Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge Regression models
COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Pr...
Gespeichert in:
| Veröffentlicht in: | Economies Jg. 10; H. 8; S. 1 - 21 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI
01.07.2022
MDPI AG |
| Schlagworte: | |
| ISSN: | 2227-7099, 2227-7099 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model. |
|---|---|
| AbstractList | COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ[sub.60] = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ[sub.100] = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model. COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model. |
| Audience | Academic |
| Author | Geraldo-Campos, Luis Alberto Pando-Ezcurra, Tamara Soria, Juan J |
| Author_xml | – sequence: 1 givenname: Luis Alberto surname: Geraldo-Campos fullname: Geraldo-Campos, Luis Alberto – sequence: 2 givenname: Juan J surname: Soria fullname: Soria, Juan J – sequence: 3 givenname: Tamara surname: Pando-Ezcurra fullname: Pando-Ezcurra, Tamara |
| BookMark | eNp9klFvFCEQxzemJtbaD-CDCYmvXgWW3QXfLk1tm5yxafSZzMLsHuctnMCa-O3l7oy2aoQHyMzv_2dgeF6d-OCxql4yelHXir5FE3yYHCZGqaRMyifVKee8W3RUqZMH-2fVeUobWoZiteTytMofwKydR7JFiN75kQwhEhPRukyiS1-I8ySvkdwjmOy-IbnDOJO7GMYI0zuyJCZMOyhk8CQMB3QFKQUC3pJ7Z8e9dIyYkivEFCxu04vq6QDbhOc_17Pq8_urT5c3i9XH69vL5WphGiXzwippWsU6Q5tetFxYwVsODe27nvZDj1ZSCWChptxYamlfFxRNiwqHBnhXn1W3R18bYKN30U0Qv-sATh8CIY4aYnZmi5q1yoBRjW2QCdGX81XxUFw20DPa2eL1-ui1i-HrjCnrTZijL-Vr3tGWiVY04jc1QjF1fgg5gplcMnrZCSEUb1pVqIt_UGVanFzpJQ6uxB8J3jwQ9HMqHSsP6pMb1zmNMKf0GGdH3MSQUsTh190Z1fsfo__6MUXT_aExLkMuTSu1ue1_la-Oyn3KpQORcoi65lKU_A9bNNMo |
| CitedBy_id | crossref_primary_10_1007_s10479_024_06231_x crossref_primary_10_3390_atmos16030323 crossref_primary_10_25204_iktisad_1602992 crossref_primary_10_1016_j_irfa_2023_103028 crossref_primary_10_3390_data10050063 crossref_primary_10_1016_j_jhazmat_2023_131541 crossref_primary_10_1016_j_techfore_2024_123901 |
| Cites_doi | 10.58968/eii.v3i1.42 10.1007/s11187-021-00474-9 10.1057/s41261-021-00143-7 10.3389/frai.2019.00008 10.1080/00401706.1970.10488634 10.52936/rhc.v1i1.55 10.1111/j.2517-6161.1996.tb02080.x 10.1057/s41308-021-00155-3 10.1162/neco_a_01445 10.1080/1331677X.2020.1867213 10.1080/14697688.2018.1494850 10.3389/fpubh.2021.835500 10.1016/j.ribaf.2021.101568 10.1214/16-AOS1434 10.18637/jss.v033.i01 10.1080/13501763.2021.1924839 10.1016/j.jfs.2021.100855 10.1016/0305-0483(96)00010-2 10.1201/b18401 10.11591/ijeecs.v14.i1.pp443-449 10.1007/s00500-019-04613-z 10.1371/journal.pone.0117844 10.1016/j.jfi.2021.100933 10.1016/j.frl.2021.102512 10.37394/23207.2021.18.106 10.1017/S0022109020000678 10.1016/j.frl.2021.102541 10.3390/math8081275 10.1007/978-0-387-79054-1 10.1109/ICBAIE52039.2021.9389901 10.3390/su13105714 10.1016/j.jmoneco.2020.03.014 10.2307/1268395 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | OT2 AAYXX CITATION N95 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U DOA |
| DOI | 10.3390/economies10080188 |
| DatabaseName | EconStor CrossRef Gale Business: Insights ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISSN | 2227-7099 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_169cac95d5e144b5989f5a9285ab107d A744492569 10_3390_economies10080188 328488 |
| GeographicLocations | Peru |
| GeographicLocations_xml | – name: Peru |
| GroupedDBID | 5VS 7WY 7XC 8CJ 8FE 8FH 8FL AADQD ABUWG ADBBV ADFRT AFFHD AFKRA AFRAH AFZYC AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BEZIV BPHCQ CCPQU D1J DWQXO EBO EBR EBU EPL FRNLG GROUPED_DOAJ IAO IBB IPNFZ ITC K60 K6~ KQ8 M0C MODMG M~E N95 OK1 OT2 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC RIG RNS AAYXX CITATION 3V. 7XB 8FK AZQEC L.- PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c598t-d98c6917c05b4624d4262a50b7b0bfbed808aada302cd0d0b37c0ec6e9ef5a273 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845936000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7099 |
| IngestDate | Mon Nov 10 04:28:20 EST 2025 Sun Nov 09 08:16:15 EST 2025 Tue Nov 11 11:15:17 EST 2025 Tue Nov 04 18:37:09 EST 2025 Sat Nov 29 08:46:55 EST 2025 Tue Nov 18 21:28:19 EST 2025 Sat Nov 29 07:14:45 EST 2025 Fri Dec 05 12:06:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c598t-d98c6917c05b4624d4262a50b7b0bfbed808aada302cd0d0b37c0ec6e9ef5a273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8366-689X 0000-0002-4415-8622 |
| OpenAccessLink | https://doaj.org/article/169cac95d5e144b5989f5a9285ab107d |
| PQID | 2706146454 |
| PQPubID | 2032406 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_169cac95d5e144b5989f5a9285ab107d proquest_journals_2706146454 gale_infotracmisc_A744492569 gale_infotracacademiconefile_A744492569 gale_businessinsightsgauss_A744492569 crossref_primary_10_3390_economies10080188 crossref_citationtrail_10_3390_economies10080188 econis_econstor_328488 |
| PublicationCentury | 2000 |
| PublicationDate | 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 20220701 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Economies |
| PublicationYear | 2022 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | (ref_8) 2021; 22 ref_14 ref_13 ref_12 ref_11 Crozet (ref_10) 2022; 70 Linares (ref_32) 2021; 2 Brownlees (ref_5) 2021; 117 ref_19 ref_18 ref_17 Friedman (ref_16) 2010; 33 Yan (ref_48) 2022; 9 ref_15 Massoc (ref_29) 2021; 29 Hoerl (ref_22) 1970; 12 ref_24 Liu (ref_26) 2022; 58 Shanker (ref_41) 1996; 24 Hidayat (ref_21) 2021; 18 (ref_30) 2019; 14 Tibshirani (ref_44) 1996; 58 ref_28 Crocker (ref_9) 1980; 22 Ahelegbey (ref_1) 2019; 2 Norden (ref_34) 2021; 48 Bocanegra (ref_4) 2021; 1 Jiang (ref_23) 2022; 46 (ref_2) 2022; 60 ref_36 ref_35 Atlas (ref_3) 1990; 2 Luo (ref_27) 2021; 47 ref_31 Neuberg (ref_33) 2019; 19 Benavente (ref_39) 2021; 2 ref_38 Yin (ref_50) 2022; 104 Chernozhukov (ref_6) 2017; 45 Zhou (ref_51) 2021; 34 ref_47 ref_46 ref_43 ref_42 ref_40 Tsuchiya (ref_45) 2021; 33 Heitz (ref_20) 2021; 56 Liu (ref_25) 2021; 53 ref_49 Rao (ref_37) 2020; 24 ref_7 |
| References_xml | – ident: ref_38 doi: 10.58968/eii.v3i1.42 – volume: 58 start-page: 807 year: 2022 ident: ref_26 article-title: SMEs’ Line of Credit under the COVID-19: Evidence from China publication-title: Small Business Economics doi: 10.1007/s11187-021-00474-9 – volume: 2 start-page: 186 year: 2021 ident: ref_32 article-title: Reactiva Perú y Su Alcance En Los Sectores Del Perú publication-title: Revista de Investigaciones Empresariales – volume: 22 start-page: 250 year: 2021 ident: ref_8 article-title: Post-COVID-19 SME Financing Constraints and the Credit Guarantee Scheme Solution in Spain publication-title: Journal of Banking Regulation doi: 10.1057/s41261-021-00143-7 – volume: 2 start-page: 8 year: 2019 ident: ref_1 article-title: Factorial Network Models to Improve P2P Credit Risk Management publication-title: Frontiers in Artificial Intelligence doi: 10.3389/frai.2019.00008 – volume: 12 start-page: 55 year: 1970 ident: ref_22 article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 1 start-page: 3 year: 2021 ident: ref_4 article-title: Análisis Del Conocimiento y Acceso Al Programa Reactiva Perú, En Los Comerciantes En La Ciudad de Tocache publication-title: Revista Hechos Contables doi: 10.52936/rhc.v1i1.55 – volume: 58 start-page: 267 year: 1996 ident: ref_44 article-title: Regression Shrinkage and Selection via the Lasso publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 70 start-page: 185 year: 2022 ident: ref_10 article-title: International Trade and Letters of Credit: A Double-Edged Sword in Times of Crises publication-title: IMF Economic Review doi: 10.1057/s41308-021-00155-3 – volume: 33 start-page: 3361 year: 2021 ident: ref_45 article-title: Semisupervised Ordinal Regression Based on Empirical Risk Minimization publication-title: Neural Computation doi: 10.1162/neco_a_01445 – volume: 34 start-page: 3064 year: 2021 ident: ref_51 article-title: Feature Selection in Credit Risk Modeling: An International Evidence publication-title: Economic Research-Ekonomska Istrazivanja doi: 10.1080/1331677X.2020.1867213 – ident: ref_42 – ident: ref_35 – volume: 19 start-page: 77 year: 2019 ident: ref_33 article-title: Estimating a Covariance Matrix for Market Risk Management and the Case of Credit Default Swaps publication-title: Quantitative Finance doi: 10.1080/14697688.2018.1494850 – volume: 9 start-page: 835500 year: 2022 ident: ref_48 article-title: The Reduction of Credit Risk in the Health Care Industry in China: Are We Returning to the Pre-COVID-19 Era? publication-title: Frontiers in Public Health doi: 10.3389/fpubh.2021.835500 – ident: ref_31 – volume: 60 start-page: 101568 year: 2022 ident: ref_2 article-title: Firm-Level Trade Credit Responses to COVID-19-Induced Monetary and Fiscal Policies: International Evidence publication-title: Research in International Business and Finance doi: 10.1016/j.ribaf.2021.101568 – volume: 104 start-page: 15 year: 2022 ident: ref_50 article-title: COVID-19 and Credit Risk: A Long Memory Perspective publication-title: Insurance: Mathematics and Economics – volume: 45 start-page: 39 year: 2017 ident: ref_6 article-title: A Lava Attack on the Recovery of Sums of Dense and Sparse Signals publication-title: The Annals of Statistics doi: 10.1214/16-AOS1434 – volume: 33 start-page: 1 year: 2010 ident: ref_16 article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent publication-title: Journal of Statistical Software doi: 10.18637/jss.v033.i01 – volume: 29 start-page: 1135 year: 2021 ident: ref_29 article-title: Having Banks ‘Play along’ State-Bank Coordination and State-Guaranteed Credit Programs during the COVID-19 Crisis in France and Germany publication-title: Journal of European Public Policy doi: 10.1080/13501763.2021.1924839 – ident: ref_17 – volume: 53 start-page: 100855 year: 2021 ident: ref_25 article-title: Debt Rollover Risk, Credit Default Swap Spread and Stock Returns: Evidence from the COVID-19 Crisis publication-title: Journal of Financial Stability doi: 10.1016/j.jfs.2021.100855 – volume: 24 start-page: 385 year: 1996 ident: ref_41 article-title: Effect of Data Standardization on Neural Network Training publication-title: Omega doi: 10.1016/0305-0483(96)00010-2 – volume: 2 start-page: 622 year: 1990 ident: ref_3 article-title: Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications publication-title: Advances in Neural Information Processing Systems – ident: ref_19 doi: 10.1201/b18401 – volume: 14 start-page: 443 year: 2019 ident: ref_30 article-title: Reservoir Water Level Forecasting Using Normalization and Multiple Regression publication-title: Indonesian Journal of Electrical Engineering and Computer Science doi: 10.11591/ijeecs.v14.i1.pp443-449 – volume: 24 start-page: 11493 year: 2020 ident: ref_37 article-title: Design of Comprehensive Evaluation Index System for P2P Credit Risk of ‘Three Rural’ Borrowers publication-title: Soft Computing doi: 10.1007/s00500-019-04613-z – ident: ref_7 – ident: ref_28 – ident: ref_46 doi: 10.1371/journal.pone.0117844 – volume: 48 start-page: 100933 year: 2021 ident: ref_34 article-title: COVID-19, Policy Interventions and Credit: The Brazilian Experience publication-title: Journal of Financial Intermediation doi: 10.1016/j.jfi.2021.100933 – ident: ref_24 – ident: ref_11 – volume: 46 start-page: 102512 year: 2022 ident: ref_23 article-title: Credit Ratings, Financial Ratios, and Equity Risk: A Decomposition Analysis Based on Moody’s, Standard & Poor’s and Fitch’s Ratings publication-title: Finance Research Letters doi: 10.1016/j.frl.2021.102512 – ident: ref_40 – ident: ref_14 – volume: 2 start-page: 176 year: 2021 ident: ref_39 article-title: Principales Rubros Beneficiados Con Reactiva Perú Sector Comercio Región Puno publication-title: Revista de Investigaciones Empresariales – ident: ref_18 – volume: 18 start-page: 1121 year: 2021 ident: ref_21 article-title: The Effect of COVID-19 to Credit Risk and Capital Risk of State-Owned Bank in Indonesia: A System Dynamics Model publication-title: Wseas Transactions on Business and Economics doi: 10.37394/23207.2021.18.106 – volume: 56 start-page: 2800 year: 2021 ident: ref_20 article-title: Creditor Rights and Bank Loan Losses publication-title: Journal of Financial and Quantitative Analysis doi: 10.1017/S0022109020000678 – volume: 47 start-page: 102541 year: 2021 ident: ref_27 article-title: COVID-19 and Trade Credit Speed of Adjustment publication-title: Finance Research Letters doi: 10.1016/j.frl.2021.102541 – ident: ref_47 doi: 10.3390/math8081275 – ident: ref_13 doi: 10.1007/978-0-387-79054-1 – ident: ref_12 doi: 10.1109/ICBAIE52039.2021.9389901 – ident: ref_49 doi: 10.3390/su13105714 – volume: 117 start-page: 585 year: 2021 ident: ref_5 article-title: Bank Credit Risk Networks: Evidence from the Eurozone publication-title: Journal of Monetary Economics doi: 10.1016/j.jmoneco.2020.03.014 – ident: ref_15 – ident: ref_36 – ident: ref_43 – volume: 22 start-page: 130 year: 1980 ident: ref_9 article-title: Linear Regression Analysis Theory and Computin publication-title: Technometrics doi: 10.2307/1268395 |
| SSID | ssj0000913828 |
| Score | 2.247854 |
| Snippet | COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit... |
| SourceID | doaj proquest gale crossref econis |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Banks Beneficiaries Comparative analysis Coronaviruses COVID-19 Credit risk credits Economic aspects Economic crisis Epidemics Financial risk Lasso model Loans Machine learning Measuring instruments Pandemics Peru Quality control Regression analysis Ridge model Stockholders Swaps (Finance) Working capital |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGF8qpYaJEPICSkqN5snMRc0HZFxaGtVhVIvVl-RiuqpMRZfj8zjnerFaKXXnJIJo4TT8Yz9sz3EfLBGWsE1yyrp17hNmOZCcZ9Zitt6sorJ3RkLTmrLi7qqyuxTAtuIaVVbmxiNNS2M7hGfpxXGLsg_tTXm98Zskbh7mqi0HhIHqFngyl952yxXWNBzEuIKMbNzBlE98durPZ1ATFt2DTyrdxORxG1HyuOQGoV_mek48xzun_fPj8nz5LPSeejkrwgD1z7kjzZlCSHV2Q4jymVjia01YaCK0sXPUxsA71chV901VLwFOmlU9E-0qXr13Q55nZ9oXO62NIZ0s5H0TPwyjuqWgsN2AZvbcaU25Yi_9p1eE1-nn77sfieJTqGzHBRD5kVtSkhujOM66LMC4tg9oozXWmmvXa2ZrVSVs1YbiyzTM9A1JnSCee5AjfpgOy1XeveEApeHAcpoQvwZqzzoBW5npaV95ilU9gJYZtRkSZhlSNlxrWEmAUHUv4zkBPyeXvLzQjUcZfwCQ71VhAxtuOJrm9k-mXltBRGgSJb7iDq1PANBLyHyGuuNATN0MmDUVFi-5jLKmcw2WPrH1FxZKIRhUPAhZbQqHUIcl4VBSJClmJCPkU5NCXwdvCwsSICvhGCcu1IHu5Iggkwu5c3-ieTCQryVvne3n35HXmaY01HzEE-JHtDv3ZH5LH5M6xC_z7-UX8BQdIq_g priority: 102 providerName: ProQuest |
| Title | Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge Regression models |
| URI | https://www.econstor.eu/handle/10419/328488 https://www.proquest.com/docview/2706146454 https://doaj.org/article/169cac95d5e144b5989f5a9285ab107d |
| Volume | 10 |
| WOSCitedRecordID | wos000845936000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913828 issn: 2227-7099 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913828 issn: 2227-7099 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Complete customDbUrl: eissn: 2227-7099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913828 issn: 2227-7099 databaseCode: 7WY dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2227-7099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913828 issn: 2227-7099 databaseCode: M0C dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913828 issn: 2227-7099 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913828 issn: 2227-7099 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_0FPRF_DqsnmUfFEEIt02z2axvvXKHwrWEonj3tOxXSvFIpZv69zuzm9Yror74kofkl00ys5mdSWZ-Q8gbb52V3LCsGjUafzOWmWS8yZwwthKN9tLEriWXYj6vrq5kfavVF-aEJXrgJLjTUSmthuEc9-D7Gy4r2XAt84prA6GLQ-vLhLwVTEUbLJFbr0q_MccQ15_6VOfrA7LZsFHstPJrIYp8_VhrBKhV-JN5jmvOxWPyqHcW6STd5BNyx7dPyYNdLXF4RrpZzIX0tKdJXVLwQel0AytSRxer8I2uWgouHl14HQ0brf1mS-uUlPWBTuh034eQrpsIvQR3ek1162AAt8RTlylXtqXYOO0mPCdfLs4_Tz9mfR-FzIK4uszJypYQllnGTVHmhUMWes2ZEYaZxnhXsUprp8cst445ZsYA9bb00oOowb85JkftuvUvCAX3iwNKmgLcEOcbUGduRqVoGkyvKdyAsJ1Qle1JxrHXxY2CYAP1oH7Tw4C835_yPTFs_A18hpraA5EcO-6AKaP6KaP-NWUG5DjpOY6PSahqDKs0jv4W9a76_p-wCfiFJCz1NgQ1EUWBVI6lHJB3EYc2AJ4OLpZKGUBGyKZ1gDw5QMK7aw8P72aY6m1HULnAKB2Z1l7-j6d9RR7mWLIRU4xPyFG32frX5L790a3CZkjuiq_XQ3Lv7HxeL4bxJYLtjE1hX_1pVl__BB1HIic |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VglQu5VmRUmAPVEhIVjeOX4uEUAhUrZpGUVWk3pZ92Yqo7OJ1QPwpfiMzaztVhOitBy4-xOO1dzPP3ZlvCHlttdE8VizIhrnEY8Yk4CzOA5MqnaW5tFz5riXTdDbLLi74fIP87mthMK2y14leUZtK4x75QZhi7IL4Ux-uvgfYNQpPV_sWGi1bnNhfPyFkc--PP8H_ux-Gh5_PJ0dB11Ug0DHPmsDwTCcQpGgWqygJI4OY7DJmKlVM5cqajGVSGjlioTbMMDUCUqsTy20eS7D2MO4dcjeKQDwwVZBNVns6iLEJEUx7eDoacXZg2-pi6xBDhw19f5dr8-e7BGCFE1At3L-Mgrd0hw_-tzV6SLY7n5qOWyF4RDZs-Zhs9SXX7glpTn3KqKUdmmxBwVWnkxoMd0PPFu4bXZQUPGF6ZqXX_3Ru6yWdt7lr7-iYTlbtGmmVe9IpRB0VlaWBAUyBjxZtSnFJsb_cpXtKvtzKpHfIZlmV9hmh4KXGQMVVBN6asTlwfaiGSZrnmIUUmQFhPRcI3WGxY0uQSwExGTKO-ItxBuTt6pGrFojkJuKPyForQsQQ9z9UdSE6lSSGCdcSBNXEFqJqBWvAYR48zGKphiyFj9xpGdOPj7m6YgTODI6-j4wqujapcHG4keQKuXROjNMoQsTLhA_IG0-HqhJmBy9rKz5gjRB0bI1yb40SVJxev93zu-hUrBPXzL578-1XZOvo_HQqpsezk-fkfoj1Kz7feo9sNvXSviD39I9m4eqXXpop-XrbovEHp5aJpg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoAL74pAgT1QISFZ2fi9SAiFlIiqIYoqkHpb9uUoorKL1wHx1_h1zKztVBGitx64-BCP197NPHdnviHkpdVG80SxIB8VEo8Z04CzpAhMpnSeFdJy5buWzLL5PD895Ysd8ruvhcG0yl4nekVtKo175MMww9gF8aeGRZcWsTicvjv_HmAHKTxp7dtptCxybH_9hPDNvT06hP_6IAynHz5PPgZdh4FAJzxvAsNznULAolmi4jSMDeKzy4SpTDFVKGtylktpZMRCbZhhKgJSq1PLbZFIsPww7jVyPYvBbGLaIJts9ncQbxOimfYgNYo4G9q20tg6xNNhI9_r5cIU-o4BWO0EVCv3LwPhrd707v-8XvfInc7XpuNWOO6THVs-ILf6Umz3kDSffCqppR3K7JKCC08nNRj0hp6s3De6Kil4yPTESm8X6MLWa7poc9re0DGdbNo40qrwpDOIRioqSwMDmCU-umxTjUuKfefO3CPy5UomvUd2y6q0jwkF7zUBKq5i8OKMLUAaQjVKs6LA7KTYDAjrOULoDqMdW4WcCYjVkInEX0w0IK83j5y3ACWXEb9HNtsQIra4_6Gql6JTVWKUci1BgE1iIdpWsAYc5sHDPJFqxDL4yL2WSf34mMMrInBycPQDZFrRtU-Fi8MNJreUa-fEOItjRMJM-YC88nSoQmF28LK2EgTWCMHItij3tyhB9ent2z3vi071OnHB-E8uv_2C3ASJELOj-fFTcjvEshafhr1Pdpt6bZ-RG_pHs3L1cy_YlHy9asn4Azj6kmw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Credit+Risk+in+the+Reactive+Peru+Program%3A+A+Comparison+of+the+Lasso+and+Ridge+Regression+Models&rft.jtitle=Economies&rft.au=Geraldo-Campos%2C+Luis+Alberto&rft.au=Soria%2C+Juan+J&rft.au=Pando-Ezcurra%2C+Tamara&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.issn=2227-7099&rft.eissn=2227-7099&rft.volume=10&rft.issue=8&rft_id=info:doi/10.3390%2Feconomies10080188&rft.externalDBID=N95&rft.externalDocID=A744492569 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7099&client=summon |