Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition
Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analy...
Saved in:
| Published in: | NeuroImage (Orlando, Fla.) Vol. 175; pp. 176 - 187 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
15.07.2018
Elsevier Limited Elsevier |
| Subjects: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered ‘dipolar’ ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.
•It is currently a common practice to apply dimension reduction to EEG data using PCA before performing ICA decomposition.•We tested the quality of Independent Components (ICs) after different levels of rank reduction to a principal subspace.•PCA rank reduction adversely affected dipolarity and stability of ICs accounting for brain and known non-brain processes.•PCA rank reduction also increased inter-subject variance in IC source locations (by equivalent dipole fitting) and spectra.•For EEG data at least, PCA rank reduction should be avoided or carefully tested before applying it as a preprocessing step. |
|---|---|
| AbstractList | Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered ‘dipolar’ ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.
•It is currently a common practice to apply dimension reduction to EEG data using PCA before performing ICA decomposition.•We tested the quality of Independent Components (ICs) after different levels of rank reduction to a principal subspace.•PCA rank reduction adversely affected dipolarity and stability of ICs accounting for brain and known non-brain processes.•PCA rank reduction also increased inter-subject variance in IC source locations (by equivalent dipole fitting) and spectra.•For EEG data at least, PCA rank reduction should be avoided or carefully tested before applying it as a preprocessing step. Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered ‘dipolar’ ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided. Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered 'dipolar' ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered 'dipolar' ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided. |
| Author | Artoni, Fiorenzo Makeig, Scott Delorme, Arnaud |
| AuthorAffiliation | 2 Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL – Campus Biotech, Geneve, Switzerland 3 Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla CA 92093-0559 1 The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy 4 Univ. Grenoble Alpes, CNRS, LNPC UMR 5105, Grenoble, France |
| AuthorAffiliation_xml | – name: 3 Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla CA 92093-0559 – name: 4 Univ. Grenoble Alpes, CNRS, LNPC UMR 5105, Grenoble, France – name: 1 The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy – name: 2 Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL – Campus Biotech, Geneve, Switzerland |
| Author_xml | – sequence: 1 givenname: Fiorenzo surname: Artoni fullname: Artoni, Fiorenzo email: fiorenzo.artoni@epfl.ch organization: The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy – sequence: 2 givenname: Arnaud surname: Delorme fullname: Delorme, Arnaud organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093-0559, USA – sequence: 3 givenname: Scott surname: Makeig fullname: Makeig, Scott organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093-0559, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29526744$$D View this record in MEDLINE/PubMed https://hal.science/hal-02341930$$DView record in HAL |
| BookMark | eNqNkk2P0zAQhiO0iP2Av4AscYFDix3nw74gStX9kCrBAc6Wa09al9TO2k6l_A1-MY66u4WeeklGnneeGb_j6-zCOgtZhgieEkyqz9uphd47s5NrmOaYsCmm05R4lV0RzMsJL-v8YoxLOmGE8MvsOoQtxpiTgr3JLnNe5lVdFFfZn1nXtYOxa6TNDmwwziIPuldxjKJDi8Ud0jJKtBrQD2-sMp1s0dztujSSjWhmZTsEEw5VEFDcAHrsZWvigFyDTAwo9KsAj_0of7AaOkifFB8hGtQYBzN2fZu9bmQb4N3T_yb7dbv4Ob-fLL_fPcxny4kqOYuTmhO94qWiBZCixgo3mte0yZuKrSgmmtV1RXiBa0IINKQpGANaYaWhlqUsML3Jvhy4Xb_agVZpEC9b0flkqx-Ek0b8n7FmI9ZuL6qqxMm8BPh0AGxOyu5nSzGe4ZwWhFO8J0n78amZd8mJEMXOBAVtKy24Poi0REowLcko_XAi3breJ5tHFeVpn4yypHr_7_Qv_Z9Xe7ye8i4ED41QJsrR4HQZ0wqCxfiWxFYc39I4BhOYipRIAHYCeO5xRum3Qymk_e0NeBGUAatAGw8qCu3MOZCvJxDVGmuUbH_DcB7iL-m4Atw |
| CitedBy_id | crossref_primary_10_1002_cpe_6535 crossref_primary_10_1016_j_neuroimage_2019_116117 crossref_primary_10_1016_j_dib_2020_105841 crossref_primary_10_1051_e3sconf_202458703019 crossref_primary_10_1016_j_dcn_2022_101068 crossref_primary_10_1016_j_gfs_2023_100725 crossref_primary_10_1049_ell2_12346 crossref_primary_10_1016_j_jisa_2022_103196 crossref_primary_10_3390_bioengineering11101018 crossref_primary_10_1016_j_bspc_2024_107394 crossref_primary_10_1007_s11042_024_20205_y crossref_primary_10_1145_3764578 crossref_primary_10_1088_2057_1976_ab6e20 crossref_primary_10_1016_j_jhydrol_2019_124372 crossref_primary_10_1038_s42003_024_07297_w crossref_primary_10_1155_er_5846114 crossref_primary_10_1016_j_neuroimage_2020_117614 crossref_primary_10_1016_j_dcn_2022_101072 crossref_primary_10_1155_2020_8841354 crossref_primary_10_1088_1741_2552_ac28d2 crossref_primary_10_1038_s41598_022_05902_8 crossref_primary_10_1155_2019_2013109 crossref_primary_10_1038_s41598_023_45512_6 crossref_primary_10_1016_j_neuroimage_2019_03_003 crossref_primary_10_3390_rs15071865 crossref_primary_10_3389_fnins_2022_1051585 crossref_primary_10_1080_10494820_2021_1984255 crossref_primary_10_1007_s10548_023_00947_y crossref_primary_10_1111_psyp_14223 crossref_primary_10_3390_math9111243 crossref_primary_10_1109_JBHI_2025_3545856 crossref_primary_10_1016_j_adhoc_2020_102178 crossref_primary_10_1038_s41598_020_60301_1 crossref_primary_10_1038_s41598_019_55591_z crossref_primary_10_3390_electronics9071178 crossref_primary_10_1007_s10548_024_01098_4 crossref_primary_10_1109_LSP_2025_3540370 crossref_primary_10_3390_s23094239 crossref_primary_10_1016_j_neurobiolaging_2018_05_022 crossref_primary_10_3103_S8756699024700080 crossref_primary_10_1111_ejn_14972 crossref_primary_10_1111_jcmm_18046 crossref_primary_10_1109_TBME_2019_2921766 crossref_primary_10_1155_2019_9108108 crossref_primary_10_1371_journal_pone_0231698 crossref_primary_10_1016_j_neuroimage_2022_119806 crossref_primary_10_1029_2022GL100667 crossref_primary_10_1038_s41598_022_05397_3 crossref_primary_10_1007_s11517_023_02840_z crossref_primary_10_1038_s42256_021_00398_9 crossref_primary_10_1007_s12145_021_00698_z crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_3389_fnhum_2021_669422 crossref_primary_10_1016_j_crmeth_2023_100482 crossref_primary_10_1002_jbio_202500044 crossref_primary_10_1093_cercor_bhaf083 crossref_primary_10_1016_j_autcon_2018_12_018 crossref_primary_10_1109_TNSRE_2020_2981991 crossref_primary_10_1016_j_bspc_2022_104115 crossref_primary_10_1088_1741_2552_ad1f7b crossref_primary_10_1016_j_bspc_2024_107345 crossref_primary_10_1080_08839514_2025_2450568 crossref_primary_10_3390_math13121945 crossref_primary_10_1007_s11063_021_10432_x crossref_primary_10_21926_obm_neurobiol_2403229 crossref_primary_10_1080_09500340_2023_2273552 crossref_primary_10_1038_s41598_020_79457_x crossref_primary_10_1016_j_cam_2024_115927 crossref_primary_10_1016_j_neuroimage_2022_119156 crossref_primary_10_1038_s41551_019_0446_8 crossref_primary_10_1016_j_ijpsycho_2020_06_004 crossref_primary_10_1155_2023_1091276 crossref_primary_10_1109_TSP_2022_3214684 crossref_primary_10_3390_genes12050683 crossref_primary_10_1016_j_bspc_2020_102336 crossref_primary_10_3390_math10173053 crossref_primary_10_1016_j_neuroimage_2020_117655 crossref_primary_10_1016_j_matpr_2020_12_477 crossref_primary_10_3390_app13148274 crossref_primary_10_1007_s00521_019_04544_8 crossref_primary_10_1109_ACCESS_2019_2915519 crossref_primary_10_1002_hbm_70267 crossref_primary_10_1007_s11517_024_03110_2 crossref_primary_10_1038_s41598_025_03018_3 crossref_primary_10_1109_ACCESS_2018_2882070 crossref_primary_10_1016_j_clinph_2022_11_010 crossref_primary_10_1214_19_STS763 crossref_primary_10_3390_molecules27175656 crossref_primary_10_1371_journal_pone_0298524 crossref_primary_10_1007_s00500_023_09124_6 crossref_primary_10_1016_j_neuroimage_2022_119348 crossref_primary_10_3389_fpubh_2022_1015876 crossref_primary_10_3390_s24030877 crossref_primary_10_1016_j_dsp_2023_104225 crossref_primary_10_1016_j_neuroimage_2023_119905 crossref_primary_10_1007_s10668_024_05821_w crossref_primary_10_1016_j_jneumeth_2021_109144 crossref_primary_10_3390_diagnostics13213389 crossref_primary_10_1016_j_dib_2018_12_022 crossref_primary_10_1016_j_scitotenv_2022_156310 crossref_primary_10_1038_s41598_023_27480_z crossref_primary_10_1109_TNSRE_2020_3000971 crossref_primary_10_1016_j_ifacol_2021_10_283 crossref_primary_10_1088_1741_2552_abef3a crossref_primary_10_1186_s12874_021_01265_2 crossref_primary_10_3389_fpls_2023_1255033 crossref_primary_10_21122_2309_4923_2022_2_4_9 crossref_primary_10_1016_j_neuroimage_2020_116934 crossref_primary_10_1016_j_ifacol_2021_10_287 crossref_primary_10_3390_app15094905 crossref_primary_10_1016_j_csda_2018_08_027 crossref_primary_10_1016_j_patrec_2019_10_029 crossref_primary_10_3390_brainsci11020214 crossref_primary_10_1002_spe_3119 crossref_primary_10_3389_fnbot_2021_618408 crossref_primary_10_1007_s11042_025_21014_7 |
| Cites_doi | 10.1162/neco.1995.7.6.1129 10.1371/journal.pone.0030135 10.1155/2011/156869 10.1162/neco.1997.9.7.1493 10.1002/hbm.10061 10.1016/j.tics.2004.03.008 10.1016/j.jneumeth.2003.10.009 10.1155/2011/879716 10.1016/j.neuroimage.2014.09.010 10.1109/TBME.1981.324700 10.1111/1469-8986.3720163 10.1097/00004691-199701000-00007 10.1176/appi.ajp.2009.09040458 10.1016/j.gaitpost.2009.10.005 10.1016/j.neubiorev.2006.06.007 10.1016/j.gaitpost.2008.05.015 10.1016/j.clinph.2003.10.018 10.1016/S0893-6080(00)00026-5 10.1016/j.neuroimage.2005.04.014 10.1109/10.775405 10.1016/j.neuroimage.2017.07.013 10.3389/fnhum.2010.00184 10.1186/1744-9081-7-30 10.1016/j.neuroimage.2015.08.032 10.1002/hbm.20304 10.1016/0013-4694(82)90109-2 10.1016/j.neuroimage.2008.12.038 10.1037/1082-989X.6.4.317 10.1126/science.1066168 10.1088/1741-2560/10/5/056014 10.1007/BF02442775 10.1016/0168-5597(86)90018-3 10.1016/j.neuroimage.2006.11.004 10.1016/1050-6411(93)90023-P 10.1016/j.neuroimage.2004.03.027 10.1016/j.clinbiomech.2007.09.007 10.1109/TBME.2006.870246 10.3389/neuro.09.061.2009 10.1016/0168-5597(86)90014-6 10.1113/jphysiol.2003.057174 10.1016/j.clinph.2005.11.015 10.1016/j.medengphy.2010.04.010 |
| ContentType | Journal Article |
| Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. Copyright Elsevier Limited Jul 15, 2018 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Jul 15, 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U RC3 7X8 1XC VOOES 5PM |
| DOI | 10.1016/j.neuroimage.2018.03.016 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 187 |
| ExternalDocumentID | PMC6650744 oai:HAL:hal-02341930v1 29526744 10_1016_j_neuroimage_2018_03_016 S1053811918302143 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB023297 – fundername: NINDS NIH HHS grantid: R01 NS047293 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI Q9U RC3 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c598t-791db95c34e1470c0fd973f2f68b301d877619407111ef1f488e360cde7a5a403 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 136 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432949000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Nov 04 01:50:36 EST 2025 Tue Oct 14 20:55:24 EDT 2025 Sun Nov 09 11:37:08 EST 2025 Tue Oct 07 07:07:34 EDT 2025 Thu Apr 03 07:02:23 EDT 2025 Sat Nov 29 06:55:40 EST 2025 Tue Nov 18 22:11:54 EST 2025 Fri Feb 23 02:48:17 EST 2024 Tue Oct 14 19:31:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Independent component analysis, ICA Principal component analysis, PCA Reliability Source localization Electroencephalogram, EEG Dipolarity |
| Language | English |
| License | Copyright © 2018. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c598t-791db95c34e1470c0fd973f2f68b301d877619407111ef1f488e360cde7a5a403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC6650744 Equal Contributors |
| ORCID | 0000-0002-0799-3557 |
| OpenAccessLink | https://hal.science/hal-02341930 |
| PMID | 29526744 |
| PQID | 2039811838 |
| PQPubID | 2031077 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6650744 hal_primary_oai_HAL_hal_02341930v1 proquest_miscellaneous_2013103511 proquest_journals_2039811838 pubmed_primary_29526744 crossref_citationtrail_10_1016_j_neuroimage_2018_03_016 crossref_primary_10_1016_j_neuroimage_2018_03_016 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_03_016 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_03_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-15 |
| PublicationDateYYYYMMDD | 2018-07-15 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Kambhatla, Leen (bib27) 1997; 9 Tadel, Baillet, Mosher, Pantazis, Leahy (bib50) 2011; 2011 Davis, Vaughan (bib12) 1993; 3 Dempster, Laird, Rubin (bib16) 1977 Delorme, Palmer, Onton, Oostenveld, Makeig (bib14) 2012; 7 Lagerlund, Sharbrough, Busacker (bib31) 1997; 14 McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib35) 1997 Himberg, Hyvärinen, Esposito (bib21) 2004; 22 Winkler, Haufe, Tangermann (bib54) 2011; 7 Oostenveld, Oostendorp (bib43) 2002; 17 Jung, Makeig, Humphries, Lee, Mckeown, Iragui, Sejnowski (bib26) 2000; 37 Hamer, Simpson (bib20) 2009 Jun; 166 Reid, Graham, Costigan (bib44) 2010; 31 Chester, Wrigley (bib11) 2008; 23 Muniz, Nadal (bib37) 2009; 29 Scherg, Von Cramon (bib45) 1986; 65 Ivanenko, Poppele, Lacquaniti (bib23) 2004; 556 Bell, Sejnowski (bib7) 1995; 7 Oostenveld, Fries, Maris, Schoffelen (bib42) 2011; 2011 Onton, Westerfield, Townsend, Makeig (bib41) 2006; 30 Staudenmann, Kingma, Daffertshofer, Stegeman, van Dieën (bib49) 2006; 53 Silverman (bib47) 1986 Ghandeharion, Erfanian (bib18) 2010; 32 Vigário, Särelä, Oja (bib51) 1998 Bromm, Scharein (bib9) 1982; 53 Onton, Makeig (bib40) 2009; 3 Artoni, Delorme, Makeig (bib2) 2018 Bowman, Azzalini (bib8) 1997 Iversen, Makeig (bib24) 2014 Artoni, Fanciullacci, Bertolucci, Panarese, Makeig, Micera, Chisari (bib3) 2017; 159 Kobayashi, Kuriki (bib29) 1999; 46 Makeig, Bell, Jung, Sejnowski (bib32) 1996 Kayser, Tenke (bib28) 2006; 117 Artoni, Menicucci, Delorme, Makeig, Micera (bib5) 2014; 103 Kothe, Makeig (bib30) 2013; 10 Onton, Delorme, Makeig (bib39) 2005; 27 Artoni, Gemignani, Sebastiani, Bedini, Landi, Menicucci (bib4) 2012 Whitmer, Worrell, Stead, Lee, Makeig (bib52) 2010; 4 Winkler, Debener, Müller, Tangermann (bib53) 2015 Groppe, Makeig, Kutas (bib19) 2009; 45 Casarotto, Bianchi, Cerutti, Chiarenza (bib10) 2004; 115 Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne, Sejnowski (bib34) 2002; 295 Dien, Khoe, Mangun (bib17) 2007; 28 Möcks, Verleger (bib36) 1986; 65 Hyvärinen, Oja (bib22) 2000; 13 Shiavi, Griffin (bib46) 1981; 19 Jung, Humphries, Lee, Makeig, McKeown, Iragui, Sejnowski (bib25) 1998 Makeig, Debener, Onton, Delorme (bib33) 2004; 8 Nunez (bib38) 1981 Delorme, Makeig (bib13) 2004; 134 Delorme, Sejnowski, Makeig (bib15) 2007; 34 Artoni, Monaco, Micera (bib6) 2013 Acar, Acar, Makeig (bib1) 2016; 124 Sinharay, Stern, Russell (bib48) 2001; 6 Sinharay (10.1016/j.neuroimage.2018.03.016_bib48) 2001; 6 Silverman (10.1016/j.neuroimage.2018.03.016_bib47) 1986 Vigário (10.1016/j.neuroimage.2018.03.016_bib51) 1998 McKeown (10.1016/j.neuroimage.2018.03.016_bib35) 1997 Chester (10.1016/j.neuroimage.2018.03.016_bib11) 2008; 23 Hamer (10.1016/j.neuroimage.2018.03.016_bib20) 2009; 166 Artoni (10.1016/j.neuroimage.2018.03.016_bib6) 2013 Delorme (10.1016/j.neuroimage.2018.03.016_bib13) 2004; 134 Muniz (10.1016/j.neuroimage.2018.03.016_bib37) 2009; 29 Acar (10.1016/j.neuroimage.2018.03.016_bib1) 2016; 124 Hyvärinen (10.1016/j.neuroimage.2018.03.016_bib22) 2000; 13 Winkler (10.1016/j.neuroimage.2018.03.016_bib54) 2011; 7 Ghandeharion (10.1016/j.neuroimage.2018.03.016_bib18) 2010; 32 Bromm (10.1016/j.neuroimage.2018.03.016_bib9) 1982; 53 Makeig (10.1016/j.neuroimage.2018.03.016_bib34) 2002; 295 Delorme (10.1016/j.neuroimage.2018.03.016_bib14) 2012; 7 Kobayashi (10.1016/j.neuroimage.2018.03.016_bib29) 1999; 46 Ivanenko (10.1016/j.neuroimage.2018.03.016_bib23) 2004; 556 Dempster (10.1016/j.neuroimage.2018.03.016_bib16) 1977 Artoni (10.1016/j.neuroimage.2018.03.016_bib2) 2018 Davis (10.1016/j.neuroimage.2018.03.016_bib12) 1993; 3 Bowman (10.1016/j.neuroimage.2018.03.016_bib8) 1997 Dien (10.1016/j.neuroimage.2018.03.016_bib17) 2007; 28 Möcks (10.1016/j.neuroimage.2018.03.016_bib36) 1986; 65 Makeig (10.1016/j.neuroimage.2018.03.016_bib32) 1996 Kambhatla (10.1016/j.neuroimage.2018.03.016_bib27) 1997; 9 Makeig (10.1016/j.neuroimage.2018.03.016_bib33) 2004; 8 Whitmer (10.1016/j.neuroimage.2018.03.016_bib52) 2010; 4 Oostenveld (10.1016/j.neuroimage.2018.03.016_bib42) 2011; 2011 Shiavi (10.1016/j.neuroimage.2018.03.016_bib46) 1981; 19 Himberg (10.1016/j.neuroimage.2018.03.016_bib21) 2004; 22 Oostenveld (10.1016/j.neuroimage.2018.03.016_bib43) 2002; 17 Reid (10.1016/j.neuroimage.2018.03.016_bib44) 2010; 31 Groppe (10.1016/j.neuroimage.2018.03.016_bib19) 2009; 45 Jung (10.1016/j.neuroimage.2018.03.016_bib26) 2000; 37 Kothe (10.1016/j.neuroimage.2018.03.016_bib30) 2013; 10 Nunez (10.1016/j.neuroimage.2018.03.016_bib38) 1981 Onton (10.1016/j.neuroimage.2018.03.016_bib41) 2006; 30 Onton (10.1016/j.neuroimage.2018.03.016_bib40) 2009; 3 Artoni (10.1016/j.neuroimage.2018.03.016_bib4) 2012 Kayser (10.1016/j.neuroimage.2018.03.016_bib28) 2006; 117 Winkler (10.1016/j.neuroimage.2018.03.016_bib53) 2015 Tadel (10.1016/j.neuroimage.2018.03.016_bib50) 2011; 2011 Artoni (10.1016/j.neuroimage.2018.03.016_bib3) 2017; 159 Artoni (10.1016/j.neuroimage.2018.03.016_bib5) 2014; 103 Onton (10.1016/j.neuroimage.2018.03.016_bib39) 2005; 27 Jung (10.1016/j.neuroimage.2018.03.016_bib25) 1998 Scherg (10.1016/j.neuroimage.2018.03.016_bib45) 1986; 65 Casarotto (10.1016/j.neuroimage.2018.03.016_bib10) 2004; 115 Delorme (10.1016/j.neuroimage.2018.03.016_bib15) 2007; 34 Lagerlund (10.1016/j.neuroimage.2018.03.016_bib31) 1997; 14 Iversen (10.1016/j.neuroimage.2018.03.016_bib24) 2014 Bell (10.1016/j.neuroimage.2018.03.016_bib7) 1995; 7 Staudenmann (10.1016/j.neuroimage.2018.03.016_bib49) 2006; 53 |
| References_xml | – volume: 124 start-page: 168 year: 2016 end-page: 180 ident: bib1 article-title: Simultaneous head tissue conductivity and EEG source location estimation publication-title: Neuroimage – year: 1997 ident: bib35 article-title: Analysis of FMRI Data by Blind Separation into Independent Spatial Components – volume: 19 start-page: 605 year: 1981 end-page: 611 ident: bib46 article-title: Representing and clustering electromyographic gait patterns with multivariate techniques publication-title: Med. Biol. Eng. Comput. – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: bib7 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – year: 1986 ident: bib47 article-title: Density Estimation for Statistics and Data Analysis – volume: 6 start-page: 317 year: 2001 ident: bib48 article-title: The use of multiple imputation for the analysis of missing data publication-title: Psychol. Meth. – start-page: 1 year: 1977 end-page: 38 ident: bib16 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 29 start-page: 31 year: 2009 end-page: 35 ident: bib37 article-title: Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait publication-title: Gait Posture – start-page: 145 year: 1996 end-page: 151 ident: bib32 article-title: Independent component analysis of electroencephalographic data publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 1214 year: 2004 end-page: 1222 ident: bib21 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: Neuroimage – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib13 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Meth. – volume: 2011 start-page: 1 year: 2011 ident: bib42 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. – volume: 65 start-page: 344 year: 1986 end-page: 360 ident: bib45 article-title: Evoked dipole source potentials of the human auditory cortex publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. – volume: 28 start-page: 742 year: 2007 end-page: 763 ident: bib17 article-title: Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations publication-title: Hum. Brain Mapp. – start-page: 199 year: 2014 end-page: 212 ident: bib24 article-title: MEG/EEG Data Analysis Using EEGLAB. Magnetoencephalography – volume: 3 year: 2009 ident: bib40 article-title: High-frequency broadband modulations of electroencephalographic spectra publication-title: Front. Hum. Neurosci. – volume: 37 start-page: 163 year: 2000 end-page: 178 ident: bib26 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology – volume: 34 start-page: 1443 year: 2007 end-page: 1449 ident: bib15 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage – start-page: 271 year: 1981 end-page: 280 ident: bib38 article-title: A study of origins of the time dependencies of scalp EEG: I-theoretical basis publication-title: IEEE Trans. Biomed. Eng. – volume: 115 start-page: 609 year: 2004 end-page: 619 ident: bib10 article-title: Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children publication-title: Clin. Neurophysiol. – volume: 27 start-page: 341 year: 2005 end-page: 356 ident: bib39 article-title: Frontal midline EEG dynamics during working memory publication-title: Neuroimage – volume: 30 start-page: 808 year: 2006 end-page: 822 ident: bib41 article-title: Imaging human EEG dynamics using independent component analysis publication-title: Neurosci. Biobehav. Rev. – start-page: 63 year: 1998 end-page: 72 ident: bib25 article-title: Removing electroencephalographic artifacts: comparison between ICA and PCA publication-title: Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib33 article-title: Mining event-related brain dynamics publication-title: Trends Cognit. Sci. – volume: 166 start-page: 639 year: 2009 Jun end-page: 641 ident: bib20 article-title: Last observation carried forward versus mixed models in the analysis of psychiatric clinical trials publication-title: Am. Psychiatr. Assoc. – volume: 23 start-page: 212 year: 2008 end-page: 220 ident: bib11 article-title: The identification of age-related differences in kinetic gait parameters using principal component analysis publication-title: Clin. Biomech. – volume: 159 start-page: 403 year: 2017 end-page: 416 ident: bib3 article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking publication-title: Neuroimage – volume: 9 start-page: 1493 year: 1997 end-page: 1516 ident: bib27 article-title: Dimension reduction by local principal component analysis publication-title: Neural Comput. – volume: 17 start-page: 179 year: 2002 end-page: 192 ident: bib43 article-title: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull publication-title: Hum. Brain Mapp. – volume: 117 start-page: 703 year: 2006 end-page: 707 ident: bib28 article-title: Consensus on PCA for ERP data, and sensibility of unrestricted solutions publication-title: Clin. Neurophysiol. – volume: 32 start-page: 720 year: 2010 end-page: 729 ident: bib18 article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis publication-title: Med. Eng. Phys. – volume: 14 start-page: 73 year: 1997 end-page: 82 ident: bib31 article-title: Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition publication-title: J. Clin. Neurophysiol. – volume: 10 start-page: 056014 year: 2013 ident: bib30 article-title: BCILAB: a platform for brain–computer interface development publication-title: J. Neural Eng. – volume: 53 start-page: 94 year: 1982 end-page: 103 ident: bib9 article-title: Principal component analysis of pain-related cerebral potentials to mechanical and electrical stimulation in man publication-title: Electroencephalogr. Clin. Neurophysiol. – year: 2018 ident: bib2 article-title: A Visual Working Memory Dataset Collection with Bootstrap Independent Component Analysis for Comparison of Electroencephalogram Preprocessing Pipelines – volume: 45 start-page: 1199 year: 2009 end-page: 1211 ident: bib19 article-title: Identifying reliable independent components via split-half comparisons publication-title: Neuroimage – start-page: 6650416 year: 2013 ident: bib6 article-title: Selecting the best number of synergies in gait: preliminary results on young and elderly people publication-title: IEEE Int Conf Rehabil Robot 2013 – volume: 65 start-page: 393 year: 1986 end-page: 398 ident: bib36 article-title: Principal component analysis of event-related potentials: a note on misallocation of variance publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. – volume: 31 start-page: 197 year: 2010 end-page: 203 ident: bib44 article-title: Differentiation of young and older adult stair climbing gait using principal component analysis publication-title: Gait Posture – start-page: 368 year: 2012 end-page: 371 ident: bib4 article-title: ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis publication-title: Conf Proc IEEE Eng Med Biol Soc 2012 – volume: 53 start-page: 712 year: 2006 end-page: 719 ident: bib49 article-title: Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis publication-title: IEEE Trans. Biomed. Eng. – volume: 556 start-page: 267 year: 2004 end-page: 282 ident: bib23 article-title: Five basic muscle activation patterns account for muscle activity during human locomotion publication-title: J. Physiol. – start-page: 287 year: 1998 end-page: 292 ident: bib51 article-title: Independent Component Analysis in Wave Decomposition of Auditory Evoked fields. ICANN 98 – year: 1997 ident: bib8 article-title: Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-plus Illustrations – volume: 2011 start-page: 8 year: 2011 ident: bib50 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. – volume: 295 start-page: 690 year: 2002 end-page: 694 ident: bib34 article-title: Dynamic brain sources of visual evoked responses publication-title: Science – volume: 7 start-page: 30 year: 2011 ident: bib54 article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals publication-title: Behav. Brain Funct. – start-page: 4101 year: 2015 end-page: 4105 ident: bib53 article-title: On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP publication-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE – volume: 103 start-page: 391 year: 2014 end-page: 400 ident: bib5 article-title: RELICA: a method for estimating the reliability of independent components publication-title: Neuroimage – volume: 3 start-page: 51 year: 1993 end-page: 60 ident: bib12 article-title: Phasic behavior of EMG signals during gait: use of multivariate statistics publication-title: J. Electromyogr. Kinesiol. – volume: 7 year: 2012 ident: bib14 article-title: Independent EEG sources are dipolar publication-title: PLoS One – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib22 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. – volume: 4 year: 2010 ident: bib52 article-title: Utility of independent component analysis for interpretation of intracranial EEG publication-title: Front. Hum. Neurosci. – volume: 46 start-page: 951 year: 1999 end-page: 958 ident: bib29 article-title: Principal component elimination method for the improvement of S/N in evoked neuromagnetic field measurements publication-title: IEEE Trans. Biomed. Eng. – volume: 7 start-page: 1129 year: 1995 ident: 10.1016/j.neuroimage.2018.03.016_bib7 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2018.03.016_bib14 article-title: Independent EEG sources are dipolar publication-title: PLoS One doi: 10.1371/journal.pone.0030135 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2018.03.016_bib42 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – volume: 9 start-page: 1493 year: 1997 ident: 10.1016/j.neuroimage.2018.03.016_bib27 article-title: Dimension reduction by local principal component analysis publication-title: Neural Comput. doi: 10.1162/neco.1997.9.7.1493 – volume: 17 start-page: 179 year: 2002 ident: 10.1016/j.neuroimage.2018.03.016_bib43 article-title: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10061 – volume: 8 start-page: 204 year: 2004 ident: 10.1016/j.neuroimage.2018.03.016_bib33 article-title: Mining event-related brain dynamics publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2004.03.008 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.neuroimage.2018.03.016_bib13 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2003.10.009 – start-page: 287 year: 1998 ident: 10.1016/j.neuroimage.2018.03.016_bib51 – volume: 2011 start-page: 8 year: 2011 ident: 10.1016/j.neuroimage.2018.03.016_bib50 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/879716 – volume: 103 start-page: 391 year: 2014 ident: 10.1016/j.neuroimage.2018.03.016_bib5 article-title: RELICA: a method for estimating the reliability of independent components publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.010 – year: 1997 ident: 10.1016/j.neuroimage.2018.03.016_bib8 – start-page: 4101 year: 2015 ident: 10.1016/j.neuroimage.2018.03.016_bib53 article-title: On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP – start-page: 1 year: 1977 ident: 10.1016/j.neuroimage.2018.03.016_bib16 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Methodol. – start-page: 271 year: 1981 ident: 10.1016/j.neuroimage.2018.03.016_bib38 article-title: A study of origins of the time dependencies of scalp EEG: I-theoretical basis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1981.324700 – volume: 37 start-page: 163 year: 2000 ident: 10.1016/j.neuroimage.2018.03.016_bib26 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – volume: 14 start-page: 73 year: 1997 ident: 10.1016/j.neuroimage.2018.03.016_bib31 article-title: Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199701000-00007 – volume: 166 start-page: 639 issue: 6 year: 2009 ident: 10.1016/j.neuroimage.2018.03.016_bib20 article-title: Last observation carried forward versus mixed models in the analysis of psychiatric clinical trials publication-title: Am. Psychiatr. Assoc. doi: 10.1176/appi.ajp.2009.09040458 – volume: 31 start-page: 197 year: 2010 ident: 10.1016/j.neuroimage.2018.03.016_bib44 article-title: Differentiation of young and older adult stair climbing gait using principal component analysis publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.10.005 – volume: 30 start-page: 808 year: 2006 ident: 10.1016/j.neuroimage.2018.03.016_bib41 article-title: Imaging human EEG dynamics using independent component analysis publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2006.06.007 – volume: 29 start-page: 31 year: 2009 ident: 10.1016/j.neuroimage.2018.03.016_bib37 article-title: Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.05.015 – year: 1986 ident: 10.1016/j.neuroimage.2018.03.016_bib47 – volume: 115 start-page: 609 year: 2004 ident: 10.1016/j.neuroimage.2018.03.016_bib10 article-title: Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.10.018 – start-page: 6650416 year: 2013 ident: 10.1016/j.neuroimage.2018.03.016_bib6 article-title: Selecting the best number of synergies in gait: preliminary results on young and elderly people – volume: 13 start-page: 411 year: 2000 ident: 10.1016/j.neuroimage.2018.03.016_bib22 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 27 start-page: 341 year: 2005 ident: 10.1016/j.neuroimage.2018.03.016_bib39 article-title: Frontal midline EEG dynamics during working memory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.04.014 – volume: 46 start-page: 951 year: 1999 ident: 10.1016/j.neuroimage.2018.03.016_bib29 article-title: Principal component elimination method for the improvement of S/N in evoked neuromagnetic field measurements publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.775405 – volume: 159 start-page: 403 year: 2017 ident: 10.1016/j.neuroimage.2018.03.016_bib3 article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.013 – volume: 4 year: 2010 ident: 10.1016/j.neuroimage.2018.03.016_bib52 article-title: Utility of independent component analysis for interpretation of intracranial EEG publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00184 – volume: 7 start-page: 30 year: 2011 ident: 10.1016/j.neuroimage.2018.03.016_bib54 article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals publication-title: Behav. Brain Funct. doi: 10.1186/1744-9081-7-30 – volume: 124 start-page: 168 year: 2016 ident: 10.1016/j.neuroimage.2018.03.016_bib1 article-title: Simultaneous head tissue conductivity and EEG source location estimation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.032 – volume: 28 start-page: 742 year: 2007 ident: 10.1016/j.neuroimage.2018.03.016_bib17 article-title: Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20304 – volume: 53 start-page: 94 year: 1982 ident: 10.1016/j.neuroimage.2018.03.016_bib9 article-title: Principal component analysis of pain-related cerebral potentials to mechanical and electrical stimulation in man publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(82)90109-2 – volume: 45 start-page: 1199 year: 2009 ident: 10.1016/j.neuroimage.2018.03.016_bib19 article-title: Identifying reliable independent components via split-half comparisons publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.038 – start-page: 199 year: 2014 ident: 10.1016/j.neuroimage.2018.03.016_bib24 – year: 2018 ident: 10.1016/j.neuroimage.2018.03.016_bib2 – volume: 6 start-page: 317 year: 2001 ident: 10.1016/j.neuroimage.2018.03.016_bib48 article-title: The use of multiple imputation for the analysis of missing data publication-title: Psychol. Meth. doi: 10.1037/1082-989X.6.4.317 – volume: 295 start-page: 690 year: 2002 ident: 10.1016/j.neuroimage.2018.03.016_bib34 article-title: Dynamic brain sources of visual evoked responses publication-title: Science doi: 10.1126/science.1066168 – volume: 10 start-page: 056014 year: 2013 ident: 10.1016/j.neuroimage.2018.03.016_bib30 article-title: BCILAB: a platform for brain–computer interface development publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056014 – volume: 19 start-page: 605 year: 1981 ident: 10.1016/j.neuroimage.2018.03.016_bib46 article-title: Representing and clustering electromyographic gait patterns with multivariate techniques publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02442775 – start-page: 368 year: 2012 ident: 10.1016/j.neuroimage.2018.03.016_bib4 article-title: ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis – volume: 65 start-page: 393 year: 1986 ident: 10.1016/j.neuroimage.2018.03.016_bib36 article-title: Principal component analysis of event-related potentials: a note on misallocation of variance publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. doi: 10.1016/0168-5597(86)90018-3 – volume: 34 start-page: 1443 year: 2007 ident: 10.1016/j.neuroimage.2018.03.016_bib15 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – volume: 3 start-page: 51 year: 1993 ident: 10.1016/j.neuroimage.2018.03.016_bib12 article-title: Phasic behavior of EMG signals during gait: use of multivariate statistics publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/1050-6411(93)90023-P – volume: 22 start-page: 1214 year: 2004 ident: 10.1016/j.neuroimage.2018.03.016_bib21 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.027 – year: 1997 ident: 10.1016/j.neuroimage.2018.03.016_bib35 – volume: 23 start-page: 212 year: 2008 ident: 10.1016/j.neuroimage.2018.03.016_bib11 article-title: The identification of age-related differences in kinetic gait parameters using principal component analysis publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.09.007 – volume: 53 start-page: 712 year: 2006 ident: 10.1016/j.neuroimage.2018.03.016_bib49 article-title: Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.870246 – volume: 3 year: 2009 ident: 10.1016/j.neuroimage.2018.03.016_bib40 article-title: High-frequency broadband modulations of electroencephalographic spectra publication-title: Front. Hum. Neurosci. doi: 10.3389/neuro.09.061.2009 – volume: 65 start-page: 344 year: 1986 ident: 10.1016/j.neuroimage.2018.03.016_bib45 article-title: Evoked dipole source potentials of the human auditory cortex publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. doi: 10.1016/0168-5597(86)90014-6 – volume: 556 start-page: 267 year: 2004 ident: 10.1016/j.neuroimage.2018.03.016_bib23 article-title: Five basic muscle activation patterns account for muscle activity during human locomotion publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.057174 – start-page: 63 year: 1998 ident: 10.1016/j.neuroimage.2018.03.016_bib25 article-title: Removing electroencephalographic artifacts: comparison between ICA and PCA – volume: 117 start-page: 703 year: 2006 ident: 10.1016/j.neuroimage.2018.03.016_bib28 article-title: Consensus on PCA for ERP data, and sensibility of unrestricted solutions publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.11.015 – volume: 32 start-page: 720 year: 2010 ident: 10.1016/j.neuroimage.2018.03.016_bib18 article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.04.010 – start-page: 145 year: 1996 ident: 10.1016/j.neuroimage.2018.03.016_bib32 article-title: Independent component analysis of electroencephalographic data publication-title: Adv. Neural Inf. Process. Syst. |
| SSID | ssj0009148 |
| Score | 2.6187527 |
| Snippet | Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and... |
| SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 176 |
| SubjectTerms | Adult Brain - physiology Brain research Brain Waves - physiology Cognitive science Data Interpretation, Statistical Data processing Decomposition Dipolarity EEG Electroencephalogram, EEG Electroencephalography Electroencephalography - methods Electroencephalography - standards Electromyography Female Humans Independent component analysis, ICA Localization Male Neuroscience Noise Pattern Recognition, Visual - physiology Principal Component Analysis Principal component analysis, PCA Principal components analysis Reliability Signal Processing, Computer-Assisted Source localization Young Adult |
| Title | Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918302143 https://dx.doi.org/10.1016/j.neuroimage.2018.03.016 https://www.ncbi.nlm.nih.gov/pubmed/29526744 https://www.proquest.com/docview/2039811838 https://www.proquest.com/docview/2013103511 https://hal.science/hal-02341930 https://pubmed.ncbi.nlm.nih.gov/PMC6650744 |
| Volume | 175 |
| WOSCitedRecordID | wos000432949000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbohtBe-M0IjMogXiPFcRzH4gEN1DGktaoQSH2zUtvRiiAZTTZp_wZ_MXeJk66AUCVeKrXuJU59PX8-f_6OkNc5i4siSk3oIpuGScJdmEuhsGpqnsUmzqxtdWbP5GyWLRZq7hNutadV9jGxDdS2Mpgjh0U6VxmgYZ69vfgRYtUo3F31JTRGZB9VEnhL3ZtvRHdZ0h2FEzwEW-WZPB2_q9WLXH2Hfy0SvLJW6hSrnv99ehqdI0_yTxD6O5fyxuR0cu9_H-s-uethKT3u_OgBueXKh-TO1G-8PyI_Ea3iiShqsRwAptjoGlVfcVxpU9HJ5ANFtildXtN5l8CH62G0qUroM-3FTzorV1MAnrQ70XlNq4KumprWEMRaZndDPw7VeZsbF7EOGfCeZvaYfDmZfH5_GvpyDqERKmtQGNMulTA8cSyRkYkKqyQv4iLNlhBmbCbblApgHsZcwQoILY6nkbFO5iJPIv6E7JVwu6eE5ghkYxsrXN_a2CqRq8gIYZxkS6aWAZH9KGrjtc6x5MY33ZPavurN-Gscfx1xDQ0BYYPlRaf3sYON6h1F9-dZIQJrmJR2sH0z2HrM02GZHa1fgV8OHUWp8NPjM42fARZLAJxHVywgR73raR-gar3xu4C8HJohtOB-UV666hK_w7AKHUDygBx2Xj7cKlYiTmWSwC-95f9bfdluKVfnrXx5CosCsHz27249Jwf4oJhGZ-KI7DXrS_eC3DZXzapej8lILmT7mo3J_rvJbP4J3k3j6biNAL8Adixj6w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQEXnqUEChgEx0ix87QQQhVs2VV3Vz0UqTeTtR11Ed2UTVq0f4Mfwm9kJq_tAkJ76YFrnHEcZzyeib_5BuBVykWWeZF2rWciNwh866ZxKKlqapoILRJjKp7ZYTweJ8fH8nADfra5MASrbG1iZahNrukfOQbpvkzQG_aTd2ffXKoaRaerbQmNWi0O7OI7hmzF28EH_L6vhdjvHb3vu01VAVeHMimJn9FMZKj9wPIg9rSXGRn7mciiZILabpK4iuxx6-XcZjxDDbd-5Glj4zRMA8_HfjfhWoB3UKmIkRgtSX55UKfehb6LY5UNcqjGk1X8lNNTtBIEKEsqalWqsv737XDzhHCZfzq9v2M3L22G-3f-t2m8C7cbt5vt1evkHmzY2X24MWqABQ_gB3njlPHFDJU7oF-IbE6stqS3rMxZr_eREZqWTRbssD6gwP7ImuYznCPWkrvUUrZg6FizOmN1wfKMTcuCFWikK-R6yQZd9eHyUifGEsK_gdFtw6crmZGHsDXDxz0ClpKjLoyQFL8bYWSYSk-HobYxn3A5cSButUbphsudSop8VS1o74ta6psifVOer7DBAd5JntV8JmvIyFYxVZuvizuMwk13Ddk3nWzj09W-2prSL3EddAMlKvT-3lDRNfQ1Aww-vAvuwG6r6qoxwIVa6rkDL7pmNJ10HpbObH5O93CqsochhwM79arqHiVkKKI4CHCmV9bbylhWW2bTk4qePcKgByUf_3tYz-Fm_2g0VMPB-OAJ3KKXpiMDHu7CVjk_t0_hur4op8X8WWVjGHy-6tX4C1TJuhQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61BVVceD8WChgEx1XX3qeFEKpoQqOGKAeQejMb26sGtdmS3Rblb_Bz-HXM7CsNIJRLD1zjjNdxZsYz62--AXiVcpFlXqRd65nIDQLfumkcSuqamiZCi8SYimd2GI9GydGRHG_Az7YWhmCVrU-sHLXJNb0jxyTdlwlGw36ymzWwiPF-_93ZN5c6SNFNa9tOo1aRQ7v4julb8Xawj__1ayH6vU_vD9ymw4CrQ5mUxNVoJjLUfmB5EHvay4yM_UxkUTJBzTdJXGX5eAxzbjOeobZbP_K0sXEapoHn47ybcC0m0vIKNjheEv7yoC7DC30X1y0bFFGNLau4Kqen6DEIXJZUNKvUcf3vR-PmMWE0_wyAf8dxXjoY-7f-5y29DTebcJzt1fZzBzbs7C5sf2wAB_fgB0XpVAnGDLVBoFeLbE5st6TPrMxZr_eBEcqWTRZsXF9c4HzkZfMZ7hdrSV9qKVswDLhZXcm6YHnGpmXBCnTeFaK9ZIOuK3F5aRJjCfnfwOvuw-cr2ZEHsDXDxz0CllIAL4yQlNcbYWSYSk-HobYxn3A5cSBuNUjphuOdWo2cqBbM91UtdU-R7inPVzjgAO8kz2qekzVkZKukqq3jxZNH4WG8huybTraJ9eoYbk3pl2gT3UKJIv1gb6joM4xBA0xKvAvuwE6r9qpxzIVa6rwDL7phdKl0T5bObH5O3-HUfQ9TEQce1hbWPUrIUERxEOBOr9jeylpWR2bT44q2PcJkCCUf_3tZz2EbjVANB6PDJ3CDfjPdJPBwB7bK-bl9Ctf1RTkt5s8qd8Pgy1Ub4y_YysLl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+dimension+reduction+to+EEG+data+by+Principal+Component+Analysis+reduces+the+quality+of+its+subsequent+Independent+Component+decomposition&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Artoni%2C+Fiorenzo&rft.au=Delorme%2C+Arnaud&rft.au=Makeig%2C+Scott&rft.date=2018-07-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=175&rft.spage=176&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.03.016&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |