research Database Environment Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Applied Sciences |
| EISSN | 1872-9118 |
| EndPage | 1414 |
| ExternalDocumentID | eeeappene_v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405_1414_htm 23824184 10_1016_j_apenergy_2010_10_031 US201600011774 S0306261910004332 |
| GeographicLocations | North Dakota USA, North Dakota |
| GeographicLocations_xml | – name: North Dakota – name: USA, North Dakota |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZY4 ~02 ~G- ABPIF ABPTK FBQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 02 0R 1 8P AAPBV ADALY DKI G- HZ IPNFZ K M X2L 7SU 7TA 8FD C1K FR3 JG9 7S9 L.6 7ST SOI |
| ID | FETCH-LOGICAL-c599t-4a31aaf3f3387b64e71e668803cf990d6502a7006123ceb67a51bb48dd6f26bf3 |
| ISICitedReferencesCount | 729 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286707300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Tue Oct 07 09:03:47 EDT 2025 Sun Nov 09 12:36:52 EST 2025 Tue Oct 07 09:57:37 EDT 2025 Thu Dec 16 09:11:49 EST 2021 Mon Jul 21 09:14:37 EDT 2025 Sat Nov 29 07:24:07 EST 2025 Tue Nov 18 22:40:48 EST 2025 Wed Dec 27 19:13:40 EST 2023 Fri Feb 23 02:36:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Wind direction Vector autoregression ARMA Wind speed Combined forecasting |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c599t-4a31aaf3f3387b64e71e668803cf990d6502a7006123ceb67a51bb48dd6f26bf3 |
| Notes | http://dx.doi.org/10.1016/j.apenergy.2010.10.031 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1777105725 |
| PQPubID | 23462 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_855714259 proquest_miscellaneous_2000023467 proquest_miscellaneous_1777105725 repec_primary_eeeappene_v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405_1414_htm pascalfrancis_primary_23824184 crossref_citationtrail_10_1016_j_apenergy_2010_10_031 crossref_primary_10_1016_j_apenergy_2010_10_031 fao_agris_US201600011774 elsevier_sciencedirect_doi_10_1016_j_apenergy_2010_10_031 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-04-01 |
| PublicationDateYYYYMMDD | 2011-04-01 |
| PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationSeriesTitle | Applied Energy |
| PublicationTitle | Applied energy |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Brown, Katz, Murphy (b0050) 1984; 23 Thiaw, Sow, Fall, Kasse, Sylla, Thioye (b0075) 2010; 87 Erdem E, Shi J. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data. Wind Energy, in press. doi:10.1002/we.400. Ljung, Box (b0200) 1978; 65 Landberg (b0025) 2001; 89 Lalarukh, Yasmin (b0045) 1997; 61 Bruggemann (b0160) 2004 Gujarati (b0235) 2003 Mabel, Fernandez (b0065) 2008; 33 Dale, Milborrow, Slark, Strbac (b0010) 2003; 109 Damousis, Alexiadis, Theocharis, Dokopoulos (b0070) 2004; 19 Bao, Gneiting, Grimit (b0120) 2010; 138 [retrieved April 2010]. Torres, Garcı´a, De Blas, De Francisco (b0055) 2005; 79 Mardia (b0230) 1976; 63 McMillan, Bortnick, Irwin, Berliner (b0105) 2005; 39 Morales, Minguez, Conejo (b0085) 2010; 87 Robertson, Tallman (b0165) 2001; 19 [accessed April 2010]. Gong, Shi (b0060) 2010; 87 Fraser, Taylor (b0190) 1991; 23 Breckling (b0240) 1989 Carta, Ramírez, Bueno (b0205) 2008; 49 Burlando, Villa, Ratto, Cassulo (b0115) 2009; 97 Zhang, Pu (b0095) 2002; 17 SAS Institute. SAS/ETS™ 9.2 user’s guide. The MINIC method. Box, Jenkins, Reinsel (b0040) 1994 Buckle, Kim, Kirkham, McLellan, Sharma (b0155) 2007; 24 Grimit EP, Gneiting T, Berrocal V, Johnson NA. The continuous rank probability score for circular variables. Technical Report No. 493. Department of Statistics, University of Washington; 2006. Asma M. Mean reversion of stock returns of an emerging market: empirical evidence from Botswana stock exchange. SSRN: working paper. McWilliams, Newmann, Sprevak (b0210) 1979; 3 Finzi, Fronza, Rinaldi (b0110) 1978; 12 Fisher, Lee (b0145) 1994; 56 Landberg, Watson (b0035) 1994; 70 [retrieved August 2010]. Kalusner, Kaplan, Fattal (b0125) 2009; 16 Landberg (b0030) 1999; 80 Lei, Jiang, Liu, Zhang (b0015) 2009; 13 Montgomery, Jennings, Kulahci (b0170) 2008 Fisher (b0215) 1993 Giebel G, Brownsword R, Kariniotakis G. The state-of-the-art in short-term prediction of wind power: a literature overview. Project ANEMOS, Deliverable Report D1.1; 2003. Barbounis, Theocharis (b0080) 2007; 70 World Wind Energy Association. World Wind Energy Report; 2009. Carta, Ramirez, Bueno (b0135) 2008; 49 Vereda, Lopes, Fukuda (b0150) 2008; 42 Bohn (b0195) 1998; 113 Xydis, Koroneos, Loizidou (b0090) 2009; 86 Potter (b0130) 2006; 21 Daniele, Lirer, Petrosino, Spinelli, Peterson (b0100) 2009; 35 Iqbal, Baksh, Maqbool, Ahmad (b0175) 2005; 1 Kamal, Jafri (b0180) 1997; 61 Daniele (10.1016/j.apenergy.2010.10.031_b0100) 2009; 35 Bruggemann (10.1016/j.apenergy.2010.10.031_b0160) 2004 Gong (10.1016/j.apenergy.2010.10.031_b0060) 2010; 87 Landberg (10.1016/j.apenergy.2010.10.031_b0025) 2001; 89 Robertson (10.1016/j.apenergy.2010.10.031_b0165) 2001; 19 Fraser (10.1016/j.apenergy.2010.10.031_b0190) 1991; 23 Potter (10.1016/j.apenergy.2010.10.031_b0130) 2006; 21 10.1016/j.apenergy.2010.10.031_b0005 10.1016/j.apenergy.2010.10.031_b0225 Mardia (10.1016/j.apenergy.2010.10.031_b0230) 1976; 63 Fisher (10.1016/j.apenergy.2010.10.031_b0215) 1993 Carta (10.1016/j.apenergy.2010.10.031_b0205) 2008; 49 Brown (10.1016/j.apenergy.2010.10.031_b0050) 1984; 23 Bao (10.1016/j.apenergy.2010.10.031_b0120) 2010; 138 McMillan (10.1016/j.apenergy.2010.10.031_b0105) 2005; 39 Damousis (10.1016/j.apenergy.2010.10.031_b0070) 2004; 19 Morales (10.1016/j.apenergy.2010.10.031_b0085) 2010; 87 Dale (10.1016/j.apenergy.2010.10.031_b0010) 2003; 109 Bohn (10.1016/j.apenergy.2010.10.031_b0195) 1998; 113 Lei (10.1016/j.apenergy.2010.10.031_b0015) 2009; 13 Breckling (10.1016/j.apenergy.2010.10.031_b0240) 1989 Landberg (10.1016/j.apenergy.2010.10.031_b0030) 1999; 80 Mabel (10.1016/j.apenergy.2010.10.031_b0065) 2008; 33 Thiaw (10.1016/j.apenergy.2010.10.031_b0075) 2010; 87 McWilliams (10.1016/j.apenergy.2010.10.031_b0210) 1979; 3 Barbounis (10.1016/j.apenergy.2010.10.031_b0080) 2007; 70 Buckle (10.1016/j.apenergy.2010.10.031_b0155) 2007; 24 Montgomery (10.1016/j.apenergy.2010.10.031_b0170) 2008 Lalarukh (10.1016/j.apenergy.2010.10.031_b0045) 1997; 61 Torres (10.1016/j.apenergy.2010.10.031_b0055) 2005; 79 Landberg (10.1016/j.apenergy.2010.10.031_b0035) 1994; 70 Xydis (10.1016/j.apenergy.2010.10.031_b0090) 2009; 86 Fisher (10.1016/j.apenergy.2010.10.031_b0145) 1994; 56 Gujarati (10.1016/j.apenergy.2010.10.031_b0235) 2003 Zhang (10.1016/j.apenergy.2010.10.031_b0095) 2002; 17 Box (10.1016/j.apenergy.2010.10.031_b0040) 1994 Finzi (10.1016/j.apenergy.2010.10.031_b0110) 1978; 12 Kalusner (10.1016/j.apenergy.2010.10.031_b0125) 2009; 16 Kamal (10.1016/j.apenergy.2010.10.031_b0180) 1997; 61 Iqbal (10.1016/j.apenergy.2010.10.031_b0175) 2005; 1 Ljung (10.1016/j.apenergy.2010.10.031_b0200) 1978; 65 Carta (10.1016/j.apenergy.2010.10.031_b0135) 2008; 49 10.1016/j.apenergy.2010.10.031_b0220 10.1016/j.apenergy.2010.10.031_b0020 10.1016/j.apenergy.2010.10.031_b0185 Burlando (10.1016/j.apenergy.2010.10.031_b0115) 2009; 97 10.1016/j.apenergy.2010.10.031_b0140 Vereda (10.1016/j.apenergy.2010.10.031_b0150) 2008; 42 |
| References_xml | – volume: 97 start-page: 497 year: 2009 end-page: 511 ident: b0115 article-title: Preliminary estimate of the large-scale wind energy resource with few measurements available: the case of Montenegro publication-title: J Wind Eng Ind Aerodyn – reference: > [retrieved August 2010]. – volume: 1 start-page: 120 year: 2005 end-page: 122 ident: b0175 article-title: Use of the ARIMA model for forecasting wheat area and production in Pakistan publication-title: J Agric Social Sci – volume: 61 start-page: 23 year: 1997 end-page: 32 ident: b0180 article-title: Time series model to simulate and forecast hourly averaged wind speed in Quetta, Pakistan publication-title: Sol Energy – volume: 33 start-page: 986 year: 2008 end-page: 992 ident: b0065 article-title: Analysis of wind power generation and prediction using ANN: a case study publication-title: Renew Energy – volume: 49 start-page: 1309 year: 2008 end-page: 1320 ident: b0205 article-title: A joint probability density function of wind speed and direction for wind energy analysis publication-title: Energy Convers Manage – volume: 86 start-page: 2411 year: 2009 end-page: 2420 ident: b0090 article-title: Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece publication-title: Appl Energy – volume: 39 start-page: 1373 year: 2005 end-page: 1382 ident: b0105 article-title: A hierarchical Bayesian model to estimate and forecast ozone through space and time publication-title: Atmos Environ – reference: Erdem E, Shi J. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data. Wind Energy, in press. doi:10.1002/we.400. – volume: 87 start-page: 1744 year: 2010 end-page: 1748 ident: b0075 article-title: A neural network based approach for wind resource and wind generators production assessment publication-title: Appl Energy – year: 1993 ident: b0215 article-title: Statistical analysis of circular data – year: 1989 ident: b0240 article-title: The analysis of directional time series: applications to wind speed and direction publication-title: Lecture notes in statistics – volume: 56 start-page: 327 year: 1994 end-page: 339 ident: b0145 article-title: Time series analysis of circular data publication-title: J Roy Stat Soc Ser B (Methodology) – reference: SAS Institute. SAS/ETS™ 9.2 user’s guide. The MINIC method. < – year: 2003 ident: b0235 article-title: Basic econometrics – volume: 19 start-page: 352 year: 2004 end-page: 361 ident: b0070 article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation publication-title: IEEE Trans Energy Convers – volume: 87 start-page: 2313 year: 2010 end-page: 2320 ident: b0060 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl Energy – year: 2004 ident: b0160 article-title: Model reduction methods for vector autoregressive processes – volume: 16 start-page: 569 year: 2009 end-page: 579 ident: b0125 article-title: The similar days method for predicting near surface wind vectors publication-title: Meteorol Appl – year: 1994 ident: b0040 article-title: Time series analysis, forecasting and control – volume: 24 start-page: 990 year: 2007 end-page: 1017 ident: b0155 article-title: A structural VAR business cycle model for a volatile small open economy publication-title: Econ Model – volume: 70 start-page: 171 year: 1994 end-page: 195 ident: b0035 article-title: Short-term prediction of local wind conditions publication-title: Bound Layer Meteorol – reference: > [accessed April 2010]. – volume: 19 start-page: 324 year: 2001 end-page: 330 ident: b0165 article-title: Improving federal-funds rate forecasts in VAR models used for policy analysis publication-title: J Bus Econ Stat – year: 2008 ident: b0170 article-title: Introduction to tine series analysis and forecasting – volume: 61 start-page: 23 year: 1997 end-page: 32 ident: b0045 article-title: Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan publication-title: Sol Energy – volume: 79 start-page: 65 year: 2005 end-page: 77 ident: b0055 article-title: Forecast of hourly average wind speed with ARMA models in Navarre publication-title: Sol Energy – volume: 138 start-page: 1811 year: 2010 end-page: 1821 ident: b0120 article-title: Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction publication-title: MonWeather Rev – volume: 89 start-page: 235 year: 2001 end-page: 245 ident: b0025 article-title: Short-term prediction of local wind conditions publication-title: J Wind Eng Ind Aerodyn – reference: Giebel G, Brownsword R, Kariniotakis G. The state-of-the-art in short-term prediction of wind power: a literature overview. Project ANEMOS, Deliverable Report D1.1; 2003. < – reference: Asma M. Mean reversion of stock returns of an emerging market: empirical evidence from Botswana stock exchange. SSRN: working paper. < – volume: 23 start-page: 1184 year: 1984 end-page: 1195 ident: b0050 article-title: Time series models to simulate and forecast wind speed and power publication-title: J Climate Appl Meteorol – volume: 35 start-page: 1035 year: 2009 end-page: 1049 ident: b0100 article-title: Applications of the PUFF Model to forecasts of volcanic clouds dispersal from Etna and Vesuvio publication-title: Comput Geosci – volume: 63 start-page: 403 year: 1976 end-page: 405 ident: b0230 article-title: Linear–circular correlation coefficients and rhythmometry publication-title: Biometrika – volume: 109 start-page: 17 year: 2003 end-page: 25 ident: b0010 article-title: A shift to wind is not unfeasible (total cost estimates for large-scale wind scenarios in UK) publication-title: Power UK – volume: 3 start-page: 269 year: 1979 end-page: 273 ident: b0210 article-title: The probability distribution of wind velocity and direction publication-title: Wind Eng – volume: 113 start-page: 949 year: 1998 end-page: 963 ident: b0195 article-title: The behavior of US public debt and deficits publication-title: Quart J Econ – volume: 17 start-page: 770 year: 2002 end-page: 778 ident: b0095 article-title: A Bayesian approach for short-term transmission line thermal overload risk assessment publication-title: IEEE Trans Power Deliv – reference: World Wind Energy Association. World Wind Energy Report; 2009. < – volume: 21 start-page: 965 year: 2006 end-page: 972 ident: b0130 article-title: Negnevitsky M very short term wind forecasting for Tasmanian power generation publication-title: IEEE Trans Power Syst – volume: 49 start-page: 1309 year: 2008 end-page: 1320 ident: b0135 article-title: A joint probability function of wind speed and direction for wind energy analysis publication-title: Energy Convers Manage – volume: 65 start-page: 297 year: 1978 end-page: 303 ident: b0200 article-title: On a measure of a lack of fit in time series models publication-title: Biometrika – volume: 13 start-page: 915 year: 2009 end-page: 920 ident: b0015 article-title: A review on forecasting wind data and wind output publication-title: Renew Sustain Energy Rev – reference: > [retrieved April 2010]. – volume: 87 start-page: 843 year: 2010 end-page: 855 ident: b0085 article-title: A methodology to generate statistically dependent wind speed scenarios publication-title: Appl Energy – volume: 23 start-page: 1749 year: 1991 end-page: 1759 ident: b0190 article-title: An empirical examination of long-run purchasing power parity as theory of international commodity arbitrage publication-title: Appl Econ – volume: 42 start-page: 548 year: 2008 end-page: 559 ident: b0150 article-title: Estimating VAR models for the term structure of interest rates publication-title: Insur Math Econ – volume: 70 start-page: 1525 year: 2007 end-page: 1542 ident: b0080 article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation publication-title: Neurocomputing – volume: 80 start-page: 207 year: 1999 end-page: 222 ident: b0030 article-title: Short-term prediction of the power production from wind farms publication-title: J Wind Eng Ind Aerodyn – reference: Grimit EP, Gneiting T, Berrocal V, Johnson NA. The continuous rank probability score for circular variables. Technical Report No. 493. Department of Statistics, University of Washington; 2006. – volume: 12 start-page: 831 year: 1978 end-page: 838 ident: b0110 article-title: Stochastic modelling and forecast of the dosage area product publication-title: Atmos Environ – volume: 39 start-page: 1373 issue: 8 year: 2005 ident: 10.1016/j.apenergy.2010.10.031_b0105 article-title: A hierarchical Bayesian model to estimate and forecast ozone through space and time publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2004.10.047 – year: 2008 ident: 10.1016/j.apenergy.2010.10.031_b0170 – volume: 79 start-page: 65 issue: 1 year: 2005 ident: 10.1016/j.apenergy.2010.10.031_b0055 article-title: Forecast of hourly average wind speed with ARMA models in Navarre publication-title: Sol Energy doi: 10.1016/j.solener.2004.09.013 – volume: 87 start-page: 1744 issue: 5 year: 2010 ident: 10.1016/j.apenergy.2010.10.031_b0075 article-title: A neural network based approach for wind resource and wind generators production assessment publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.10.001 – volume: 19 start-page: 352 issue: 2 year: 2004 ident: 10.1016/j.apenergy.2010.10.031_b0070 article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2003.821865 – volume: 138 start-page: 1811 issue: 5 year: 2010 ident: 10.1016/j.apenergy.2010.10.031_b0120 article-title: Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction publication-title: MonWeather Rev doi: 10.1175/2009MWR3138.1 – volume: 35 start-page: 1035 issue: 5 year: 2009 ident: 10.1016/j.apenergy.2010.10.031_b0100 article-title: Applications of the PUFF Model to forecasts of volcanic clouds dispersal from Etna and Vesuvio publication-title: Comput Geosci doi: 10.1016/j.cageo.2008.06.002 – volume: 42 start-page: 548 issue: 2 year: 2008 ident: 10.1016/j.apenergy.2010.10.031_b0150 article-title: Estimating VAR models for the term structure of interest rates publication-title: Insur Math Econ doi: 10.1016/j.insmatheco.2007.05.004 – ident: 10.1016/j.apenergy.2010.10.031_b0185 – ident: 10.1016/j.apenergy.2010.10.031_b0140 doi: 10.1002/we.400 – volume: 19 start-page: 324 issue: 3 year: 2001 ident: 10.1016/j.apenergy.2010.10.031_b0165 article-title: Improving federal-funds rate forecasts in VAR models used for policy analysis publication-title: J Bus Econ Stat doi: 10.1198/073500101681019972 – year: 1993 ident: 10.1016/j.apenergy.2010.10.031_b0215 – volume: 21 start-page: 965 issue: 2 year: 2006 ident: 10.1016/j.apenergy.2010.10.031_b0130 article-title: Negnevitsky M very short term wind forecasting for Tasmanian power generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.873421 – volume: 61 start-page: 23 issue: 1 year: 1997 ident: 10.1016/j.apenergy.2010.10.031_b0045 article-title: Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan publication-title: Sol Energy doi: 10.1016/S0038-092X(97)00037-6 – volume: 33 start-page: 986 issue: 5 year: 2008 ident: 10.1016/j.apenergy.2010.10.031_b0065 article-title: Analysis of wind power generation and prediction using ANN: a case study publication-title: Renew Energy doi: 10.1016/j.renene.2007.06.013 – volume: 65 start-page: 297 year: 1978 ident: 10.1016/j.apenergy.2010.10.031_b0200 article-title: On a measure of a lack of fit in time series models publication-title: Biometrika doi: 10.1093/biomet/65.2.297 – volume: 87 start-page: 843 issue: 3 year: 2010 ident: 10.1016/j.apenergy.2010.10.031_b0085 article-title: A methodology to generate statistically dependent wind speed scenarios publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.09.022 – volume: 16 start-page: 569 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2010.10.031_b0125 article-title: The similar days method for predicting near surface wind vectors publication-title: Meteorol Appl doi: 10.1002/met.158 – ident: 10.1016/j.apenergy.2010.10.031_b0225 – volume: 87 start-page: 2313 year: 2010 ident: 10.1016/j.apenergy.2010.10.031_b0060 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.12.013 – volume: 23 start-page: 1184 issue: 11 year: 1984 ident: 10.1016/j.apenergy.2010.10.031_b0050 article-title: Time series models to simulate and forecast wind speed and power publication-title: J Climate Appl Meteorol doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 – volume: 1 start-page: 120 issue: 2 year: 2005 ident: 10.1016/j.apenergy.2010.10.031_b0175 article-title: Use of the ARIMA model for forecasting wheat area and production in Pakistan publication-title: J Agric Social Sci – volume: 86 start-page: 2411 issue: 11 year: 2009 ident: 10.1016/j.apenergy.2010.10.031_b0090 article-title: Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.03.017 – volume: 70 start-page: 171 year: 1994 ident: 10.1016/j.apenergy.2010.10.031_b0035 article-title: Short-term prediction of local wind conditions publication-title: Bound Layer Meteorol doi: 10.1007/BF00712528 – volume: 109 start-page: 17 year: 2003 ident: 10.1016/j.apenergy.2010.10.031_b0010 article-title: A shift to wind is not unfeasible (total cost estimates for large-scale wind scenarios in UK) publication-title: Power UK – volume: 49 start-page: 1309 year: 2008 ident: 10.1016/j.apenergy.2010.10.031_b0135 article-title: A joint probability function of wind speed and direction for wind energy analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.01.010 – volume: 56 start-page: 327 issue: 2 year: 1994 ident: 10.1016/j.apenergy.2010.10.031_b0145 article-title: Time series analysis of circular data publication-title: J Roy Stat Soc Ser B (Methodology) doi: 10.1111/j.2517-6161.1994.tb01981.x – volume: 113 start-page: 949 issue: 3 year: 1998 ident: 10.1016/j.apenergy.2010.10.031_b0195 article-title: The behavior of US public debt and deficits publication-title: Quart J Econ doi: 10.1162/003355398555793 – ident: 10.1016/j.apenergy.2010.10.031_b0005 – ident: 10.1016/j.apenergy.2010.10.031_b0020 – volume: 89 start-page: 235 issue: 3/4 year: 2001 ident: 10.1016/j.apenergy.2010.10.031_b0025 article-title: Short-term prediction of local wind conditions publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(00)00079-9 – ident: 10.1016/j.apenergy.2010.10.031_b0220 – volume: 12 start-page: 831 issue: 4 year: 1978 ident: 10.1016/j.apenergy.2010.10.031_b0110 article-title: Stochastic modelling and forecast of the dosage area product publication-title: Atmos Environ doi: 10.1016/0004-6981(78)90020-3 – volume: 17 start-page: 770 year: 2002 ident: 10.1016/j.apenergy.2010.10.031_b0095 article-title: A Bayesian approach for short-term transmission line thermal overload risk assessment publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2002.1022802 – volume: 63 start-page: 403 year: 1976 ident: 10.1016/j.apenergy.2010.10.031_b0230 article-title: Linear–circular correlation coefficients and rhythmometry publication-title: Biometrika doi: 10.2307/2335637 – volume: 80 start-page: 207 year: 1999 ident: 10.1016/j.apenergy.2010.10.031_b0030 article-title: Short-term prediction of the power production from wind farms publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(98)00192-5 – volume: 23 start-page: 1749 issue: 11 year: 1991 ident: 10.1016/j.apenergy.2010.10.031_b0190 article-title: An empirical examination of long-run purchasing power parity as theory of international commodity arbitrage publication-title: Appl Econ doi: 10.1080/00036849100000070 – volume: 49 start-page: 1309 issue: 6 year: 2008 ident: 10.1016/j.apenergy.2010.10.031_b0205 article-title: A joint probability density function of wind speed and direction for wind energy analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.01.010 – volume: 24 start-page: 990 issue: 6 year: 2007 ident: 10.1016/j.apenergy.2010.10.031_b0155 article-title: A structural VAR business cycle model for a volatile small open economy publication-title: Econ Model doi: 10.1016/j.econmod.2007.04.003 – volume: 3 start-page: 269 year: 1979 ident: 10.1016/j.apenergy.2010.10.031_b0210 article-title: The probability distribution of wind velocity and direction publication-title: Wind Eng – volume: 97 start-page: 497 issue: 11–12 year: 2009 ident: 10.1016/j.apenergy.2010.10.031_b0115 article-title: Preliminary estimate of the large-scale wind energy resource with few measurements available: the case of Montenegro publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2009.07.011 – year: 2003 ident: 10.1016/j.apenergy.2010.10.031_b0235 – volume: 70 start-page: 1525 issue: 7/9 year: 2007 ident: 10.1016/j.apenergy.2010.10.031_b0080 article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.01.032 – year: 2004 ident: 10.1016/j.apenergy.2010.10.031_b0160 – volume: 61 start-page: 23 issue: 1 year: 1997 ident: 10.1016/j.apenergy.2010.10.031_b0180 article-title: Time series model to simulate and forecast hourly averaged wind speed in Quetta, Pakistan publication-title: Sol Energy doi: 10.1016/S0038-092X(97)00037-6 – year: 1989 ident: 10.1016/j.apenergy.2010.10.031_b0240 article-title: The analysis of directional time series: applications to wind speed and direction doi: 10.1007/978-1-4612-3688-7_10 – volume: 13 start-page: 915 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2010.10.031_b0015 article-title: A review on forecasting wind data and wind output publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2008.02.002 – year: 1994 ident: 10.1016/j.apenergy.2010.10.031_b0040 |
| SSID | ssj0002120 |
| Score | 2.5539274 |
| Snippet | Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the... |
| SourceID | proquest repec pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1405 |
| SubjectTerms | Applied sciences ARMA Combined forecasting Combined forecasting Wind speed Wind direction ARMA Vector autoregression Energy energy efficiency Error analysis Exact sciences and technology Forecasting Mathematical analysis Mathematical models Natural energy North Dakota prediction VAR Vector autoregression Vectors (mathematics) Wind direction Wind energy Wind speed Wind turbines |
| Title | ARMA based approaches for forecasting the tuple of wind speed and direction |
| URI | https://dx.doi.org/10.1016/j.apenergy.2010.10.031 http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405-1414.htm https://www.proquest.com/docview/1777105725 https://www.proquest.com/docview/2000023467 https://www.proquest.com/docview/855714259 |
| Volume | 88 |
| WOSCitedRecordID | wos000286707300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6lgd4QDCYVn5MRkK8VAGSOInzhCrUCUYpiLWob5aTnLdOWxratIz_nnMSp6mg2njgwWnl2qmT-3z3OfHdEfKSecxVkeNZ4PgxLlCUbUngsRUDYwFn4LIiHdD3YTAa8ek0_NpqvTO-MOvLIE359XWY_VdRYx0KW7vO_oO465NiBX5HoeMRxY7HWwm-_-1zv6eNU1IHDIci6IIuEMtlbjyk8lVWbi38OdNPzzOAIm5rrzRzRmAmRG1FV6FwFqyJ-CKBq1Kfns1qnJ0WmYJ7J8YsJpvHpPVmlMqb6q1v6dVVU1Ny3kAE62WoZnUcU2azhgrUdQ1zan79Q1WXTw0uXsusHHi5zU7vtKvMwlZs7NEXcTwZDsV4MB2_yn5YOm2Yfr1e5VDZIx0n8ELeJp3-x8H0pDbGThWZ01xOw0n873-9i5_sKTnXG2flEueOKpOebK1KOgvIIG6Qk_EDcr9aVdB-iYaHpAXpPrnXiDW5Tw4GG5dGbFrp9OUj8kkDhhaAoRvAUAQLbQCGImBoARg6V1QDhhaAoQgYWgPmMZkcD8bvP1hVig0r9sIwt5h0bSmVq1yXB5HPILDB91Gnu7FCnpIgf3dkUAbpiSHyA-nZUcR4kvjK8SPlHpB2Ok_hkFDGfQnIvlXAE5bETuQjGQemkhBs7OZ0iWdurIir-PM6DcqlMBsNL4QRiNAC0fUokC55U_fLyggsN_YIjdxExSPL-yAQezf2PURBC3mGJlZMTh0dgLGImxiwLjnakn49GmS9yIM5Nnhh4CBQSes3bzKF-WopsHugE2o73u422mcOCTQSly6hO9pwzwtstLJhlwwKuNVjAACECF6PWAtXco6HX1j01MaPGRaGJcOi56fQs1Kc51dPbjGcp-TuRkM8I-18sYLn5E68zmfLxVE14X4DjXTfKA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARMA+based+approaches+for+forecasting+the+tuple+of+wind+speed+and+direction&rft.jtitle=Applied+energy&rft.au=Erdem%2C+Ergin&rft.au=Shi%2C+Jing&rft.date=2011-04-01&rft.issn=0306-2619&rft.volume=88&rft.issue=4+p.1405-1414&rft.spage=1405&rft.epage=1414&rft_id=info:doi/10.1016%2Fj.apenergy.2010.10.031&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |