Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge Regression models

COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economies Jg. 10; H. 8; S. 1 - 21
Hauptverfasser: Geraldo-Campos, Luis Alberto, Soria, Juan J, Pando-Ezcurra, Tamara
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI 01.07.2022
MDPI AG
Schlagworte:
ISSN:2227-7099, 2227-7099
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model.
AbstractList COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ[sub.60] = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ[sub.100] = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model.
COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model.
Audience Academic
Author Geraldo-Campos, Luis Alberto
Pando-Ezcurra, Tamara
Soria, Juan J
Author_xml – sequence: 1
  givenname: Luis Alberto
  surname: Geraldo-Campos
  fullname: Geraldo-Campos, Luis Alberto
– sequence: 2
  givenname: Juan J
  surname: Soria
  fullname: Soria, Juan J
– sequence: 3
  givenname: Tamara
  surname: Pando-Ezcurra
  fullname: Pando-Ezcurra, Tamara
BookMark eNp9klFvFCEQxzemJtbaD-CDCYmvXgWW3QXfLk1tm5yxafSZzMLsHuctnMCa-O3l7oy2aoQHyMzv_2dgeF6d-OCxql4yelHXir5FE3yYHCZGqaRMyifVKee8W3RUqZMH-2fVeUobWoZiteTytMofwKydR7JFiN75kQwhEhPRukyiS1-I8ySvkdwjmOy-IbnDOJO7GMYI0zuyJCZMOyhk8CQMB3QFKQUC3pJ7Z8e9dIyYkivEFCxu04vq6QDbhOc_17Pq8_urT5c3i9XH69vL5WphGiXzwippWsU6Q5tetFxYwVsODe27nvZDj1ZSCWChptxYamlfFxRNiwqHBnhXn1W3R18bYKN30U0Qv-sATh8CIY4aYnZmi5q1yoBRjW2QCdGX81XxUFw20DPa2eL1-ui1i-HrjCnrTZijL-Vr3tGWiVY04jc1QjF1fgg5gplcMnrZCSEUb1pVqIt_UGVanFzpJQ6uxB8J3jwQ9HMqHSsP6pMb1zmNMKf0GGdH3MSQUsTh190Z1fsfo__6MUXT_aExLkMuTSu1ue1_la-Oyn3KpQORcoi65lKU_A9bNNMo
CitedBy_id crossref_primary_10_1007_s10479_024_06231_x
crossref_primary_10_3390_atmos16030323
crossref_primary_10_25204_iktisad_1602992
crossref_primary_10_1016_j_irfa_2023_103028
crossref_primary_10_3390_data10050063
crossref_primary_10_1016_j_jhazmat_2023_131541
crossref_primary_10_1016_j_techfore_2024_123901
Cites_doi 10.58968/eii.v3i1.42
10.1007/s11187-021-00474-9
10.1057/s41261-021-00143-7
10.3389/frai.2019.00008
10.1080/00401706.1970.10488634
10.52936/rhc.v1i1.55
10.1111/j.2517-6161.1996.tb02080.x
10.1057/s41308-021-00155-3
10.1162/neco_a_01445
10.1080/1331677X.2020.1867213
10.1080/14697688.2018.1494850
10.3389/fpubh.2021.835500
10.1016/j.ribaf.2021.101568
10.1214/16-AOS1434
10.18637/jss.v033.i01
10.1080/13501763.2021.1924839
10.1016/j.jfs.2021.100855
10.1016/0305-0483(96)00010-2
10.1201/b18401
10.11591/ijeecs.v14.i1.pp443-449
10.1007/s00500-019-04613-z
10.1371/journal.pone.0117844
10.1016/j.jfi.2021.100933
10.1016/j.frl.2021.102512
10.37394/23207.2021.18.106
10.1017/S0022109020000678
10.1016/j.frl.2021.102541
10.3390/math8081275
10.1007/978-0-387-79054-1
10.1109/ICBAIE52039.2021.9389901
10.3390/su13105714
10.1016/j.jmoneco.2020.03.014
10.2307/1268395
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
AAYXX
CITATION
N95
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
DOA
DOI 10.3390/economies10080188
DatabaseName EconStor
CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2227-7099
EndPage 21
ExternalDocumentID oai_doaj_org_article_169cac95d5e144b5989f5a9285ab107d
A744492569
10_3390_economies10080188
328488
GeographicLocations Peru
GeographicLocations_xml – name: Peru
GroupedDBID 5VS
7WY
7XC
8CJ
8FE
8FH
8FL
AADQD
ABUWG
ADBBV
ADFRT
AFFHD
AFKRA
AFRAH
AFZYC
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BEZIV
BPHCQ
CCPQU
D1J
DWQXO
EBO
EBR
EBU
EPL
FRNLG
GROUPED_DOAJ
IAO
IBB
IPNFZ
ITC
K60
K6~
KQ8
M0C
MODMG
M~E
N95
OK1
OT2
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RIG
RNS
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
L.-
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c598t-d98c6917c05b4624d4262a50b7b0bfbed808aada302cd0d0b37c0ec6e9ef5a273
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845936000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7099
IngestDate Mon Nov 10 04:28:20 EST 2025
Sun Nov 09 08:16:15 EST 2025
Tue Nov 11 11:15:17 EST 2025
Tue Nov 04 18:37:09 EST 2025
Sat Nov 29 08:46:55 EST 2025
Tue Nov 18 21:28:19 EST 2025
Sat Nov 29 07:14:45 EST 2025
Fri Dec 05 12:06:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-d98c6917c05b4624d4262a50b7b0bfbed808aada302cd0d0b37c0ec6e9ef5a273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8366-689X
0000-0002-4415-8622
OpenAccessLink https://doaj.org/article/169cac95d5e144b5989f5a9285ab107d
PQID 2706146454
PQPubID 2032406
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_169cac95d5e144b5989f5a9285ab107d
proquest_journals_2706146454
gale_infotracmisc_A744492569
gale_infotracacademiconefile_A744492569
gale_businessinsightsgauss_A744492569
crossref_primary_10_3390_economies10080188
crossref_citationtrail_10_3390_economies10080188
econis_econstor_328488
PublicationCentury 2000
PublicationDate 20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 20220701
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Economies
PublicationYear 2022
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References (ref_8) 2021; 22
ref_14
ref_13
ref_12
ref_11
Crozet (ref_10) 2022; 70
Linares (ref_32) 2021; 2
Brownlees (ref_5) 2021; 117
ref_19
ref_18
ref_17
Friedman (ref_16) 2010; 33
Yan (ref_48) 2022; 9
ref_15
Massoc (ref_29) 2021; 29
Hoerl (ref_22) 1970; 12
ref_24
Liu (ref_26) 2022; 58
Shanker (ref_41) 1996; 24
Hidayat (ref_21) 2021; 18
(ref_30) 2019; 14
Tibshirani (ref_44) 1996; 58
ref_28
Crocker (ref_9) 1980; 22
Ahelegbey (ref_1) 2019; 2
Norden (ref_34) 2021; 48
Bocanegra (ref_4) 2021; 1
Jiang (ref_23) 2022; 46
(ref_2) 2022; 60
ref_36
ref_35
Atlas (ref_3) 1990; 2
Luo (ref_27) 2021; 47
ref_31
Neuberg (ref_33) 2019; 19
Benavente (ref_39) 2021; 2
ref_38
Yin (ref_50) 2022; 104
Chernozhukov (ref_6) 2017; 45
Zhou (ref_51) 2021; 34
ref_47
ref_46
ref_43
ref_42
ref_40
Tsuchiya (ref_45) 2021; 33
Heitz (ref_20) 2021; 56
Liu (ref_25) 2021; 53
ref_49
Rao (ref_37) 2020; 24
ref_7
References_xml – ident: ref_38
  doi: 10.58968/eii.v3i1.42
– volume: 58
  start-page: 807
  year: 2022
  ident: ref_26
  article-title: SMEs’ Line of Credit under the COVID-19: Evidence from China
  publication-title: Small Business Economics
  doi: 10.1007/s11187-021-00474-9
– volume: 2
  start-page: 186
  year: 2021
  ident: ref_32
  article-title: Reactiva Perú y Su Alcance En Los Sectores Del Perú
  publication-title: Revista de Investigaciones Empresariales
– volume: 22
  start-page: 250
  year: 2021
  ident: ref_8
  article-title: Post-COVID-19 SME Financing Constraints and the Credit Guarantee Scheme Solution in Spain
  publication-title: Journal of Banking Regulation
  doi: 10.1057/s41261-021-00143-7
– volume: 2
  start-page: 8
  year: 2019
  ident: ref_1
  article-title: Factorial Network Models to Improve P2P Credit Risk Management
  publication-title: Frontiers in Artificial Intelligence
  doi: 10.3389/frai.2019.00008
– volume: 12
  start-page: 55
  year: 1970
  ident: ref_22
  article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 1
  start-page: 3
  year: 2021
  ident: ref_4
  article-title: Análisis Del Conocimiento y Acceso Al Programa Reactiva Perú, En Los Comerciantes En La Ciudad de Tocache
  publication-title: Revista Hechos Contables
  doi: 10.52936/rhc.v1i1.55
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_44
  article-title: Regression Shrinkage and Selection via the Lasso
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 70
  start-page: 185
  year: 2022
  ident: ref_10
  article-title: International Trade and Letters of Credit: A Double-Edged Sword in Times of Crises
  publication-title: IMF Economic Review
  doi: 10.1057/s41308-021-00155-3
– volume: 33
  start-page: 3361
  year: 2021
  ident: ref_45
  article-title: Semisupervised Ordinal Regression Based on Empirical Risk Minimization
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01445
– volume: 34
  start-page: 3064
  year: 2021
  ident: ref_51
  article-title: Feature Selection in Credit Risk Modeling: An International Evidence
  publication-title: Economic Research-Ekonomska Istrazivanja
  doi: 10.1080/1331677X.2020.1867213
– ident: ref_42
– ident: ref_35
– volume: 19
  start-page: 77
  year: 2019
  ident: ref_33
  article-title: Estimating a Covariance Matrix for Market Risk Management and the Case of Credit Default Swaps
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2018.1494850
– volume: 9
  start-page: 835500
  year: 2022
  ident: ref_48
  article-title: The Reduction of Credit Risk in the Health Care Industry in China: Are We Returning to the Pre-COVID-19 Era?
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2021.835500
– ident: ref_31
– volume: 60
  start-page: 101568
  year: 2022
  ident: ref_2
  article-title: Firm-Level Trade Credit Responses to COVID-19-Induced Monetary and Fiscal Policies: International Evidence
  publication-title: Research in International Business and Finance
  doi: 10.1016/j.ribaf.2021.101568
– volume: 104
  start-page: 15
  year: 2022
  ident: ref_50
  article-title: COVID-19 and Credit Risk: A Long Memory Perspective
  publication-title: Insurance: Mathematics and Economics
– volume: 45
  start-page: 39
  year: 2017
  ident: ref_6
  article-title: A Lava Attack on the Recovery of Sums of Dense and Sparse Signals
  publication-title: The Annals of Statistics
  doi: 10.1214/16-AOS1434
– volume: 33
  start-page: 1
  year: 2010
  ident: ref_16
  article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v033.i01
– volume: 29
  start-page: 1135
  year: 2021
  ident: ref_29
  article-title: Having Banks ‘Play along’ State-Bank Coordination and State-Guaranteed Credit Programs during the COVID-19 Crisis in France and Germany
  publication-title: Journal of European Public Policy
  doi: 10.1080/13501763.2021.1924839
– ident: ref_17
– volume: 53
  start-page: 100855
  year: 2021
  ident: ref_25
  article-title: Debt Rollover Risk, Credit Default Swap Spread and Stock Returns: Evidence from the COVID-19 Crisis
  publication-title: Journal of Financial Stability
  doi: 10.1016/j.jfs.2021.100855
– volume: 24
  start-page: 385
  year: 1996
  ident: ref_41
  article-title: Effect of Data Standardization on Neural Network Training
  publication-title: Omega
  doi: 10.1016/0305-0483(96)00010-2
– volume: 2
  start-page: 622
  year: 1990
  ident: ref_3
  article-title: Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications
  publication-title: Advances in Neural Information Processing Systems
– ident: ref_19
  doi: 10.1201/b18401
– volume: 14
  start-page: 443
  year: 2019
  ident: ref_30
  article-title: Reservoir Water Level Forecasting Using Normalization and Multiple Regression
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
  doi: 10.11591/ijeecs.v14.i1.pp443-449
– volume: 24
  start-page: 11493
  year: 2020
  ident: ref_37
  article-title: Design of Comprehensive Evaluation Index System for P2P Credit Risk of ‘Three Rural’ Borrowers
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04613-z
– ident: ref_7
– ident: ref_28
– ident: ref_46
  doi: 10.1371/journal.pone.0117844
– volume: 48
  start-page: 100933
  year: 2021
  ident: ref_34
  article-title: COVID-19, Policy Interventions and Credit: The Brazilian Experience
  publication-title: Journal of Financial Intermediation
  doi: 10.1016/j.jfi.2021.100933
– ident: ref_24
– ident: ref_11
– volume: 46
  start-page: 102512
  year: 2022
  ident: ref_23
  article-title: Credit Ratings, Financial Ratios, and Equity Risk: A Decomposition Analysis Based on Moody’s, Standard & Poor’s and Fitch’s Ratings
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2021.102512
– ident: ref_40
– ident: ref_14
– volume: 2
  start-page: 176
  year: 2021
  ident: ref_39
  article-title: Principales Rubros Beneficiados Con Reactiva Perú Sector Comercio Región Puno
  publication-title: Revista de Investigaciones Empresariales
– ident: ref_18
– volume: 18
  start-page: 1121
  year: 2021
  ident: ref_21
  article-title: The Effect of COVID-19 to Credit Risk and Capital Risk of State-Owned Bank in Indonesia: A System Dynamics Model
  publication-title: Wseas Transactions on Business and Economics
  doi: 10.37394/23207.2021.18.106
– volume: 56
  start-page: 2800
  year: 2021
  ident: ref_20
  article-title: Creditor Rights and Bank Loan Losses
  publication-title: Journal of Financial and Quantitative Analysis
  doi: 10.1017/S0022109020000678
– volume: 47
  start-page: 102541
  year: 2021
  ident: ref_27
  article-title: COVID-19 and Trade Credit Speed of Adjustment
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2021.102541
– ident: ref_47
  doi: 10.3390/math8081275
– ident: ref_13
  doi: 10.1007/978-0-387-79054-1
– ident: ref_12
  doi: 10.1109/ICBAIE52039.2021.9389901
– ident: ref_49
  doi: 10.3390/su13105714
– volume: 117
  start-page: 585
  year: 2021
  ident: ref_5
  article-title: Bank Credit Risk Networks: Evidence from the Eurozone
  publication-title: Journal of Monetary Economics
  doi: 10.1016/j.jmoneco.2020.03.014
– ident: ref_15
– ident: ref_36
– ident: ref_43
– volume: 22
  start-page: 130
  year: 1980
  ident: ref_9
  article-title: Linear Regression Analysis Theory and Computin
  publication-title: Technometrics
  doi: 10.2307/1268395
SSID ssj0000913828
Score 2.247854
Snippet COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit...
SourceID doaj
proquest
gale
crossref
econis
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Banks
Beneficiaries
Comparative analysis
Coronaviruses
COVID-19
Credit risk
credits
Economic aspects
Economic crisis
Epidemics
Financial risk
Lasso model
Loans
Machine learning
Measuring instruments
Pandemics
Peru
Quality control
Regression analysis
Ridge model
Stockholders
Swaps (Finance)
Working capital
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGF8qpYaJEPICSkqN5snMRc0HZFxaGtVhVIvVl-RiuqpMRZfj8zjnerFaKXXnJIJo4TT8Yz9sz3EfLBGWsE1yyrp17hNmOZCcZ9Zitt6sorJ3RkLTmrLi7qqyuxTAtuIaVVbmxiNNS2M7hGfpxXGLsg_tTXm98Zskbh7mqi0HhIHqFngyl952yxXWNBzEuIKMbNzBlE98durPZ1ATFt2DTyrdxORxG1HyuOQGoV_mek48xzun_fPj8nz5LPSeejkrwgD1z7kjzZlCSHV2Q4jymVjia01YaCK0sXPUxsA71chV901VLwFOmlU9E-0qXr13Q55nZ9oXO62NIZ0s5H0TPwyjuqWgsN2AZvbcaU25Yi_9p1eE1-nn77sfieJTqGzHBRD5kVtSkhujOM66LMC4tg9oozXWmmvXa2ZrVSVs1YbiyzTM9A1JnSCee5AjfpgOy1XeveEApeHAcpoQvwZqzzoBW5npaV95ilU9gJYZtRkSZhlSNlxrWEmAUHUv4zkBPyeXvLzQjUcZfwCQ71VhAxtuOJrm9k-mXltBRGgSJb7iDq1PANBLyHyGuuNATN0MmDUVFi-5jLKmcw2WPrH1FxZKIRhUPAhZbQqHUIcl4VBSJClmJCPkU5NCXwdvCwsSICvhGCcu1IHu5Iggkwu5c3-ieTCQryVvne3n35HXmaY01HzEE-JHtDv3ZH5LH5M6xC_z7-UX8BQdIq_g
  priority: 102
  providerName: ProQuest
Title Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge Regression models
URI https://www.econstor.eu/handle/10419/328488
https://www.proquest.com/docview/2706146454
https://doaj.org/article/169cac95d5e144b5989f5a9285ab107d
Volume 10
WOSCitedRecordID wos000845936000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913828
  issn: 2227-7099
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913828
  issn: 2227-7099
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Complete
  customDbUrl:
  eissn: 2227-7099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913828
  issn: 2227-7099
  databaseCode: 7WY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2227-7099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913828
  issn: 2227-7099
  databaseCode: M0C
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913828
  issn: 2227-7099
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913828
  issn: 2227-7099
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_0FPRF_DqsnmUfFEEIt02z2axvvXKHwrWEonj3tOxXSvFIpZv69zuzm9Yror74kofkl00ys5mdSWZ-Q8gbb52V3LCsGjUafzOWmWS8yZwwthKN9tLEriWXYj6vrq5kfavVF-aEJXrgJLjTUSmthuEc9-D7Gy4r2XAt84prA6GLQ-vLhLwVTEUbLJFbr0q_MccQ15_6VOfrA7LZsFHstPJrIYp8_VhrBKhV-JN5jmvOxWPyqHcW6STd5BNyx7dPyYNdLXF4RrpZzIX0tKdJXVLwQel0AytSRxer8I2uWgouHl14HQ0brf1mS-uUlPWBTuh034eQrpsIvQR3ek1162AAt8RTlylXtqXYOO0mPCdfLs4_Tz9mfR-FzIK4uszJypYQllnGTVHmhUMWes2ZEYaZxnhXsUprp8cst445ZsYA9bb00oOowb85JkftuvUvCAX3iwNKmgLcEOcbUGduRqVoGkyvKdyAsJ1Qle1JxrHXxY2CYAP1oH7Tw4C835_yPTFs_A18hpraA5EcO-6AKaP6KaP-NWUG5DjpOY6PSahqDKs0jv4W9a76_p-wCfiFJCz1NgQ1EUWBVI6lHJB3EYc2AJ4OLpZKGUBGyKZ1gDw5QMK7aw8P72aY6m1HULnAKB2Z1l7-j6d9RR7mWLIRU4xPyFG32frX5L790a3CZkjuiq_XQ3Lv7HxeL4bxJYLtjE1hX_1pVl__BB1HIic
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VglQu5VmRUmAPVEhIVjeOX4uEUAhUrZpGUVWk3pZ92Yqo7OJ1QPwpfiMzaztVhOitBy4-xOO1dzPP3ZlvCHlttdE8VizIhrnEY8Yk4CzOA5MqnaW5tFz5riXTdDbLLi74fIP87mthMK2y14leUZtK4x75QZhi7IL4Ux-uvgfYNQpPV_sWGi1bnNhfPyFkc--PP8H_ux-Gh5_PJ0dB11Ug0DHPmsDwTCcQpGgWqygJI4OY7DJmKlVM5cqajGVSGjlioTbMMDUCUqsTy20eS7D2MO4dcjeKQDwwVZBNVns6iLEJEUx7eDoacXZg2-pi6xBDhw19f5dr8-e7BGCFE1At3L-Mgrd0hw_-tzV6SLY7n5qOWyF4RDZs-Zhs9SXX7glpTn3KqKUdmmxBwVWnkxoMd0PPFu4bXZQUPGF6ZqXX_3Ru6yWdt7lr7-iYTlbtGmmVe9IpRB0VlaWBAUyBjxZtSnFJsb_cpXtKvtzKpHfIZlmV9hmh4KXGQMVVBN6asTlwfaiGSZrnmIUUmQFhPRcI3WGxY0uQSwExGTKO-ItxBuTt6pGrFojkJuKPyForQsQQ9z9UdSE6lSSGCdcSBNXEFqJqBWvAYR48zGKphiyFj9xpGdOPj7m6YgTODI6-j4wqujapcHG4keQKuXROjNMoQsTLhA_IG0-HqhJmBy9rKz5gjRB0bI1yb40SVJxev93zu-hUrBPXzL578-1XZOvo_HQqpsezk-fkfoj1Kz7feo9sNvXSviD39I9m4eqXXpop-XrbovEHp5aJpg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoAL74pAgT1QISFZ2fi9SAiFlIiqIYoqkHpb9uUoorKL1wHx1_h1zKztVBGitx64-BCP197NPHdnviHkpdVG80SxIB8VEo8Z04CzpAhMpnSeFdJy5buWzLL5PD895Ysd8ruvhcG0yl4nekVtKo175MMww9gF8aeGRZcWsTicvjv_HmAHKTxp7dtptCxybH_9hPDNvT06hP_6IAynHz5PPgZdh4FAJzxvAsNznULAolmi4jSMDeKzy4SpTDFVKGtylktpZMRCbZhhKgJSq1PLbZFIsPww7jVyPYvBbGLaIJts9ncQbxOimfYgNYo4G9q20tg6xNNhI9_r5cIU-o4BWO0EVCv3LwPhrd707v-8XvfInc7XpuNWOO6THVs-ILf6Umz3kDSffCqppR3K7JKCC08nNRj0hp6s3De6Kil4yPTESm8X6MLWa7poc9re0DGdbNo40qrwpDOIRioqSwMDmCU-umxTjUuKfefO3CPy5UomvUd2y6q0jwkF7zUBKq5i8OKMLUAaQjVKs6LA7KTYDAjrOULoDqMdW4WcCYjVkInEX0w0IK83j5y3ACWXEb9HNtsQIra4_6Gql6JTVWKUci1BgE1iIdpWsAYc5sHDPJFqxDL4yL2WSf34mMMrInBycPQDZFrRtU-Fi8MNJreUa-fEOItjRMJM-YC88nSoQmF28LK2EgTWCMHItij3tyhB9ent2z3vi071OnHB-E8uv_2C3ASJELOj-fFTcjvEshafhr1Pdpt6bZ-RG_pHs3L1cy_YlHy9asn4Azj6kmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Credit+Risk+in+the+Reactive+Peru+Program%3A+A+Comparison+of+the+Lasso+and+Ridge+Regression+Models&rft.jtitle=Economies&rft.au=Geraldo-Campos%2C+Luis+Alberto&rft.au=Soria%2C+Juan+J&rft.au=Pando-Ezcurra%2C+Tamara&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.issn=2227-7099&rft.eissn=2227-7099&rft.volume=10&rft.issue=8&rft_id=info:doi/10.3390%2Feconomies10080188&rft.externalDBID=N95&rft.externalDocID=A744492569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7099&client=summon