Determining functional connectivity using fMRI data with diffusion-based anatomical weighting
There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within ma...
Gespeichert in:
| Veröffentlicht in: | NeuroImage (Orlando, Fla.) Jg. 62; H. 3; S. 1769 - 1779 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.09.2012
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach. |
|---|---|
| AbstractList | There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach.There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach. There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach. There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Skudlarski et al., 2008; van den Heuvel et al., 2009; Greicius, et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2009). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically-weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach. |
| Author | Bowman, F. DuBois Zhang, Lijun Chen, Shuo Derado, Gordana |
| Author_xml | – sequence: 1 givenname: F. DuBois surname: Bowman fullname: Bowman, F. DuBois email: dbowma3@emory.edu – sequence: 2 givenname: Lijun surname: Zhang fullname: Zhang, Lijun – sequence: 3 givenname: Gordana surname: Derado fullname: Derado, Gordana – sequence: 4 givenname: Shuo surname: Chen fullname: Chen, Shuo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22634220$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1DAUtVARbQd-AUViwybh2s7D2SCg0FKpCAnBElke52bGQ2K3tjPV_D0ObSnMalZ-3HPOfZ1TcmSdRUIyCgUFWr_ZFBYn78yoVlgwoKyAqgDOnpATCm2Vt1XDjuZ7xXNBaXtMTkPYAEBLS_GMHDNW85IxOCE_P2JEPxpr7CrrJ6ujcVYNmXbWYnpsTdxlU_gT_fLtMutUVNmtieusM32fAs7mSxWwy5RV0Y1GJ_ItmtU6Js5z8rRXQ8AX9-eC_Dj_9P3sc3719eLy7P1Vrqu2ibmqq74BWnZliZWgrNGsZNB0Gjig0NCUgIwp5EpXvaZL5KJnvK7TR4MNtHxB3t7pXk_LETuNNno1yGufJuR30ikj_49Ys5Yrt5W8BCEqlgRe3wt4dzNhiHI0QeMwKItuCpICFzWkcdJDoMDLlifwgrzag27c5NN4E6quBYWmEXPul_8W_7fqhyU9dqe9C8FjL7WJal5U6sUMKaOcXSE38tEVcnaFhEomVyQBsSfwkOMA6oc7Kqb1bQ16GbRBq7EzPvlDds4cIvJuT0QPyXHJKr9wd5jEb0Ji7yQ |
| CitedBy_id | crossref_primary_10_1002_hbm_26000 crossref_primary_10_1007_s00259_022_05949_9 crossref_primary_10_1016_j_jmva_2017_01_011 crossref_primary_10_1093_cercor_bhaa190 crossref_primary_10_1089_brain_2016_0447 crossref_primary_10_1371_journal_pcbi_1004534 crossref_primary_10_1016_j_neulet_2015_08_029 crossref_primary_10_1002_hbm_25590 crossref_primary_10_1016_j_neuroimage_2017_07_046 crossref_primary_10_1007_s00234_025_03683_1 crossref_primary_10_1007_s11682_018_9866_4 crossref_primary_10_1089_brain_2017_0539 crossref_primary_10_1089_brain_2017_0536 crossref_primary_10_1177_1073858414537560 crossref_primary_10_3390_e22090925 crossref_primary_10_1016_j_neuroimage_2014_12_034 crossref_primary_10_1038_s41598_018_23051_9 crossref_primary_10_1214_13_SS103 crossref_primary_10_1109_JBHI_2020_3023610 crossref_primary_10_1089_brain_2018_0654 crossref_primary_10_3389_fnsys_2022_817962 crossref_primary_10_1089_brain_2018_0615 crossref_primary_10_1073_pnas_1411513112 crossref_primary_10_1016_j_neuroimage_2013_04_111 crossref_primary_10_1002_wics_1339 crossref_primary_10_3389_fncom_2015_00022 crossref_primary_10_1016_j_media_2021_102317 crossref_primary_10_1016_j_neuroimage_2018_05_052 crossref_primary_10_1109_TCBB_2015_2440244 crossref_primary_10_1146_annurev_statistics_022513_115611 crossref_primary_10_1371_journal_pone_0137484 crossref_primary_10_3389_fnins_2015_00275 crossref_primary_10_1002_sta4_119 crossref_primary_10_1002_ajmg_b_32170 crossref_primary_10_1162_netn_a_00064 crossref_primary_10_1093_ijnp_pyy100 crossref_primary_10_1002_hbm_25447 crossref_primary_10_3389_fnins_2017_00669 crossref_primary_10_1007_s10072_024_07688_1 crossref_primary_10_1109_TBME_2017_2738035 crossref_primary_10_1089_brain_2014_0335 crossref_primary_10_1016_j_neuroimage_2012_12_054 crossref_primary_10_1002_hbm_23461 crossref_primary_10_3389_fnins_2023_1066373 crossref_primary_10_1093_biostatistics_kxad007 crossref_primary_10_1016_j_brainres_2020_146853 crossref_primary_10_1016_j_neucom_2015_10_025 crossref_primary_10_1016_j_neuroimage_2013_09_071 crossref_primary_10_1109_TNSRE_2018_2838075 crossref_primary_10_1371_journal_pone_0144796 crossref_primary_10_1016_j_neuroimage_2021_118388 crossref_primary_10_1002_hbm_23456 crossref_primary_10_1007_s00429_017_1431_1 |
| Cites_doi | 10.1093/scan/nsl004 10.1523/JNEUROSCI.1311-05.2005 10.1111/j.1469-8986.2007.00621.x 10.1016/j.neuroimage.2008.07.063 10.1002/hbm.10015 10.1002/hbm.20737 10.1371/journal.pone.0006660 10.1002/mrm.10609 10.1016/S0166-2236(98)01374-5 10.1093/brain/awl004 10.1073/pnas.0811168106 10.1002/hbm.10062 10.1093/cercor/bhm105 10.1016/S0730-725X(02)00503-9 10.4310/SII.2010.v3.n1.a4 10.1002/hbm.10143 10.1016/j.neuroimage.2004.04.022 10.1016/S1361-8415(00)00035-9 10.1016/j.neuroimage.2006.09.018 10.1002/hbm.20050 10.1523/JNEUROSCI.16-13-04275.1996 10.1073/pnas.0504136102 10.1196/annals.1440.011 10.1006/nimg.2002.1132 10.1016/S0730-725X(99)00102-2 10.1038/jcbfm.1993.4 10.1002/nbm.781 10.1016/j.neuroimage.2007.06.041 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2004.08.050 10.1002/hbm.21192 10.1002/jmri.10350 10.1371/journal.pone.0008595 10.1002/hbm.1031 10.1002/hbm.20836 10.1093/cercor/bhn059 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Sep 1, 2012 2012 Elsevier Inc. All rights reserved. 2012 |
| Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Sep 1, 2012 – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
| DOI | 10.1016/j.neuroimage.2012.05.032 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 1779 |
| ExternalDocumentID | PMC3408852 3642119261 22634220 10_1016_j_neuroimage_2012_05_032 S1053811912005204 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM074909 – fundername: NIMH NIH HHS grantid: R01-MH079251 – fundername: NIGMS NIH HHS grantid: T32 GM074909-01 – fundername: NIMH NIH HHS grantid: R01 MH079251 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 9DU AAYXX AFFHD CITATION AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 7QO 5PM |
| ID | FETCH-LOGICAL-c597t-a65f7014d44e58127c24207dc030e8c0740e22ae3ac5fc1be38f2366e3a7e7093 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307369000044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Nov 04 02:00:54 EST 2025 Tue Oct 07 09:53:49 EDT 2025 Wed Oct 01 17:19:58 EDT 2025 Sat Nov 29 14:51:11 EST 2025 Mon Jul 21 05:52:33 EDT 2025 Sat Nov 29 03:33:18 EST 2025 Tue Nov 18 19:44:09 EST 2025 Fri Feb 23 02:36:06 EST 2024 Tue Oct 14 19:34:57 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Functional connectivity fMRI Structural connectivity DTI Clustering Auditory processing Resting-state networks |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c597t-a65f7014d44e58127c24207dc030e8c0740e22ae3ac5fc1be38f2366e3a7e7093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3408852 |
| PMID | 22634220 |
| PQID | 1668107782 |
| PQPubID | 2031077 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408852 proquest_miscellaneous_1038600531 proquest_miscellaneous_1030349305 proquest_journals_1668107782 pubmed_primary_22634220 crossref_citationtrail_10_1016_j_neuroimage_2012_05_032 crossref_primary_10_1016_j_neuroimage_2012_05_032 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_05_032 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_05_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-01 |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2012 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Leergaard, White, de Crespigny, Bolstad, D'Arceuil (bb0130) 2010; 5 Bowman, Patel, Lu (bb0020) 2004; 23 Maddock (bb0140) 1999; 22 Ling, Merideth, Caprihan, Pena, Teshiba, Mayer (bb0135) 2012; 33 Stanberry, Nandy, Cordes (bb0180) 2003; 20 Baumgartner, Ryner, Richter, Summers, Jarmasz, Somorjai (bb0010) 2000; 18 Behrens, Johansen-Berg, Jbabdi, Rushworth, Woolrich (bb0035) 2007; 34 Fink, Markowitsch, Reinkemeier, Bruckbauer, Kessler, Heiss (bb0075) 1996; 16 Mori, van Zijl (bb0155) 2002; 15 Goutte, Nielsen, Liptrot, Hansen (bb0090) 2001; 13 Cordes, Haughton, Carew, Arfanakis, Maravilla (bb0045) 2002; 20 Wang, Jiang, Yu, Tian, Li, Liu, Zhou, Xu, Song, Li (bb0195) 2008; 18 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bb0085) 2005; 102 Lazar, Alexander (bb0125) 2005; 24 Smith (bb0175) 2002; 17 Bowman, Patel (bb0015) 2004; 23 Mayer, Mannell, Ling, Elgie, Gasparovic, Phillips, Doezema, Yeo (bb0145) 2009; 30 Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bb0100) 2008; 106 Lawes, Barrick, Murugam, Spierings, Evans, Song, Clark (bb0120) 2008; 39 Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0030) 2003; 50 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0185) 2002; 15 Duda, Hart (bb0065) 1973 Parker, Haroon, Wheeler-Kingshott (bb0160) 2003; 18 Buckner, Andrews-Hanna, Schacter (bb0025) 2008; 1124 Rykhlevskaia, Gratton, Fabiani (bb0165) 2008; 45 Friston, Frith, Liddle, Frackowiak (bb0080) 1993; 13 Cavanna, Trimble (bb0040) 2006; 129 Fadili, Ruan, Bloyet, Mazoyer (bb0070) 2001; 5 Skudlarski, Jagannathan, Calhoun, Hampson, Skudlarska, Pearlson (bb0170) 2008; 43 Balslev, Nielsen, Frutiger, Sidtis, Christiansen, Svarer, Strother, Rottenberg, Hansen, Paulson, Law (bb0005) 2002; 15 Greicius, Supekar, Menon, Dougherty (bb0095) 2009; 19 Morgan, Mishra, Newton, Gore, Ding (bb0150) 2009; 4 Craddock, James, Holtzheimer, Hu, Mayberg (bb0050) 2011 Jenkinson, Bannister, Brady, Smith (bb0110) 2002; 17 van den Heuvel, Mandl, Kahn, Hulshoff Pol (bb0190) 2009; 30 Jellison, Field, Medow, Lazar, Salamat, Alexander (bb0105) 2004; 25 Croxson, Johansen-Berg, Behrens, Robson, Pinsk, Gross, Richter, Richter, Kastner, Rushworth (bb0055) 2005; 25 Derado, Bowman, Ely, Kilts (bb0060) 2010; 3 Johnson, Raye, Mitchell, Touryan, Greene, Nolen-Hoeksema (bb0115) 2006; 1 Maddock (10.1016/j.neuroimage.2012.05.032_bb0140) 1999; 22 Cavanna (10.1016/j.neuroimage.2012.05.032_bb0040) 2006; 129 Buckner (10.1016/j.neuroimage.2012.05.032_bb0025) 2008; 1124 Wang (10.1016/j.neuroimage.2012.05.032_bb0195) 2008; 18 Croxson (10.1016/j.neuroimage.2012.05.032_bb0055) 2005; 25 Behrens (10.1016/j.neuroimage.2012.05.032_bb0030) 2003; 50 Parker (10.1016/j.neuroimage.2012.05.032_bb0160) 2003; 18 Stanberry (10.1016/j.neuroimage.2012.05.032_bb0180) 2003; 20 Bowman (10.1016/j.neuroimage.2012.05.032_bb0015) 2004; 23 van den Heuvel (10.1016/j.neuroimage.2012.05.032_bb0190) 2009; 30 Ling (10.1016/j.neuroimage.2012.05.032_bb0135) 2012; 33 Johnson (10.1016/j.neuroimage.2012.05.032_bb0115) 2006; 1 Bowman (10.1016/j.neuroimage.2012.05.032_bb0020) 2004; 23 Duda (10.1016/j.neuroimage.2012.05.032_bb0065) 1973 Fox (10.1016/j.neuroimage.2012.05.032_bb0085) 2005; 102 Rykhlevskaia (10.1016/j.neuroimage.2012.05.032_bb0165) 2008; 45 Goutte (10.1016/j.neuroimage.2012.05.032_bb0090) 2001; 13 Lazar (10.1016/j.neuroimage.2012.05.032_bb0125) 2005; 24 Leergaard (10.1016/j.neuroimage.2012.05.032_bb0130) 2010; 5 Smith (10.1016/j.neuroimage.2012.05.032_bb0175) 2002; 17 Craddock (10.1016/j.neuroimage.2012.05.032_bb0050) 2011 Greicius (10.1016/j.neuroimage.2012.05.032_bb0095) 2009; 19 Honey (10.1016/j.neuroimage.2012.05.032_bb0100) 2008; 106 Friston (10.1016/j.neuroimage.2012.05.032_bb0080) 1993; 13 Mayer (10.1016/j.neuroimage.2012.05.032_bb0145) 2009; 30 Lawes (10.1016/j.neuroimage.2012.05.032_bb0120) 2008; 39 Baumgartner (10.1016/j.neuroimage.2012.05.032_bb0010) 2000; 18 Behrens (10.1016/j.neuroimage.2012.05.032_bb0035) 2007; 34 Jellison (10.1016/j.neuroimage.2012.05.032_bb0105) 2004; 25 Fadili (10.1016/j.neuroimage.2012.05.032_bb0070) 2001; 5 Tzourio-Mazoyer (10.1016/j.neuroimage.2012.05.032_bb0185) 2002; 15 Derado (10.1016/j.neuroimage.2012.05.032_bb0060) 2010; 3 Balslev (10.1016/j.neuroimage.2012.05.032_bb0005) 2002; 15 Morgan (10.1016/j.neuroimage.2012.05.032_bb0150) 2009; 4 Mori (10.1016/j.neuroimage.2012.05.032_bb0155) 2002; 15 Fink (10.1016/j.neuroimage.2012.05.032_bb0075) 1996; 16 Skudlarski (10.1016/j.neuroimage.2012.05.032_bb0170) 2008; 43 Cordes (10.1016/j.neuroimage.2012.05.032_bb0045) 2002; 20 Jenkinson (10.1016/j.neuroimage.2012.05.032_bb0110) 2002; 17 19554558 - Hum Brain Mapp. 2009 Dec;30(12):4152-66 14673804 - Hum Brain Mapp. 2003 Dec;20(4):201-19 10370255 - Trends Neurosci. 1999 Jul;22(7):310-6 16192375 - J Neurosci. 2005 Sep 28;25(39):8854-66 17602140 - Cereb Cortex. 2008 Mar;18(3):697-704 16399806 - Brain. 2006 Mar;129(Pt 3):564-83 10642106 - Magn Reson Imaging. 2000 Jan;18(1):89-94 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54 11376501 - Hum Brain Mapp. 2001 Jul;13(3):165-83 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 15325373 - Neuroimage. 2004 Sep;23(1):260-8 21643436 - Stat Interface. 2010;3(1):45-58 19684850 - PLoS One. 2009;4(8):e6660 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 17070705 - Neuroimage. 2007 Jan 1;34(1):144-55 17919935 - Neuroimage. 2008 Jan 1;39(1):62-79 11231177 - Med Image Anal. 2001 Mar;5(1):55-67 12377157 - Neuroimage. 2002 Oct;17(2):825-41 17995910 - Psychophysiology. 2008 Mar;45(2):173-87 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17 15627594 - Neuroimage. 2005 Jan 15;24(2):524-32 11835604 - Hum Brain Mapp. 2002 Mar;15(3):135-45 19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41 21391258 - Hum Brain Mapp. 2012 Jan;33(1):50-62 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 15340933 - Hum Brain Mapp. 2004 Oct;23(2):109-19 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 18771736 - Neuroimage. 2008 Nov 15;43(3):554-61 20062822 - PLoS One. 2010;5(1):e8595 11771995 - Neuroimage. 2002 Jan;15(1):273-89 15037456 - AJNR Am J Neuroradiol. 2004 Mar;25(3):356-69 14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 18574518 - Soc Cogn Affect Neurosci. 2006 Jun;1(1):56-64 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 8753888 - J Neurosci. 1996 Jul 1;16(13):4275-82 |
| References_xml | – volume: 25 start-page: 8854 year: 2005 end-page: 8866 ident: bb0055 article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography publication-title: J. Neurosci. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0175 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 34 start-page: 144 year: 2007 end-page: 155 ident: bb0035 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: Neuroimage – volume: 15 start-page: 135 year: 2002 end-page: 145 ident: bb0005 article-title: Cluster analysis of activity–time series in motor learning publication-title: Hum. Brain Mapp. – volume: 24 start-page: 524 year: 2005 end-page: 532 ident: bb0125 article-title: Bootstrap white matter tractography (BOOT-TRAC) publication-title: Neuroimage – volume: 18 start-page: 89 year: 2000 end-page: 94 ident: bb0010 article-title: Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis publication-title: Magn. Reson. Imaging – volume: 16 start-page: 4275 year: 1996 end-page: 4282 ident: bb0075 article-title: Cerebral representation of one's own past: neural networks involved in autobiographical memory publication-title: J. Neurosci. – year: 2011 ident: bb0050 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. – volume: 15 start-page: 468 year: 2002 end-page: 480 ident: bb0155 article-title: Fiber tracking: principles and strategies—a technical review publication-title: NMR Biomed. – volume: 20 start-page: 305 year: 2002 end-page: 317 ident: bb0045 article-title: Hierchical clustering to measure connectivity in fMRI resting-state data publication-title: MRI – volume: 22 start-page: 310 year: 1999 end-page: 316 ident: bb0140 article-title: The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain publication-title: Trends Neurosci. – volume: 18 start-page: 242 year: 2003 end-page: 254 ident: bb0160 article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements publication-title: J. Magn. Reson. Imaging – volume: 50 start-page: 1077 year: 2003 end-page: 1088 ident: bb0030 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. – volume: 30 start-page: 4152 year: 2009 end-page: 4166 ident: bb0145 article-title: Auditory orienting and inhibition of return in mild traumatic brain injury: a fMRI study publication-title: Hum. Brain Mapp. – volume: 13 start-page: 5 year: 1993 end-page: 14 ident: bb0080 article-title: Functional connectivity: the principal component analysis of large data sets publication-title: J. Cereb. Blood Flow Metab. – volume: 106 start-page: 2035 year: 2008 end-page: 2040 ident: bb0100 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: PNAS – volume: 19 start-page: 72 year: 2009 end-page: 78 ident: bb0095 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb. Cortex – volume: 3 start-page: 45 year: 2010 end-page: 58 ident: bb0060 article-title: Evaluating functional autocorrelation within spatially distributed neural processing networks publication-title: Stat. Interface – volume: 43 start-page: 554 year: 2008 end-page: 561 ident: bb0170 article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations publication-title: Neuroimage – volume: 4 start-page: e6660 year: 2009 ident: bb0150 article-title: Integrating functional and diffusion magnetic resonance imaging for analysis of structure–function relationship in the human language network publication-title: PLoS One – volume: 20 start-page: 201 year: 2003 end-page: 219 ident: bb0180 article-title: Cluster analysis of fMRI data using dendrogram sharpening publication-title: Hum. Brain Mapp. – volume: 30 start-page: 3127 year: 2009 end-page: 3141 ident: bb0190 article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Hum. Brain Mapp. – volume: 13 start-page: 165 year: 2001 end-page: 183 ident: bb0090 article-title: Feature-space clustering for fMRI meta-analysis publication-title: Hum. Brain Mapp. – volume: 5 start-page: e8595 year: 2010 ident: bb0130 article-title: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain publication-title: PLoS One – volume: 1124 start-page: 1 year: 2008 end-page: 38 ident: bb0025 article-title: The brain's default network: anatomy, function, and relevance to disease publication-title: Ann. N. Y. Acad. Sci. – volume: 33 start-page: 50 year: 2012 end-page: 62 ident: bb0135 article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies publication-title: Hum. Brain Mapp. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bb0110 article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 25 start-page: 356 year: 2004 end-page: 369 ident: bb0105 article-title: Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy and tumor imaging patterns publication-title: Am. J. Neuroradiol. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bb0185 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 1 start-page: 56 year: 2006 end-page: 64 ident: bb0115 article-title: Dissociating medial frontal and posterior cingulate activity during self-reflection publication-title: Soc. Cogn. Affect. Neurosci. – volume: 39 start-page: 62 year: 2008 end-page: 79 ident: bb0120 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: Neuroimage – volume: 18 start-page: 697 year: 2008 end-page: 704 ident: bb0195 article-title: Spontaneous activity associated with primary visual cortex: a resting-state fMRI study publication-title: Cereb. Cortex – volume: 5 start-page: 55 year: 2001 end-page: 67 ident: bb0070 article-title: On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series publication-title: Med. Image Anal. – volume: 23 start-page: 109 year: 2004 end-page: 119 ident: bb0020 article-title: Methods for detecting functional classifications in neuroimaging data publication-title: Hum. Brain Mapp. – volume: 129 start-page: 564 year: 2006 end-page: 583 ident: bb0040 article-title: The precuneus: a review of its functional anatomy and behavioural correlates publication-title: Brain – volume: 23 start-page: 260 year: 2004 end-page: 268 ident: bb0015 article-title: Identifying spatial relationships in neural processing using a multiple classification approach publication-title: Neuroimage – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bb0085 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: PNAS – volume: 45 start-page: 173 year: 2008 end-page: 187 ident: bb0165 article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review publication-title: Psychophysiology – year: 1973 ident: bb0065 article-title: Pattern Classification and Scene Analysis – volume: 1 start-page: 56 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2012.05.032_bb0115 article-title: Dissociating medial frontal and posterior cingulate activity during self-reflection publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsl004 – volume: 25 start-page: 8854 year: 2005 ident: 10.1016/j.neuroimage.2012.05.032_bb0055 article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1311-05.2005 – volume: 45 start-page: 173 year: 2008 ident: 10.1016/j.neuroimage.2012.05.032_bb0165 article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00621.x – volume: 43 start-page: 554 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2012.05.032_bb0170 article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.07.063 – volume: 15 start-page: 135 year: 2002 ident: 10.1016/j.neuroimage.2012.05.032_bb0005 article-title: Cluster analysis of activity–time series in motor learning publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10015 – volume: 30 start-page: 3127 year: 2009 ident: 10.1016/j.neuroimage.2012.05.032_bb0190 article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20737 – volume: 4 start-page: e6660 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2012.05.032_bb0150 article-title: Integrating functional and diffusion magnetic resonance imaging for analysis of structure–function relationship in the human language network publication-title: PLoS One doi: 10.1371/journal.pone.0006660 – volume: 50 start-page: 1077 year: 2003 ident: 10.1016/j.neuroimage.2012.05.032_bb0030 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10609 – volume: 22 start-page: 310 issue: 7 year: 1999 ident: 10.1016/j.neuroimage.2012.05.032_bb0140 article-title: The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(98)01374-5 – volume: 129 start-page: 564 year: 2006 ident: 10.1016/j.neuroimage.2012.05.032_bb0040 article-title: The precuneus: a review of its functional anatomy and behavioural correlates publication-title: Brain doi: 10.1093/brain/awl004 – volume: 106 start-page: 2035 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2012.05.032_bb0100 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: PNAS doi: 10.1073/pnas.0811168106 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2012.05.032_bb0175 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – year: 2011 ident: 10.1016/j.neuroimage.2012.05.032_bb0050 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. – volume: 18 start-page: 697 year: 2008 ident: 10.1016/j.neuroimage.2012.05.032_bb0195 article-title: Spontaneous activity associated with primary visual cortex: a resting-state fMRI study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm105 – volume: 20 start-page: 305 year: 2002 ident: 10.1016/j.neuroimage.2012.05.032_bb0045 article-title: Hierchical clustering to measure connectivity in fMRI resting-state data publication-title: MRI doi: 10.1016/S0730-725X(02)00503-9 – volume: 3 start-page: 45 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.05.032_bb0060 article-title: Evaluating functional autocorrelation within spatially distributed neural processing networks publication-title: Stat. Interface doi: 10.4310/SII.2010.v3.n1.a4 – volume: 20 start-page: 201 year: 2003 ident: 10.1016/j.neuroimage.2012.05.032_bb0180 article-title: Cluster analysis of fMRI data using dendrogram sharpening publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10143 – volume: 23 start-page: 260 year: 2004 ident: 10.1016/j.neuroimage.2012.05.032_bb0015 article-title: Identifying spatial relationships in neural processing using a multiple classification approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.04.022 – volume: 5 start-page: 55 year: 2001 ident: 10.1016/j.neuroimage.2012.05.032_bb0070 article-title: On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(00)00035-9 – volume: 25 start-page: 356 year: 2004 ident: 10.1016/j.neuroimage.2012.05.032_bb0105 article-title: Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy and tumor imaging patterns publication-title: Am. J. Neuroradiol. – volume: 34 start-page: 144 year: 2007 ident: 10.1016/j.neuroimage.2012.05.032_bb0035 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 23 start-page: 109 year: 2004 ident: 10.1016/j.neuroimage.2012.05.032_bb0020 article-title: Methods for detecting functional classifications in neuroimaging data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20050 – volume: 16 start-page: 4275 issue: 13 year: 1996 ident: 10.1016/j.neuroimage.2012.05.032_bb0075 article-title: Cerebral representation of one's own past: neural networks involved in autobiographical memory publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-13-04275.1996 – year: 1973 ident: 10.1016/j.neuroimage.2012.05.032_bb0065 – volume: 102 start-page: 9673 issue: 27 year: 2005 ident: 10.1016/j.neuroimage.2012.05.032_bb0085 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: PNAS doi: 10.1073/pnas.0504136102 – volume: 1124 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.05.032_bb0025 article-title: The brain's default network: anatomy, function, and relevance to disease publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1440.011 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2012.05.032_bb0110 article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 18 start-page: 89 year: 2000 ident: 10.1016/j.neuroimage.2012.05.032_bb0010 article-title: Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(99)00102-2 – volume: 13 start-page: 5 year: 1993 ident: 10.1016/j.neuroimage.2012.05.032_bb0080 article-title: Functional connectivity: the principal component analysis of large data sets publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.1993.4 – volume: 15 start-page: 468 year: 2002 ident: 10.1016/j.neuroimage.2012.05.032_bb0155 article-title: Fiber tracking: principles and strategies—a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.781 – volume: 39 start-page: 62 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.05.032_bb0120 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.041 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2012.05.032_bb0185 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 24 start-page: 524 year: 2005 ident: 10.1016/j.neuroimage.2012.05.032_bb0125 article-title: Bootstrap white matter tractography (BOOT-TRAC) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.08.050 – volume: 33 start-page: 50 year: 2012 ident: 10.1016/j.neuroimage.2012.05.032_bb0135 article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21192 – volume: 18 start-page: 242 year: 2003 ident: 10.1016/j.neuroimage.2012.05.032_bb0160 article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10350 – volume: 5 start-page: e8595 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.05.032_bb0130 article-title: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain publication-title: PLoS One doi: 10.1371/journal.pone.0008595 – volume: 13 start-page: 165 issue: 3 year: 2001 ident: 10.1016/j.neuroimage.2012.05.032_bb0090 article-title: Feature-space clustering for fMRI meta-analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1031 – volume: 30 start-page: 4152 year: 2009 ident: 10.1016/j.neuroimage.2012.05.032_bb0145 article-title: Auditory orienting and inhibition of return in mild traumatic brain injury: a fMRI study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20836 – volume: 19 start-page: 72 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.05.032_bb0095 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn059 – reference: 14673804 - Hum Brain Mapp. 2003 Dec;20(4):201-19 – reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 21391258 - Hum Brain Mapp. 2012 Jan;33(1):50-62 – reference: 15340933 - Hum Brain Mapp. 2004 Oct;23(2):109-19 – reference: 10370255 - Trends Neurosci. 1999 Jul;22(7):310-6 – reference: 11376501 - Hum Brain Mapp. 2001 Jul;13(3):165-83 – reference: 19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41 – reference: 19684850 - PLoS One. 2009;4(8):e6660 – reference: 17602140 - Cereb Cortex. 2008 Mar;18(3):697-704 – reference: 18574518 - Soc Cogn Affect Neurosci. 2006 Jun;1(1):56-64 – reference: 19554558 - Hum Brain Mapp. 2009 Dec;30(12):4152-66 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17 – reference: 16399806 - Brain. 2006 Mar;129(Pt 3):564-83 – reference: 18771736 - Neuroimage. 2008 Nov 15;43(3):554-61 – reference: 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 – reference: 16192375 - J Neurosci. 2005 Sep 28;25(39):8854-66 – reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 – reference: 21643436 - Stat Interface. 2010;3(1):45-58 – reference: 11231177 - Med Image Anal. 2001 Mar;5(1):55-67 – reference: 8753888 - J Neurosci. 1996 Jul 1;16(13):4275-82 – reference: 15325373 - Neuroimage. 2004 Sep;23(1):260-8 – reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41 – reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 – reference: 15627594 - Neuroimage. 2005 Jan 15;24(2):524-32 – reference: 17070705 - Neuroimage. 2007 Jan 1;34(1):144-55 – reference: 20062822 - PLoS One. 2010;5(1):e8595 – reference: 17919935 - Neuroimage. 2008 Jan 1;39(1):62-79 – reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 – reference: 17995910 - Psychophysiology. 2008 Mar;45(2):173-87 – reference: 15037456 - AJNR Am J Neuroradiol. 2004 Mar;25(3):356-69 – reference: 11835604 - Hum Brain Mapp. 2002 Mar;15(3):135-45 – reference: 12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54 – reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 – reference: 14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88 – reference: 10642106 - Magn Reson Imaging. 2000 Jan;18(1):89-94 – reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 |
| SSID | ssj0009148 |
| Score | 2.3261757 |
| Snippet | There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC)... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1769 |
| SubjectTerms | Algorithms Auditory processing Brain - physiology Brain Mapping - methods Brain research Cluster Analysis Clustering Diffusion Diffusion Tensor Imaging DTI Female fMRI Fourier transforms Functional connectivity Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging Medical imaging Neural Pathways - physiology NMR Nuclear magnetic resonance Resting-state networks Statistical analysis Statistical methods Structural connectivity |
| Title | Determining functional connectivity using fMRI data with diffusion-based anatomical weighting |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912005204 https://dx.doi.org/10.1016/j.neuroimage.2012.05.032 https://www.ncbi.nlm.nih.gov/pubmed/22634220 https://www.proquest.com/docview/1668107782 https://www.proquest.com/docview/1030349305 https://www.proquest.com/docview/1038600531 https://pubmed.ncbi.nlm.nih.gov/PMC3408852 |
| Volume | 62 |
| WOSCitedRecordID | wos000307369000044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251011 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfH-UjcpIvFokdhI74gEx2AQSraoJpL4gy7UdrQjSsbbs39-d7aQMxFSJl1SpfVLis-_O519-R8hLW6nK1S5jznLDwN86ZlSD9NqZMcq7Spig6U9yPFbTaT1JCbdlglV2NjEYarewmCN_lVfInCXBob05-8mwahSerqYSGjtkD1kSeIDuTTaku3kRP4UrBVN5XickT8R3Bb7I-Q9YtQjw4oG_U_B_uae_w88_UZS_uaXju__7QvfInRSQ0rdxBt0nN3z7gNwapSP3h-Tr-wSYAR9H0QvG5CG1iJCxsfYERfQ8tI5OPlKEnFLM7lKsvbLGZBxDV-moaWGDH9gJ6EVIyILMI_Ll-Ojzuw8s1WRgFrYeK2aqspGwrXJF4UsIDqQFH59JZ8FYeGUhIMk858YLY8vG5jMvVMNFVcEf0susFo_Jbrto_VNQhTfczuQMfk3R1PWsKHMQtE2TG7AFbkBkpwptE2E51s34rjtk2je9UaJGJeqs1KDEAcl7ybNI2rGFTN1pW3cfpYIZ1eBZtpB93cumwCUGJFtKH3QTRCcDstSb2TEgL_pmWPp4nmNav1hDHxhzUdRgsa_to6pgaQfkSZyv_ZBA5C0KzjMY6Cszue-A1ONXW9r5aaAgFwV4p5I_u_7R98ltfM8IyTsgu6vztX9Obtpfq_nyfEh25FSGqxqSvcOj8eQE7kZ8NAyr-BLuuVCs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamDQEvG78GhQFGgkeLxHbiRAhNiDGtWlshNKS9IOPajiiCdKwtE_8UfyN3dpIyEFNf9sBTpdgnNfb5vrPz-TtCntq8yF3pEuYsNwzw1jFTVCivnRhTeJcLE2Z6oEaj4vi4fLtGfrZ3YZBW2cbEEKjd1OIZ-fM0R-UsBYC2e_KNYdUo_LraltCIbnHof5zBlm32sr8H8_uM8_03R68PWFNVgFlInufM5FmlYGPgpPQZwJuygFKJchbc3RcWIDXxnBsvjM0qm469KCou8hweKK-C-BKE_A2JV0aRKsiHS5HfVMard5lgRZqWDXMo8smCPuXkK0QJJJTxoBcq-L_g8O9090_W5m8wuL_1vw3gDbLZJNz0VVwhN8mar2-Rq8OGUnCbfNhrCEGA4RRRPh6OUosMIBtra1C8HQCtw3d9ipRaiqfXFGvLLPCwkWEq4KipzXwa1BfoWThwBps75P2lvNw2Wa-ntb8HU-8Nt2M1hl8jq7IcyywFQ1tVqYFY53pEtVOvbSPIjnVBvuiWefdZL51Go9PoJNPgND2SdpYnUZRkBZuy9S7dXroFmNCAnCvYvuhsm8QsJlwrWu-0DqmbADnTS2_skSddM4Q2_F5laj9dQB8YcyFLQKQL-xR5QJIeuRvXRzcksLMQkvMEBvrcyuk6oLT6-ZZ68ilIrAsJ6Jvx-xf_9cfk2sHRcKAH_dHhA3Id3znSD3fI-vx04R-SK_b7fDI7fRTiBCUfL3td_QKBrqen |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5NHZp44TejYwMjwWO0xPnhRAghWFdRbauqCaS9IOPajiiCdFtbJv41_jruYidlIKa-7IGnSLFPSpzzfWfn83cAz3WWZ6YwYWA0VwHirQlUXpK8dqhUbk0Wq_pLH4rhMD85KUZr8LM5C0O0yiYm1oHaTDXtke9GGSlnCQS03dLTIka9_uvTs4AqSNGf1qachnORA_vjApdvs1eDHn7rF5z399_vvQt8hYFAYyI9D1SWlgIXCSZJbIpQJzQiViiMRte3uUZ4DS3nysZKp6WOxjbOSx5nGd4QVtRCTBj-1wUmGUkH1t_uD0fHS8nfKHEH8dI4yKOo8Dwixy6r1Son3zBmEL2M1-qhMf8XOP6d_P7J4fwNFPu3_-fhvAO3fCrO3ri5cxfWbHUPNo482eA-fOx5qhCiOyP8d9umTBM3SLuqG4zODWDr0fGAEdmW0b42o6ozC9qGDChJMExVaj6tdRnYRb0VjTYP4MO1vNxD6FTTyj5CN7CK67EY41UlZVGMkzRCQ12WkcIoaLogGjeQ2ku1U8WQr7Lh5H2RSweS5EAyTCU6UBei1vLUyZWsYFM0niab47gIIBIxdQXbl62tT9lcKrai9XbjnNKHzplcemYXnrXNGPToT5aq7HSBfXDM46RArLqyT57VGNOFTTdX2iHBNUeccB7iQF-aRW0HEl2_3FJNPtfi63GCuJzyrasf_Sls4HSSh4PhwWO4Sa_seInb0JmfL-wO3NDf55PZ-RMfNBh8uu6J9QsANbHB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+functional+connectivity+using+fMRI+data+with+diffusion-based+anatomical+weighting&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bowman%2C+F.+DuBois&rft.au=Zhang%2C+Lijun&rft.au=Derado%2C+Gordana&rft.au=Chen%2C+Shuo&rft.date=2012-09-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=62&rft.issue=3&rft.spage=1769&rft.epage=1779&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.05.032&rft.externalDocID=S1053811912005204 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |