A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood t...
Gespeichert in:
| Veröffentlicht in: | IUCrJ Jg. 6; H. 1; S. 5 - 17 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
International Union of Crystallography
01.01.2019
|
| Schlagworte: | |
| ISSN: | 2052-2525, 2052-2525 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the
a posteriori
likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this
a posteriori
likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative
B
factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in
RELION
-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. |
|---|---|
| AbstractList | A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. A Bayesian approach to estimate the trajectories of particle motion in electron cryo-microscopy single-particle analysis is presented. A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION -3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. Keywords: Bayesian particle polishing; beam-induced motion correction; cryo-EM; single-particle analysis; electron cryo-microscopy. A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in -3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. |
| Audience | Academic |
| Author | Zivanov, Jasenko Nakane, Takanori Scheres, Sjors H. W. |
| Author_xml | – sequence: 1 givenname: Jasenko surname: Zivanov fullname: Zivanov, Jasenko – sequence: 2 givenname: Takanori surname: Nakane fullname: Nakane, Takanori – sequence: 3 givenname: Sjors H. W. surname: Scheres fullname: Scheres, Sjors H. W. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30713699$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAQtVARLaU_gAuKxIVLij_irwvSUhWoVMQBkOBkTRxn61ViL3aCtP8ep7tUbZGQDx6P33ue8bzn6CjE4BB6SfA5IVi-_Uoxp5RTThQmjWA_nqCTJVUvuaN78TE6y3mDMSaEctmQZ-iYYUmY0PoE_VxV72HnsodQwXabItibaopV62Csfehm67pqjJOPobIxJWdvQ19OaRfry89V9mE9uHoLafJ2cBUEGHbZ5xfoaQ9DdmeH_RR9_3D57eJTff3l49XF6rq2XKupbqXiHZU9awRoxhtGNeagFOG6pbi3SmAGSlvMWwq81Zp2rdNYi1bRltGOnaKrvW4XYWO2yY-QdiaCN7eJmNbmUJopyn0vmBUOq0boBpiSvZA9dFpohpui9W6vtZ3b0XXWhSnB8ED04U3wN2YdfxvBqCRSF4E3B4EUf80uT2b02bphgODinA0toDI1gWWBvn4E3cQ5lc9bUIJiRgVfKjrfo9ZQGvChj-VdW1bnRm-LI3pf8isumVKYSVUIr-63cFf735EXANkDbIo5J9ffQQg2i7PMP84qHPmIY_0EixNKNX74D_MPyXfOoQ |
| CitedBy_id | crossref_primary_10_1038_s41467_020_18067_7 crossref_primary_10_1371_journal_ppat_1010583 crossref_primary_10_1038_s41557_023_01226_w crossref_primary_10_7554_eLife_86016_3 crossref_primary_10_1038_s41467_023_38944_1 crossref_primary_10_1016_j_chom_2023_03_004 crossref_primary_10_1016_j_molcel_2023_06_035 crossref_primary_10_1038_s41467_021_22427_2 crossref_primary_10_1073_pnas_2407398121 crossref_primary_10_1107_S205225252000408X crossref_primary_10_1016_j_jbc_2024_107743 crossref_primary_10_1126_science_abn8652 crossref_primary_10_1016_j_jbc_2024_107730 crossref_primary_10_1038_s41467_022_30293_9 crossref_primary_10_1038_s41467_023_35854_0 crossref_primary_10_1038_s41586_020_2820_9 crossref_primary_10_1016_j_bbrc_2025_151398 crossref_primary_10_1038_s41467_020_17364_5 crossref_primary_10_1093_femsre_fuaa032 crossref_primary_10_1038_s41467_022_32834_8 crossref_primary_10_1016_j_jbc_2021_101498 crossref_primary_10_1016_j_celrep_2025_115760 crossref_primary_10_7554_eLife_88960 crossref_primary_10_1038_s12276_024_01296_x crossref_primary_10_1016_j_cell_2019_10_036 crossref_primary_10_1016_j_jsb_2020_107635 crossref_primary_10_1038_s41586_024_08121_5 crossref_primary_10_1016_j_jmb_2024_168499 crossref_primary_10_1038_s41586_021_03925_1 crossref_primary_10_1038_s41594_024_01284_9 crossref_primary_10_1038_s41586_023_06405_w crossref_primary_10_1073_pnas_2021946118 crossref_primary_10_1126_science_abm5561 crossref_primary_10_1038_s41467_023_42707_3 crossref_primary_10_1371_journal_pone_0252800 crossref_primary_10_1021_jacs_4c14288 crossref_primary_10_1038_s41594_019_0233_y crossref_primary_10_1107_S2052252519011503 crossref_primary_10_7554_eLife_52505 crossref_primary_10_1016_j_ultramic_2023_113883 crossref_primary_10_1038_s41467_024_52174_z crossref_primary_10_1107_S2059798320002958 crossref_primary_10_1093_nar_gkac934 crossref_primary_10_1038_s42003_021_02962_w crossref_primary_10_1038_s41594_023_01101_9 crossref_primary_10_1107_S2052252519007486 crossref_primary_10_1038_s41467_024_55778_7 crossref_primary_10_1073_pnas_2306767120 crossref_primary_10_7554_eLife_88960_3 crossref_primary_10_1107_S2059798324005229 crossref_primary_10_1126_science_abe3354 crossref_primary_10_7554_eLife_104237_3 crossref_primary_10_1038_s44318_025_00368_6 crossref_primary_10_1261_rna_075846_120 crossref_primary_10_7554_eLife_83053 crossref_primary_10_1038_s41467_020_14603_7 crossref_primary_10_1038_s41467_024_49614_1 crossref_primary_10_1002_prot_26655 crossref_primary_10_1016_j_molcel_2021_01_005 crossref_primary_10_1038_s41594_025_01530_8 crossref_primary_10_1016_j_bbrc_2020_08_042 crossref_primary_10_1038_s41589_022_01229_7 crossref_primary_10_1038_s41594_020_0439_z crossref_primary_10_1016_j_jbc_2022_101602 crossref_primary_10_1038_s41467_023_40524_2 crossref_primary_10_1016_j_jbc_2021_100474 crossref_primary_10_1016_j_cell_2024_12_032 crossref_primary_10_1038_s41586_021_03817_4 crossref_primary_10_1038_s41594_025_01652_z crossref_primary_10_1038_s41598_024_61793_x crossref_primary_10_1016_j_sbi_2023_102729 crossref_primary_10_1038_s41467_025_57397_2 crossref_primary_10_1038_s41467_022_33987_2 crossref_primary_10_1038_s41586_019_1820_0 crossref_primary_10_1016_j_str_2024_01_007 crossref_primary_10_1038_s41467_024_46375_9 crossref_primary_10_1007_s13238_019_00681_x crossref_primary_10_7554_eLife_62514 crossref_primary_10_1038_s41467_022_33173_4 crossref_primary_10_1038_s41477_022_01099_w crossref_primary_10_1016_j_molcel_2022_03_006 crossref_primary_10_1038_s41586_021_04199_3 crossref_primary_10_1038_s41467_022_28079_0 crossref_primary_10_1002_2211_5463_13657 crossref_primary_10_7554_eLife_96138 crossref_primary_10_1016_j_cell_2021_05_011 crossref_primary_10_1007_s13246_025_01542_0 crossref_primary_10_1038_s41467_020_20806_9 crossref_primary_10_1038_s41467_024_46840_5 crossref_primary_10_1038_s41586_020_2875_7 crossref_primary_10_1038_s41586_022_05040_1 crossref_primary_10_1016_j_molcel_2024_07_016 crossref_primary_10_1016_j_cell_2022_01_007 crossref_primary_10_1016_j_molcel_2023_05_005 crossref_primary_10_1038_s41586_024_08024_5 crossref_primary_10_1038_s41594_020_0490_9 crossref_primary_10_1038_s41594_024_01470_9 crossref_primary_10_1038_s41467_022_30457_7 crossref_primary_10_1038_s41467_022_28511_5 crossref_primary_10_1038_s41594_025_01575_9 crossref_primary_10_1126_science_abj3321 crossref_primary_10_1126_science_abl8506 crossref_primary_10_1038_s41594_023_01047_y crossref_primary_10_1126_sciadv_ads5255 crossref_primary_10_1107_S1600576724010264 crossref_primary_10_3390_ijms22168418 crossref_primary_10_1038_s41586_023_06229_8 crossref_primary_10_1126_science_aba9202 crossref_primary_10_1016_j_jsb_2021_107745 crossref_primary_10_1038_s41589_021_00930_3 crossref_primary_10_1038_s41594_022_00899_0 crossref_primary_10_1016_j_jmb_2023_168049 crossref_primary_10_1038_s41467_022_29073_2 crossref_primary_10_1371_journal_pbio_3002673 crossref_primary_10_1073_pnas_2120534119 crossref_primary_10_3389_fcimb_2023_1135013 crossref_primary_10_1016_j_molcel_2022_10_008 crossref_primary_10_1002_1873_3468_13471 crossref_primary_10_1016_j_molcel_2022_10_009 crossref_primary_10_1107_S2053230X20000308 crossref_primary_10_1038_s41594_024_01419_y crossref_primary_10_1038_s41592_020_01001_6 crossref_primary_10_1016_j_jmb_2019_08_003 crossref_primary_10_1073_pnas_2026719118 crossref_primary_10_7554_eLife_75122 crossref_primary_10_1038_s41467_021_25682_5 crossref_primary_10_1134_S106816202403035X crossref_primary_10_1128_spectrum_03008_23 crossref_primary_10_1038_s41467_023_44555_7 crossref_primary_10_1038_s41594_020_0478_5 crossref_primary_10_1038_s41467_024_45046_z crossref_primary_10_1038_s41467_022_33121_2 crossref_primary_10_1038_s41467_022_32442_6 crossref_primary_10_1038_s41564_021_00895_y crossref_primary_10_1038_s41594_022_00833_4 crossref_primary_10_1038_s41467_022_34017_x crossref_primary_10_7554_eLife_86016 crossref_primary_10_1016_j_molcel_2020_02_011 crossref_primary_10_1073_pnas_2214949120 crossref_primary_10_1038_s41467_022_30300_z crossref_primary_10_1038_s41467_024_51960_z crossref_primary_10_15252_embj_2021108819 crossref_primary_10_1038_s41467_024_50888_8 crossref_primary_10_1016_j_immuni_2021_08_016 crossref_primary_10_1016_j_jsb_2021_107768 crossref_primary_10_1038_s41467_021_26133_x crossref_primary_10_7554_eLife_86029 crossref_primary_10_1016_j_neuron_2023_04_007 crossref_primary_10_1038_s41586_022_05015_2 crossref_primary_10_1038_s41586_022_05449_8 crossref_primary_10_1038_s41467_021_23136_6 crossref_primary_10_1038_s41596_022_00763_x crossref_primary_10_1038_s41467_023_36575_0 crossref_primary_10_1038_s41467_023_40266_1 crossref_primary_10_1038_s41594_021_00619_0 crossref_primary_10_1038_s41467_024_51381_y crossref_primary_10_1093_nar_gkad651 crossref_primary_10_1038_s41421_023_00581_9 crossref_primary_10_1016_j_celrep_2025_115245 crossref_primary_10_1107_S2059798325000865 crossref_primary_10_1073_pnas_2112267118 crossref_primary_10_1038_s41594_023_00944_6 crossref_primary_10_3390_molecules29132992 crossref_primary_10_1038_s41594_019_0334_7 crossref_primary_10_1016_j_jmb_2022_167801 crossref_primary_10_1107_S2059798319010519 crossref_primary_10_1038_s41586_024_07347_7 crossref_primary_10_1038_s41593_024_01801_5 crossref_primary_10_1016_j_str_2023_08_007 crossref_primary_10_1038_s41467_022_32441_7 crossref_primary_10_1038_s41586_021_03196_w crossref_primary_10_1126_scitranslmed_abn1252 crossref_primary_10_7554_eLife_81704 crossref_primary_10_3389_fimmu_2024_1434463 crossref_primary_10_1038_s41586_025_08624_9 crossref_primary_10_1073_pnas_2025658118 crossref_primary_10_1073_pnas_2320879121 crossref_primary_10_1016_j_jbc_2024_107326 crossref_primary_10_1038_s41467_025_57731_8 crossref_primary_10_1016_j_molcel_2020_11_035 crossref_primary_10_1016_j_cell_2019_11_006 crossref_primary_10_1038_s41467_020_15071_9 crossref_primary_10_1021_acschemneuro_5c00149 crossref_primary_10_1038_s41467_022_32793_0 crossref_primary_10_1038_s41589_023_01406_2 crossref_primary_10_1073_pnas_2105014118 crossref_primary_10_1038_s41467_023_38083_7 crossref_primary_10_1073_pnas_2406138121 crossref_primary_10_1016_j_bbamcr_2023_119543 crossref_primary_10_1038_s41564_020_0669_1 crossref_primary_10_1038_s41594_021_00719_x crossref_primary_10_1038_s41598_021_01932_w crossref_primary_10_1038_s41586_021_03807_6 crossref_primary_10_1146_annurev_pharmtox_010919_023545 crossref_primary_10_1038_s41586_023_06801_2 crossref_primary_10_1128_mbio_03713_24 crossref_primary_10_1016_j_molcel_2020_11_047 crossref_primary_10_1261_rna_073817_119 crossref_primary_10_1038_s41467_019_11142_8 crossref_primary_10_1038_s41467_021_21912_y crossref_primary_10_1038_s42003_020_01217_4 crossref_primary_10_1126_science_abm7285 crossref_primary_10_1038_s41586_020_2043_0 crossref_primary_10_7554_eLife_76494 crossref_primary_10_1038_s41594_025_01617_2 crossref_primary_10_1038_s41467_025_61016_5 crossref_primary_10_1038_s41586_024_08360_6 crossref_primary_10_1107_S205225252000929X crossref_primary_10_1038_s41589_024_01720_3 crossref_primary_10_1038_s41586_024_07828_9 crossref_primary_10_1038_s41422_024_00932_5 crossref_primary_10_1038_s41467_023_37035_5 crossref_primary_10_1038_s41467_019_12865_4 crossref_primary_10_1126_science_abm8143 crossref_primary_10_1038_s41467_021_27435_w crossref_primary_10_1038_s41467_022_29893_2 crossref_primary_10_1038_s41586_019_1440_8 crossref_primary_10_1038_s44319_024_00280_w crossref_primary_10_1038_s41594_024_01378_4 crossref_primary_10_1038_s42003_021_02529_9 crossref_primary_10_1038_s42003_023_05334_8 crossref_primary_10_1002_2211_5463_12962 crossref_primary_10_1038_s41467_022_33591_4 crossref_primary_10_1038_s41564_024_01644_7 crossref_primary_10_1073_pnas_2415426122 crossref_primary_10_1038_s41586_020_3004_3 crossref_primary_10_1038_s41467_024_46762_2 crossref_primary_10_1016_j_molcel_2021_11_001 crossref_primary_10_1038_s41467_022_28417_2 crossref_primary_10_1038_s41467_025_58202_w crossref_primary_10_1038_s41586_022_04517_3 crossref_primary_10_1038_s41586_022_05566_4 crossref_primary_10_1038_s41594_020_0457_x crossref_primary_10_1038_s41594_024_01365_9 crossref_primary_10_1038_s41586_020_2370_1 crossref_primary_10_1038_s41467_020_18440_6 crossref_primary_10_1038_s41564_020_0788_8 crossref_primary_10_1146_annurev_biophys_082120_103921 crossref_primary_10_3389_fmolb_2022_917725 crossref_primary_10_1038_s41467_025_60207_4 crossref_primary_10_7554_eLife_69418 crossref_primary_10_1038_s41594_021_00607_4 crossref_primary_10_1038_s41594_024_01463_8 crossref_primary_10_1038_s41594_021_00596_4 crossref_primary_10_1016_j_immuni_2024_10_001 crossref_primary_10_1038_s41467_022_28820_9 crossref_primary_10_1038_s41467_023_40582_6 crossref_primary_10_1038_s41467_024_53096_6 crossref_primary_10_1107_S2059798322011858 crossref_primary_10_7554_eLife_83935 crossref_primary_10_1038_s41586_023_06856_1 crossref_primary_10_1038_s41586_024_07027_6 crossref_primary_10_1016_j_celrep_2023_113406 crossref_primary_10_1038_s41929_023_00934_3 crossref_primary_10_1126_science_adr7920 crossref_primary_10_15252_embj_2019104129 crossref_primary_10_1038_s41586_022_04857_0 crossref_primary_10_7554_eLife_79790 crossref_primary_10_1016_j_chembiol_2023_08_003 crossref_primary_10_1021_jacs_5c09436 crossref_primary_10_1038_s41467_022_34008_y crossref_primary_10_1038_s41467_022_30562_7 crossref_primary_10_1038_s41593_023_01341_4 crossref_primary_10_1146_annurev_biochem_032620_110705 crossref_primary_10_1016_j_cell_2023_01_012 crossref_primary_10_1038_s41467_024_46761_3 crossref_primary_10_1038_s41594_021_00584_8 crossref_primary_10_1126_science_adn9560 crossref_primary_10_1016_j_str_2021_06_013 crossref_primary_10_26508_lsa_202201527 crossref_primary_10_7554_eLife_81400 crossref_primary_10_1016_j_str_2020_12_007 crossref_primary_10_1038_s41564_020_0703_3 crossref_primary_10_1038_s41929_024_01221_5 crossref_primary_10_1016_j_jbc_2025_110631 crossref_primary_10_1038_s41586_020_2772_0 crossref_primary_10_1098_rsob_210160 crossref_primary_10_1038_s41467_023_40881_y crossref_primary_10_1038_s41477_024_01697_w crossref_primary_10_1038_s41467_020_14347_4 crossref_primary_10_1093_nar_gkad480 crossref_primary_10_1038_s41467_021_23702_y crossref_primary_10_1038_s41467_021_24731_3 crossref_primary_10_1093_jmicro_dfac039 crossref_primary_10_1038_s41586_020_2116_0 crossref_primary_10_1126_science_aay3353 crossref_primary_10_1093_nar_gkac1273 crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_1038_s41594_022_00728_4 crossref_primary_10_1126_science_abi7994 crossref_primary_10_1016_j_jid_2024_10_594 crossref_primary_10_1016_j_cell_2020_09_051 crossref_primary_10_1038_s41586_019_1344_7 crossref_primary_10_1038_s41467_025_61270_7 crossref_primary_10_1038_s41586_023_05908_w crossref_primary_10_1093_jmicro_dfab053 crossref_primary_10_1038_s41586_025_09155_z crossref_primary_10_1038_s41586_022_05373_x crossref_primary_10_1107_S2052252520002456 crossref_primary_10_1111_nan_70013 crossref_primary_10_7554_eLife_83724 crossref_primary_10_1093_nar_gkad217 crossref_primary_10_1016_j_pbiomolbio_2020_06_008 crossref_primary_10_1146_annurev_biodatasci_021020_093826 crossref_primary_10_1038_s41594_022_00738_2 crossref_primary_10_1371_journal_ppat_1008920 crossref_primary_10_1016_j_jmb_2020_09_023 crossref_primary_10_1038_s42003_024_07031_6 crossref_primary_10_1038_s41467_020_18707_y crossref_primary_10_1093_nar_gkac490 crossref_primary_10_1016_j_jsb_2019_09_013 crossref_primary_10_1038_s41586_022_04790_2 crossref_primary_10_1107_S2059798325005686 crossref_primary_10_7554_eLife_103486_3 crossref_primary_10_7554_eLife_93562_4 crossref_primary_10_1073_pnas_2314990121 crossref_primary_10_1038_s41467_025_57006_2 crossref_primary_10_1073_pnas_2109083119 crossref_primary_10_1038_s41467_024_44820_3 crossref_primary_10_1038_s41586_022_05199_7 crossref_primary_10_1126_science_ade8840 crossref_primary_10_1073_pnas_2009627117 crossref_primary_10_1038_s41467_023_36441_z crossref_primary_10_1038_s41467_023_39345_0 crossref_primary_10_1016_j_molcel_2025_06_021 crossref_primary_10_1126_sciadv_adx9722 crossref_primary_10_1038_s41467_023_37177_6 crossref_primary_10_1038_s41467_023_43555_x crossref_primary_10_1038_s42004_023_00900_x crossref_primary_10_1016_j_cell_2018_12_028 crossref_primary_10_15252_embr_201948451 crossref_primary_10_1016_j_cell_2022_05_019 crossref_primary_10_1016_j_molcel_2020_04_012 crossref_primary_10_1038_s41586_022_05319_3 crossref_primary_10_7554_eLife_96138_3 crossref_primary_10_1038_s41467_021_26585_1 crossref_primary_10_1016_j_cell_2020_09_037 crossref_primary_10_1126_science_abe0526 crossref_primary_10_1038_s41467_021_26024_1 crossref_primary_10_1073_pnas_2309984121 crossref_primary_10_1038_s41467_024_49030_5 crossref_primary_10_1038_s41594_024_01348_w crossref_primary_10_7554_eLife_79361 crossref_primary_10_1038_s41467_024_50548_x crossref_primary_10_1016_j_cell_2024_09_026 crossref_primary_10_1038_s41467_022_30407_3 crossref_primary_10_1038_s41594_020_0386_8 crossref_primary_10_1371_journal_pone_0232540 crossref_primary_10_3389_fmolb_2024_1342179 crossref_primary_10_1016_j_jmb_2025_169051 crossref_primary_10_1038_s41589_024_01551_2 crossref_primary_10_3390_v16121835 crossref_primary_10_7554_eLife_103486 crossref_primary_10_1093_jmicro_dfaa052 crossref_primary_10_1016_j_str_2019_10_012 crossref_primary_10_1073_pnas_2202590119 crossref_primary_10_15252_embj_2021110411 crossref_primary_10_1038_s41467_023_36673_z crossref_primary_10_1126_science_abl8280 crossref_primary_10_1038_s41586_022_05013_4 crossref_primary_10_1038_s41467_023_38687_z crossref_primary_10_1038_s41467_020_19735_4 crossref_primary_10_1038_s41586_022_05059_4 crossref_primary_10_1126_science_aaz9649 crossref_primary_10_1107_S2052252519014507 crossref_primary_10_1038_s41467_020_18870_2 crossref_primary_10_1038_s41586_023_06487_6 crossref_primary_10_1038_s41589_024_01751_w crossref_primary_10_1016_j_molcel_2023_11_004 crossref_primary_10_1093_nar_gkaf112 crossref_primary_10_1016_j_chembiol_2024_08_005 crossref_primary_10_1038_s41467_023_43301_3 crossref_primary_10_1107_S2052252520000081 crossref_primary_10_1371_journal_ppat_1011177 crossref_primary_10_1016_j_molcel_2019_10_013 crossref_primary_10_1016_j_cell_2021_11_011 crossref_primary_10_1093_nar_gkae107 crossref_primary_10_1038_s41467_021_25742_w crossref_primary_10_3389_fmolb_2022_937253 crossref_primary_10_1038_s41467_024_48163_x crossref_primary_10_3390_ijms242417453 crossref_primary_10_1016_j_molcel_2022_09_029 crossref_primary_10_1038_s41467_020_18884_w crossref_primary_10_1038_s41586_022_04650_z crossref_primary_10_1016_j_str_2022_07_001 crossref_primary_10_1093_nar_gkab1141 crossref_primary_10_1038_s41586_020_2349_y crossref_primary_10_7554_eLife_104237 crossref_primary_10_1016_j_virs_2022_01_015 crossref_primary_10_7554_eLife_54449 crossref_primary_10_1016_j_str_2022_07_006 crossref_primary_10_1073_pnas_1904766116 crossref_primary_10_1038_s41564_020_00823_6 crossref_primary_10_1038_s41586_022_05513_3 crossref_primary_10_1038_s42003_025_08300_8 crossref_primary_10_1107_S2052252520013482 crossref_primary_10_1038_s41467_020_16392_5 crossref_primary_10_1038_s41467_022_34090_2 crossref_primary_10_1042_BCJ20220124 crossref_primary_10_1002_2211_5463_70050 crossref_primary_10_1038_s41594_022_00729_3 crossref_primary_10_7554_eLife_93562 crossref_primary_10_1038_s41467_025_61194_2 crossref_primary_10_1126_sciadv_adr2753 crossref_primary_10_1016_j_jsb_2025_108206 crossref_primary_10_3390_ijms22158079 crossref_primary_10_1016_j_cell_2024_01_032 crossref_primary_10_1016_j_jsb_2025_108203 crossref_primary_10_1016_j_jsb_2025_108201 crossref_primary_10_1038_s41467_023_42982_0 crossref_primary_10_1016_j_jmb_2024_168795 crossref_primary_10_1038_s41594_024_01349_9 crossref_primary_10_1038_s41586_022_04829_4 crossref_primary_10_1038_s41594_020_00522_0 crossref_primary_10_1073_pnas_2309384121 crossref_primary_10_1016_j_omtn_2023_06_023 crossref_primary_10_1126_science_ads8412 crossref_primary_10_1107_S2052252520016243 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1038_s41467_024_51135_w crossref_primary_10_1016_j_str_2023_04_002 crossref_primary_10_1038_s41594_021_00634_1 crossref_primary_10_1038_s41594_024_01447_8 crossref_primary_10_1016_j_str_2024_02_006 crossref_primary_10_1016_j_cell_2023_04_003 crossref_primary_10_1038_s41467_021_23151_7 crossref_primary_10_1515_hsz_2022_0273 crossref_primary_10_1042_BCJ20200715 crossref_primary_10_1093_abt_tbae009 crossref_primary_10_1126_science_adc9127 crossref_primary_10_1007_s00401_022_02533_1 crossref_primary_10_1017_qrd_2021_8 crossref_primary_10_1038_s41586_022_05573_5 crossref_primary_10_1038_s41586_025_09545_3 crossref_primary_10_1021_jacs_3c01003 crossref_primary_10_1038_s41467_024_49899_2 crossref_primary_10_1038_s41586_021_03365_x crossref_primary_10_1038_s41467_024_46536_w crossref_primary_10_1016_j_jsb_2019_04_011 crossref_primary_10_1038_s41594_024_01413_4 crossref_primary_10_1093_nar_gkaf156 crossref_primary_10_1126_science_ado2075 crossref_primary_10_1038_s41586_022_05583_3 crossref_primary_10_7554_eLife_55853 crossref_primary_10_7554_eLife_51492 crossref_primary_10_7554_eLife_84415 crossref_primary_10_1038_s42003_024_06588_6 crossref_primary_10_1038_s41467_023_37109_4 crossref_primary_10_1038_s41467_023_36593_y crossref_primary_10_1038_s41586_021_03857_w crossref_primary_10_1016_j_molcel_2020_09_029 crossref_primary_10_1038_s41467_021_27283_8 crossref_primary_10_1107_S2059798324004546 crossref_primary_10_1016_j_jbc_2022_101827 crossref_primary_10_1038_s41467_024_50817_9 crossref_primary_10_1093_nar_gkae399 crossref_primary_10_1107_S2059798320012474 crossref_primary_10_1038_s41467_025_57960_x crossref_primary_10_1038_s41467_022_29416_z crossref_primary_10_1126_science_aba3526 crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1038_s41594_019_0308_9 crossref_primary_10_1038_s42003_025_08363_7 crossref_primary_10_1126_science_abb7927 crossref_primary_10_15252_embj_2020105908 crossref_primary_10_1038_s41594_020_0481_x crossref_primary_10_7554_eLife_84424 crossref_primary_10_1016_j_bpj_2020_12_030 crossref_primary_10_1016_j_molcel_2023_05_034 crossref_primary_10_15252_embj_2022110581 crossref_primary_10_1107_S2059798321010056 crossref_primary_10_15252_embj_2023113687 crossref_primary_10_1038_s41586_023_06788_w crossref_primary_10_1038_s41467_023_39735_4 crossref_primary_10_1016_j_ultramic_2022_113512 crossref_primary_10_1038_s41586_022_04939_z crossref_primary_10_1126_science_adt1978 crossref_primary_10_3390_biophysica5030030 crossref_primary_10_1073_pnas_2421538122 crossref_primary_10_1073_pnas_2022586118 crossref_primary_10_1038_s41467_021_24650_3 crossref_primary_10_1038_s41467_025_57728_3 crossref_primary_10_1038_s41564_024_01684_z crossref_primary_10_1038_s41594_022_00772_0 crossref_primary_10_1107_S2059798322009299 crossref_primary_10_1016_j_neuron_2022_10_002 crossref_primary_10_1038_s41586_019_1896_6 crossref_primary_10_1126_science_aav9334 crossref_primary_10_1038_s41467_025_59797_w crossref_primary_10_1016_j_neuron_2023_07_006 crossref_primary_10_1371_journal_pbio_3000649 crossref_primary_10_1016_j_str_2025_07_020 crossref_primary_10_1126_science_abd9909 crossref_primary_10_1126_science_abm1184 crossref_primary_10_7554_eLife_42636 crossref_primary_10_1038_s41467_024_49656_5 crossref_primary_10_1038_s41586_020_2770_2 crossref_primary_10_1016_j_sbi_2019_06_009 crossref_primary_10_1073_pnas_2516676122 crossref_primary_10_1038_s44318_024_00106_4 crossref_primary_10_1038_s41586_020_2368_8 crossref_primary_10_1093_mam_ozae089 crossref_primary_10_1126_science_ade5750 crossref_primary_10_1038_s41593_019_0569_y crossref_primary_10_1038_s41594_020_0483_8 crossref_primary_10_1371_journal_ppat_1009146 crossref_primary_10_1016_j_str_2022_01_005 crossref_primary_10_1038_s41586_024_07298_z crossref_primary_10_1038_s41594_025_01568_8 crossref_primary_10_1016_j_str_2024_11_015 crossref_primary_10_1038_s41586_020_2696_8 crossref_primary_10_1073_pnas_2313999120 crossref_primary_10_1126_science_aay0166 crossref_primary_10_1111_febs_17415 crossref_primary_10_1038_s41467_023_37864_4 crossref_primary_10_1038_s41467_022_30853_z crossref_primary_10_1038_s41586_019_0921_0 crossref_primary_10_1038_s41586_024_08237_8 crossref_primary_10_1038_s41586_021_03803_w crossref_primary_10_1128_jvi_00638_24 crossref_primary_10_1016_j_ultramic_2021_113396 crossref_primary_10_1126_science_abn7747 crossref_primary_10_1107_S2052252524005530 crossref_primary_10_1038_s41467_022_29274_9 crossref_primary_10_3390_ijms252212397 crossref_primary_10_1107_S205225252401217X crossref_primary_10_1038_s42003_021_02895_4 crossref_primary_10_1038_s41586_025_09428_7 crossref_primary_10_1016_j_cell_2020_02_058 crossref_primary_10_1038_s41467_021_21006_9 crossref_primary_10_1016_j_jbc_2023_105542 crossref_primary_10_1038_s41594_024_01426_z crossref_primary_10_1007_s00401_023_02550_8 crossref_primary_10_1016_j_scib_2025_05_009 crossref_primary_10_1038_s42003_022_03284_1 crossref_primary_10_1038_s41467_023_36230_8 crossref_primary_10_1038_s41586_020_2829_0 crossref_primary_10_1038_s41467_020_19146_5 crossref_primary_10_1038_s41586_021_03911_7 crossref_primary_10_1371_journal_ppat_1012773 crossref_primary_10_1038_s41467_021_22900_y crossref_primary_10_1038_s41586_022_05241_8 crossref_primary_10_1038_s41467_020_18830_w crossref_primary_10_1073_pnas_2208882119 crossref_primary_10_1038_s41586_020_2357_y crossref_primary_10_1109_MSP_2019_2957822 crossref_primary_10_1038_s41477_022_01253_4 crossref_primary_10_1038_s41586_020_2333_6 crossref_primary_10_1038_s42003_024_07152_y |
| Cites_doi | 10.7554/eLife.03665 10.1016/j.jmb.2003.07.013 10.7554/eLife.00461 10.7554/eLife.03080 10.1038/nature14892 10.1016/j.jsb.2012.02.003 10.1016/j.jsb.2016.12.006 10.1016/S0076-6879(10)81015-8 10.1016/j.jsb.2015.02.001 10.1016/j.str.2012.08.026 10.1038/nmeth.2115 10.1038/nmeth.4193 10.7554/eLife.06980 10.1163/016918609X12529286896877 10.1016/j.ultramic.2013.06.004 10.1016/j.jsb.2012.09.006 10.1016/S0304-3991(79)90211-0 10.1007/BF01589116 10.1109/TPAMI.2007.1167 10.7554/eLife.18722 10.1109/TPAMI.2017.2739743 10.1007/978-3-540-28650-9_4 10.1093/comjnl/7.4.308 10.1016/0022-2836(75)90212-0 10.1016/j.jsb.2015.08.007 10.1038/nmeth.2472 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 International Union of Crystallography 2019. This article is published under https://creativecommons.org/licenses/by/2.0/uk (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Jasenko Zivanov et al. 2019 2019 |
| Copyright_xml | – notice: COPYRIGHT 2019 International Union of Crystallography – notice: 2019. This article is published under https://creativecommons.org/licenses/by/2.0/uk (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Jasenko Zivanov et al. 2019 2019 |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO EHMNL HCIFZ JG9 KB. L7M PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1107/S205225251801463X |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea UK & Ireland Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX UK & Ireland Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Bayesian particle polishing |
| EISSN | 2052-2525 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_905ff63c6e084694a387f67fad969304 PMC6327179 A573880378 30713699 10_1107_S205225251801463X |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UP_A025_1013 |
| GroupedDBID | 5VS 8FE 8FG AAFWJ AAYXX ABJCF ABUWG ADBBV AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION D1I EBS EHMNL EJD GROUPED_DOAJ H13 HCIFZ HYE IAO ITC KB. KQ8 M48 M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RCJ ROL RPM ZBA NPM 7SR 7U5 8BQ 8FD AZQEC DWQXO JG9 L7M PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c598t-b785d27f346a935432905a88159b20fc8603a89c05b2a5b992dbe9096b82b32d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 593 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455767600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-2525 |
| IngestDate | Fri Oct 03 12:40:54 EDT 2025 Tue Nov 04 01:56:07 EST 2025 Wed Oct 01 13:42:07 EDT 2025 Fri Jul 25 12:01:43 EDT 2025 Tue Nov 04 17:54:29 EST 2025 Mon Jul 21 05:36:11 EDT 2025 Sat Nov 29 03:53:02 EST 2025 Tue Nov 18 22:02:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | electron cryo-microscopy Bayesian particle polishing beam-induced motion correction cryo-EM single-particle analysis |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c598t-b785d27f346a935432905a88159b20fc8603a89c05b2a5b992dbe9096b82b32d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/905ff63c6e084694a387f67fad969304 |
| PMID | 30713699 |
| PQID | 2162032654 |
| PQPubID | 2035043 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_905ff63c6e084694a387f67fad969304 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6327179 proquest_miscellaneous_2179522607 proquest_journals_2162032654 gale_infotracacademiconefile_A573880378 pubmed_primary_30713699 crossref_primary_10_1107_S205225251801463X crossref_citationtrail_10_1107_S205225251801463X |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 2019-Jan-01 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chester |
| PublicationTitle | IUCrJ |
| PublicationTitleAlternate | IUCrJ |
| PublicationYear | 2019 |
| Publisher | International Union of Crystallography |
| Publisher_xml | – name: International Union of Crystallography |
| References | Kimanius (fq5003_bb10) 2016; 5 Rosenthal (fq5003_bb19) 2003; 333 Grant (fq5003_bb8) 2015; 4 Scheres (fq5003_bb23) 2012; 9 Baker (fq5003_bb4) 2010; 481 Wong (fq5003_bb26) 2014; 3 Liu (fq5003_bb12) 1989; 45 Chen (fq5003_bb7) 2013; 135 Campbell (fq5003_bb6) 2012; 20 Nguyen-Tuong (fq5003_bb17) 2009; 23 Brilot (fq5003_bb5) 2012; 177 Lüthi (fq5003_bb14) 2018; 40 Bai (fq5003_bb3) 2015; 525 Unwin (fq5003_bb24) 1975; 94 McLeod (fq5003_bb15) 2017; 197 Scheres (fq5003_bb21) 2012; 180 Scheres (fq5003_bb22) 2014; 3 Nelder (fq5003_bb16) 1965; 7 Wang (fq5003_bb25) 2008; 30 Rubinstein (fq5003_bb20) 2015; 192 fq5003_bb13 Li (fq5003_bb11) 2013; 10 Zheng (fq5003_bb27) 2017; 14 fq5003_bb18 Bai (fq5003_bb2) 2013; 2 Abrishami (fq5003_bb1) 2015; 189 Hayward (fq5003_bb9) 1979; 4 |
| References_xml | – volume: 3 start-page: e03665 year: 2014 ident: fq5003_bb22 publication-title: Elife doi: 10.7554/eLife.03665 – volume: 333 start-page: 721 year: 2003 ident: fq5003_bb19 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 2 start-page: e00461 year: 2013 ident: fq5003_bb2 publication-title: Elife doi: 10.7554/eLife.00461 – volume: 3 start-page: e03080 year: 2014 ident: fq5003_bb26 publication-title: Elife doi: 10.7554/eLife.03080 – volume: 525 start-page: 212 year: 2015 ident: fq5003_bb3 publication-title: Nature (London) doi: 10.1038/nature14892 – volume: 177 start-page: 630 year: 2012 ident: fq5003_bb5 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.02.003 – volume: 197 start-page: 279 year: 2017 ident: fq5003_bb15 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2016.12.006 – volume: 481 start-page: 371 year: 2010 ident: fq5003_bb4 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)81015-8 – volume: 189 start-page: 163 year: 2015 ident: fq5003_bb1 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.02.001 – volume: 20 start-page: 1823 year: 2012 ident: fq5003_bb6 publication-title: Structure doi: 10.1016/j.str.2012.08.026 – volume: 9 start-page: 853 year: 2012 ident: fq5003_bb23 publication-title: Nat. Methods doi: 10.1038/nmeth.2115 – volume: 14 start-page: 331 year: 2017 ident: fq5003_bb27 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 4 start-page: e06980 year: 2015 ident: fq5003_bb8 publication-title: Elife doi: 10.7554/eLife.06980 – volume: 23 start-page: 2015 year: 2009 ident: fq5003_bb17 publication-title: Adv. Robot. doi: 10.1163/016918609X12529286896877 – volume: 135 start-page: 24 year: 2013 ident: fq5003_bb7 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.06.004 – volume: 180 start-page: 519 year: 2012 ident: fq5003_bb21 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 4 start-page: 201 year: 1979 ident: fq5003_bb9 publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(79)90211-0 – ident: fq5003_bb13 – volume: 45 start-page: 503 year: 1989 ident: fq5003_bb12 publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 30 start-page: 283 year: 2008 ident: fq5003_bb25 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1167 – volume: 5 start-page: e18722 year: 2016 ident: fq5003_bb10 publication-title: Elife doi: 10.7554/eLife.18722 – volume: 40 start-page: 1860 year: 2018 ident: fq5003_bb14 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2739743 – ident: fq5003_bb18 doi: 10.1007/978-3-540-28650-9_4 – volume: 7 start-page: 308 year: 1965 ident: fq5003_bb16 publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 94 start-page: 425 year: 1975 ident: fq5003_bb24 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(75)90212-0 – volume: 192 start-page: 188 year: 2015 ident: fq5003_bb20 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.007 – volume: 10 start-page: 584 year: 2013 ident: fq5003_bb11 publication-title: Nat. Methods doi: 10.1038/nmeth.2472 |
| SSID | ssj0001125741 |
| Score | 2.6298456 |
| Snippet | A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle... A Bayesian approach to estimate the trajectories of particle motion in electron cryo-microscopy single-particle analysis is presented. A new method to estimate... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian particle polishing beam-induced motion correction cryo-EM Damage assessment electron cryo-microscopy Gaussian process Microscopy Parameter estimation Particle motion Particle trajectories Polishing Radiation (Physics) Radiation damage Radiation dosage Regression analysis Research Papers single-particle analysis Smoothness State of the art Trajectory analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFD5o1wd98K47ukoEQRDCpslMLk_SShcftCxeoD4NyUyihXWm23aF_ffmTNNuh4V98XEmGUgmX84tOd8BeBuEC0x4Qevacpor5akb1ooOdaitFBE1vmPX_6ymUz2bmdMUcFula5VbmdgJ6rqtMEZ-zIcSi33LIv-wOKdYNQpPV1MJjdtwgExl-QAOxpPp6derKEvU31FnpuPM6Oocf-MsmhxFVOsdb4qY9RRSx9t_XTrvqaf-1ck9XXTy4H9n8RDuJyuUjDaweQS3fPMY7u1xEz6BnyMytpcecyzJlnicrFvivP1DoyMfIVGTTQ0gUmGJjy5Bgszj0_KypZMvBKMQZ54uEjiJTfwnT-HHyeT7x0801WGgVWH0mjqli5qrIHJpjShywQ0rrNbREnKchUpLJqw2FSsct4UzhtfOm-gbOc2d4LV4BoOmbfwhkKgy87zyiAkVXSWvrcLU18CtlY4FmwHbLkZZJZJyrJVxVnbOClPltfXL4P3uk8WGoeOmzmNc4V1HJNfuXrTLX2X6HWWcXQhSVNKzaJ2Z3AqtglTB1gYLR-YZvEN8lCgC4uAqmzIZ4hSRTKscFQopdoTSGRxtYVAm2bAqrzCQwZtdc9zVeFRjG99eYB9l0DJmKoPnG8TtxiwwsCCNyUD1sNibVL-lmf_umMOl4NF9Ny9uHtZLuBvNQrMJNB3BYL288K_gTvV3PV8tX6ct9g-x7y0G priority: 102 providerName: ProQuest |
| Title | A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30713699 https://www.proquest.com/docview/2162032654 https://www.proquest.com/docview/2179522607 https://pubmed.ncbi.nlm.nih.gov/PMC6327179 https://doaj.org/article/905ff63c6e084694a387f67fad969304 |
| Volume | 6 |
| WOSCitedRecordID | wos000455767600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: KB. dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: UK & Ireland Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: EHMNL dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/ukireland providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA96-qAP4rerZ4kgCEK8NNl8PbbSQ9ErxQ_oPS3JbsIVzu3R6wn33zuT3ZaWA33xZWEn2SWZzOx8ZPMbQt4mGRKXUbKm8YKVxkQWho1hQ5saryVITczo-l_NdGrnczfbKfWF_4R18MAd444cVylpWevIwVS60ktrkjbJNw6r-GUkUPB6doKpnF0Bu21y2UrBlWBCCdVvaUK4c_QdiUgbZuwUOd8zShm7_-YXesdE7f8-uWOPjh-SB70jSUfdBB6RW7F9TO7vwAs-IacjOvbXEY9J0g12OF0vaYj-F4NYHFa1oV0ZH1pjlY58xoEu4G51vWSTE4qJhPPILno2Ud9DmDwlP48nPz5-Yn0pBVYrZ9csGKsaYZIstXdSlVIAX7214MwEwVNtNZfeupqrILwKzokmRAfhTbAiSNHIZ-SgXbbxBaFg9cqyjrisBqKdaL3B06tJeK8DT74gfMPLqu5xxrHcxXmV4w1uqhvsL8j77SMXHcjG3zqPcYG2HREfOxNAaqqeHdW_pKYg73B5K9RiGFzt-8MIMEXEw6pGyiBKjjS2IIcbCah69b6sxFBj5Xmt4EVvts2gmLjb4tu4vMI-xqFzy01BnncCsx2zxNyAdq4gZk-U9ia139IuzjL4t5YCInD38n9w4RW5B_6f6zJKh-RgvbqKr8nd-vd6cbkakNtmbgfkzngynX0bZP2C65fxB6DNPp_MTv8ALrwj1g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRLwwP0SGGAkENKkaKmdxPYDQh1sWrW2qsSQuqfgxDZUGklpO1D_FL-R41y6RpP2tgcekziRnXw-5_NxzncA3lqW2oAZ5mutqB9ybvy0q7nfFVarmCFqTKmuP-CjkZhM5HgL_ja5MO63ysYmloZaF5mLke_RbuyKfcdR-HH2y3dVo9zualNCo4LFsVn9wSXb4kP_M37fd5QeHpx8OvLrqgJ-Fkmx9FMuIk25ZWGsJItCRmUQKSHQr6c0sJmIA6aEzIIopSpKpaQ6NRKZfipoyqhm-NwbsB0i2EUHtsf94fj0IqqDfAF9dL19ikurvS80QIoTIY0odVrYpOUAyzoBl73Bhjts_6q54fsO7_1vb-0-3K1ZNulV0-IBbJn8IdzZ0F58BKc9sq9WxuWQkkZYnSwLkhr105_mGiGvSVXjiGSuhEmZAEKmeDRfFf7BkLgoy5nxZ_XkI6rWd3kMX69lbE-gkxe5eQYEKUEYZsZhnuNS0AjFXWqvpUrFaWCVB0Hz8ZOsFmF3tUDOknIxFvDkEl482F3fMqsUSK5qvO8QtW7oxMPLE8X8e1K_jgRHZ23MstgEyD5lqJjgNuZWaekKY4YevHd4TJyJw85lqs7UwCE6sbCkF3EnIcS48GCngV1S275FcoE5D96sL6PVcltRKjfFuWvDpWP-AffgaYXwdZ-ZC5zEUnrAW9hvDap9JZ_-KJXRY0Y5Pvn51d16DbeOToaDZNAfHb-A20iBZRVU24HOcn5uXsLN7Pdyupi_qqc3gW_XPTf-AbLbh0c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+to+beam-induced+motion+correction+in+cryo-EM+single-particle+analysis&rft.jtitle=IUCrJ&rft.au=Zivanov%2C+Jasenko&rft.au=Nakane%2C+Takanori&rft.au=Scheres%2C+Sjors+H.W&rft.date=2019-01-01&rft.pub=International+Union+of+Crystallography&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=6&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1107%2FS205225251801463X&rft.externalDocID=A573880378 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon |