Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition

Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 175; s. 176 - 187
Hlavní autoři: Artoni, Fiorenzo, Delorme, Arnaud, Makeig, Scott
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 15.07.2018
Elsevier Limited
Elsevier
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered ‘dipolar’ ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided. •It is currently a common practice to apply dimension reduction to EEG data using PCA before performing ICA decomposition.•We tested the quality of Independent Components (ICs) after different levels of rank reduction to a principal subspace.•PCA rank reduction adversely affected dipolarity and stability of ICs accounting for brain and known non-brain processes.•PCA rank reduction also increased inter-subject variance in IC source locations (by equivalent dipole fitting) and spectra.•For EEG data at least, PCA rank reduction should be avoided or carefully tested before applying it as a preprocessing step.
AbstractList Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered ‘dipolar’ ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided. •It is currently a common practice to apply dimension reduction to EEG data using PCA before performing ICA decomposition.•We tested the quality of Independent Components (ICs) after different levels of rank reduction to a principal subspace.•PCA rank reduction adversely affected dipolarity and stability of ICs accounting for brain and known non-brain processes.•PCA rank reduction also increased inter-subject variance in IC source locations (by equivalent dipole fitting) and spectra.•For EEG data at least, PCA rank reduction should be avoided or carefully tested before applying it as a preprocessing step.
Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered ‘dipolar’ ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.
Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered 'dipolar' ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered 'dipolar' ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.
Author Artoni, Fiorenzo
Makeig, Scott
Delorme, Arnaud
AuthorAffiliation 2 Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL – Campus Biotech, Geneve, Switzerland
3 Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla CA 92093-0559
1 The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
4 Univ. Grenoble Alpes, CNRS, LNPC UMR 5105, Grenoble, France
AuthorAffiliation_xml – name: 3 Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla CA 92093-0559
– name: 4 Univ. Grenoble Alpes, CNRS, LNPC UMR 5105, Grenoble, France
– name: 1 The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
– name: 2 Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL – Campus Biotech, Geneve, Switzerland
Author_xml – sequence: 1
  givenname: Fiorenzo
  surname: Artoni
  fullname: Artoni, Fiorenzo
  email: fiorenzo.artoni@epfl.ch
  organization: The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
– sequence: 2
  givenname: Arnaud
  surname: Delorme
  fullname: Delorme, Arnaud
  organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093-0559, USA
– sequence: 3
  givenname: Scott
  surname: Makeig
  fullname: Makeig, Scott
  organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093-0559, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29526744$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02341930$$DView record in HAL
BookMark eNqNkk2P0zAQhiO0iP2Av4AscYFDix3nw74gStX9kCrBAc6Wa09al9TO2k6l_A1-MY66u4WeeklGnneeGb_j6-zCOgtZhgieEkyqz9uphd47s5NrmOaYsCmm05R4lV0RzMsJL-v8YoxLOmGE8MvsOoQtxpiTgr3JLnNe5lVdFFfZn1nXtYOxa6TNDmwwziIPuldxjKJDi8Ud0jJKtBrQD2-sMp1s0dztujSSjWhmZTsEEw5VEFDcAHrsZWvigFyDTAwo9KsAj_0of7AaOkifFB8hGtQYBzN2fZu9bmQb4N3T_yb7dbv4Ob-fLL_fPcxny4kqOYuTmhO94qWiBZCixgo3mte0yZuKrSgmmtV1RXiBa0IINKQpGANaYaWhlqUsML3Jvhy4Xb_agVZpEC9b0flkqx-Ek0b8n7FmI9ZuL6qqxMm8BPh0AGxOyu5nSzGe4ZwWhFO8J0n78amZd8mJEMXOBAVtKy24Poi0REowLcko_XAi3breJ5tHFeVpn4yypHr_7_Qv_Z9Xe7ye8i4ED41QJsrR4HQZ0wqCxfiWxFYc39I4BhOYipRIAHYCeO5xRum3Qymk_e0NeBGUAatAGw8qCu3MOZCvJxDVGmuUbH_DcB7iL-m4Atw
CitedBy_id crossref_primary_10_1002_cpe_6535
crossref_primary_10_1016_j_neuroimage_2019_116117
crossref_primary_10_1016_j_dib_2020_105841
crossref_primary_10_1051_e3sconf_202458703019
crossref_primary_10_1016_j_dcn_2022_101068
crossref_primary_10_1016_j_gfs_2023_100725
crossref_primary_10_1049_ell2_12346
crossref_primary_10_1016_j_jisa_2022_103196
crossref_primary_10_3390_bioengineering11101018
crossref_primary_10_1016_j_bspc_2024_107394
crossref_primary_10_1007_s11042_024_20205_y
crossref_primary_10_1145_3764578
crossref_primary_10_1088_2057_1976_ab6e20
crossref_primary_10_1016_j_jhydrol_2019_124372
crossref_primary_10_1038_s42003_024_07297_w
crossref_primary_10_1155_er_5846114
crossref_primary_10_1016_j_neuroimage_2020_117614
crossref_primary_10_1016_j_dcn_2022_101072
crossref_primary_10_1155_2020_8841354
crossref_primary_10_1088_1741_2552_ac28d2
crossref_primary_10_1038_s41598_022_05902_8
crossref_primary_10_1155_2019_2013109
crossref_primary_10_1038_s41598_023_45512_6
crossref_primary_10_1016_j_neuroimage_2019_03_003
crossref_primary_10_3390_rs15071865
crossref_primary_10_3389_fnins_2022_1051585
crossref_primary_10_1080_10494820_2021_1984255
crossref_primary_10_1007_s10548_023_00947_y
crossref_primary_10_1111_psyp_14223
crossref_primary_10_3390_math9111243
crossref_primary_10_1109_JBHI_2025_3545856
crossref_primary_10_1016_j_adhoc_2020_102178
crossref_primary_10_1038_s41598_020_60301_1
crossref_primary_10_1038_s41598_019_55591_z
crossref_primary_10_3390_electronics9071178
crossref_primary_10_1007_s10548_024_01098_4
crossref_primary_10_1109_LSP_2025_3540370
crossref_primary_10_3390_s23094239
crossref_primary_10_1016_j_neurobiolaging_2018_05_022
crossref_primary_10_3103_S8756699024700080
crossref_primary_10_1111_ejn_14972
crossref_primary_10_1111_jcmm_18046
crossref_primary_10_1109_TBME_2019_2921766
crossref_primary_10_1155_2019_9108108
crossref_primary_10_1371_journal_pone_0231698
crossref_primary_10_1016_j_neuroimage_2022_119806
crossref_primary_10_1029_2022GL100667
crossref_primary_10_1038_s41598_022_05397_3
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_1038_s42256_021_00398_9
crossref_primary_10_1007_s12145_021_00698_z
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_3389_fnhum_2021_669422
crossref_primary_10_1016_j_crmeth_2023_100482
crossref_primary_10_1002_jbio_202500044
crossref_primary_10_1093_cercor_bhaf083
crossref_primary_10_1016_j_autcon_2018_12_018
crossref_primary_10_1109_TNSRE_2020_2981991
crossref_primary_10_1016_j_bspc_2022_104115
crossref_primary_10_1088_1741_2552_ad1f7b
crossref_primary_10_1016_j_bspc_2024_107345
crossref_primary_10_1080_08839514_2025_2450568
crossref_primary_10_3390_math13121945
crossref_primary_10_1007_s11063_021_10432_x
crossref_primary_10_21926_obm_neurobiol_2403229
crossref_primary_10_1080_09500340_2023_2273552
crossref_primary_10_1038_s41598_020_79457_x
crossref_primary_10_1016_j_cam_2024_115927
crossref_primary_10_1016_j_neuroimage_2022_119156
crossref_primary_10_1038_s41551_019_0446_8
crossref_primary_10_1016_j_ijpsycho_2020_06_004
crossref_primary_10_1155_2023_1091276
crossref_primary_10_1109_TSP_2022_3214684
crossref_primary_10_3390_genes12050683
crossref_primary_10_1016_j_bspc_2020_102336
crossref_primary_10_3390_math10173053
crossref_primary_10_1016_j_neuroimage_2020_117655
crossref_primary_10_1016_j_matpr_2020_12_477
crossref_primary_10_3390_app13148274
crossref_primary_10_1007_s00521_019_04544_8
crossref_primary_10_1109_ACCESS_2019_2915519
crossref_primary_10_1002_hbm_70267
crossref_primary_10_1007_s11517_024_03110_2
crossref_primary_10_1038_s41598_025_03018_3
crossref_primary_10_1109_ACCESS_2018_2882070
crossref_primary_10_1016_j_clinph_2022_11_010
crossref_primary_10_1214_19_STS763
crossref_primary_10_3390_molecules27175656
crossref_primary_10_1371_journal_pone_0298524
crossref_primary_10_1007_s00500_023_09124_6
crossref_primary_10_1016_j_neuroimage_2022_119348
crossref_primary_10_3389_fpubh_2022_1015876
crossref_primary_10_3390_s24030877
crossref_primary_10_1016_j_dsp_2023_104225
crossref_primary_10_1016_j_neuroimage_2023_119905
crossref_primary_10_1007_s10668_024_05821_w
crossref_primary_10_1016_j_jneumeth_2021_109144
crossref_primary_10_3390_diagnostics13213389
crossref_primary_10_1016_j_dib_2018_12_022
crossref_primary_10_1016_j_scitotenv_2022_156310
crossref_primary_10_1038_s41598_023_27480_z
crossref_primary_10_1109_TNSRE_2020_3000971
crossref_primary_10_1016_j_ifacol_2021_10_283
crossref_primary_10_1088_1741_2552_abef3a
crossref_primary_10_1186_s12874_021_01265_2
crossref_primary_10_3389_fpls_2023_1255033
crossref_primary_10_21122_2309_4923_2022_2_4_9
crossref_primary_10_1016_j_neuroimage_2020_116934
crossref_primary_10_1016_j_ifacol_2021_10_287
crossref_primary_10_3390_app15094905
crossref_primary_10_1016_j_csda_2018_08_027
crossref_primary_10_1016_j_patrec_2019_10_029
crossref_primary_10_3390_brainsci11020214
crossref_primary_10_1002_spe_3119
crossref_primary_10_3389_fnbot_2021_618408
crossref_primary_10_1007_s11042_025_21014_7
Cites_doi 10.1162/neco.1995.7.6.1129
10.1371/journal.pone.0030135
10.1155/2011/156869
10.1162/neco.1997.9.7.1493
10.1002/hbm.10061
10.1016/j.tics.2004.03.008
10.1016/j.jneumeth.2003.10.009
10.1155/2011/879716
10.1016/j.neuroimage.2014.09.010
10.1109/TBME.1981.324700
10.1111/1469-8986.3720163
10.1097/00004691-199701000-00007
10.1176/appi.ajp.2009.09040458
10.1016/j.gaitpost.2009.10.005
10.1016/j.neubiorev.2006.06.007
10.1016/j.gaitpost.2008.05.015
10.1016/j.clinph.2003.10.018
10.1016/S0893-6080(00)00026-5
10.1016/j.neuroimage.2005.04.014
10.1109/10.775405
10.1016/j.neuroimage.2017.07.013
10.3389/fnhum.2010.00184
10.1186/1744-9081-7-30
10.1016/j.neuroimage.2015.08.032
10.1002/hbm.20304
10.1016/0013-4694(82)90109-2
10.1016/j.neuroimage.2008.12.038
10.1037/1082-989X.6.4.317
10.1126/science.1066168
10.1088/1741-2560/10/5/056014
10.1007/BF02442775
10.1016/0168-5597(86)90018-3
10.1016/j.neuroimage.2006.11.004
10.1016/1050-6411(93)90023-P
10.1016/j.neuroimage.2004.03.027
10.1016/j.clinbiomech.2007.09.007
10.1109/TBME.2006.870246
10.3389/neuro.09.061.2009
10.1016/0168-5597(86)90014-6
10.1113/jphysiol.2003.057174
10.1016/j.clinph.2005.11.015
10.1016/j.medengphy.2010.04.010
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Inc.
Copyright Elsevier Limited Jul 15, 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Jul 15, 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
5PM
DOI 10.1016/j.neuroimage.2018.03.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
ProQuest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 187
ExternalDocumentID PMC6650744
oai:HAL:hal-02341930v1
29526744
10_1016_j_neuroimage_2018_03_016
S1053811918302143
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB023297
– fundername: NINDS NIH HHS
  grantid: R01 NS047293
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFFHD
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c598t-791db95c34e1470c0fd973f2f68b301d877619407111ef1f488e360cde7a5a403
IEDL.DBID M7P
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432949000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Nov 04 01:50:36 EST 2025
Tue Oct 14 20:55:24 EDT 2025
Sun Nov 09 11:37:08 EST 2025
Tue Oct 07 07:07:34 EDT 2025
Thu Apr 03 07:02:23 EDT 2025
Sat Nov 29 06:55:40 EST 2025
Tue Nov 18 22:11:54 EST 2025
Fri Feb 23 02:48:17 EST 2024
Tue Oct 14 19:31:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Independent component analysis, ICA
Principal component analysis, PCA
Reliability
Source localization
Electroencephalogram, EEG
Dipolarity
Language English
License Copyright © 2018. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-791db95c34e1470c0fd973f2f68b301d877619407111ef1f488e360cde7a5a403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC6650744
Equal Contributors
ORCID 0000-0002-0799-3557
OpenAccessLink https://hal.science/hal-02341930
PMID 29526744
PQID 2039811838
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6650744
hal_primary_oai_HAL_hal_02341930v1
proquest_miscellaneous_2013103511
proquest_journals_2039811838
pubmed_primary_29526744
crossref_citationtrail_10_1016_j_neuroimage_2018_03_016
crossref_primary_10_1016_j_neuroimage_2018_03_016
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_03_016
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_03_016
PublicationCentury 2000
PublicationDate 2018-07-15
PublicationDateYYYYMMDD 2018-07-15
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Kambhatla, Leen (bib27) 1997; 9
Tadel, Baillet, Mosher, Pantazis, Leahy (bib50) 2011; 2011
Davis, Vaughan (bib12) 1993; 3
Dempster, Laird, Rubin (bib16) 1977
Delorme, Palmer, Onton, Oostenveld, Makeig (bib14) 2012; 7
Lagerlund, Sharbrough, Busacker (bib31) 1997; 14
McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib35) 1997
Himberg, Hyvärinen, Esposito (bib21) 2004; 22
Winkler, Haufe, Tangermann (bib54) 2011; 7
Oostenveld, Oostendorp (bib43) 2002; 17
Jung, Makeig, Humphries, Lee, Mckeown, Iragui, Sejnowski (bib26) 2000; 37
Hamer, Simpson (bib20) 2009 Jun; 166
Reid, Graham, Costigan (bib44) 2010; 31
Chester, Wrigley (bib11) 2008; 23
Muniz, Nadal (bib37) 2009; 29
Scherg, Von Cramon (bib45) 1986; 65
Ivanenko, Poppele, Lacquaniti (bib23) 2004; 556
Bell, Sejnowski (bib7) 1995; 7
Oostenveld, Fries, Maris, Schoffelen (bib42) 2011; 2011
Onton, Westerfield, Townsend, Makeig (bib41) 2006; 30
Staudenmann, Kingma, Daffertshofer, Stegeman, van Dieën (bib49) 2006; 53
Silverman (bib47) 1986
Ghandeharion, Erfanian (bib18) 2010; 32
Vigário, Särelä, Oja (bib51) 1998
Bromm, Scharein (bib9) 1982; 53
Onton, Makeig (bib40) 2009; 3
Artoni, Delorme, Makeig (bib2) 2018
Bowman, Azzalini (bib8) 1997
Iversen, Makeig (bib24) 2014
Artoni, Fanciullacci, Bertolucci, Panarese, Makeig, Micera, Chisari (bib3) 2017; 159
Kobayashi, Kuriki (bib29) 1999; 46
Makeig, Bell, Jung, Sejnowski (bib32) 1996
Kayser, Tenke (bib28) 2006; 117
Artoni, Menicucci, Delorme, Makeig, Micera (bib5) 2014; 103
Kothe, Makeig (bib30) 2013; 10
Onton, Delorme, Makeig (bib39) 2005; 27
Artoni, Gemignani, Sebastiani, Bedini, Landi, Menicucci (bib4) 2012
Whitmer, Worrell, Stead, Lee, Makeig (bib52) 2010; 4
Winkler, Debener, Müller, Tangermann (bib53) 2015
Groppe, Makeig, Kutas (bib19) 2009; 45
Casarotto, Bianchi, Cerutti, Chiarenza (bib10) 2004; 115
Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne, Sejnowski (bib34) 2002; 295
Dien, Khoe, Mangun (bib17) 2007; 28
Möcks, Verleger (bib36) 1986; 65
Hyvärinen, Oja (bib22) 2000; 13
Shiavi, Griffin (bib46) 1981; 19
Jung, Humphries, Lee, Makeig, McKeown, Iragui, Sejnowski (bib25) 1998
Makeig, Debener, Onton, Delorme (bib33) 2004; 8
Nunez (bib38) 1981
Delorme, Makeig (bib13) 2004; 134
Delorme, Sejnowski, Makeig (bib15) 2007; 34
Artoni, Monaco, Micera (bib6) 2013
Acar, Acar, Makeig (bib1) 2016; 124
Sinharay, Stern, Russell (bib48) 2001; 6
Sinharay (10.1016/j.neuroimage.2018.03.016_bib48) 2001; 6
Silverman (10.1016/j.neuroimage.2018.03.016_bib47) 1986
Vigário (10.1016/j.neuroimage.2018.03.016_bib51) 1998
McKeown (10.1016/j.neuroimage.2018.03.016_bib35) 1997
Chester (10.1016/j.neuroimage.2018.03.016_bib11) 2008; 23
Hamer (10.1016/j.neuroimage.2018.03.016_bib20) 2009; 166
Artoni (10.1016/j.neuroimage.2018.03.016_bib6) 2013
Delorme (10.1016/j.neuroimage.2018.03.016_bib13) 2004; 134
Muniz (10.1016/j.neuroimage.2018.03.016_bib37) 2009; 29
Acar (10.1016/j.neuroimage.2018.03.016_bib1) 2016; 124
Hyvärinen (10.1016/j.neuroimage.2018.03.016_bib22) 2000; 13
Winkler (10.1016/j.neuroimage.2018.03.016_bib54) 2011; 7
Ghandeharion (10.1016/j.neuroimage.2018.03.016_bib18) 2010; 32
Bromm (10.1016/j.neuroimage.2018.03.016_bib9) 1982; 53
Makeig (10.1016/j.neuroimage.2018.03.016_bib34) 2002; 295
Delorme (10.1016/j.neuroimage.2018.03.016_bib14) 2012; 7
Kobayashi (10.1016/j.neuroimage.2018.03.016_bib29) 1999; 46
Ivanenko (10.1016/j.neuroimage.2018.03.016_bib23) 2004; 556
Dempster (10.1016/j.neuroimage.2018.03.016_bib16) 1977
Artoni (10.1016/j.neuroimage.2018.03.016_bib2) 2018
Davis (10.1016/j.neuroimage.2018.03.016_bib12) 1993; 3
Bowman (10.1016/j.neuroimage.2018.03.016_bib8) 1997
Dien (10.1016/j.neuroimage.2018.03.016_bib17) 2007; 28
Möcks (10.1016/j.neuroimage.2018.03.016_bib36) 1986; 65
Makeig (10.1016/j.neuroimage.2018.03.016_bib32) 1996
Kambhatla (10.1016/j.neuroimage.2018.03.016_bib27) 1997; 9
Makeig (10.1016/j.neuroimage.2018.03.016_bib33) 2004; 8
Whitmer (10.1016/j.neuroimage.2018.03.016_bib52) 2010; 4
Oostenveld (10.1016/j.neuroimage.2018.03.016_bib42) 2011; 2011
Shiavi (10.1016/j.neuroimage.2018.03.016_bib46) 1981; 19
Himberg (10.1016/j.neuroimage.2018.03.016_bib21) 2004; 22
Oostenveld (10.1016/j.neuroimage.2018.03.016_bib43) 2002; 17
Reid (10.1016/j.neuroimage.2018.03.016_bib44) 2010; 31
Groppe (10.1016/j.neuroimage.2018.03.016_bib19) 2009; 45
Jung (10.1016/j.neuroimage.2018.03.016_bib26) 2000; 37
Kothe (10.1016/j.neuroimage.2018.03.016_bib30) 2013; 10
Nunez (10.1016/j.neuroimage.2018.03.016_bib38) 1981
Onton (10.1016/j.neuroimage.2018.03.016_bib41) 2006; 30
Onton (10.1016/j.neuroimage.2018.03.016_bib40) 2009; 3
Artoni (10.1016/j.neuroimage.2018.03.016_bib4) 2012
Kayser (10.1016/j.neuroimage.2018.03.016_bib28) 2006; 117
Winkler (10.1016/j.neuroimage.2018.03.016_bib53) 2015
Tadel (10.1016/j.neuroimage.2018.03.016_bib50) 2011; 2011
Artoni (10.1016/j.neuroimage.2018.03.016_bib3) 2017; 159
Artoni (10.1016/j.neuroimage.2018.03.016_bib5) 2014; 103
Onton (10.1016/j.neuroimage.2018.03.016_bib39) 2005; 27
Jung (10.1016/j.neuroimage.2018.03.016_bib25) 1998
Scherg (10.1016/j.neuroimage.2018.03.016_bib45) 1986; 65
Casarotto (10.1016/j.neuroimage.2018.03.016_bib10) 2004; 115
Delorme (10.1016/j.neuroimage.2018.03.016_bib15) 2007; 34
Lagerlund (10.1016/j.neuroimage.2018.03.016_bib31) 1997; 14
Iversen (10.1016/j.neuroimage.2018.03.016_bib24) 2014
Bell (10.1016/j.neuroimage.2018.03.016_bib7) 1995; 7
Staudenmann (10.1016/j.neuroimage.2018.03.016_bib49) 2006; 53
References_xml – volume: 124
  start-page: 168
  year: 2016
  end-page: 180
  ident: bib1
  article-title: Simultaneous head tissue conductivity and EEG source location estimation
  publication-title: Neuroimage
– year: 1997
  ident: bib35
  article-title: Analysis of FMRI Data by Blind Separation into Independent Spatial Components
– volume: 19
  start-page: 605
  year: 1981
  end-page: 611
  ident: bib46
  article-title: Representing and clustering electromyographic gait patterns with multivariate techniques
  publication-title: Med. Biol. Eng. Comput.
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: bib7
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– year: 1986
  ident: bib47
  article-title: Density Estimation for Statistics and Data Analysis
– volume: 6
  start-page: 317
  year: 2001
  ident: bib48
  article-title: The use of multiple imputation for the analysis of missing data
  publication-title: Psychol. Meth.
– start-page: 1
  year: 1977
  end-page: 38
  ident: bib16
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 29
  start-page: 31
  year: 2009
  end-page: 35
  ident: bib37
  article-title: Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait
  publication-title: Gait Posture
– start-page: 145
  year: 1996
  end-page: 151
  ident: bib32
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 1214
  year: 2004
  end-page: 1222
  ident: bib21
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: Neuroimage
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib13
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Meth.
– volume: 2011
  start-page: 1
  year: 2011
  ident: bib42
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
– volume: 65
  start-page: 344
  year: 1986
  end-page: 360
  ident: bib45
  article-title: Evoked dipole source potentials of the human auditory cortex
  publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect.
– volume: 28
  start-page: 742
  year: 2007
  end-page: 763
  ident: bib17
  article-title: Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations
  publication-title: Hum. Brain Mapp.
– start-page: 199
  year: 2014
  end-page: 212
  ident: bib24
  article-title: MEG/EEG Data Analysis Using EEGLAB. Magnetoencephalography
– volume: 3
  year: 2009
  ident: bib40
  article-title: High-frequency broadband modulations of electroencephalographic spectra
  publication-title: Front. Hum. Neurosci.
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: bib26
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– volume: 34
  start-page: 1443
  year: 2007
  end-page: 1449
  ident: bib15
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
– start-page: 271
  year: 1981
  end-page: 280
  ident: bib38
  article-title: A study of origins of the time dependencies of scalp EEG: I-theoretical basis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 115
  start-page: 609
  year: 2004
  end-page: 619
  ident: bib10
  article-title: Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children
  publication-title: Clin. Neurophysiol.
– volume: 27
  start-page: 341
  year: 2005
  end-page: 356
  ident: bib39
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: Neuroimage
– volume: 30
  start-page: 808
  year: 2006
  end-page: 822
  ident: bib41
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci. Biobehav. Rev.
– start-page: 63
  year: 1998
  end-page: 72
  ident: bib25
  article-title: Removing electroencephalographic artifacts: comparison between ICA and PCA
  publication-title: Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib33
  article-title: Mining event-related brain dynamics
  publication-title: Trends Cognit. Sci.
– volume: 166
  start-page: 639
  year: 2009 Jun
  end-page: 641
  ident: bib20
  article-title: Last observation carried forward versus mixed models in the analysis of psychiatric clinical trials
  publication-title: Am. Psychiatr. Assoc.
– volume: 23
  start-page: 212
  year: 2008
  end-page: 220
  ident: bib11
  article-title: The identification of age-related differences in kinetic gait parameters using principal component analysis
  publication-title: Clin. Biomech.
– volume: 159
  start-page: 403
  year: 2017
  end-page: 416
  ident: bib3
  article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking
  publication-title: Neuroimage
– volume: 9
  start-page: 1493
  year: 1997
  end-page: 1516
  ident: bib27
  article-title: Dimension reduction by local principal component analysis
  publication-title: Neural Comput.
– volume: 17
  start-page: 179
  year: 2002
  end-page: 192
  ident: bib43
  article-title: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull
  publication-title: Hum. Brain Mapp.
– volume: 117
  start-page: 703
  year: 2006
  end-page: 707
  ident: bib28
  article-title: Consensus on PCA for ERP data, and sensibility of unrestricted solutions
  publication-title: Clin. Neurophysiol.
– volume: 32
  start-page: 720
  year: 2010
  end-page: 729
  ident: bib18
  article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis
  publication-title: Med. Eng. Phys.
– volume: 14
  start-page: 73
  year: 1997
  end-page: 82
  ident: bib31
  article-title: Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition
  publication-title: J. Clin. Neurophysiol.
– volume: 10
  start-page: 056014
  year: 2013
  ident: bib30
  article-title: BCILAB: a platform for brain–computer interface development
  publication-title: J. Neural Eng.
– volume: 53
  start-page: 94
  year: 1982
  end-page: 103
  ident: bib9
  article-title: Principal component analysis of pain-related cerebral potentials to mechanical and electrical stimulation in man
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– year: 2018
  ident: bib2
  article-title: A Visual Working Memory Dataset Collection with Bootstrap Independent Component Analysis for Comparison of Electroencephalogram Preprocessing Pipelines
– volume: 45
  start-page: 1199
  year: 2009
  end-page: 1211
  ident: bib19
  article-title: Identifying reliable independent components via split-half comparisons
  publication-title: Neuroimage
– start-page: 6650416
  year: 2013
  ident: bib6
  article-title: Selecting the best number of synergies in gait: preliminary results on young and elderly people
  publication-title: IEEE Int Conf Rehabil Robot 2013
– volume: 65
  start-page: 393
  year: 1986
  end-page: 398
  ident: bib36
  article-title: Principal component analysis of event-related potentials: a note on misallocation of variance
  publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect.
– volume: 31
  start-page: 197
  year: 2010
  end-page: 203
  ident: bib44
  article-title: Differentiation of young and older adult stair climbing gait using principal component analysis
  publication-title: Gait Posture
– start-page: 368
  year: 2012
  end-page: 371
  ident: bib4
  article-title: ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis
  publication-title: Conf Proc IEEE Eng Med Biol Soc 2012
– volume: 53
  start-page: 712
  year: 2006
  end-page: 719
  ident: bib49
  article-title: Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 556
  start-page: 267
  year: 2004
  end-page: 282
  ident: bib23
  article-title: Five basic muscle activation patterns account for muscle activity during human locomotion
  publication-title: J. Physiol.
– start-page: 287
  year: 1998
  end-page: 292
  ident: bib51
  article-title: Independent Component Analysis in Wave Decomposition of Auditory Evoked fields. ICANN 98
– year: 1997
  ident: bib8
  article-title: Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-plus Illustrations
– volume: 2011
  start-page: 8
  year: 2011
  ident: bib50
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
– volume: 295
  start-page: 690
  year: 2002
  end-page: 694
  ident: bib34
  article-title: Dynamic brain sources of visual evoked responses
  publication-title: Science
– volume: 7
  start-page: 30
  year: 2011
  ident: bib54
  article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals
  publication-title: Behav. Brain Funct.
– start-page: 4101
  year: 2015
  end-page: 4105
  ident: bib53
  article-title: On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP
  publication-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
– volume: 103
  start-page: 391
  year: 2014
  end-page: 400
  ident: bib5
  article-title: RELICA: a method for estimating the reliability of independent components
  publication-title: Neuroimage
– volume: 3
  start-page: 51
  year: 1993
  end-page: 60
  ident: bib12
  article-title: Phasic behavior of EMG signals during gait: use of multivariate statistics
  publication-title: J. Electromyogr. Kinesiol.
– volume: 7
  year: 2012
  ident: bib14
  article-title: Independent EEG sources are dipolar
  publication-title: PLoS One
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib22
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– volume: 4
  year: 2010
  ident: bib52
  article-title: Utility of independent component analysis for interpretation of intracranial EEG
  publication-title: Front. Hum. Neurosci.
– volume: 46
  start-page: 951
  year: 1999
  end-page: 958
  ident: bib29
  article-title: Principal component elimination method for the improvement of S/N in evoked neuromagnetic field measurements
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 7
  start-page: 1129
  year: 1995
  ident: 10.1016/j.neuroimage.2018.03.016_bib7
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2018.03.016_bib14
  article-title: Independent EEG sources are dipolar
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030135
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2018.03.016_bib42
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 9
  start-page: 1493
  year: 1997
  ident: 10.1016/j.neuroimage.2018.03.016_bib27
  article-title: Dimension reduction by local principal component analysis
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.7.1493
– volume: 17
  start-page: 179
  year: 2002
  ident: 10.1016/j.neuroimage.2018.03.016_bib43
  article-title: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10061
– volume: 8
  start-page: 204
  year: 2004
  ident: 10.1016/j.neuroimage.2018.03.016_bib33
  article-title: Mining event-related brain dynamics
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2004.03.008
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.neuroimage.2018.03.016_bib13
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2003.10.009
– start-page: 287
  year: 1998
  ident: 10.1016/j.neuroimage.2018.03.016_bib51
– volume: 2011
  start-page: 8
  year: 2011
  ident: 10.1016/j.neuroimage.2018.03.016_bib50
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 103
  start-page: 391
  year: 2014
  ident: 10.1016/j.neuroimage.2018.03.016_bib5
  article-title: RELICA: a method for estimating the reliability of independent components
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.010
– year: 1997
  ident: 10.1016/j.neuroimage.2018.03.016_bib8
– start-page: 4101
  year: 2015
  ident: 10.1016/j.neuroimage.2018.03.016_bib53
  article-title: On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP
– start-page: 1
  year: 1977
  ident: 10.1016/j.neuroimage.2018.03.016_bib16
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– start-page: 271
  year: 1981
  ident: 10.1016/j.neuroimage.2018.03.016_bib38
  article-title: A study of origins of the time dependencies of scalp EEG: I-theoretical basis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1981.324700
– volume: 37
  start-page: 163
  year: 2000
  ident: 10.1016/j.neuroimage.2018.03.016_bib26
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 14
  start-page: 73
  year: 1997
  ident: 10.1016/j.neuroimage.2018.03.016_bib31
  article-title: Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199701000-00007
– volume: 166
  start-page: 639
  issue: 6
  year: 2009
  ident: 10.1016/j.neuroimage.2018.03.016_bib20
  article-title: Last observation carried forward versus mixed models in the analysis of psychiatric clinical trials
  publication-title: Am. Psychiatr. Assoc.
  doi: 10.1176/appi.ajp.2009.09040458
– volume: 31
  start-page: 197
  year: 2010
  ident: 10.1016/j.neuroimage.2018.03.016_bib44
  article-title: Differentiation of young and older adult stair climbing gait using principal component analysis
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.10.005
– volume: 30
  start-page: 808
  year: 2006
  ident: 10.1016/j.neuroimage.2018.03.016_bib41
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2006.06.007
– volume: 29
  start-page: 31
  year: 2009
  ident: 10.1016/j.neuroimage.2018.03.016_bib37
  article-title: Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.05.015
– year: 1986
  ident: 10.1016/j.neuroimage.2018.03.016_bib47
– volume: 115
  start-page: 609
  year: 2004
  ident: 10.1016/j.neuroimage.2018.03.016_bib10
  article-title: Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.10.018
– start-page: 6650416
  year: 2013
  ident: 10.1016/j.neuroimage.2018.03.016_bib6
  article-title: Selecting the best number of synergies in gait: preliminary results on young and elderly people
– volume: 13
  start-page: 411
  year: 2000
  ident: 10.1016/j.neuroimage.2018.03.016_bib22
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 27
  start-page: 341
  year: 2005
  ident: 10.1016/j.neuroimage.2018.03.016_bib39
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.04.014
– volume: 46
  start-page: 951
  year: 1999
  ident: 10.1016/j.neuroimage.2018.03.016_bib29
  article-title: Principal component elimination method for the improvement of S/N in evoked neuromagnetic field measurements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.775405
– volume: 159
  start-page: 403
  year: 2017
  ident: 10.1016/j.neuroimage.2018.03.016_bib3
  article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.013
– volume: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2018.03.016_bib52
  article-title: Utility of independent component analysis for interpretation of intracranial EEG
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00184
– volume: 7
  start-page: 30
  year: 2011
  ident: 10.1016/j.neuroimage.2018.03.016_bib54
  article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals
  publication-title: Behav. Brain Funct.
  doi: 10.1186/1744-9081-7-30
– volume: 124
  start-page: 168
  year: 2016
  ident: 10.1016/j.neuroimage.2018.03.016_bib1
  article-title: Simultaneous head tissue conductivity and EEG source location estimation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.032
– volume: 28
  start-page: 742
  year: 2007
  ident: 10.1016/j.neuroimage.2018.03.016_bib17
  article-title: Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20304
– volume: 53
  start-page: 94
  year: 1982
  ident: 10.1016/j.neuroimage.2018.03.016_bib9
  article-title: Principal component analysis of pain-related cerebral potentials to mechanical and electrical stimulation in man
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(82)90109-2
– volume: 45
  start-page: 1199
  year: 2009
  ident: 10.1016/j.neuroimage.2018.03.016_bib19
  article-title: Identifying reliable independent components via split-half comparisons
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.038
– start-page: 199
  year: 2014
  ident: 10.1016/j.neuroimage.2018.03.016_bib24
– year: 2018
  ident: 10.1016/j.neuroimage.2018.03.016_bib2
– volume: 6
  start-page: 317
  year: 2001
  ident: 10.1016/j.neuroimage.2018.03.016_bib48
  article-title: The use of multiple imputation for the analysis of missing data
  publication-title: Psychol. Meth.
  doi: 10.1037/1082-989X.6.4.317
– volume: 295
  start-page: 690
  year: 2002
  ident: 10.1016/j.neuroimage.2018.03.016_bib34
  article-title: Dynamic brain sources of visual evoked responses
  publication-title: Science
  doi: 10.1126/science.1066168
– volume: 10
  start-page: 056014
  year: 2013
  ident: 10.1016/j.neuroimage.2018.03.016_bib30
  article-title: BCILAB: a platform for brain–computer interface development
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056014
– volume: 19
  start-page: 605
  year: 1981
  ident: 10.1016/j.neuroimage.2018.03.016_bib46
  article-title: Representing and clustering electromyographic gait patterns with multivariate techniques
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02442775
– start-page: 368
  year: 2012
  ident: 10.1016/j.neuroimage.2018.03.016_bib4
  article-title: ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis
– volume: 65
  start-page: 393
  year: 1986
  ident: 10.1016/j.neuroimage.2018.03.016_bib36
  article-title: Principal component analysis of event-related potentials: a note on misallocation of variance
  publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect.
  doi: 10.1016/0168-5597(86)90018-3
– volume: 34
  start-page: 1443
  year: 2007
  ident: 10.1016/j.neuroimage.2018.03.016_bib15
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.004
– volume: 3
  start-page: 51
  year: 1993
  ident: 10.1016/j.neuroimage.2018.03.016_bib12
  article-title: Phasic behavior of EMG signals during gait: use of multivariate statistics
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/1050-6411(93)90023-P
– volume: 22
  start-page: 1214
  year: 2004
  ident: 10.1016/j.neuroimage.2018.03.016_bib21
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.027
– year: 1997
  ident: 10.1016/j.neuroimage.2018.03.016_bib35
– volume: 23
  start-page: 212
  year: 2008
  ident: 10.1016/j.neuroimage.2018.03.016_bib11
  article-title: The identification of age-related differences in kinetic gait parameters using principal component analysis
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.09.007
– volume: 53
  start-page: 712
  year: 2006
  ident: 10.1016/j.neuroimage.2018.03.016_bib49
  article-title: Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.870246
– volume: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2018.03.016_bib40
  article-title: High-frequency broadband modulations of electroencephalographic spectra
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/neuro.09.061.2009
– volume: 65
  start-page: 344
  year: 1986
  ident: 10.1016/j.neuroimage.2018.03.016_bib45
  article-title: Evoked dipole source potentials of the human auditory cortex
  publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect.
  doi: 10.1016/0168-5597(86)90014-6
– volume: 556
  start-page: 267
  year: 2004
  ident: 10.1016/j.neuroimage.2018.03.016_bib23
  article-title: Five basic muscle activation patterns account for muscle activity during human locomotion
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.057174
– start-page: 63
  year: 1998
  ident: 10.1016/j.neuroimage.2018.03.016_bib25
  article-title: Removing electroencephalographic artifacts: comparison between ICA and PCA
– volume: 117
  start-page: 703
  year: 2006
  ident: 10.1016/j.neuroimage.2018.03.016_bib28
  article-title: Consensus on PCA for ERP data, and sensibility of unrestricted solutions
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.11.015
– volume: 32
  start-page: 720
  year: 2010
  ident: 10.1016/j.neuroimage.2018.03.016_bib18
  article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.04.010
– start-page: 145
  year: 1996
  ident: 10.1016/j.neuroimage.2018.03.016_bib32
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0009148
Score 2.6187527
Snippet Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 176
SubjectTerms Adult
Brain - physiology
Brain research
Brain Waves - physiology
Cognitive science
Data Interpretation, Statistical
Data processing
Decomposition
Dipolarity
EEG
Electroencephalogram, EEG
Electroencephalography
Electroencephalography - methods
Electroencephalography - standards
Electromyography
Female
Humans
Independent component analysis, ICA
Localization
Male
Neuroscience
Noise
Pattern Recognition, Visual - physiology
Principal Component Analysis
Principal component analysis, PCA
Principal components analysis
Reliability
Signal Processing, Computer-Assisted
Source localization
Young Adult
Title Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918302143
https://dx.doi.org/10.1016/j.neuroimage.2018.03.016
https://www.ncbi.nlm.nih.gov/pubmed/29526744
https://www.proquest.com/docview/2039811838
https://www.proquest.com/docview/2013103511
https://hal.science/hal-02341930
https://pubmed.ncbi.nlm.nih.gov/PMC6650744
Volume 175
WOSCitedRecordID wos000432949000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbohhAv_B50jMogXiPFcRI72gPaUMeQ1qpCgPpmpbGtFUEymmzS_o39xdw5TroCQpV4qdS6lzjx5fz58vk7Qt4u8iiWRprAstgEsSzgkcqYDvIcwHxh8kw7nYKvZ2I6lfN5NvMJt9rTKruY6AK1rgrMkcMinWcS0DCX7y5-Blg1Ct-u-hIaA7KLKgncUfdma9FdFrdb4RIegG3mmTwtv8vpRS5_wFOLBC_ppE6x6vnfp6fBOfIk_wShv3Mpb01OJw__97IekQceltKj1o8ekzumfELuTfyL96fkBtEq7oiiGssBYIqNrlD1FceVNhUdjz9QZJvSxTWdtQl8OB5Gm6qEPtNO_KS1MjUF4EnbHZ3XtLJ02dS0hiDmmN0N_dhX521uHUQbZMB7mtkz8uVk_Pn9aeDLOQRFkskGhTH1IksKHhsWi7AILfgBt5FN5QLCjJbCpVQA8zBmLLMQWgxPw0IbkSfgOnyP7JRwuheEcgC5IkyttQLWT8ZIgKXa6DTKQ27zlA2J6EZRFV7rHEtufFcdqe2bWo-_wvFXIVfQMCSst7xo9T62sMk6R1HdflaIwAompS1sD3tbj3laLLOl9Rvwy76jKBV-enSm8DfAYjGA8_AKbsZB53rKB6harf1uSF73zRBa8H1RXprqEv_DsAodQPIhed56eX-qKEuiVMQx3OkN_9_oy2ZLuTx38uUpLArAcv_f3XpJ7uOFYhqdJQdkp1ldmlfkbnHVLOvViAzEXLhPOSK7x-Pp7BN8m0STkYsAvwCvemSJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbagoAL_z8LBQyCY6Q4dhJHCKEKtuyqu6seCurNZGNb3aokZZMW7WvwIDwjM3GS7QJCe-mBa5xxHGdm_E38eYaQV9M0ENJI41kmjCdkBiaVMO2lKYD5zKSJrvMUfB7Fk4k8PEz2N8jP9iwM0ipbn1g7al1k-I8cgnSeSEDDXL47_eZh1SjcXW1LaDi12DOL7xCylW-HH-D7vg6C3f7B-4HXVBXwsjCRFeZn1NMkzLgwTMR-5lsYDreBjeQUtF3LuI7sYellzFhmQcMNj_xMmzgN4Q049LtJrgi4A0tFjIPxMskvE-7oXcg9GGvSMIccn6zOTzn7Cl4CCWWyTq2KVdb_vhxuHiEv80_Q-zt388JiuHvrf5vG2-RmA7vpjrOTO2TD5HfJtXFDLLhHfiAaxxNfVGO5A_yFSOeY1Rb1llYF7fc_UmTT0umC7rsNCugPvWmRwxzRNrmLkzIlBWBN3YnVBS0snVUlLcFJ18z1ig676sPVhU60QYZ_Q6O7Tz5dyow8IFs5PO4RoRxAfOxH1toY4kNjJMBubXQUpD63acR6JG61RmVNLncsKXKiWtLesVrqm0J9Uz5X0NAjrJM8dflM1pBJWsVU7XldWGEULLpryL7pZBtM57DamtIvwQ66gWIq9MHOSOE1wJoCgg__HCZju1V11TjgUi31vEdedM3gOnE_LM1NcYb3MKyyByFHjzx0VtU9KkjCIIqFgJlesbeVsay25LOjOj17BEEPSD7-97Cek-uDg_FIjYaTvSfkBr40bhmwcJtsVfMz85Rczc6rWTl_VvsYSr5ctjX-Ahy8urI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BVVceD8WChgEx4g4T0cIoYru0lWX1R4A9Waysa0uapOySYv2b_Bz-HXMxEm2CwjtpQeuccZxnJnxTPz5G4AX09QLhBbaMTzQTiAyNKmEKydNMZjPdJqomqfg8ygej8XhYTLZgJ_tWRiCVbY-sXbUqsjoHzkm6X4iMBr2xSvTwCIme4O3p98cqiBFO61tOQ2rIgd68R3Tt_LNcA-_9UvPG_Q_vtt3mgoDThYmoiKuRjVNwswPNA9iN3MNDs03nonEFDVfibjO8nEZ5lwbblDbtR-5mdJxGuLb-NjvJlyJibS8hg1OloS_PLDH8ELfwXEnDYrIYstqrsrZCXoMApeJmmaVKq7_fWncPCKM5p8B8O84zgsL4-DG_zylN-F6E46zXWs_t2BD57dh-0MDOLgDPyhKp5NgTFEZBPq1yObEdkv6zKqC9fvvGaFs2XTBJnbjAvsjL1vkOF-sJX2xUrpkGHAze5J1wQrDZlXJSnTeNaK9YsOuKnF1oROlCfnfwOvuwqdLmZF7sJXj4x4A8zG4j93IGBNj3qi1wHBcaRV5qeubNOI9iFsNklnD8U6lRo5lC-b7Kpe6J0n3pOtLbOgB7yRPLc_JGjJJq6SyPceLK4_ExXgN2dedbBPr2RhuTennaBPdQIkifX93JOkaxqABJiXuOU7GTqv2snHMpVzqfA-edc3oUmmfLM11cUb3cKq-h6lID-5bC-se5SWhF8VBgDO9YnsrY1ltyWdHNW17hMkQSj7897CewjYaoRwNxweP4Bq9M-0k8HAHtqr5mX4MV7PzalbOn9TuhsGXyzbGX6nHw4M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+dimension+reduction+to+EEG+data+by+Principal+Component+Analysis+reduces+the+quality+of+its+subsequent+Independent+Component+decomposition&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Artoni%2C+Fiorenzo&rft.au=Delorme%2C+Arnaud&rft.au=Makeig%2C+Scott&rft.date=2018-07-15&rft.pub=Elsevier&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=175&rft.spage=176&rft.epage=187&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.03.016&rft_id=info%3Apmid%2F29526744&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02341930v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon