ARMA based approaches for forecasting the tuple of wind speed and direction

Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the forecasting of wind speed and direction tuple is performed. Four approaches based on autoregressive moving average (ARMA) method are employed for th...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 88; no. 4; pp. 1405 - 1414
Main Authors: Erdem, Ergin, Shi, Jing
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.04.2011
Elsevier
Series:Applied Energy
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the forecasting of wind speed and direction tuple is performed. Four approaches based on autoregressive moving average (ARMA) method are employed for this purpose. The first approach features the decomposition of the wind speed into lateral and longitudinal components. Each component is represented by an ARMA model, and the results are combined to obtain the wind direction and speed forecasts. The second approach employs two independent ARMA models – a traditional ARMA model for predicting wind speed and a linked ARMA model for wind direction. The third approach features vector autoregression (VAR) models to forecast the tuple of wind attributes. The fourth approach involves employing a restricted version of the VAR approach to predict the same. By employing these four approaches, the hourly mean wind attributes are forecasted 1-h ahead for two wind observation sites in North Dakota, USA. The results are compared using the mean absolute error (MAE) as a measure for forecasting quality. It is found that the component model is better at predicting the wind direction than the traditional-linked ARMA model, whereas the opposite is observed for wind speed forecasting. Utilizing VAR approaches rather than the univariate counterparts brings modest improvement in wind direction prediction but not in wind speed prediction. Between restricted and unrestricted versions of VAR models, there is little difference in terms of forecasting performance.
AbstractList Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the forecasting of wind speed and direction tuple is performed. Four approaches based on autoregressive moving average (ARMA) method are employed for this purpose. The first approach features the decomposition of the wind speed into lateral and longitudinal components. Each component is represented by an ARMA model, and the results are combined to obtain the wind direction and speed forecasts. The second approach employs two independent ARMA models - a traditional ARMA model for predicting wind speed and a linked ARMA model for wind direction. The third approach features vector autoregression (VAR) models to forecast the tuple of wind attributes. The fourth approach involves employing a restricted version of the VAR approach to predict the same. By employing these four approaches, the hourly mean wind attributes are forecasted 1-h ahead for two wind observation sites in North Dakota, USA. The results are compared using the mean absolute error (MAE) as a measure for forecasting quality. It is found that the component model is better at predicting the wind direction than the traditional-linked ARMA model, whereas the opposite is observed for wind speed forecasting. Utilizing VAR approaches rather than the univariate counterparts brings modest improvement in wind direction prediction but not in wind speed prediction. Between restricted and unrestricted versions of VAR models, there is little difference in terms of forecasting performance.
Author Erdem, Ergin
Shi, Jing
Author_xml – sequence: 1
  givenname: Ergin
  surname: Erdem
  fullname: Erdem, Ergin
– sequence: 2
  givenname: Jing
  surname: Shi
  fullname: Shi, Jing
  email: jing.shi@ndsu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23824184$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405-1414.htm$$DView record in RePEc
BookMark eNqFUk2P0zAQjdAi0V34C5ALYi8tHtuxE4kD1YovUYQE7NlynHHrKk2CnS7qv2dCdjlwoIdnW9Z7M6M37zK76PoOs-w5sBUwUK_3Kztgh3F7WnH253PFBDzKFlBqvqwAyotswQRTS66gepJdprRnjHHgbJF9Xn_7ss5rm7DJ7TDE3rodptz3cQI6m8bQbfNxh_l4HFrMe5__Cl2TpwEnCb2aQLwx9N3T7LG3bcJn9_dVdvv-3Y-bj8vN1w-fbtabpSuqalxKK8BaL7wQpa6VRA2oVFky4XxVsUYVjFvNmAIuHNZK2wLqWpZNozxXtRdX2au5Lo3784hpNIeQHLat7bA_JlMWhQbJi4qY1_9lcjYZIaTSZ6mgtQZWaF4QdTNTIw7ozBDDwcaTQURykDZh7oywZUnHiUA7AboCQRIGAkhWGJAgzW48ULmX951tcrb10XYupL9luSi5hFIS783Mc7FPKaI3Lox2Mn6MNrQGmJnyYPbmIQ9mysP0T3kgufpH_tDhrPDFLPS2N3Ybabbb70RQ5B2QLdNkb2cG0tbvAkaTXMDO4RwN0_ThXJPfiQ7cDA
CODEN APENDX
CitedBy_id crossref_primary_10_3390_en13071666
crossref_primary_10_1080_10584587_2022_2065585
crossref_primary_10_1155_2019_9240317
crossref_primary_10_1016_j_enconman_2013_01_033
crossref_primary_10_1016_j_rser_2015_10_071
crossref_primary_10_1016_j_renene_2023_03_094
crossref_primary_10_3390_app12136396
crossref_primary_10_3390_en16237915
crossref_primary_10_3390_cleantechnol5020037
crossref_primary_10_1016_j_asoc_2019_02_034
crossref_primary_10_3389_fenvs_2022_1034536
crossref_primary_10_1016_j_apenergy_2017_11_071
crossref_primary_10_1016_j_jclepro_2021_129255
crossref_primary_10_3390_en17091996
crossref_primary_10_1016_j_eswa_2023_119636
crossref_primary_10_1016_j_compeleceng_2023_108784
crossref_primary_10_1049_rpg2_12132
crossref_primary_10_1051_e3sconf_202131901111
crossref_primary_10_1109_TII_2017_2730846
crossref_primary_10_1049_iet_rpg_2015_0477
crossref_primary_10_1007_s12667_022_00502_x
crossref_primary_10_3233_JIFS_200205
crossref_primary_10_1016_j_enconman_2017_08_014
crossref_primary_10_1038_s41598_024_74714_9
crossref_primary_10_1016_j_energy_2025_137654
crossref_primary_10_3390_s21030983
crossref_primary_10_1016_j_apenergy_2025_126234
crossref_primary_10_1016_j_enconman_2020_112956
crossref_primary_10_1016_j_seta_2022_101980
crossref_primary_10_1177_0309524X18780401
crossref_primary_10_3390_en11113197
crossref_primary_10_3390_math10111943
crossref_primary_10_1109_ACCESS_2020_3041533
crossref_primary_10_3389_fenrg_2024_1277464
crossref_primary_10_3390_en12122322
crossref_primary_10_1007_s13369_024_09203_2
crossref_primary_10_1016_j_eswa_2022_119223
crossref_primary_10_1016_j_egyr_2021_11_247
crossref_primary_10_1016_j_apenergy_2023_121587
crossref_primary_10_1016_j_enconman_2014_10_001
crossref_primary_10_1016_j_enconman_2021_114162
crossref_primary_10_3390_en15124221
crossref_primary_10_3390_asi7060105
crossref_primary_10_1016_j_renene_2012_02_015
crossref_primary_10_1049_iet_rpg_2020_0366
crossref_primary_10_1016_j_egyr_2014_11_003
crossref_primary_10_3390_en81212428
crossref_primary_10_1016_j_rser_2012_10_009
crossref_primary_10_1016_j_istruc_2025_108650
crossref_primary_10_1016_j_renene_2022_07_123
crossref_primary_10_1145_3696661
crossref_primary_10_3390_su11030650
crossref_primary_10_32604_cmes_2022_019245
crossref_primary_10_1016_j_energy_2018_05_157
crossref_primary_10_1155_2022_4014048
crossref_primary_10_1007_s11269_012_0194_y
crossref_primary_10_1016_j_energy_2022_124509
crossref_primary_10_1016_j_energy_2025_136660
crossref_primary_10_1049_rpg2_13003
crossref_primary_10_3390_pr9020387
crossref_primary_10_1016_j_cscee_2023_100594
crossref_primary_10_1016_j_renene_2016_02_003
crossref_primary_10_3390_su11030652
crossref_primary_10_1016_j_apenergy_2020_115034
crossref_primary_10_1016_j_oceaneng_2022_111352
crossref_primary_10_1016_j_apenergy_2021_116545
crossref_primary_10_1016_j_renene_2020_11_038
crossref_primary_10_3390_su8080754
crossref_primary_10_1049_rpg2_12157
crossref_primary_10_1016_j_renene_2021_06_092
crossref_primary_10_1016_j_eswa_2020_114364
crossref_primary_10_1016_j_energy_2022_123785
crossref_primary_10_1109_ACCESS_2025_3549035
crossref_primary_10_1007_s12667_019_00347_x
crossref_primary_10_1093_ce_zkad042
crossref_primary_10_3390_en15124361
crossref_primary_10_1016_j_rser_2016_01_106
crossref_primary_10_1016_j_apenergy_2013_02_044
crossref_primary_10_1016_j_ifacol_2020_06_108
crossref_primary_10_1038_s41598_024_83836_z
crossref_primary_10_4028_www_scientific_net_AMM_246_247_496
crossref_primary_10_1016_j_engstruct_2018_08_035
crossref_primary_10_1016_j_envpol_2023_121061
crossref_primary_10_1002_we_2906
crossref_primary_10_1049_rpg2_13016
crossref_primary_10_1016_j_apenergy_2011_07_044
crossref_primary_10_1016_j_seta_2021_101794
crossref_primary_10_1063_5_0246082
crossref_primary_10_1016_j_jweia_2017_12_019
crossref_primary_10_1016_j_apenergy_2024_125058
crossref_primary_10_1016_j_enconman_2017_09_034
crossref_primary_10_3390_info11120558
crossref_primary_10_1016_j_apenergy_2023_121014
crossref_primary_10_3390_en17133313
crossref_primary_10_1016_j_apenergy_2018_04_101
crossref_primary_10_1016_j_apenergy_2017_09_063
crossref_primary_10_1016_j_energy_2025_137979
crossref_primary_10_1109_TCYB_2013_2259229
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1016_j_energy_2023_128565
crossref_primary_10_4316_AECE_2019_02001
crossref_primary_10_3390_su151410816
crossref_primary_10_1063_5_0060920
crossref_primary_10_3389_fenrg_2021_788320
crossref_primary_10_1155_er_3098062
crossref_primary_10_1016_j_apenergy_2025_126318
crossref_primary_10_1109_TSTE_2018_2844102
crossref_primary_10_3390_atmos14121787
crossref_primary_10_1016_j_enconman_2021_114002
crossref_primary_10_1016_j_apenergy_2012_09_055
crossref_primary_10_1016_j_engstruct_2023_115663
crossref_primary_10_1016_j_apenergy_2019_113833
crossref_primary_10_3389_fenrg_2021_780928
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1016_j_renene_2025_123657
crossref_primary_10_1016_j_neucom_2019_06_001
crossref_primary_10_1007_s11269_014_0875_9
crossref_primary_10_1155_2016_3623412
crossref_primary_10_1016_j_enconman_2020_113731
crossref_primary_10_3390_su152416921
crossref_primary_10_1016_j_apenergy_2016_03_096
crossref_primary_10_1016_j_jeconom_2023_02_016
crossref_primary_10_1016_j_apenergy_2023_122248
crossref_primary_10_1016_j_energy_2024_134044
crossref_primary_10_1109_ACCESS_2018_2844278
crossref_primary_10_1016_j_energy_2025_137716
crossref_primary_10_1016_j_enconman_2025_119752
crossref_primary_10_1016_j_enconman_2019_112461
crossref_primary_10_1016_j_enconman_2020_112779
crossref_primary_10_1016_j_epsr_2025_111466
crossref_primary_10_1016_j_seta_2021_101780
crossref_primary_10_1109_ACCESS_2020_3043812
crossref_primary_10_1155_stc_3650202
crossref_primary_10_1016_j_apenergy_2025_126419
crossref_primary_10_1016_j_jksuci_2013_01_002
crossref_primary_10_1016_j_apenergy_2025_126536
crossref_primary_10_1016_j_renene_2022_02_095
crossref_primary_10_3390_en10122001
crossref_primary_10_1080_15567036_2021_2006370
crossref_primary_10_1016_j_enconman_2021_113917
crossref_primary_10_1002_joc_6037
crossref_primary_10_1016_j_renene_2020_09_031
crossref_primary_10_1016_j_ijhydene_2017_03_006
crossref_primary_10_1080_15567036_2021_1916657
crossref_primary_10_3389_fenrg_2022_928063
crossref_primary_10_1016_j_egyr_2022_12_062
crossref_primary_10_1016_j_engappai_2023_107613
crossref_primary_10_3390_su17146339
crossref_primary_10_1007_s11431_013_5195_4
crossref_primary_10_1051_matecconf_201823203013
crossref_primary_10_3390_en11071638
crossref_primary_10_1016_j_esr_2020_100613
crossref_primary_10_1155_2016_8395751
crossref_primary_10_1109_TSTE_2021_3131522
crossref_primary_10_3389_feart_2023_1297690
crossref_primary_10_3389_fenrg_2023_1078751
crossref_primary_10_1007_s11042_022_12992_z
crossref_primary_10_1016_j_eswa_2024_126038
crossref_primary_10_1007_s40565_017_0365_1
crossref_primary_10_1016_j_ecolind_2022_109771
crossref_primary_10_1007_s11356_022_22959_0
crossref_primary_10_1007_s13253_019_00369_z
crossref_primary_10_1016_j_engstruct_2012_07_019
crossref_primary_10_1080_01430750_2025_2507808
crossref_primary_10_1016_j_renene_2017_03_064
crossref_primary_10_1155_2015_815253
crossref_primary_10_1016_j_egyr_2022_10_342
crossref_primary_10_1016_j_ijhydene_2015_03_133
crossref_primary_10_1016_j_energy_2023_129171
crossref_primary_10_1016_j_esr_2022_100864
crossref_primary_10_1088_1755_1315_127_1_012012
crossref_primary_10_1007_s12204_022_2477_7
crossref_primary_10_1109_TSTE_2018_2789685
crossref_primary_10_3390_en18071713
crossref_primary_10_1016_j_measurement_2018_04_014
crossref_primary_10_1016_j_enconman_2017_06_021
crossref_primary_10_1016_j_apenergy_2017_04_017
crossref_primary_10_3390_jmse12020283
crossref_primary_10_1016_j_apenergy_2021_117248
crossref_primary_10_1017_S1751731119000363
crossref_primary_10_1016_j_energy_2025_137229
crossref_primary_10_1016_j_ijepes_2021_106954
crossref_primary_10_1016_j_apm_2016_01_002
crossref_primary_10_1016_j_asoc_2014_06_027
crossref_primary_10_1007_s00477_019_01675_1
crossref_primary_10_1016_j_ref_2025_100739
crossref_primary_10_1016_j_rser_2024_114623
crossref_primary_10_1016_j_jclepro_2021_125981
crossref_primary_10_1016_j_enconman_2023_117868
crossref_primary_10_1109_ACCESS_2019_2957174
crossref_primary_10_1016_j_apenergy_2015_01_038
crossref_primary_10_1155_2023_6328119
crossref_primary_10_1007_s12555_017_0289_6
crossref_primary_10_1016_j_enconman_2021_115086
crossref_primary_10_1016_j_physa_2025_130839
crossref_primary_10_1016_j_apenergy_2013_08_025
crossref_primary_10_4316_AECE_2017_03014
crossref_primary_10_1177_0309524X221078536
crossref_primary_10_3390_app10134416
crossref_primary_10_1016_j_jweia_2014_10_012
crossref_primary_10_1109_TCST_2015_2389031
crossref_primary_10_3390_en10101518
crossref_primary_10_1016_j_jweia_2020_104361
crossref_primary_10_1016_j_renene_2017_10_111
crossref_primary_10_1016_j_apenergy_2018_05_130
crossref_primary_10_1016_j_apenergy_2012_10_006
crossref_primary_10_1007_s11356_021_16997_3
crossref_primary_10_1049_iet_gtd_2018_0054
crossref_primary_10_1175_JCLI_D_17_0090_1
crossref_primary_10_1088_1755_1315_295_2_012030
crossref_primary_10_1016_j_enconman_2021_115196
crossref_primary_10_3390_en11092340
crossref_primary_10_1002_ente_202400990
crossref_primary_10_3390_en9110894
crossref_primary_10_1016_j_epsr_2022_108960
crossref_primary_10_1016_j_energy_2024_133920
crossref_primary_10_1016_j_matpr_2020_02_464
crossref_primary_10_1016_j_renene_2020_09_078
crossref_primary_10_1080_15325008_2023_2173828
crossref_primary_10_3390_en15114067
crossref_primary_10_1016_j_apenergy_2018_06_117
crossref_primary_10_1016_j_asoc_2022_109010
crossref_primary_10_1016_j_enconman_2021_115189
crossref_primary_10_1080_15435075_2021_1875470
crossref_primary_10_1016_j_enconman_2022_115583
crossref_primary_10_1080_15567036_2020_1822956
crossref_primary_10_1016_j_jpowsour_2018_06_098
crossref_primary_10_1080_23737484_2023_2217137
crossref_primary_10_1002_ente_202101061
crossref_primary_10_1016_j_bica_2018_07_019
crossref_primary_10_1016_j_apenergy_2022_120601
crossref_primary_10_1016_j_energy_2024_130404
crossref_primary_10_1016_j_renene_2023_05_048
crossref_primary_10_1080_00401706_2014_988291
crossref_primary_10_3390_fi15010017
crossref_primary_10_3390_su15021730
crossref_primary_10_1016_j_ijepes_2021_107937
crossref_primary_10_1016_j_apenergy_2024_124356
crossref_primary_10_1016_j_energy_2019_05_101
crossref_primary_10_1016_j_energy_2021_122333
crossref_primary_10_1016_j_apenergy_2011_04_051
crossref_primary_10_1155_2021_5516909
crossref_primary_10_1016_j_energy_2022_123848
crossref_primary_10_1109_ACCESS_2018_2869981
crossref_primary_10_1016_j_enconman_2022_115590
crossref_primary_10_1016_j_neucom_2018_07_053
crossref_primary_10_1016_j_renene_2023_118991
crossref_primary_10_1016_j_iswa_2022_200138
crossref_primary_10_1177_0309524X20972115
crossref_primary_10_3389_fenrg_2023_1336675
crossref_primary_10_1016_j_asoc_2020_106996
crossref_primary_10_1016_j_epsr_2020_107011
crossref_primary_10_3233_JIFS_220230
crossref_primary_10_3390_en15082881
crossref_primary_10_1038_s41467_025_58456_4
crossref_primary_10_1016_j_rser_2018_09_046
crossref_primary_10_1016_j_energy_2024_131964
crossref_primary_10_1016_j_energy_2024_131963
crossref_primary_10_56294_dm2025589
crossref_primary_10_1016_j_engstruct_2013_09_014
crossref_primary_10_3390_en14092352
crossref_primary_10_1016_j_enconman_2022_115322
crossref_primary_10_1016_j_energy_2019_116316
crossref_primary_10_1016_j_energy_2021_122128
crossref_primary_10_1016_j_renene_2017_05_093
crossref_primary_10_1109_ACCESS_2024_3435674
crossref_primary_10_1016_j_energy_2015_08_045
crossref_primary_10_1016_j_eswa_2025_128200
crossref_primary_10_1016_j_engappai_2023_105987
crossref_primary_10_1155_2013_548370
crossref_primary_10_1016_j_enconman_2015_03_013
crossref_primary_10_3390_s24196254
crossref_primary_10_1016_j_apenergy_2018_07_032
crossref_primary_10_3390_data9120146
crossref_primary_10_22581_muet1982_1603_08
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_1002_we_2030
crossref_primary_10_3389_fenrg_2021_754274
crossref_primary_10_1007_s00202_025_02983_2
crossref_primary_10_1016_j_oceaneng_2025_122771
crossref_primary_10_1007_s11071_024_09595_8
crossref_primary_10_1016_j_energy_2015_08_039
crossref_primary_10_1016_j_ijepes_2025_110833
crossref_primary_10_1016_j_apenergy_2012_06_044
crossref_primary_10_1016_j_energy_2017_04_094
crossref_primary_10_3390_su10124338
crossref_primary_10_1016_j_rser_2014_03_033
crossref_primary_10_1016_j_energy_2020_119016
crossref_primary_10_1109_ACCESS_2018_2877735
crossref_primary_10_1007_s00477_014_0901_8
crossref_primary_10_1016_j_renene_2014_03_068
crossref_primary_10_1063_5_0257465
crossref_primary_10_20965_jaciii_2018_p0900
crossref_primary_10_1016_j_energy_2022_126589
crossref_primary_10_1049_cit2_12076
crossref_primary_10_1007_s00521_019_04290_x
crossref_primary_10_3390_su9040596
crossref_primary_10_1007_s13253_018_0331_z
crossref_primary_10_1029_2023JD040134
crossref_primary_10_1016_j_renene_2021_01_003
crossref_primary_10_1155_2020_9601763
crossref_primary_10_1109_JIOT_2023_3324546
crossref_primary_10_1109_TSTE_2025_3543420
crossref_primary_10_1177_0309524X221108423
crossref_primary_10_1016_j_renene_2023_119097
crossref_primary_10_1088_1755_1315_93_1_012020
crossref_primary_10_1016_j_asoc_2020_106463
crossref_primary_10_1016_j_renene_2019_04_158
crossref_primary_10_1007_s41870_024_02157_6
crossref_primary_10_1016_j_renene_2019_04_157
crossref_primary_10_1016_j_apenergy_2021_118029
crossref_primary_10_1016_j_jweia_2021_104561
crossref_primary_10_1088_1742_6596_910_1_012020
crossref_primary_10_1109_TSTE_2021_3069111
crossref_primary_10_3390_en11081958
crossref_primary_10_1016_j_energy_2016_05_133
crossref_primary_10_1016_j_energy_2024_132228
crossref_primary_10_1016_j_apenergy_2013_05_002
crossref_primary_10_1155_2013_461983
crossref_primary_10_3390_en12040712
crossref_primary_10_1177_0309524X21998263
crossref_primary_10_1016_j_apenergy_2024_123589
crossref_primary_10_1016_j_apenergy_2016_05_071
crossref_primary_10_1016_j_apenergy_2019_01_105
crossref_primary_10_1007_s00500_018_3566_2
crossref_primary_10_1016_j_neucom_2019_08_108
crossref_primary_10_1016_j_enconman_2019_02_086
crossref_primary_10_1016_j_energy_2020_119397
crossref_primary_10_1109_ACCESS_2020_2978169
crossref_primary_10_15446_dyna_v84n201_59541
crossref_primary_10_1016_j_energy_2023_126738
crossref_primary_10_1016_j_renene_2017_08_071
crossref_primary_10_1016_j_knosys_2020_106052
crossref_primary_10_1016_j_enconman_2022_116296
crossref_primary_10_1016_j_jweia_2020_104198
crossref_primary_10_1007_s11356_022_23454_2
crossref_primary_10_1002_met_70050
crossref_primary_10_1016_j_apenergy_2012_04_001
crossref_primary_10_1111_anzs_12340
crossref_primary_10_1029_2021EA001865
crossref_primary_10_1016_j_apenergy_2016_06_098
crossref_primary_10_1002_env_2655
crossref_primary_10_1016_j_renene_2021_08_013
crossref_primary_10_1007_s12517_015_1829_0
crossref_primary_10_1016_j_energy_2024_131230
crossref_primary_10_1016_j_renene_2018_03_064
crossref_primary_10_1109_TGRS_2024_3369640
crossref_primary_10_1515_tjj_2017_0003
crossref_primary_10_1016_j_enconman_2016_03_078
crossref_primary_10_1109_JSTARS_2024_3386629
crossref_primary_10_3390_en11020321
crossref_primary_10_1007_s11356_021_13516_2
crossref_primary_10_1016_j_renene_2024_120157
crossref_primary_10_1080_15567036_2018_1495782
crossref_primary_10_4316_AECE_2021_04001
crossref_primary_10_1007_s11356_019_07402_1
crossref_primary_10_1016_j_renene_2016_05_023
crossref_primary_10_1016_j_energy_2021_121981
crossref_primary_10_20965_jaciii_2025_p0592
crossref_primary_10_3390_en9080585
crossref_primary_10_1016_j_eswa_2023_122477
crossref_primary_10_1016_j_renene_2022_10_123
crossref_primary_10_1016_j_energy_2013_07_051
crossref_primary_10_1016_j_cie_2024_110477
crossref_primary_10_1111_jbg_12664
crossref_primary_10_1016_j_energy_2024_131345
crossref_primary_10_3390_en9010007
crossref_primary_10_1007_s00477_024_02881_2
crossref_primary_10_1016_j_renene_2022_09_114
crossref_primary_10_1016_j_energy_2017_01_150
crossref_primary_10_1016_j_jweia_2013_10_004
crossref_primary_10_1016_j_renene_2014_12_074
crossref_primary_10_1109_ACCESS_2020_3025811
crossref_primary_10_1002_ente_202100700
crossref_primary_10_1016_j_ifacol_2018_07_253
crossref_primary_10_1016_j_apenergy_2018_02_070
crossref_primary_10_3390_su11061804
crossref_primary_10_1007_s10668_021_01419_8
crossref_primary_10_1016_j_apenergy_2021_118191
crossref_primary_10_1016_j_renene_2013_08_011
crossref_primary_10_1016_j_renene_2022_04_017
crossref_primary_10_1016_j_neucom_2015_12_081
crossref_primary_10_3233_HIS_230004
crossref_primary_10_1016_j_apenergy_2019_114259
crossref_primary_10_1016_j_energy_2024_131590
crossref_primary_10_1007_s13042_021_01340_6
crossref_primary_10_1016_j_energy_2024_133511
crossref_primary_10_1016_j_engstruct_2023_117285
crossref_primary_10_1016_j_renene_2021_07_119
crossref_primary_10_1177_0309524X19849843
crossref_primary_10_1016_j_energy_2014_12_074
crossref_primary_10_3390_en11081992
crossref_primary_10_1007_s11269_019_02270_3
crossref_primary_10_1016_j_apenergy_2015_10_052
crossref_primary_10_1016_j_apenergy_2018_01_094
crossref_primary_10_1093_jrsssc_qlaf003
crossref_primary_10_1155_2020_5396473
crossref_primary_10_1007_s11783_023_1621_4
crossref_primary_10_1007_s11356_020_08452_6
crossref_primary_10_1155_2018_1936565
crossref_primary_10_1016_j_energy_2021_121764
crossref_primary_10_1080_0954898X_2023_2213756
crossref_primary_10_1016_j_apenergy_2022_119692
crossref_primary_10_1016_j_compeleceng_2025_110700
crossref_primary_10_1049_tje2_12201
crossref_primary_10_1016_j_eswa_2024_124764
crossref_primary_10_1016_j_renene_2021_07_126
crossref_primary_10_1016_j_asoc_2020_106116
crossref_primary_10_1002_we_2207
crossref_primary_10_1016_j_asoc_2021_107848
crossref_primary_10_1016_j_apenergy_2018_09_037
crossref_primary_10_1016_j_energy_2024_132899
crossref_primary_10_1016_j_enconman_2016_02_013
crossref_primary_10_1016_j_ins_2014_02_159
crossref_primary_10_1002_ese3_1742
crossref_primary_10_1109_TSTE_2021_3086851
crossref_primary_10_1016_j_renene_2020_07_081
crossref_primary_10_1049_iet_gtd_2016_1822
crossref_primary_10_1155_2015_740490
crossref_primary_10_1016_j_asoc_2019_105976
crossref_primary_10_1177_0309524X221106184
crossref_primary_10_3390_su10124601
crossref_primary_10_1002_we_2564
crossref_primary_10_3390_app12126085
crossref_primary_10_1002_jsfa_11588
crossref_primary_10_1016_j_energy_2024_130580
crossref_primary_10_3390_su10051443
crossref_primary_10_1016_j_enconman_2023_117896
crossref_primary_10_3389_fenrg_2022_937240
crossref_primary_10_1016_j_seta_2020_100946
crossref_primary_10_1177_0309524X19849867
crossref_primary_10_1002_etep_2466
crossref_primary_10_1109_ACCESS_2020_2984851
crossref_primary_10_1109_ACCESS_2020_3025967
crossref_primary_10_1016_j_apenergy_2019_03_088
crossref_primary_10_1155_2019_8503252
crossref_primary_10_1016_j_heliyon_2024_e33945
crossref_primary_10_1016_j_renene_2021_08_044
crossref_primary_10_1016_j_comnet_2024_110172
crossref_primary_10_1016_j_energy_2021_122630
crossref_primary_10_1016_j_energy_2022_126179
crossref_primary_10_3390_agriculture11040323
crossref_primary_10_1016_j_apenergy_2015_08_014
crossref_primary_10_1109_TSG_2018_2847223
crossref_primary_10_1016_j_asoc_2020_106350
crossref_primary_10_1016_j_apenergy_2019_114345
crossref_primary_10_1016_j_apenergy_2018_08_114
crossref_primary_10_1016_j_renene_2018_09_080
crossref_primary_10_1109_ACCESS_2024_3524608
crossref_primary_10_1016_j_apenergy_2018_09_012
crossref_primary_10_1016_j_knosys_2021_107009
crossref_primary_10_1016_j_apenergy_2017_01_063
crossref_primary_10_1007_s11004_020_09880_3
crossref_primary_10_1016_j_ijar_2016_10_010
crossref_primary_10_1007_s10489_022_03644_8
crossref_primary_10_1016_j_apenergy_2016_05_111
crossref_primary_10_1016_j_renene_2022_09_036
crossref_primary_10_1016_j_apenergy_2024_122785
crossref_primary_10_1016_j_enconman_2014_05_058
crossref_primary_10_1016_j_enconman_2021_114451
crossref_primary_10_1002_we_2422
crossref_primary_10_1080_15435075_2025_2520464
crossref_primary_10_3390_en15196919
crossref_primary_10_1061_JLEED9_EYENG_5474
crossref_primary_10_1155_2020_8303152
crossref_primary_10_1016_j_ins_2024_121736
crossref_primary_10_1016_j_energy_2025_136725
crossref_primary_10_1016_j_jweia_2023_105499
crossref_primary_10_1016_j_renene_2021_04_041
crossref_primary_10_1109_JSYST_2022_3150749
crossref_primary_10_1016_j_energy_2018_07_005
crossref_primary_10_3390_en12020254
crossref_primary_10_1016_j_energy_2024_133277
crossref_primary_10_1007_s12145_024_01388_2
crossref_primary_10_1109_ACCESS_2020_3011060
crossref_primary_10_3389_feart_2021_731803
crossref_primary_10_1016_j_asoc_2023_110294
crossref_primary_10_1016_j_enconman_2018_10_089
crossref_primary_10_1016_j_enconman_2019_06_024
crossref_primary_10_1016_j_energy_2022_125784
crossref_primary_10_1088_1742_6596_2131_5_052050
crossref_primary_10_1016_j_asoc_2020_106294
crossref_primary_10_1016_j_energy_2015_10_026
crossref_primary_10_3390_en9040261
crossref_primary_10_1016_j_energy_2023_129604
crossref_primary_10_1016_j_neucom_2022_06_117
crossref_primary_10_1080_15435075_2025_2471997
crossref_primary_10_1109_TIE_2023_3294607
crossref_primary_10_1155_2021_9200560
crossref_primary_10_1016_j_apenergy_2011_01_037
crossref_primary_10_1016_j_ijepes_2021_107365
crossref_primary_10_1007_s11069_016_2163_x
crossref_primary_10_1016_j_energy_2024_132056
crossref_primary_10_1111_exsy_12868
crossref_primary_10_1016_j_asoc_2025_113651
crossref_primary_10_1016_j_renene_2024_121992
crossref_primary_10_3390_app11209383
crossref_primary_10_1016_j_enconman_2017_04_064
crossref_primary_10_3389_fceng_2021_665415
crossref_primary_10_1080_10298436_2018_1512712
crossref_primary_10_1155_2022_3672905
crossref_primary_10_3390_en15155472
crossref_primary_10_1016_j_renene_2025_123966
crossref_primary_10_3390_app15010138
crossref_primary_10_1109_TNNLS_2021_3100902
crossref_primary_10_1109_TSG_2022_3175451
crossref_primary_10_1177_0954406217752746
crossref_primary_10_1016_j_epsr_2022_108174
crossref_primary_10_1051_e3sconf_202018501052
crossref_primary_10_1080_15435075_2024_2326052
crossref_primary_10_1111_exsy_12511
crossref_primary_10_1080_14786451_2015_1026906
crossref_primary_10_32604_ee_2023_040887
crossref_primary_10_3390_en15196942
crossref_primary_10_1016_j_enconman_2018_10_068
crossref_primary_10_1109_TITS_2021_3058608
crossref_primary_10_3390_en15218107
crossref_primary_10_1016_j_energy_2020_118441
crossref_primary_10_1016_j_energy_2023_129823
crossref_primary_10_1016_j_jksuci_2020_09_009
crossref_primary_10_1016_j_enconman_2016_01_007
crossref_primary_10_1109_ACCESS_2019_2922662
crossref_primary_10_1016_j_apenergy_2015_07_043
crossref_primary_10_1109_ACCESS_2023_3335629
crossref_primary_10_1007_s00202_023_02005_z
crossref_primary_10_1016_j_engappai_2020_103573
crossref_primary_10_1016_j_engappai_2024_108501
crossref_primary_10_1016_j_chaos_2023_114222
crossref_primary_10_1016_j_energy_2022_124250
crossref_primary_10_1080_00051144_2020_1811571
crossref_primary_10_1016_j_renene_2025_122983
crossref_primary_10_3390_app11209441
crossref_primary_10_1016_j_compeleceng_2024_109715
crossref_primary_10_1016_j_apm_2021_07_024
crossref_primary_10_3390_s24155035
crossref_primary_10_1016_j_energy_2017_06_137
crossref_primary_10_1016_j_enconman_2020_113680
crossref_primary_10_1016_j_renene_2022_06_143
crossref_primary_10_1016_j_rser_2016_01_114
crossref_primary_10_1177_0958305X221084078
crossref_primary_10_1007_s00202_024_02685_1
crossref_primary_10_1016_j_physa_2021_126045
crossref_primary_10_1016_j_energy_2019_02_194
crossref_primary_10_1049_cit2_12157
crossref_primary_10_14710_ijred_2023_48672
crossref_primary_10_3389_fenrg_2024_1474969
crossref_primary_10_1016_j_cie_2023_109237
crossref_primary_10_1016_j_energy_2021_119848
crossref_primary_10_1016_j_enconman_2023_117590
crossref_primary_10_1155_2017_6856139
crossref_primary_10_1007_s00500_020_05222_x
crossref_primary_10_1016_j_renene_2022_12_120
crossref_primary_10_1016_j_asoc_2018_07_041
crossref_primary_10_1016_j_apenergy_2014_05_026
crossref_primary_10_1061__ASCE_EY_1943_7897_0000823
crossref_primary_10_1016_j_compeleceng_2024_109820
crossref_primary_10_1016_j_energy_2023_126778
crossref_primary_10_1016_j_ijforecast_2020_09_009
crossref_primary_10_1016_j_renene_2020_05_182
crossref_primary_10_1016_j_engappai_2024_107891
crossref_primary_10_1016_j_seta_2019_07_003
crossref_primary_10_3390_math11102223
crossref_primary_10_3390_math8101795
crossref_primary_10_1007_s10661_020_08399_8
crossref_primary_10_1016_j_energy_2015_04_075
crossref_primary_10_3390_en10070922
crossref_primary_10_3390_en12020329
crossref_primary_10_1016_j_oceaneng_2019_106300
crossref_primary_10_1080_15567036_2025_2540055
crossref_primary_10_1080_15435075_2016_1278373
crossref_primary_10_1177_0020294021997491
crossref_primary_10_1016_j_energy_2024_133103
crossref_primary_10_1109_ACCESS_2020_3035121
crossref_primary_10_1155_2014_972580
crossref_primary_10_1016_j_apenergy_2018_10_080
crossref_primary_10_1016_j_enconman_2020_113456
crossref_primary_10_1016_j_apenergy_2017_01_043
crossref_primary_10_1108_IJESM_06_2018_0002
crossref_primary_10_1109_ACCESS_2020_3027977
crossref_primary_10_1080_02664763_2013_839634
crossref_primary_10_1007_s10618_023_00929_5
crossref_primary_10_1016_j_engappai_2023_106273
crossref_primary_10_1051_epjconf_202532605003
crossref_primary_10_1016_j_apenergy_2019_04_047
crossref_primary_10_1016_j_jweia_2024_105898
crossref_primary_10_1016_j_epsr_2023_109502
crossref_primary_10_1016_j_enconman_2019_05_005
crossref_primary_10_1016_j_energy_2015_10_041
crossref_primary_10_1016_j_knosys_2025_113739
crossref_primary_10_1016_j_enconman_2020_113346
crossref_primary_10_1016_j_renene_2024_120350
crossref_primary_10_1080_08839514_2021_1994217
crossref_primary_10_1016_j_seta_2021_101940
crossref_primary_10_1016_j_enconman_2019_06_041
crossref_primary_10_1016_j_energy_2022_125248
crossref_primary_10_1016_j_asoc_2018_07_027
crossref_primary_10_1016_j_enconman_2020_113234
crossref_primary_10_1016_j_enconman_2017_10_085
crossref_primary_10_1007_s40899_020_00430_7
crossref_primary_10_1016_j_apenergy_2013_02_002
crossref_primary_10_1016_j_egyr_2024_04_013
crossref_primary_10_1016_j_rser_2013_12_054
crossref_primary_10_3390_en8076585
crossref_primary_10_3390_rs10111701
crossref_primary_10_1016_j_energy_2023_129904
crossref_primary_10_1080_15567036_2024_2318485
Cites_doi 10.1016/j.atmosenv.2004.10.047
10.1016/j.solener.2004.09.013
10.1016/j.apenergy.2009.10.001
10.1109/TEC.2003.821865
10.1175/2009MWR3138.1
10.1016/j.cageo.2008.06.002
10.1016/j.insmatheco.2007.05.004
10.1002/we.400
10.1198/073500101681019972
10.1109/TPWRS.2006.873421
10.1016/S0038-092X(97)00037-6
10.1016/j.renene.2007.06.013
10.1093/biomet/65.2.297
10.1016/j.apenergy.2009.09.022
10.1002/met.158
10.1016/j.apenergy.2009.12.013
10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
10.1016/j.apenergy.2009.03.017
10.1007/BF00712528
10.1016/j.enconman.2008.01.010
10.1111/j.2517-6161.1994.tb01981.x
10.1162/003355398555793
10.1016/S0167-6105(00)00079-9
10.1016/0004-6981(78)90020-3
10.1109/TPWRD.2002.1022802
10.2307/2335637
10.1016/S0167-6105(98)00192-5
10.1080/00036849100000070
10.1016/j.econmod.2007.04.003
10.1016/j.jweia.2009.07.011
10.1016/j.neucom.2006.01.032
10.1007/978-1-4612-3688-7_10
10.1016/j.rser.2008.02.002
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
DKI
X2L
7SU
7TA
8FD
C1K
FR3
JG9
7S9
L.6
7ST
SOI
DOI 10.1016/j.apenergy.2010.10.031
DatabaseName AGRIS
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Environmental Engineering Abstracts
Materials Business File
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Materials Business File
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
DatabaseTitleList Materials Research Database


Environment Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 1414
ExternalDocumentID eeeappene_v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405_1414_htm
23824184
10_1016_j_apenergy_2010_10_031
US201600011774
S0306261910004332
GeographicLocations North Dakota
USA, North Dakota
GeographicLocations_xml – name: North Dakota
– name: USA, North Dakota
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
0R
1
8P
AAPBV
ADALY
DKI
G-
HZ
IPNFZ
K
M
X2L
7SU
7TA
8FD
C1K
FR3
JG9
7S9
L.6
7ST
SOI
ID FETCH-LOGICAL-c599t-4a31aaf3f3387b64e71e668803cf990d6502a7006123ceb67a51bb48dd6f26bf3
ISICitedReferencesCount 729
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286707300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Oct 07 09:03:47 EDT 2025
Sun Nov 09 12:36:52 EST 2025
Tue Oct 07 09:57:37 EDT 2025
Thu Dec 16 09:11:49 EST 2021
Mon Jul 21 09:14:37 EDT 2025
Sat Nov 29 07:24:07 EST 2025
Tue Nov 18 22:40:48 EST 2025
Wed Dec 27 19:13:40 EST 2023
Fri Feb 23 02:36:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Wind direction
Vector autoregression
ARMA
Wind speed
Combined forecasting
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c599t-4a31aaf3f3387b64e71e668803cf990d6502a7006123ceb67a51bb48dd6f26bf3
Notes http://dx.doi.org/10.1016/j.apenergy.2010.10.031
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1777105725
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_855714259
proquest_miscellaneous_2000023467
proquest_miscellaneous_1777105725
repec_primary_eeeappene_v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405_1414_htm
pascalfrancis_primary_23824184
crossref_citationtrail_10_1016_j_apenergy_2010_10_031
crossref_primary_10_1016_j_apenergy_2010_10_031
fao_agris_US201600011774
elsevier_sciencedirect_doi_10_1016_j_apenergy_2010_10_031
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationSeriesTitle Applied Energy
PublicationTitle Applied energy
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Brown, Katz, Murphy (b0050) 1984; 23
Thiaw, Sow, Fall, Kasse, Sylla, Thioye (b0075) 2010; 87
Erdem E, Shi J. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data. Wind Energy, in press. doi:10.1002/we.400.
Ljung, Box (b0200) 1978; 65
Landberg (b0025) 2001; 89
Lalarukh, Yasmin (b0045) 1997; 61
Bruggemann (b0160) 2004
Gujarati (b0235) 2003
Mabel, Fernandez (b0065) 2008; 33
Dale, Milborrow, Slark, Strbac (b0010) 2003; 109
Damousis, Alexiadis, Theocharis, Dokopoulos (b0070) 2004; 19
Bao, Gneiting, Grimit (b0120) 2010; 138
[retrieved April 2010].
Torres, Garcı´a, De Blas, De Francisco (b0055) 2005; 79
Mardia (b0230) 1976; 63
McMillan, Bortnick, Irwin, Berliner (b0105) 2005; 39
Morales, Minguez, Conejo (b0085) 2010; 87
Robertson, Tallman (b0165) 2001; 19
[accessed April 2010].
Gong, Shi (b0060) 2010; 87
Fraser, Taylor (b0190) 1991; 23
Breckling (b0240) 1989
Carta, Ramírez, Bueno (b0205) 2008; 49
Burlando, Villa, Ratto, Cassulo (b0115) 2009; 97
Zhang, Pu (b0095) 2002; 17
SAS Institute. SAS/ETS™ 9.2 user’s guide. The MINIC method.
Box, Jenkins, Reinsel (b0040) 1994
Buckle, Kim, Kirkham, McLellan, Sharma (b0155) 2007; 24
Grimit EP, Gneiting T, Berrocal V, Johnson NA. The continuous rank probability score for circular variables. Technical Report No. 493. Department of Statistics, University of Washington; 2006.
Asma M. Mean reversion of stock returns of an emerging market: empirical evidence from Botswana stock exchange. SSRN: working paper.
McWilliams, Newmann, Sprevak (b0210) 1979; 3
Finzi, Fronza, Rinaldi (b0110) 1978; 12
Fisher, Lee (b0145) 1994; 56
Landberg, Watson (b0035) 1994; 70
[retrieved August 2010].
Kalusner, Kaplan, Fattal (b0125) 2009; 16
Landberg (b0030) 1999; 80
Lei, Jiang, Liu, Zhang (b0015) 2009; 13
Montgomery, Jennings, Kulahci (b0170) 2008
Fisher (b0215) 1993
Giebel G, Brownsword R, Kariniotakis G. The state-of-the-art in short-term prediction of wind power: a literature overview. Project ANEMOS, Deliverable Report D1.1; 2003.
Barbounis, Theocharis (b0080) 2007; 70
World Wind Energy Association. World Wind Energy Report; 2009.
Carta, Ramirez, Bueno (b0135) 2008; 49
Vereda, Lopes, Fukuda (b0150) 2008; 42
Bohn (b0195) 1998; 113
Xydis, Koroneos, Loizidou (b0090) 2009; 86
Potter (b0130) 2006; 21
Daniele, Lirer, Petrosino, Spinelli, Peterson (b0100) 2009; 35
Iqbal, Baksh, Maqbool, Ahmad (b0175) 2005; 1
Kamal, Jafri (b0180) 1997; 61
Daniele (10.1016/j.apenergy.2010.10.031_b0100) 2009; 35
Bruggemann (10.1016/j.apenergy.2010.10.031_b0160) 2004
Gong (10.1016/j.apenergy.2010.10.031_b0060) 2010; 87
Landberg (10.1016/j.apenergy.2010.10.031_b0025) 2001; 89
Robertson (10.1016/j.apenergy.2010.10.031_b0165) 2001; 19
Fraser (10.1016/j.apenergy.2010.10.031_b0190) 1991; 23
Potter (10.1016/j.apenergy.2010.10.031_b0130) 2006; 21
10.1016/j.apenergy.2010.10.031_b0005
10.1016/j.apenergy.2010.10.031_b0225
Mardia (10.1016/j.apenergy.2010.10.031_b0230) 1976; 63
Fisher (10.1016/j.apenergy.2010.10.031_b0215) 1993
Carta (10.1016/j.apenergy.2010.10.031_b0205) 2008; 49
Brown (10.1016/j.apenergy.2010.10.031_b0050) 1984; 23
Bao (10.1016/j.apenergy.2010.10.031_b0120) 2010; 138
McMillan (10.1016/j.apenergy.2010.10.031_b0105) 2005; 39
Damousis (10.1016/j.apenergy.2010.10.031_b0070) 2004; 19
Morales (10.1016/j.apenergy.2010.10.031_b0085) 2010; 87
Dale (10.1016/j.apenergy.2010.10.031_b0010) 2003; 109
Bohn (10.1016/j.apenergy.2010.10.031_b0195) 1998; 113
Lei (10.1016/j.apenergy.2010.10.031_b0015) 2009; 13
Breckling (10.1016/j.apenergy.2010.10.031_b0240) 1989
Landberg (10.1016/j.apenergy.2010.10.031_b0030) 1999; 80
Mabel (10.1016/j.apenergy.2010.10.031_b0065) 2008; 33
Thiaw (10.1016/j.apenergy.2010.10.031_b0075) 2010; 87
McWilliams (10.1016/j.apenergy.2010.10.031_b0210) 1979; 3
Barbounis (10.1016/j.apenergy.2010.10.031_b0080) 2007; 70
Buckle (10.1016/j.apenergy.2010.10.031_b0155) 2007; 24
Montgomery (10.1016/j.apenergy.2010.10.031_b0170) 2008
Lalarukh (10.1016/j.apenergy.2010.10.031_b0045) 1997; 61
Torres (10.1016/j.apenergy.2010.10.031_b0055) 2005; 79
Landberg (10.1016/j.apenergy.2010.10.031_b0035) 1994; 70
Xydis (10.1016/j.apenergy.2010.10.031_b0090) 2009; 86
Fisher (10.1016/j.apenergy.2010.10.031_b0145) 1994; 56
Gujarati (10.1016/j.apenergy.2010.10.031_b0235) 2003
Zhang (10.1016/j.apenergy.2010.10.031_b0095) 2002; 17
Box (10.1016/j.apenergy.2010.10.031_b0040) 1994
Finzi (10.1016/j.apenergy.2010.10.031_b0110) 1978; 12
Kalusner (10.1016/j.apenergy.2010.10.031_b0125) 2009; 16
Kamal (10.1016/j.apenergy.2010.10.031_b0180) 1997; 61
Iqbal (10.1016/j.apenergy.2010.10.031_b0175) 2005; 1
Ljung (10.1016/j.apenergy.2010.10.031_b0200) 1978; 65
Carta (10.1016/j.apenergy.2010.10.031_b0135) 2008; 49
10.1016/j.apenergy.2010.10.031_b0220
10.1016/j.apenergy.2010.10.031_b0020
10.1016/j.apenergy.2010.10.031_b0185
Burlando (10.1016/j.apenergy.2010.10.031_b0115) 2009; 97
10.1016/j.apenergy.2010.10.031_b0140
Vereda (10.1016/j.apenergy.2010.10.031_b0150) 2008; 42
References_xml – volume: 97
  start-page: 497
  year: 2009
  end-page: 511
  ident: b0115
  article-title: Preliminary estimate of the large-scale wind energy resource with few measurements available: the case of Montenegro
  publication-title: J Wind Eng Ind Aerodyn
– reference: > [retrieved August 2010].
– volume: 1
  start-page: 120
  year: 2005
  end-page: 122
  ident: b0175
  article-title: Use of the ARIMA model for forecasting wheat area and production in Pakistan
  publication-title: J Agric Social Sci
– volume: 61
  start-page: 23
  year: 1997
  end-page: 32
  ident: b0180
  article-title: Time series model to simulate and forecast hourly averaged wind speed in Quetta, Pakistan
  publication-title: Sol Energy
– volume: 33
  start-page: 986
  year: 2008
  end-page: 992
  ident: b0065
  article-title: Analysis of wind power generation and prediction using ANN: a case study
  publication-title: Renew Energy
– volume: 49
  start-page: 1309
  year: 2008
  end-page: 1320
  ident: b0205
  article-title: A joint probability density function of wind speed and direction for wind energy analysis
  publication-title: Energy Convers Manage
– volume: 86
  start-page: 2411
  year: 2009
  end-page: 2420
  ident: b0090
  article-title: Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece
  publication-title: Appl Energy
– volume: 39
  start-page: 1373
  year: 2005
  end-page: 1382
  ident: b0105
  article-title: A hierarchical Bayesian model to estimate and forecast ozone through space and time
  publication-title: Atmos Environ
– reference: Erdem E, Shi J. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data. Wind Energy, in press. doi:10.1002/we.400.
– volume: 87
  start-page: 1744
  year: 2010
  end-page: 1748
  ident: b0075
  article-title: A neural network based approach for wind resource and wind generators production assessment
  publication-title: Appl Energy
– year: 1993
  ident: b0215
  article-title: Statistical analysis of circular data
– year: 1989
  ident: b0240
  article-title: The analysis of directional time series: applications to wind speed and direction
  publication-title: Lecture notes in statistics
– volume: 56
  start-page: 327
  year: 1994
  end-page: 339
  ident: b0145
  article-title: Time series analysis of circular data
  publication-title: J Roy Stat Soc Ser B (Methodology)
– reference: SAS Institute. SAS/ETS™ 9.2 user’s guide. The MINIC method. <
– year: 2003
  ident: b0235
  article-title: Basic econometrics
– volume: 19
  start-page: 352
  year: 2004
  end-page: 361
  ident: b0070
  article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
  publication-title: IEEE Trans Energy Convers
– volume: 87
  start-page: 2313
  year: 2010
  end-page: 2320
  ident: b0060
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
– year: 2004
  ident: b0160
  article-title: Model reduction methods for vector autoregressive processes
– volume: 16
  start-page: 569
  year: 2009
  end-page: 579
  ident: b0125
  article-title: The similar days method for predicting near surface wind vectors
  publication-title: Meteorol Appl
– year: 1994
  ident: b0040
  article-title: Time series analysis, forecasting and control
– volume: 24
  start-page: 990
  year: 2007
  end-page: 1017
  ident: b0155
  article-title: A structural VAR business cycle model for a volatile small open economy
  publication-title: Econ Model
– volume: 70
  start-page: 171
  year: 1994
  end-page: 195
  ident: b0035
  article-title: Short-term prediction of local wind conditions
  publication-title: Bound Layer Meteorol
– reference: > [accessed April 2010].
– volume: 19
  start-page: 324
  year: 2001
  end-page: 330
  ident: b0165
  article-title: Improving federal-funds rate forecasts in VAR models used for policy analysis
  publication-title: J Bus Econ Stat
– year: 2008
  ident: b0170
  article-title: Introduction to tine series analysis and forecasting
– volume: 61
  start-page: 23
  year: 1997
  end-page: 32
  ident: b0045
  article-title: Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan
  publication-title: Sol Energy
– volume: 79
  start-page: 65
  year: 2005
  end-page: 77
  ident: b0055
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre
  publication-title: Sol Energy
– volume: 138
  start-page: 1811
  year: 2010
  end-page: 1821
  ident: b0120
  article-title: Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction
  publication-title: MonWeather Rev
– volume: 89
  start-page: 235
  year: 2001
  end-page: 245
  ident: b0025
  article-title: Short-term prediction of local wind conditions
  publication-title: J Wind Eng Ind Aerodyn
– reference: Giebel G, Brownsword R, Kariniotakis G. The state-of-the-art in short-term prediction of wind power: a literature overview. Project ANEMOS, Deliverable Report D1.1; 2003. <
– reference: Asma M. Mean reversion of stock returns of an emerging market: empirical evidence from Botswana stock exchange. SSRN: working paper. <
– volume: 23
  start-page: 1184
  year: 1984
  end-page: 1195
  ident: b0050
  article-title: Time series models to simulate and forecast wind speed and power
  publication-title: J Climate Appl Meteorol
– volume: 35
  start-page: 1035
  year: 2009
  end-page: 1049
  ident: b0100
  article-title: Applications of the PUFF Model to forecasts of volcanic clouds dispersal from Etna and Vesuvio
  publication-title: Comput Geosci
– volume: 63
  start-page: 403
  year: 1976
  end-page: 405
  ident: b0230
  article-title: Linear–circular correlation coefficients and rhythmometry
  publication-title: Biometrika
– volume: 109
  start-page: 17
  year: 2003
  end-page: 25
  ident: b0010
  article-title: A shift to wind is not unfeasible (total cost estimates for large-scale wind scenarios in UK)
  publication-title: Power UK
– volume: 3
  start-page: 269
  year: 1979
  end-page: 273
  ident: b0210
  article-title: The probability distribution of wind velocity and direction
  publication-title: Wind Eng
– volume: 113
  start-page: 949
  year: 1998
  end-page: 963
  ident: b0195
  article-title: The behavior of US public debt and deficits
  publication-title: Quart J Econ
– volume: 17
  start-page: 770
  year: 2002
  end-page: 778
  ident: b0095
  article-title: A Bayesian approach for short-term transmission line thermal overload risk assessment
  publication-title: IEEE Trans Power Deliv
– reference: World Wind Energy Association. World Wind Energy Report; 2009. <
– volume: 21
  start-page: 965
  year: 2006
  end-page: 972
  ident: b0130
  article-title: Negnevitsky M very short term wind forecasting for Tasmanian power generation
  publication-title: IEEE Trans Power Syst
– volume: 49
  start-page: 1309
  year: 2008
  end-page: 1320
  ident: b0135
  article-title: A joint probability function of wind speed and direction for wind energy analysis
  publication-title: Energy Convers Manage
– volume: 65
  start-page: 297
  year: 1978
  end-page: 303
  ident: b0200
  article-title: On a measure of a lack of fit in time series models
  publication-title: Biometrika
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0015
  article-title: A review on forecasting wind data and wind output
  publication-title: Renew Sustain Energy Rev
– reference: > [retrieved April 2010].
– volume: 87
  start-page: 843
  year: 2010
  end-page: 855
  ident: b0085
  article-title: A methodology to generate statistically dependent wind speed scenarios
  publication-title: Appl Energy
– volume: 23
  start-page: 1749
  year: 1991
  end-page: 1759
  ident: b0190
  article-title: An empirical examination of long-run purchasing power parity as theory of international commodity arbitrage
  publication-title: Appl Econ
– volume: 42
  start-page: 548
  year: 2008
  end-page: 559
  ident: b0150
  article-title: Estimating VAR models for the term structure of interest rates
  publication-title: Insur Math Econ
– volume: 70
  start-page: 1525
  year: 2007
  end-page: 1542
  ident: b0080
  article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
  publication-title: Neurocomputing
– volume: 80
  start-page: 207
  year: 1999
  end-page: 222
  ident: b0030
  article-title: Short-term prediction of the power production from wind farms
  publication-title: J Wind Eng Ind Aerodyn
– reference: Grimit EP, Gneiting T, Berrocal V, Johnson NA. The continuous rank probability score for circular variables. Technical Report No. 493. Department of Statistics, University of Washington; 2006.
– volume: 12
  start-page: 831
  year: 1978
  end-page: 838
  ident: b0110
  article-title: Stochastic modelling and forecast of the dosage area product
  publication-title: Atmos Environ
– volume: 39
  start-page: 1373
  issue: 8
  year: 2005
  ident: 10.1016/j.apenergy.2010.10.031_b0105
  article-title: A hierarchical Bayesian model to estimate and forecast ozone through space and time
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2004.10.047
– year: 2008
  ident: 10.1016/j.apenergy.2010.10.031_b0170
– volume: 79
  start-page: 65
  issue: 1
  year: 2005
  ident: 10.1016/j.apenergy.2010.10.031_b0055
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.013
– volume: 87
  start-page: 1744
  issue: 5
  year: 2010
  ident: 10.1016/j.apenergy.2010.10.031_b0075
  article-title: A neural network based approach for wind resource and wind generators production assessment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.10.001
– volume: 19
  start-page: 352
  issue: 2
  year: 2004
  ident: 10.1016/j.apenergy.2010.10.031_b0070
  article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2003.821865
– volume: 138
  start-page: 1811
  issue: 5
  year: 2010
  ident: 10.1016/j.apenergy.2010.10.031_b0120
  article-title: Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction
  publication-title: MonWeather Rev
  doi: 10.1175/2009MWR3138.1
– volume: 35
  start-page: 1035
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2010.10.031_b0100
  article-title: Applications of the PUFF Model to forecasts of volcanic clouds dispersal from Etna and Vesuvio
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2008.06.002
– volume: 42
  start-page: 548
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2010.10.031_b0150
  article-title: Estimating VAR models for the term structure of interest rates
  publication-title: Insur Math Econ
  doi: 10.1016/j.insmatheco.2007.05.004
– ident: 10.1016/j.apenergy.2010.10.031_b0185
– ident: 10.1016/j.apenergy.2010.10.031_b0140
  doi: 10.1002/we.400
– volume: 19
  start-page: 324
  issue: 3
  year: 2001
  ident: 10.1016/j.apenergy.2010.10.031_b0165
  article-title: Improving federal-funds rate forecasts in VAR models used for policy analysis
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500101681019972
– year: 1993
  ident: 10.1016/j.apenergy.2010.10.031_b0215
– volume: 21
  start-page: 965
  issue: 2
  year: 2006
  ident: 10.1016/j.apenergy.2010.10.031_b0130
  article-title: Negnevitsky M very short term wind forecasting for Tasmanian power generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.873421
– volume: 61
  start-page: 23
  issue: 1
  year: 1997
  ident: 10.1016/j.apenergy.2010.10.031_b0045
  article-title: Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(97)00037-6
– volume: 33
  start-page: 986
  issue: 5
  year: 2008
  ident: 10.1016/j.apenergy.2010.10.031_b0065
  article-title: Analysis of wind power generation and prediction using ANN: a case study
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.06.013
– volume: 65
  start-page: 297
  year: 1978
  ident: 10.1016/j.apenergy.2010.10.031_b0200
  article-title: On a measure of a lack of fit in time series models
  publication-title: Biometrika
  doi: 10.1093/biomet/65.2.297
– volume: 87
  start-page: 843
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2010.10.031_b0085
  article-title: A methodology to generate statistically dependent wind speed scenarios
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.022
– volume: 16
  start-page: 569
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2010.10.031_b0125
  article-title: The similar days method for predicting near surface wind vectors
  publication-title: Meteorol Appl
  doi: 10.1002/met.158
– ident: 10.1016/j.apenergy.2010.10.031_b0225
– volume: 87
  start-page: 2313
  year: 2010
  ident: 10.1016/j.apenergy.2010.10.031_b0060
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.12.013
– volume: 23
  start-page: 1184
  issue: 11
  year: 1984
  ident: 10.1016/j.apenergy.2010.10.031_b0050
  article-title: Time series models to simulate and forecast wind speed and power
  publication-title: J Climate Appl Meteorol
  doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
– volume: 1
  start-page: 120
  issue: 2
  year: 2005
  ident: 10.1016/j.apenergy.2010.10.031_b0175
  article-title: Use of the ARIMA model for forecasting wheat area and production in Pakistan
  publication-title: J Agric Social Sci
– volume: 86
  start-page: 2411
  issue: 11
  year: 2009
  ident: 10.1016/j.apenergy.2010.10.031_b0090
  article-title: Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.03.017
– volume: 70
  start-page: 171
  year: 1994
  ident: 10.1016/j.apenergy.2010.10.031_b0035
  article-title: Short-term prediction of local wind conditions
  publication-title: Bound Layer Meteorol
  doi: 10.1007/BF00712528
– volume: 109
  start-page: 17
  year: 2003
  ident: 10.1016/j.apenergy.2010.10.031_b0010
  article-title: A shift to wind is not unfeasible (total cost estimates for large-scale wind scenarios in UK)
  publication-title: Power UK
– volume: 49
  start-page: 1309
  year: 2008
  ident: 10.1016/j.apenergy.2010.10.031_b0135
  article-title: A joint probability function of wind speed and direction for wind energy analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.01.010
– volume: 56
  start-page: 327
  issue: 2
  year: 1994
  ident: 10.1016/j.apenergy.2010.10.031_b0145
  article-title: Time series analysis of circular data
  publication-title: J Roy Stat Soc Ser B (Methodology)
  doi: 10.1111/j.2517-6161.1994.tb01981.x
– volume: 113
  start-page: 949
  issue: 3
  year: 1998
  ident: 10.1016/j.apenergy.2010.10.031_b0195
  article-title: The behavior of US public debt and deficits
  publication-title: Quart J Econ
  doi: 10.1162/003355398555793
– ident: 10.1016/j.apenergy.2010.10.031_b0005
– ident: 10.1016/j.apenergy.2010.10.031_b0020
– volume: 89
  start-page: 235
  issue: 3/4
  year: 2001
  ident: 10.1016/j.apenergy.2010.10.031_b0025
  article-title: Short-term prediction of local wind conditions
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(00)00079-9
– ident: 10.1016/j.apenergy.2010.10.031_b0220
– volume: 12
  start-page: 831
  issue: 4
  year: 1978
  ident: 10.1016/j.apenergy.2010.10.031_b0110
  article-title: Stochastic modelling and forecast of the dosage area product
  publication-title: Atmos Environ
  doi: 10.1016/0004-6981(78)90020-3
– volume: 17
  start-page: 770
  year: 2002
  ident: 10.1016/j.apenergy.2010.10.031_b0095
  article-title: A Bayesian approach for short-term transmission line thermal overload risk assessment
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2002.1022802
– volume: 63
  start-page: 403
  year: 1976
  ident: 10.1016/j.apenergy.2010.10.031_b0230
  article-title: Linear–circular correlation coefficients and rhythmometry
  publication-title: Biometrika
  doi: 10.2307/2335637
– volume: 80
  start-page: 207
  year: 1999
  ident: 10.1016/j.apenergy.2010.10.031_b0030
  article-title: Short-term prediction of the power production from wind farms
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(98)00192-5
– volume: 23
  start-page: 1749
  issue: 11
  year: 1991
  ident: 10.1016/j.apenergy.2010.10.031_b0190
  article-title: An empirical examination of long-run purchasing power parity as theory of international commodity arbitrage
  publication-title: Appl Econ
  doi: 10.1080/00036849100000070
– volume: 49
  start-page: 1309
  issue: 6
  year: 2008
  ident: 10.1016/j.apenergy.2010.10.031_b0205
  article-title: A joint probability density function of wind speed and direction for wind energy analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.01.010
– volume: 24
  start-page: 990
  issue: 6
  year: 2007
  ident: 10.1016/j.apenergy.2010.10.031_b0155
  article-title: A structural VAR business cycle model for a volatile small open economy
  publication-title: Econ Model
  doi: 10.1016/j.econmod.2007.04.003
– volume: 3
  start-page: 269
  year: 1979
  ident: 10.1016/j.apenergy.2010.10.031_b0210
  article-title: The probability distribution of wind velocity and direction
  publication-title: Wind Eng
– volume: 97
  start-page: 497
  issue: 11–12
  year: 2009
  ident: 10.1016/j.apenergy.2010.10.031_b0115
  article-title: Preliminary estimate of the large-scale wind energy resource with few measurements available: the case of Montenegro
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2009.07.011
– year: 2003
  ident: 10.1016/j.apenergy.2010.10.031_b0235
– volume: 70
  start-page: 1525
  issue: 7/9
  year: 2007
  ident: 10.1016/j.apenergy.2010.10.031_b0080
  article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.01.032
– year: 2004
  ident: 10.1016/j.apenergy.2010.10.031_b0160
– volume: 61
  start-page: 23
  issue: 1
  year: 1997
  ident: 10.1016/j.apenergy.2010.10.031_b0180
  article-title: Time series model to simulate and forecast hourly averaged wind speed in Quetta, Pakistan
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(97)00037-6
– year: 1989
  ident: 10.1016/j.apenergy.2010.10.031_b0240
  article-title: The analysis of directional time series: applications to wind speed and direction
  doi: 10.1007/978-1-4612-3688-7_10
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2010.10.031_b0015
  article-title: A review on forecasting wind data and wind output
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– year: 1994
  ident: 10.1016/j.apenergy.2010.10.031_b0040
SSID ssj0002120
Score 2.5539274
Snippet Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the...
SourceID proquest
repec
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1405
SubjectTerms Applied sciences
ARMA
Combined forecasting
Combined forecasting Wind speed Wind direction ARMA Vector autoregression
Energy
energy efficiency
Error analysis
Exact sciences and technology
Forecasting
Mathematical analysis
Mathematical models
Natural energy
North Dakota
prediction
VAR
Vector autoregression
Vectors (mathematics)
Wind direction
Wind energy
Wind speed
Wind turbines
Title ARMA based approaches for forecasting the tuple of wind speed and direction
URI https://dx.doi.org/10.1016/j.apenergy.2010.10.031
http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a4_3ap_3a1405-1414.htm
https://www.proquest.com/docview/1777105725
https://www.proquest.com/docview/2000023467
https://www.proquest.com/docview/855714259
Volume 88
WOSCitedRecordID wos000286707300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6lgd4QDCYVn5MRkK8VAGSOInzhCrUCUYpiLWob5aTnLdOWxratIz_nnMSp6mg2njgwWnl2qmT-3z3OfHdEfKSecxVkeNZ4PgxLlCUbUngsRUDYwFn4LIiHdD3YTAa8ek0_NpqvTO-MOvLIE359XWY_VdRYx0KW7vO_oO465NiBX5HoeMRxY7HWwm-_-1zv6eNU1IHDIci6IIuEMtlbjyk8lVWbi38OdNPzzOAIm5rrzRzRmAmRG1FV6FwFqyJ-CKBq1Kfns1qnJ0WmYJ7J8YsJpvHpPVmlMqb6q1v6dVVU1Ny3kAE62WoZnUcU2azhgrUdQ1zan79Q1WXTw0uXsusHHi5zU7vtKvMwlZs7NEXcTwZDsV4MB2_yn5YOm2Yfr1e5VDZIx0n8ELeJp3-x8H0pDbGThWZ01xOw0n873-9i5_sKTnXG2flEueOKpOebK1KOgvIIG6Qk_EDcr9aVdB-iYaHpAXpPrnXiDW5Tw4GG5dGbFrp9OUj8kkDhhaAoRvAUAQLbQCGImBoARg6V1QDhhaAoQgYWgPmMZkcD8bvP1hVig0r9sIwt5h0bSmVq1yXB5HPILDB91Gnu7FCnpIgf3dkUAbpiSHyA-nZUcR4kvjK8SPlHpB2Ok_hkFDGfQnIvlXAE5bETuQjGQemkhBs7OZ0iWdurIir-PM6DcqlMBsNL4QRiNAC0fUokC55U_fLyggsN_YIjdxExSPL-yAQezf2PURBC3mGJlZMTh0dgLGImxiwLjnakn49GmS9yIM5Nnhh4CBQSes3bzKF-WopsHugE2o73u422mcOCTQSly6hO9pwzwtstLJhlwwKuNVjAACECF6PWAtXco6HX1j01MaPGRaGJcOi56fQs1Kc51dPbjGcp-TuRkM8I-18sYLn5E68zmfLxVE14X4DjXTfKA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARMA+based+approaches+for+forecasting+the+tuple+of+wind+speed+and+direction&rft.jtitle=Applied+energy&rft.au=Erdem%2C+Ergin&rft.au=Shi%2C+Jing&rft.date=2011-04-01&rft.issn=0306-2619&rft.volume=88&rft.issue=4+p.1405-1414&rft.spage=1405&rft.epage=1414&rft_id=info:doi/10.1016%2Fj.apenergy.2010.10.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon