A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis

A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUCrJ Jg. 6; H. 1; S. 5 - 17
Hauptverfasser: Zivanov, Jasenko, Nakane, Takanori, Scheres, Sjors H. W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England International Union of Crystallography 01.01.2019
Schlagworte:
ISSN:2052-2525, 2052-2525
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION -3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
AbstractList A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
A Bayesian approach to estimate the trajectories of particle motion in electron cryo-microscopy single-particle analysis is presented. A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION -3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted. Keywords: Bayesian particle polishing; beam-induced motion correction; cryo-EM; single-particle analysis; electron cryo-microscopy.
A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in -3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
Audience Academic
Author Zivanov, Jasenko
Nakane, Takanori
Scheres, Sjors H. W.
Author_xml – sequence: 1
  givenname: Jasenko
  surname: Zivanov
  fullname: Zivanov, Jasenko
– sequence: 2
  givenname: Takanori
  surname: Nakane
  fullname: Nakane, Takanori
– sequence: 3
  givenname: Sjors H. W.
  surname: Scheres
  fullname: Scheres, Sjors H. W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30713699$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLaU_gAuKxIVLij_irwvSUhWoVMQBkOBkTRxn61ViL3aCtP8ep7tUbZGQDx6P33ue8bzn6CjE4BB6SfA5IVi-_Uoxp5RTThQmjWA_nqCTJVUvuaN78TE6y3mDMSaEctmQZ-iYYUmY0PoE_VxV72HnsodQwXabItibaopV62Csfehm67pqjJOPobIxJWdvQ19OaRfry89V9mE9uHoLafJ2cBUEGHbZ5xfoaQ9DdmeH_RR9_3D57eJTff3l49XF6rq2XKupbqXiHZU9awRoxhtGNeagFOG6pbi3SmAGSlvMWwq81Zp2rdNYi1bRltGOnaKrvW4XYWO2yY-QdiaCN7eJmNbmUJopyn0vmBUOq0boBpiSvZA9dFpohpui9W6vtZ3b0XXWhSnB8ED04U3wN2YdfxvBqCRSF4E3B4EUf80uT2b02bphgODinA0toDI1gWWBvn4E3cQ5lc9bUIJiRgVfKjrfo9ZQGvChj-VdW1bnRm-LI3pf8isumVKYSVUIr-63cFf735EXANkDbIo5J9ffQQg2i7PMP84qHPmIY_0EixNKNX74D_MPyXfOoQ
CitedBy_id crossref_primary_10_1038_s41467_020_18067_7
crossref_primary_10_1371_journal_ppat_1010583
crossref_primary_10_1038_s41557_023_01226_w
crossref_primary_10_7554_eLife_86016_3
crossref_primary_10_1038_s41467_023_38944_1
crossref_primary_10_1016_j_chom_2023_03_004
crossref_primary_10_1016_j_molcel_2023_06_035
crossref_primary_10_1038_s41467_021_22427_2
crossref_primary_10_1073_pnas_2407398121
crossref_primary_10_1107_S205225252000408X
crossref_primary_10_1016_j_jbc_2024_107743
crossref_primary_10_1126_science_abn8652
crossref_primary_10_1016_j_jbc_2024_107730
crossref_primary_10_1038_s41467_022_30293_9
crossref_primary_10_1038_s41467_023_35854_0
crossref_primary_10_1038_s41586_020_2820_9
crossref_primary_10_1016_j_bbrc_2025_151398
crossref_primary_10_1038_s41467_020_17364_5
crossref_primary_10_1093_femsre_fuaa032
crossref_primary_10_1038_s41467_022_32834_8
crossref_primary_10_1016_j_jbc_2021_101498
crossref_primary_10_1016_j_celrep_2025_115760
crossref_primary_10_7554_eLife_88960
crossref_primary_10_1038_s12276_024_01296_x
crossref_primary_10_1016_j_cell_2019_10_036
crossref_primary_10_1016_j_jsb_2020_107635
crossref_primary_10_1038_s41586_024_08121_5
crossref_primary_10_1016_j_jmb_2024_168499
crossref_primary_10_1038_s41586_021_03925_1
crossref_primary_10_1038_s41594_024_01284_9
crossref_primary_10_1038_s41586_023_06405_w
crossref_primary_10_1073_pnas_2021946118
crossref_primary_10_1126_science_abm5561
crossref_primary_10_1038_s41467_023_42707_3
crossref_primary_10_1371_journal_pone_0252800
crossref_primary_10_1021_jacs_4c14288
crossref_primary_10_1038_s41594_019_0233_y
crossref_primary_10_1107_S2052252519011503
crossref_primary_10_7554_eLife_52505
crossref_primary_10_1016_j_ultramic_2023_113883
crossref_primary_10_1038_s41467_024_52174_z
crossref_primary_10_1107_S2059798320002958
crossref_primary_10_1093_nar_gkac934
crossref_primary_10_1038_s42003_021_02962_w
crossref_primary_10_1038_s41594_023_01101_9
crossref_primary_10_1107_S2052252519007486
crossref_primary_10_1038_s41467_024_55778_7
crossref_primary_10_1073_pnas_2306767120
crossref_primary_10_7554_eLife_88960_3
crossref_primary_10_1107_S2059798324005229
crossref_primary_10_1126_science_abe3354
crossref_primary_10_7554_eLife_104237_3
crossref_primary_10_1038_s44318_025_00368_6
crossref_primary_10_1261_rna_075846_120
crossref_primary_10_7554_eLife_83053
crossref_primary_10_1038_s41467_020_14603_7
crossref_primary_10_1038_s41467_024_49614_1
crossref_primary_10_1002_prot_26655
crossref_primary_10_1016_j_molcel_2021_01_005
crossref_primary_10_1038_s41594_025_01530_8
crossref_primary_10_1016_j_bbrc_2020_08_042
crossref_primary_10_1038_s41589_022_01229_7
crossref_primary_10_1038_s41594_020_0439_z
crossref_primary_10_1016_j_jbc_2022_101602
crossref_primary_10_1038_s41467_023_40524_2
crossref_primary_10_1016_j_jbc_2021_100474
crossref_primary_10_1016_j_cell_2024_12_032
crossref_primary_10_1038_s41586_021_03817_4
crossref_primary_10_1038_s41594_025_01652_z
crossref_primary_10_1038_s41598_024_61793_x
crossref_primary_10_1016_j_sbi_2023_102729
crossref_primary_10_1038_s41467_025_57397_2
crossref_primary_10_1038_s41467_022_33987_2
crossref_primary_10_1038_s41586_019_1820_0
crossref_primary_10_1016_j_str_2024_01_007
crossref_primary_10_1038_s41467_024_46375_9
crossref_primary_10_1007_s13238_019_00681_x
crossref_primary_10_7554_eLife_62514
crossref_primary_10_1038_s41467_022_33173_4
crossref_primary_10_1038_s41477_022_01099_w
crossref_primary_10_1016_j_molcel_2022_03_006
crossref_primary_10_1038_s41586_021_04199_3
crossref_primary_10_1038_s41467_022_28079_0
crossref_primary_10_1002_2211_5463_13657
crossref_primary_10_7554_eLife_96138
crossref_primary_10_1016_j_cell_2021_05_011
crossref_primary_10_1007_s13246_025_01542_0
crossref_primary_10_1038_s41467_020_20806_9
crossref_primary_10_1038_s41467_024_46840_5
crossref_primary_10_1038_s41586_020_2875_7
crossref_primary_10_1038_s41586_022_05040_1
crossref_primary_10_1016_j_molcel_2024_07_016
crossref_primary_10_1016_j_cell_2022_01_007
crossref_primary_10_1016_j_molcel_2023_05_005
crossref_primary_10_1038_s41586_024_08024_5
crossref_primary_10_1038_s41594_020_0490_9
crossref_primary_10_1038_s41594_024_01470_9
crossref_primary_10_1038_s41467_022_30457_7
crossref_primary_10_1038_s41467_022_28511_5
crossref_primary_10_1038_s41594_025_01575_9
crossref_primary_10_1126_science_abj3321
crossref_primary_10_1126_science_abl8506
crossref_primary_10_1038_s41594_023_01047_y
crossref_primary_10_1126_sciadv_ads5255
crossref_primary_10_1107_S1600576724010264
crossref_primary_10_3390_ijms22168418
crossref_primary_10_1038_s41586_023_06229_8
crossref_primary_10_1126_science_aba9202
crossref_primary_10_1016_j_jsb_2021_107745
crossref_primary_10_1038_s41589_021_00930_3
crossref_primary_10_1038_s41594_022_00899_0
crossref_primary_10_1016_j_jmb_2023_168049
crossref_primary_10_1038_s41467_022_29073_2
crossref_primary_10_1371_journal_pbio_3002673
crossref_primary_10_1073_pnas_2120534119
crossref_primary_10_3389_fcimb_2023_1135013
crossref_primary_10_1016_j_molcel_2022_10_008
crossref_primary_10_1002_1873_3468_13471
crossref_primary_10_1016_j_molcel_2022_10_009
crossref_primary_10_1107_S2053230X20000308
crossref_primary_10_1038_s41594_024_01419_y
crossref_primary_10_1038_s41592_020_01001_6
crossref_primary_10_1016_j_jmb_2019_08_003
crossref_primary_10_1073_pnas_2026719118
crossref_primary_10_7554_eLife_75122
crossref_primary_10_1038_s41467_021_25682_5
crossref_primary_10_1134_S106816202403035X
crossref_primary_10_1128_spectrum_03008_23
crossref_primary_10_1038_s41467_023_44555_7
crossref_primary_10_1038_s41594_020_0478_5
crossref_primary_10_1038_s41467_024_45046_z
crossref_primary_10_1038_s41467_022_33121_2
crossref_primary_10_1038_s41467_022_32442_6
crossref_primary_10_1038_s41564_021_00895_y
crossref_primary_10_1038_s41594_022_00833_4
crossref_primary_10_1038_s41467_022_34017_x
crossref_primary_10_7554_eLife_86016
crossref_primary_10_1016_j_molcel_2020_02_011
crossref_primary_10_1073_pnas_2214949120
crossref_primary_10_1038_s41467_022_30300_z
crossref_primary_10_1038_s41467_024_51960_z
crossref_primary_10_15252_embj_2021108819
crossref_primary_10_1038_s41467_024_50888_8
crossref_primary_10_1016_j_immuni_2021_08_016
crossref_primary_10_1016_j_jsb_2021_107768
crossref_primary_10_1038_s41467_021_26133_x
crossref_primary_10_7554_eLife_86029
crossref_primary_10_1016_j_neuron_2023_04_007
crossref_primary_10_1038_s41586_022_05015_2
crossref_primary_10_1038_s41586_022_05449_8
crossref_primary_10_1038_s41467_021_23136_6
crossref_primary_10_1038_s41596_022_00763_x
crossref_primary_10_1038_s41467_023_36575_0
crossref_primary_10_1038_s41467_023_40266_1
crossref_primary_10_1038_s41594_021_00619_0
crossref_primary_10_1038_s41467_024_51381_y
crossref_primary_10_1093_nar_gkad651
crossref_primary_10_1038_s41421_023_00581_9
crossref_primary_10_1016_j_celrep_2025_115245
crossref_primary_10_1107_S2059798325000865
crossref_primary_10_1073_pnas_2112267118
crossref_primary_10_1038_s41594_023_00944_6
crossref_primary_10_3390_molecules29132992
crossref_primary_10_1038_s41594_019_0334_7
crossref_primary_10_1016_j_jmb_2022_167801
crossref_primary_10_1107_S2059798319010519
crossref_primary_10_1038_s41586_024_07347_7
crossref_primary_10_1038_s41593_024_01801_5
crossref_primary_10_1016_j_str_2023_08_007
crossref_primary_10_1038_s41467_022_32441_7
crossref_primary_10_1038_s41586_021_03196_w
crossref_primary_10_1126_scitranslmed_abn1252
crossref_primary_10_7554_eLife_81704
crossref_primary_10_3389_fimmu_2024_1434463
crossref_primary_10_1038_s41586_025_08624_9
crossref_primary_10_1073_pnas_2025658118
crossref_primary_10_1073_pnas_2320879121
crossref_primary_10_1016_j_jbc_2024_107326
crossref_primary_10_1038_s41467_025_57731_8
crossref_primary_10_1016_j_molcel_2020_11_035
crossref_primary_10_1016_j_cell_2019_11_006
crossref_primary_10_1038_s41467_020_15071_9
crossref_primary_10_1021_acschemneuro_5c00149
crossref_primary_10_1038_s41467_022_32793_0
crossref_primary_10_1038_s41589_023_01406_2
crossref_primary_10_1073_pnas_2105014118
crossref_primary_10_1038_s41467_023_38083_7
crossref_primary_10_1073_pnas_2406138121
crossref_primary_10_1016_j_bbamcr_2023_119543
crossref_primary_10_1038_s41564_020_0669_1
crossref_primary_10_1038_s41594_021_00719_x
crossref_primary_10_1038_s41598_021_01932_w
crossref_primary_10_1038_s41586_021_03807_6
crossref_primary_10_1146_annurev_pharmtox_010919_023545
crossref_primary_10_1038_s41586_023_06801_2
crossref_primary_10_1128_mbio_03713_24
crossref_primary_10_1016_j_molcel_2020_11_047
crossref_primary_10_1261_rna_073817_119
crossref_primary_10_1038_s41467_019_11142_8
crossref_primary_10_1038_s41467_021_21912_y
crossref_primary_10_1038_s42003_020_01217_4
crossref_primary_10_1126_science_abm7285
crossref_primary_10_1038_s41586_020_2043_0
crossref_primary_10_7554_eLife_76494
crossref_primary_10_1038_s41594_025_01617_2
crossref_primary_10_1038_s41467_025_61016_5
crossref_primary_10_1038_s41586_024_08360_6
crossref_primary_10_1107_S205225252000929X
crossref_primary_10_1038_s41589_024_01720_3
crossref_primary_10_1038_s41586_024_07828_9
crossref_primary_10_1038_s41422_024_00932_5
crossref_primary_10_1038_s41467_023_37035_5
crossref_primary_10_1038_s41467_019_12865_4
crossref_primary_10_1126_science_abm8143
crossref_primary_10_1038_s41467_021_27435_w
crossref_primary_10_1038_s41467_022_29893_2
crossref_primary_10_1038_s41586_019_1440_8
crossref_primary_10_1038_s44319_024_00280_w
crossref_primary_10_1038_s41594_024_01378_4
crossref_primary_10_1038_s42003_021_02529_9
crossref_primary_10_1038_s42003_023_05334_8
crossref_primary_10_1002_2211_5463_12962
crossref_primary_10_1038_s41467_022_33591_4
crossref_primary_10_1038_s41564_024_01644_7
crossref_primary_10_1073_pnas_2415426122
crossref_primary_10_1038_s41586_020_3004_3
crossref_primary_10_1038_s41467_024_46762_2
crossref_primary_10_1016_j_molcel_2021_11_001
crossref_primary_10_1038_s41467_022_28417_2
crossref_primary_10_1038_s41467_025_58202_w
crossref_primary_10_1038_s41586_022_04517_3
crossref_primary_10_1038_s41586_022_05566_4
crossref_primary_10_1038_s41594_020_0457_x
crossref_primary_10_1038_s41594_024_01365_9
crossref_primary_10_1038_s41586_020_2370_1
crossref_primary_10_1038_s41467_020_18440_6
crossref_primary_10_1038_s41564_020_0788_8
crossref_primary_10_1146_annurev_biophys_082120_103921
crossref_primary_10_3389_fmolb_2022_917725
crossref_primary_10_1038_s41467_025_60207_4
crossref_primary_10_7554_eLife_69418
crossref_primary_10_1038_s41594_021_00607_4
crossref_primary_10_1038_s41594_024_01463_8
crossref_primary_10_1038_s41594_021_00596_4
crossref_primary_10_1016_j_immuni_2024_10_001
crossref_primary_10_1038_s41467_022_28820_9
crossref_primary_10_1038_s41467_023_40582_6
crossref_primary_10_1038_s41467_024_53096_6
crossref_primary_10_1107_S2059798322011858
crossref_primary_10_7554_eLife_83935
crossref_primary_10_1038_s41586_023_06856_1
crossref_primary_10_1038_s41586_024_07027_6
crossref_primary_10_1016_j_celrep_2023_113406
crossref_primary_10_1038_s41929_023_00934_3
crossref_primary_10_1126_science_adr7920
crossref_primary_10_15252_embj_2019104129
crossref_primary_10_1038_s41586_022_04857_0
crossref_primary_10_7554_eLife_79790
crossref_primary_10_1016_j_chembiol_2023_08_003
crossref_primary_10_1021_jacs_5c09436
crossref_primary_10_1038_s41467_022_34008_y
crossref_primary_10_1038_s41467_022_30562_7
crossref_primary_10_1038_s41593_023_01341_4
crossref_primary_10_1146_annurev_biochem_032620_110705
crossref_primary_10_1016_j_cell_2023_01_012
crossref_primary_10_1038_s41467_024_46761_3
crossref_primary_10_1038_s41594_021_00584_8
crossref_primary_10_1126_science_adn9560
crossref_primary_10_1016_j_str_2021_06_013
crossref_primary_10_26508_lsa_202201527
crossref_primary_10_7554_eLife_81400
crossref_primary_10_1016_j_str_2020_12_007
crossref_primary_10_1038_s41564_020_0703_3
crossref_primary_10_1038_s41929_024_01221_5
crossref_primary_10_1016_j_jbc_2025_110631
crossref_primary_10_1038_s41586_020_2772_0
crossref_primary_10_1098_rsob_210160
crossref_primary_10_1038_s41467_023_40881_y
crossref_primary_10_1038_s41477_024_01697_w
crossref_primary_10_1038_s41467_020_14347_4
crossref_primary_10_1093_nar_gkad480
crossref_primary_10_1038_s41467_021_23702_y
crossref_primary_10_1038_s41467_021_24731_3
crossref_primary_10_1093_jmicro_dfac039
crossref_primary_10_1038_s41586_020_2116_0
crossref_primary_10_1126_science_aay3353
crossref_primary_10_1093_nar_gkac1273
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_1038_s41594_022_00728_4
crossref_primary_10_1126_science_abi7994
crossref_primary_10_1016_j_jid_2024_10_594
crossref_primary_10_1016_j_cell_2020_09_051
crossref_primary_10_1038_s41586_019_1344_7
crossref_primary_10_1038_s41467_025_61270_7
crossref_primary_10_1038_s41586_023_05908_w
crossref_primary_10_1093_jmicro_dfab053
crossref_primary_10_1038_s41586_025_09155_z
crossref_primary_10_1038_s41586_022_05373_x
crossref_primary_10_1107_S2052252520002456
crossref_primary_10_1111_nan_70013
crossref_primary_10_7554_eLife_83724
crossref_primary_10_1093_nar_gkad217
crossref_primary_10_1016_j_pbiomolbio_2020_06_008
crossref_primary_10_1146_annurev_biodatasci_021020_093826
crossref_primary_10_1038_s41594_022_00738_2
crossref_primary_10_1371_journal_ppat_1008920
crossref_primary_10_1016_j_jmb_2020_09_023
crossref_primary_10_1038_s42003_024_07031_6
crossref_primary_10_1038_s41467_020_18707_y
crossref_primary_10_1093_nar_gkac490
crossref_primary_10_1016_j_jsb_2019_09_013
crossref_primary_10_1038_s41586_022_04790_2
crossref_primary_10_1107_S2059798325005686
crossref_primary_10_7554_eLife_103486_3
crossref_primary_10_7554_eLife_93562_4
crossref_primary_10_1073_pnas_2314990121
crossref_primary_10_1038_s41467_025_57006_2
crossref_primary_10_1073_pnas_2109083119
crossref_primary_10_1038_s41467_024_44820_3
crossref_primary_10_1038_s41586_022_05199_7
crossref_primary_10_1126_science_ade8840
crossref_primary_10_1073_pnas_2009627117
crossref_primary_10_1038_s41467_023_36441_z
crossref_primary_10_1038_s41467_023_39345_0
crossref_primary_10_1016_j_molcel_2025_06_021
crossref_primary_10_1126_sciadv_adx9722
crossref_primary_10_1038_s41467_023_37177_6
crossref_primary_10_1038_s41467_023_43555_x
crossref_primary_10_1038_s42004_023_00900_x
crossref_primary_10_1016_j_cell_2018_12_028
crossref_primary_10_15252_embr_201948451
crossref_primary_10_1016_j_cell_2022_05_019
crossref_primary_10_1016_j_molcel_2020_04_012
crossref_primary_10_1038_s41586_022_05319_3
crossref_primary_10_7554_eLife_96138_3
crossref_primary_10_1038_s41467_021_26585_1
crossref_primary_10_1016_j_cell_2020_09_037
crossref_primary_10_1126_science_abe0526
crossref_primary_10_1038_s41467_021_26024_1
crossref_primary_10_1073_pnas_2309984121
crossref_primary_10_1038_s41467_024_49030_5
crossref_primary_10_1038_s41594_024_01348_w
crossref_primary_10_7554_eLife_79361
crossref_primary_10_1038_s41467_024_50548_x
crossref_primary_10_1016_j_cell_2024_09_026
crossref_primary_10_1038_s41467_022_30407_3
crossref_primary_10_1038_s41594_020_0386_8
crossref_primary_10_1371_journal_pone_0232540
crossref_primary_10_3389_fmolb_2024_1342179
crossref_primary_10_1016_j_jmb_2025_169051
crossref_primary_10_1038_s41589_024_01551_2
crossref_primary_10_3390_v16121835
crossref_primary_10_7554_eLife_103486
crossref_primary_10_1093_jmicro_dfaa052
crossref_primary_10_1016_j_str_2019_10_012
crossref_primary_10_1073_pnas_2202590119
crossref_primary_10_15252_embj_2021110411
crossref_primary_10_1038_s41467_023_36673_z
crossref_primary_10_1126_science_abl8280
crossref_primary_10_1038_s41586_022_05013_4
crossref_primary_10_1038_s41467_023_38687_z
crossref_primary_10_1038_s41467_020_19735_4
crossref_primary_10_1038_s41586_022_05059_4
crossref_primary_10_1126_science_aaz9649
crossref_primary_10_1107_S2052252519014507
crossref_primary_10_1038_s41467_020_18870_2
crossref_primary_10_1038_s41586_023_06487_6
crossref_primary_10_1038_s41589_024_01751_w
crossref_primary_10_1016_j_molcel_2023_11_004
crossref_primary_10_1093_nar_gkaf112
crossref_primary_10_1016_j_chembiol_2024_08_005
crossref_primary_10_1038_s41467_023_43301_3
crossref_primary_10_1107_S2052252520000081
crossref_primary_10_1371_journal_ppat_1011177
crossref_primary_10_1016_j_molcel_2019_10_013
crossref_primary_10_1016_j_cell_2021_11_011
crossref_primary_10_1093_nar_gkae107
crossref_primary_10_1038_s41467_021_25742_w
crossref_primary_10_3389_fmolb_2022_937253
crossref_primary_10_1038_s41467_024_48163_x
crossref_primary_10_3390_ijms242417453
crossref_primary_10_1016_j_molcel_2022_09_029
crossref_primary_10_1038_s41467_020_18884_w
crossref_primary_10_1038_s41586_022_04650_z
crossref_primary_10_1016_j_str_2022_07_001
crossref_primary_10_1093_nar_gkab1141
crossref_primary_10_1038_s41586_020_2349_y
crossref_primary_10_7554_eLife_104237
crossref_primary_10_1016_j_virs_2022_01_015
crossref_primary_10_7554_eLife_54449
crossref_primary_10_1016_j_str_2022_07_006
crossref_primary_10_1073_pnas_1904766116
crossref_primary_10_1038_s41564_020_00823_6
crossref_primary_10_1038_s41586_022_05513_3
crossref_primary_10_1038_s42003_025_08300_8
crossref_primary_10_1107_S2052252520013482
crossref_primary_10_1038_s41467_020_16392_5
crossref_primary_10_1038_s41467_022_34090_2
crossref_primary_10_1042_BCJ20220124
crossref_primary_10_1002_2211_5463_70050
crossref_primary_10_1038_s41594_022_00729_3
crossref_primary_10_7554_eLife_93562
crossref_primary_10_1038_s41467_025_61194_2
crossref_primary_10_1126_sciadv_adr2753
crossref_primary_10_1016_j_jsb_2025_108206
crossref_primary_10_3390_ijms22158079
crossref_primary_10_1016_j_cell_2024_01_032
crossref_primary_10_1016_j_jsb_2025_108203
crossref_primary_10_1016_j_jsb_2025_108201
crossref_primary_10_1038_s41467_023_42982_0
crossref_primary_10_1016_j_jmb_2024_168795
crossref_primary_10_1038_s41594_024_01349_9
crossref_primary_10_1038_s41586_022_04829_4
crossref_primary_10_1038_s41594_020_00522_0
crossref_primary_10_1073_pnas_2309384121
crossref_primary_10_1016_j_omtn_2023_06_023
crossref_primary_10_1126_science_ads8412
crossref_primary_10_1107_S2052252520016243
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_1038_s41467_024_51135_w
crossref_primary_10_1016_j_str_2023_04_002
crossref_primary_10_1038_s41594_021_00634_1
crossref_primary_10_1038_s41594_024_01447_8
crossref_primary_10_1016_j_str_2024_02_006
crossref_primary_10_1016_j_cell_2023_04_003
crossref_primary_10_1038_s41467_021_23151_7
crossref_primary_10_1515_hsz_2022_0273
crossref_primary_10_1042_BCJ20200715
crossref_primary_10_1093_abt_tbae009
crossref_primary_10_1126_science_adc9127
crossref_primary_10_1007_s00401_022_02533_1
crossref_primary_10_1017_qrd_2021_8
crossref_primary_10_1038_s41586_022_05573_5
crossref_primary_10_1038_s41586_025_09545_3
crossref_primary_10_1021_jacs_3c01003
crossref_primary_10_1038_s41467_024_49899_2
crossref_primary_10_1038_s41586_021_03365_x
crossref_primary_10_1038_s41467_024_46536_w
crossref_primary_10_1016_j_jsb_2019_04_011
crossref_primary_10_1038_s41594_024_01413_4
crossref_primary_10_1093_nar_gkaf156
crossref_primary_10_1126_science_ado2075
crossref_primary_10_1038_s41586_022_05583_3
crossref_primary_10_7554_eLife_55853
crossref_primary_10_7554_eLife_51492
crossref_primary_10_7554_eLife_84415
crossref_primary_10_1038_s42003_024_06588_6
crossref_primary_10_1038_s41467_023_37109_4
crossref_primary_10_1038_s41467_023_36593_y
crossref_primary_10_1038_s41586_021_03857_w
crossref_primary_10_1016_j_molcel_2020_09_029
crossref_primary_10_1038_s41467_021_27283_8
crossref_primary_10_1107_S2059798324004546
crossref_primary_10_1016_j_jbc_2022_101827
crossref_primary_10_1038_s41467_024_50817_9
crossref_primary_10_1093_nar_gkae399
crossref_primary_10_1107_S2059798320012474
crossref_primary_10_1038_s41467_025_57960_x
crossref_primary_10_1038_s41467_022_29416_z
crossref_primary_10_1126_science_aba3526
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1038_s41594_019_0308_9
crossref_primary_10_1038_s42003_025_08363_7
crossref_primary_10_1126_science_abb7927
crossref_primary_10_15252_embj_2020105908
crossref_primary_10_1038_s41594_020_0481_x
crossref_primary_10_7554_eLife_84424
crossref_primary_10_1016_j_bpj_2020_12_030
crossref_primary_10_1016_j_molcel_2023_05_034
crossref_primary_10_15252_embj_2022110581
crossref_primary_10_1107_S2059798321010056
crossref_primary_10_15252_embj_2023113687
crossref_primary_10_1038_s41586_023_06788_w
crossref_primary_10_1038_s41467_023_39735_4
crossref_primary_10_1016_j_ultramic_2022_113512
crossref_primary_10_1038_s41586_022_04939_z
crossref_primary_10_1126_science_adt1978
crossref_primary_10_3390_biophysica5030030
crossref_primary_10_1073_pnas_2421538122
crossref_primary_10_1073_pnas_2022586118
crossref_primary_10_1038_s41467_021_24650_3
crossref_primary_10_1038_s41467_025_57728_3
crossref_primary_10_1038_s41564_024_01684_z
crossref_primary_10_1038_s41594_022_00772_0
crossref_primary_10_1107_S2059798322009299
crossref_primary_10_1016_j_neuron_2022_10_002
crossref_primary_10_1038_s41586_019_1896_6
crossref_primary_10_1126_science_aav9334
crossref_primary_10_1038_s41467_025_59797_w
crossref_primary_10_1016_j_neuron_2023_07_006
crossref_primary_10_1371_journal_pbio_3000649
crossref_primary_10_1016_j_str_2025_07_020
crossref_primary_10_1126_science_abd9909
crossref_primary_10_1126_science_abm1184
crossref_primary_10_7554_eLife_42636
crossref_primary_10_1038_s41467_024_49656_5
crossref_primary_10_1038_s41586_020_2770_2
crossref_primary_10_1016_j_sbi_2019_06_009
crossref_primary_10_1073_pnas_2516676122
crossref_primary_10_1038_s44318_024_00106_4
crossref_primary_10_1038_s41586_020_2368_8
crossref_primary_10_1093_mam_ozae089
crossref_primary_10_1126_science_ade5750
crossref_primary_10_1038_s41593_019_0569_y
crossref_primary_10_1038_s41594_020_0483_8
crossref_primary_10_1371_journal_ppat_1009146
crossref_primary_10_1016_j_str_2022_01_005
crossref_primary_10_1038_s41586_024_07298_z
crossref_primary_10_1038_s41594_025_01568_8
crossref_primary_10_1016_j_str_2024_11_015
crossref_primary_10_1038_s41586_020_2696_8
crossref_primary_10_1073_pnas_2313999120
crossref_primary_10_1126_science_aay0166
crossref_primary_10_1111_febs_17415
crossref_primary_10_1038_s41467_023_37864_4
crossref_primary_10_1038_s41467_022_30853_z
crossref_primary_10_1038_s41586_019_0921_0
crossref_primary_10_1038_s41586_024_08237_8
crossref_primary_10_1038_s41586_021_03803_w
crossref_primary_10_1128_jvi_00638_24
crossref_primary_10_1016_j_ultramic_2021_113396
crossref_primary_10_1126_science_abn7747
crossref_primary_10_1107_S2052252524005530
crossref_primary_10_1038_s41467_022_29274_9
crossref_primary_10_3390_ijms252212397
crossref_primary_10_1107_S205225252401217X
crossref_primary_10_1038_s42003_021_02895_4
crossref_primary_10_1038_s41586_025_09428_7
crossref_primary_10_1016_j_cell_2020_02_058
crossref_primary_10_1038_s41467_021_21006_9
crossref_primary_10_1016_j_jbc_2023_105542
crossref_primary_10_1038_s41594_024_01426_z
crossref_primary_10_1007_s00401_023_02550_8
crossref_primary_10_1016_j_scib_2025_05_009
crossref_primary_10_1038_s42003_022_03284_1
crossref_primary_10_1038_s41467_023_36230_8
crossref_primary_10_1038_s41586_020_2829_0
crossref_primary_10_1038_s41467_020_19146_5
crossref_primary_10_1038_s41586_021_03911_7
crossref_primary_10_1371_journal_ppat_1012773
crossref_primary_10_1038_s41467_021_22900_y
crossref_primary_10_1038_s41586_022_05241_8
crossref_primary_10_1038_s41467_020_18830_w
crossref_primary_10_1073_pnas_2208882119
crossref_primary_10_1038_s41586_020_2357_y
crossref_primary_10_1109_MSP_2019_2957822
crossref_primary_10_1038_s41477_022_01253_4
crossref_primary_10_1038_s41586_020_2333_6
crossref_primary_10_1038_s42003_024_07152_y
Cites_doi 10.7554/eLife.03665
10.1016/j.jmb.2003.07.013
10.7554/eLife.00461
10.7554/eLife.03080
10.1038/nature14892
10.1016/j.jsb.2012.02.003
10.1016/j.jsb.2016.12.006
10.1016/S0076-6879(10)81015-8
10.1016/j.jsb.2015.02.001
10.1016/j.str.2012.08.026
10.1038/nmeth.2115
10.1038/nmeth.4193
10.7554/eLife.06980
10.1163/016918609X12529286896877
10.1016/j.ultramic.2013.06.004
10.1016/j.jsb.2012.09.006
10.1016/S0304-3991(79)90211-0
10.1007/BF01589116
10.1109/TPAMI.2007.1167
10.7554/eLife.18722
10.1109/TPAMI.2017.2739743
10.1007/978-3-540-28650-9_4
10.1093/comjnl/7.4.308
10.1016/0022-2836(75)90212-0
10.1016/j.jsb.2015.08.007
10.1038/nmeth.2472
ContentType Journal Article
Copyright COPYRIGHT 2019 International Union of Crystallography
2019. This article is published under https://creativecommons.org/licenses/by/2.0/uk (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Jasenko Zivanov et al. 2019 2019
Copyright_xml – notice: COPYRIGHT 2019 International Union of Crystallography
– notice: 2019. This article is published under https://creativecommons.org/licenses/by/2.0/uk (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Jasenko Zivanov et al. 2019 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EHMNL
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1107/S205225251801463X
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
UK & Ireland Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
UK & Ireland Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Bayesian particle polishing
EISSN 2052-2525
EndPage 17
ExternalDocumentID oai_doaj_org_article_905ff63c6e084694a387f67fad969304
PMC6327179
A573880378
30713699
10_1107_S205225251801463X
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UP_A025_1013
GroupedDBID 5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
EBS
EHMNL
EJD
GROUPED_DOAJ
H13
HCIFZ
HYE
IAO
ITC
KB.
KQ8
M48
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RCJ
ROL
RPM
ZBA
NPM
7SR
7U5
8BQ
8FD
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c598t-b785d27f346a935432905a88159b20fc8603a89c05b2a5b992dbe9096b82b32d3
IEDL.DBID DOA
ISICitedReferencesCount 593
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455767600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-2525
IngestDate Fri Oct 03 12:40:54 EDT 2025
Tue Nov 04 01:56:07 EST 2025
Wed Oct 01 13:42:07 EDT 2025
Fri Jul 25 12:01:43 EDT 2025
Tue Nov 04 17:54:29 EST 2025
Mon Jul 21 05:36:11 EDT 2025
Sat Nov 29 03:53:02 EST 2025
Tue Nov 18 22:02:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords electron cryo-microscopy
Bayesian particle polishing
beam-induced motion correction
cryo-EM
single-particle analysis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-b785d27f346a935432905a88159b20fc8603a89c05b2a5b992dbe9096b82b32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/905ff63c6e084694a387f67fad969304
PMID 30713699
PQID 2162032654
PQPubID 2035043
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_905ff63c6e084694a387f67fad969304
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6327179
proquest_miscellaneous_2179522607
proquest_journals_2162032654
gale_infotracacademiconefile_A573880378
pubmed_primary_30713699
crossref_primary_10_1107_S205225251801463X
crossref_citationtrail_10_1107_S205225251801463X
PublicationCentury 2000
PublicationDate 2019-01-01
2019-Jan-01
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chester
PublicationTitle IUCrJ
PublicationTitleAlternate IUCrJ
PublicationYear 2019
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Kimanius (fq5003_bb10) 2016; 5
Rosenthal (fq5003_bb19) 2003; 333
Grant (fq5003_bb8) 2015; 4
Scheres (fq5003_bb23) 2012; 9
Baker (fq5003_bb4) 2010; 481
Wong (fq5003_bb26) 2014; 3
Liu (fq5003_bb12) 1989; 45
Chen (fq5003_bb7) 2013; 135
Campbell (fq5003_bb6) 2012; 20
Nguyen-Tuong (fq5003_bb17) 2009; 23
Brilot (fq5003_bb5) 2012; 177
Lüthi (fq5003_bb14) 2018; 40
Bai (fq5003_bb3) 2015; 525
Unwin (fq5003_bb24) 1975; 94
McLeod (fq5003_bb15) 2017; 197
Scheres (fq5003_bb21) 2012; 180
Scheres (fq5003_bb22) 2014; 3
Nelder (fq5003_bb16) 1965; 7
Wang (fq5003_bb25) 2008; 30
Rubinstein (fq5003_bb20) 2015; 192
fq5003_bb13
Li (fq5003_bb11) 2013; 10
Zheng (fq5003_bb27) 2017; 14
fq5003_bb18
Bai (fq5003_bb2) 2013; 2
Abrishami (fq5003_bb1) 2015; 189
Hayward (fq5003_bb9) 1979; 4
References_xml – volume: 3
  start-page: e03665
  year: 2014
  ident: fq5003_bb22
  publication-title: Elife
  doi: 10.7554/eLife.03665
– volume: 333
  start-page: 721
  year: 2003
  ident: fq5003_bb19
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.07.013
– volume: 2
  start-page: e00461
  year: 2013
  ident: fq5003_bb2
  publication-title: Elife
  doi: 10.7554/eLife.00461
– volume: 3
  start-page: e03080
  year: 2014
  ident: fq5003_bb26
  publication-title: Elife
  doi: 10.7554/eLife.03080
– volume: 525
  start-page: 212
  year: 2015
  ident: fq5003_bb3
  publication-title: Nature (London)
  doi: 10.1038/nature14892
– volume: 177
  start-page: 630
  year: 2012
  ident: fq5003_bb5
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.02.003
– volume: 197
  start-page: 279
  year: 2017
  ident: fq5003_bb15
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2016.12.006
– volume: 481
  start-page: 371
  year: 2010
  ident: fq5003_bb4
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(10)81015-8
– volume: 189
  start-page: 163
  year: 2015
  ident: fq5003_bb1
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.02.001
– volume: 20
  start-page: 1823
  year: 2012
  ident: fq5003_bb6
  publication-title: Structure
  doi: 10.1016/j.str.2012.08.026
– volume: 9
  start-page: 853
  year: 2012
  ident: fq5003_bb23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2115
– volume: 14
  start-page: 331
  year: 2017
  ident: fq5003_bb27
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 4
  start-page: e06980
  year: 2015
  ident: fq5003_bb8
  publication-title: Elife
  doi: 10.7554/eLife.06980
– volume: 23
  start-page: 2015
  year: 2009
  ident: fq5003_bb17
  publication-title: Adv. Robot.
  doi: 10.1163/016918609X12529286896877
– volume: 135
  start-page: 24
  year: 2013
  ident: fq5003_bb7
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.06.004
– volume: 180
  start-page: 519
  year: 2012
  ident: fq5003_bb21
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 4
  start-page: 201
  year: 1979
  ident: fq5003_bb9
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(79)90211-0
– ident: fq5003_bb13
– volume: 45
  start-page: 503
  year: 1989
  ident: fq5003_bb12
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 30
  start-page: 283
  year: 2008
  ident: fq5003_bb25
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1167
– volume: 5
  start-page: e18722
  year: 2016
  ident: fq5003_bb10
  publication-title: Elife
  doi: 10.7554/eLife.18722
– volume: 40
  start-page: 1860
  year: 2018
  ident: fq5003_bb14
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2739743
– ident: fq5003_bb18
  doi: 10.1007/978-3-540-28650-9_4
– volume: 7
  start-page: 308
  year: 1965
  ident: fq5003_bb16
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 94
  start-page: 425
  year: 1975
  ident: fq5003_bb24
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(75)90212-0
– volume: 192
  start-page: 188
  year: 2015
  ident: fq5003_bb20
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.007
– volume: 10
  start-page: 584
  year: 2013
  ident: fq5003_bb11
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2472
SSID ssj0001125741
Score 2.6298456
Snippet A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle...
A Bayesian approach to estimate the trajectories of particle motion in electron cryo-microscopy single-particle analysis is presented. A new method to estimate...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5
SubjectTerms Algorithms
Bayesian analysis
Bayesian particle polishing
beam-induced motion correction
cryo-EM
Damage assessment
electron cryo-microscopy
Gaussian process
Microscopy
Parameter estimation
Particle motion
Particle trajectories
Polishing
Radiation (Physics)
Radiation damage
Radiation dosage
Regression analysis
Research Papers
single-particle analysis
Smoothness
State of the art
Trajectory analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFD5o1wd98K47ukoEQRDCpslMLk_SShcftCxeoD4NyUyihXWm23aF_ffmTNNuh4V98XEmGUgmX84tOd8BeBuEC0x4Qevacpor5akb1ooOdaitFBE1vmPX_6ymUz2bmdMUcFula5VbmdgJ6rqtMEZ-zIcSi33LIv-wOKdYNQpPV1MJjdtwgExl-QAOxpPp6derKEvU31FnpuPM6Oocf-MsmhxFVOsdb4qY9RRSx9t_XTrvqaf-1ck9XXTy4H9n8RDuJyuUjDaweQS3fPMY7u1xEz6BnyMytpcecyzJlnicrFvivP1DoyMfIVGTTQ0gUmGJjy5Bgszj0_KypZMvBKMQZ54uEjiJTfwnT-HHyeT7x0801WGgVWH0mjqli5qrIHJpjShywQ0rrNbREnKchUpLJqw2FSsct4UzhtfOm-gbOc2d4LV4BoOmbfwhkKgy87zyiAkVXSWvrcLU18CtlY4FmwHbLkZZJZJyrJVxVnbOClPltfXL4P3uk8WGoeOmzmNc4V1HJNfuXrTLX2X6HWWcXQhSVNKzaJ2Z3AqtglTB1gYLR-YZvEN8lCgC4uAqmzIZ4hSRTKscFQopdoTSGRxtYVAm2bAqrzCQwZtdc9zVeFRjG99eYB9l0DJmKoPnG8TtxiwwsCCNyUD1sNibVL-lmf_umMOl4NF9Ny9uHtZLuBvNQrMJNB3BYL288K_gTvV3PV8tX6ct9g-x7y0G
  priority: 102
  providerName: ProQuest
Title A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/30713699
https://www.proquest.com/docview/2162032654
https://www.proquest.com/docview/2179522607
https://pubmed.ncbi.nlm.nih.gov/PMC6327179
https://doaj.org/article/905ff63c6e084694a387f67fad969304
Volume 6
WOSCitedRecordID wos000455767600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: KB.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: UK & Ireland Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: EHMNL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/ukireland
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA96-qAP4rerZ4kgCEK8NNl8PbbSQ9ErxQ_oPS3JbsIVzu3R6wn33zuT3ZaWA33xZWEn2SWZzOx8ZPMbQt4mGRKXUbKm8YKVxkQWho1hQ5saryVITczo-l_NdGrnczfbKfWF_4R18MAd444cVylpWevIwVS60ktrkjbJNw6r-GUkUPB6doKpnF0Bu21y2UrBlWBCCdVvaUK4c_QdiUgbZuwUOd8zShm7_-YXesdE7f8-uWOPjh-SB70jSUfdBB6RW7F9TO7vwAs-IacjOvbXEY9J0g12OF0vaYj-F4NYHFa1oV0ZH1pjlY58xoEu4G51vWSTE4qJhPPILno2Ud9DmDwlP48nPz5-Yn0pBVYrZ9csGKsaYZIstXdSlVIAX7214MwEwVNtNZfeupqrILwKzokmRAfhTbAiSNHIZ-SgXbbxBaFg9cqyjrisBqKdaL3B06tJeK8DT74gfMPLqu5xxrHcxXmV4w1uqhvsL8j77SMXHcjG3zqPcYG2HREfOxNAaqqeHdW_pKYg73B5K9RiGFzt-8MIMEXEw6pGyiBKjjS2IIcbCah69b6sxFBj5Xmt4EVvts2gmLjb4tu4vMI-xqFzy01BnncCsx2zxNyAdq4gZk-U9ia139IuzjL4t5YCInD38n9w4RW5B_6f6zJKh-RgvbqKr8nd-vd6cbkakNtmbgfkzngynX0bZP2C65fxB6DNPp_MTv8ALrwj1g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRLwwP0SGGAkENKkaKmdxPYDQh1sWrW2qsSQuqfgxDZUGklpO1D_FL-R41y6RpP2tgcekziRnXw-5_NxzncA3lqW2oAZ5mutqB9ybvy0q7nfFVarmCFqTKmuP-CjkZhM5HgL_ja5MO63ysYmloZaF5mLke_RbuyKfcdR-HH2y3dVo9zualNCo4LFsVn9wSXb4kP_M37fd5QeHpx8OvLrqgJ-Fkmx9FMuIk25ZWGsJItCRmUQKSHQr6c0sJmIA6aEzIIopSpKpaQ6NRKZfipoyqhm-NwbsB0i2EUHtsf94fj0IqqDfAF9dL19ikurvS80QIoTIY0odVrYpOUAyzoBl73Bhjts_6q54fsO7_1vb-0-3K1ZNulV0-IBbJn8IdzZ0F58BKc9sq9WxuWQkkZYnSwLkhr105_mGiGvSVXjiGSuhEmZAEKmeDRfFf7BkLgoy5nxZ_XkI6rWd3kMX69lbE-gkxe5eQYEKUEYZsZhnuNS0AjFXWqvpUrFaWCVB0Hz8ZOsFmF3tUDOknIxFvDkEl482F3fMqsUSK5qvO8QtW7oxMPLE8X8e1K_jgRHZ23MstgEyD5lqJjgNuZWaekKY4YevHd4TJyJw85lqs7UwCE6sbCkF3EnIcS48GCngV1S275FcoE5D96sL6PVcltRKjfFuWvDpWP-AffgaYXwdZ-ZC5zEUnrAW9hvDap9JZ_-KJXRY0Y5Pvn51d16DbeOToaDZNAfHb-A20iBZRVU24HOcn5uXsLN7Pdyupi_qqc3gW_XPTf-AbLbh0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+to+beam-induced+motion+correction+in+cryo-EM+single-particle+analysis&rft.jtitle=IUCrJ&rft.au=Zivanov%2C+Jasenko&rft.au=Nakane%2C+Takanori&rft.au=Scheres%2C+Sjors+H.W&rft.date=2019-01-01&rft.pub=International+Union+of+Crystallography&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=6&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1107%2FS205225251801463X&rft.externalDocID=A573880378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon