Determining functional connectivity using fMRI data with diffusion-based anatomical weighting

There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Jg. 62; H. 3; S. 1769 - 1779
Hauptverfasser: Bowman, F. DuBois, Zhang, Lijun, Derado, Gordana, Chen, Shuo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.09.2012
Elsevier Limited
Schlagworte:
ISSN:1053-8119, 1095-9572, 1095-9572
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach.
AbstractList There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach.There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach.
There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Greicius, et al., 2009; Skudlarski et al., 2008; van den Heuvel et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2008). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach.
There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Skudlarski et al., 2008; van den Heuvel et al., 2009; Greicius, et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2009). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically-weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach.
Author Bowman, F. DuBois
Zhang, Lijun
Chen, Shuo
Derado, Gordana
Author_xml – sequence: 1
  givenname: F. DuBois
  surname: Bowman
  fullname: Bowman, F. DuBois
  email: dbowma3@emory.edu
– sequence: 2
  givenname: Lijun
  surname: Zhang
  fullname: Zhang, Lijun
– sequence: 3
  givenname: Gordana
  surname: Derado
  fullname: Derado, Gordana
– sequence: 4
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22634220$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUtVARbQd-AUViwybh2s7D2SCg0FKpCAnBElke52bGQ2K3tjPV_D0ObSnMalZ-3HPOfZ1TcmSdRUIyCgUFWr_ZFBYn78yoVlgwoKyAqgDOnpATCm2Vt1XDjuZ7xXNBaXtMTkPYAEBLS_GMHDNW85IxOCE_P2JEPxpr7CrrJ6ujcVYNmXbWYnpsTdxlU_gT_fLtMutUVNmtieusM32fAs7mSxWwy5RV0Y1GJ_ItmtU6Js5z8rRXQ8AX9-eC_Dj_9P3sc3719eLy7P1Vrqu2ibmqq74BWnZliZWgrNGsZNB0Gjig0NCUgIwp5EpXvaZL5KJnvK7TR4MNtHxB3t7pXk_LETuNNno1yGufJuR30ikj_49Ys5Yrt5W8BCEqlgRe3wt4dzNhiHI0QeMwKItuCpICFzWkcdJDoMDLlifwgrzag27c5NN4E6quBYWmEXPul_8W_7fqhyU9dqe9C8FjL7WJal5U6sUMKaOcXSE38tEVcnaFhEomVyQBsSfwkOMA6oc7Kqb1bQ16GbRBq7EzPvlDds4cIvJuT0QPyXHJKr9wd5jEb0Ji7yQ
CitedBy_id crossref_primary_10_1002_hbm_26000
crossref_primary_10_1007_s00259_022_05949_9
crossref_primary_10_1016_j_jmva_2017_01_011
crossref_primary_10_1093_cercor_bhaa190
crossref_primary_10_1089_brain_2016_0447
crossref_primary_10_1371_journal_pcbi_1004534
crossref_primary_10_1016_j_neulet_2015_08_029
crossref_primary_10_1002_hbm_25590
crossref_primary_10_1016_j_neuroimage_2017_07_046
crossref_primary_10_1007_s00234_025_03683_1
crossref_primary_10_1007_s11682_018_9866_4
crossref_primary_10_1089_brain_2017_0539
crossref_primary_10_1089_brain_2017_0536
crossref_primary_10_1177_1073858414537560
crossref_primary_10_3390_e22090925
crossref_primary_10_1016_j_neuroimage_2014_12_034
crossref_primary_10_1038_s41598_018_23051_9
crossref_primary_10_1214_13_SS103
crossref_primary_10_1109_JBHI_2020_3023610
crossref_primary_10_1089_brain_2018_0654
crossref_primary_10_3389_fnsys_2022_817962
crossref_primary_10_1089_brain_2018_0615
crossref_primary_10_1073_pnas_1411513112
crossref_primary_10_1016_j_neuroimage_2013_04_111
crossref_primary_10_1002_wics_1339
crossref_primary_10_3389_fncom_2015_00022
crossref_primary_10_1016_j_media_2021_102317
crossref_primary_10_1016_j_neuroimage_2018_05_052
crossref_primary_10_1109_TCBB_2015_2440244
crossref_primary_10_1146_annurev_statistics_022513_115611
crossref_primary_10_1371_journal_pone_0137484
crossref_primary_10_3389_fnins_2015_00275
crossref_primary_10_1002_sta4_119
crossref_primary_10_1002_ajmg_b_32170
crossref_primary_10_1162_netn_a_00064
crossref_primary_10_1093_ijnp_pyy100
crossref_primary_10_1002_hbm_25447
crossref_primary_10_3389_fnins_2017_00669
crossref_primary_10_1007_s10072_024_07688_1
crossref_primary_10_1109_TBME_2017_2738035
crossref_primary_10_1089_brain_2014_0335
crossref_primary_10_1016_j_neuroimage_2012_12_054
crossref_primary_10_1002_hbm_23461
crossref_primary_10_3389_fnins_2023_1066373
crossref_primary_10_1093_biostatistics_kxad007
crossref_primary_10_1016_j_brainres_2020_146853
crossref_primary_10_1016_j_neucom_2015_10_025
crossref_primary_10_1016_j_neuroimage_2013_09_071
crossref_primary_10_1109_TNSRE_2018_2838075
crossref_primary_10_1371_journal_pone_0144796
crossref_primary_10_1016_j_neuroimage_2021_118388
crossref_primary_10_1002_hbm_23456
crossref_primary_10_1007_s00429_017_1431_1
Cites_doi 10.1093/scan/nsl004
10.1523/JNEUROSCI.1311-05.2005
10.1111/j.1469-8986.2007.00621.x
10.1016/j.neuroimage.2008.07.063
10.1002/hbm.10015
10.1002/hbm.20737
10.1371/journal.pone.0006660
10.1002/mrm.10609
10.1016/S0166-2236(98)01374-5
10.1093/brain/awl004
10.1073/pnas.0811168106
10.1002/hbm.10062
10.1093/cercor/bhm105
10.1016/S0730-725X(02)00503-9
10.4310/SII.2010.v3.n1.a4
10.1002/hbm.10143
10.1016/j.neuroimage.2004.04.022
10.1016/S1361-8415(00)00035-9
10.1016/j.neuroimage.2006.09.018
10.1002/hbm.20050
10.1523/JNEUROSCI.16-13-04275.1996
10.1073/pnas.0504136102
10.1196/annals.1440.011
10.1006/nimg.2002.1132
10.1016/S0730-725X(99)00102-2
10.1038/jcbfm.1993.4
10.1002/nbm.781
10.1016/j.neuroimage.2007.06.041
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2004.08.050
10.1002/hbm.21192
10.1002/jmri.10350
10.1371/journal.pone.0008595
10.1002/hbm.1031
10.1002/hbm.20836
10.1093/cercor/bhn059
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Sep 1, 2012
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Sep 1, 2012
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2012.05.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database ProQuest
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology

MEDLINE


Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1779
ExternalDocumentID PMC3408852
3642119261
22634220
10_1016_j_neuroimage_2012_05_032
S1053811912005204
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM074909
– fundername: NIMH NIH HHS
  grantid: R01-MH079251
– fundername: NIGMS NIH HHS
  grantid: T32 GM074909-01
– fundername: NIMH NIH HHS
  grantid: R01 MH079251
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
7QO
5PM
ID FETCH-LOGICAL-c597t-a65f7014d44e58127c24207dc030e8c0740e22ae3ac5fc1be38f2366e3a7e7093
IEDL.DBID M7P
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307369000044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Nov 04 02:00:54 EST 2025
Tue Oct 07 09:53:49 EDT 2025
Wed Oct 01 17:19:58 EDT 2025
Sat Nov 29 14:51:11 EST 2025
Mon Jul 21 05:52:33 EDT 2025
Sat Nov 29 03:33:18 EST 2025
Tue Nov 18 19:44:09 EST 2025
Fri Feb 23 02:36:06 EST 2024
Tue Oct 14 19:34:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Functional connectivity
fMRI
Structural connectivity
DTI
Clustering
Auditory processing
Resting-state networks
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-a65f7014d44e58127c24207dc030e8c0740e22ae3ac5fc1be38f2366e3a7e7093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3408852
PMID 22634220
PQID 1668107782
PQPubID 2031077
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408852
proquest_miscellaneous_1038600531
proquest_miscellaneous_1030349305
proquest_journals_1668107782
pubmed_primary_22634220
crossref_citationtrail_10_1016_j_neuroimage_2012_05_032
crossref_primary_10_1016_j_neuroimage_2012_05_032
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_05_032
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_05_032
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Leergaard, White, de Crespigny, Bolstad, D'Arceuil (bb0130) 2010; 5
Bowman, Patel, Lu (bb0020) 2004; 23
Maddock (bb0140) 1999; 22
Ling, Merideth, Caprihan, Pena, Teshiba, Mayer (bb0135) 2012; 33
Stanberry, Nandy, Cordes (bb0180) 2003; 20
Baumgartner, Ryner, Richter, Summers, Jarmasz, Somorjai (bb0010) 2000; 18
Behrens, Johansen-Berg, Jbabdi, Rushworth, Woolrich (bb0035) 2007; 34
Fink, Markowitsch, Reinkemeier, Bruckbauer, Kessler, Heiss (bb0075) 1996; 16
Mori, van Zijl (bb0155) 2002; 15
Goutte, Nielsen, Liptrot, Hansen (bb0090) 2001; 13
Cordes, Haughton, Carew, Arfanakis, Maravilla (bb0045) 2002; 20
Wang, Jiang, Yu, Tian, Li, Liu, Zhou, Xu, Song, Li (bb0195) 2008; 18
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bb0085) 2005; 102
Lazar, Alexander (bb0125) 2005; 24
Smith (bb0175) 2002; 17
Bowman, Patel (bb0015) 2004; 23
Mayer, Mannell, Ling, Elgie, Gasparovic, Phillips, Doezema, Yeo (bb0145) 2009; 30
Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bb0100) 2008; 106
Lawes, Barrick, Murugam, Spierings, Evans, Song, Clark (bb0120) 2008; 39
Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0030) 2003; 50
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0185) 2002; 15
Duda, Hart (bb0065) 1973
Parker, Haroon, Wheeler-Kingshott (bb0160) 2003; 18
Buckner, Andrews-Hanna, Schacter (bb0025) 2008; 1124
Rykhlevskaia, Gratton, Fabiani (bb0165) 2008; 45
Friston, Frith, Liddle, Frackowiak (bb0080) 1993; 13
Cavanna, Trimble (bb0040) 2006; 129
Fadili, Ruan, Bloyet, Mazoyer (bb0070) 2001; 5
Skudlarski, Jagannathan, Calhoun, Hampson, Skudlarska, Pearlson (bb0170) 2008; 43
Balslev, Nielsen, Frutiger, Sidtis, Christiansen, Svarer, Strother, Rottenberg, Hansen, Paulson, Law (bb0005) 2002; 15
Greicius, Supekar, Menon, Dougherty (bb0095) 2009; 19
Morgan, Mishra, Newton, Gore, Ding (bb0150) 2009; 4
Craddock, James, Holtzheimer, Hu, Mayberg (bb0050) 2011
Jenkinson, Bannister, Brady, Smith (bb0110) 2002; 17
van den Heuvel, Mandl, Kahn, Hulshoff Pol (bb0190) 2009; 30
Jellison, Field, Medow, Lazar, Salamat, Alexander (bb0105) 2004; 25
Croxson, Johansen-Berg, Behrens, Robson, Pinsk, Gross, Richter, Richter, Kastner, Rushworth (bb0055) 2005; 25
Derado, Bowman, Ely, Kilts (bb0060) 2010; 3
Johnson, Raye, Mitchell, Touryan, Greene, Nolen-Hoeksema (bb0115) 2006; 1
Maddock (10.1016/j.neuroimage.2012.05.032_bb0140) 1999; 22
Cavanna (10.1016/j.neuroimage.2012.05.032_bb0040) 2006; 129
Buckner (10.1016/j.neuroimage.2012.05.032_bb0025) 2008; 1124
Wang (10.1016/j.neuroimage.2012.05.032_bb0195) 2008; 18
Croxson (10.1016/j.neuroimage.2012.05.032_bb0055) 2005; 25
Behrens (10.1016/j.neuroimage.2012.05.032_bb0030) 2003; 50
Parker (10.1016/j.neuroimage.2012.05.032_bb0160) 2003; 18
Stanberry (10.1016/j.neuroimage.2012.05.032_bb0180) 2003; 20
Bowman (10.1016/j.neuroimage.2012.05.032_bb0015) 2004; 23
van den Heuvel (10.1016/j.neuroimage.2012.05.032_bb0190) 2009; 30
Ling (10.1016/j.neuroimage.2012.05.032_bb0135) 2012; 33
Johnson (10.1016/j.neuroimage.2012.05.032_bb0115) 2006; 1
Bowman (10.1016/j.neuroimage.2012.05.032_bb0020) 2004; 23
Duda (10.1016/j.neuroimage.2012.05.032_bb0065) 1973
Fox (10.1016/j.neuroimage.2012.05.032_bb0085) 2005; 102
Rykhlevskaia (10.1016/j.neuroimage.2012.05.032_bb0165) 2008; 45
Goutte (10.1016/j.neuroimage.2012.05.032_bb0090) 2001; 13
Lazar (10.1016/j.neuroimage.2012.05.032_bb0125) 2005; 24
Leergaard (10.1016/j.neuroimage.2012.05.032_bb0130) 2010; 5
Smith (10.1016/j.neuroimage.2012.05.032_bb0175) 2002; 17
Craddock (10.1016/j.neuroimage.2012.05.032_bb0050) 2011
Greicius (10.1016/j.neuroimage.2012.05.032_bb0095) 2009; 19
Honey (10.1016/j.neuroimage.2012.05.032_bb0100) 2008; 106
Friston (10.1016/j.neuroimage.2012.05.032_bb0080) 1993; 13
Mayer (10.1016/j.neuroimage.2012.05.032_bb0145) 2009; 30
Lawes (10.1016/j.neuroimage.2012.05.032_bb0120) 2008; 39
Baumgartner (10.1016/j.neuroimage.2012.05.032_bb0010) 2000; 18
Behrens (10.1016/j.neuroimage.2012.05.032_bb0035) 2007; 34
Jellison (10.1016/j.neuroimage.2012.05.032_bb0105) 2004; 25
Fadili (10.1016/j.neuroimage.2012.05.032_bb0070) 2001; 5
Tzourio-Mazoyer (10.1016/j.neuroimage.2012.05.032_bb0185) 2002; 15
Derado (10.1016/j.neuroimage.2012.05.032_bb0060) 2010; 3
Balslev (10.1016/j.neuroimage.2012.05.032_bb0005) 2002; 15
Morgan (10.1016/j.neuroimage.2012.05.032_bb0150) 2009; 4
Mori (10.1016/j.neuroimage.2012.05.032_bb0155) 2002; 15
Fink (10.1016/j.neuroimage.2012.05.032_bb0075) 1996; 16
Skudlarski (10.1016/j.neuroimage.2012.05.032_bb0170) 2008; 43
Cordes (10.1016/j.neuroimage.2012.05.032_bb0045) 2002; 20
Jenkinson (10.1016/j.neuroimage.2012.05.032_bb0110) 2002; 17
19554558 - Hum Brain Mapp. 2009 Dec;30(12):4152-66
14673804 - Hum Brain Mapp. 2003 Dec;20(4):201-19
10370255 - Trends Neurosci. 1999 Jul;22(7):310-6
16192375 - J Neurosci. 2005 Sep 28;25(39):8854-66
17602140 - Cereb Cortex. 2008 Mar;18(3):697-704
16399806 - Brain. 2006 Mar;129(Pt 3):564-83
10642106 - Magn Reson Imaging. 2000 Jan;18(1):89-94
18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54
11376501 - Hum Brain Mapp. 2001 Jul;13(3):165-83
12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
15325373 - Neuroimage. 2004 Sep;23(1):260-8
21643436 - Stat Interface. 2010;3(1):45-58
19684850 - PLoS One. 2009;4(8):e6660
18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
17070705 - Neuroimage. 2007 Jan 1;34(1):144-55
17919935 - Neuroimage. 2008 Jan 1;39(1):62-79
11231177 - Med Image Anal. 2001 Mar;5(1):55-67
12377157 - Neuroimage. 2002 Oct;17(2):825-41
17995910 - Psychophysiology. 2008 Mar;45(2):173-87
12165349 - Magn Reson Imaging. 2002 May;20(4):305-17
15627594 - Neuroimage. 2005 Jan 15;24(2):524-32
11835604 - Hum Brain Mapp. 2002 Mar;15(3):135-45
19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41
21391258 - Hum Brain Mapp. 2012 Jan;33(1):50-62
19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40
15340933 - Hum Brain Mapp. 2004 Oct;23(2):109-19
21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
18771736 - Neuroimage. 2008 Nov 15;43(3):554-61
20062822 - PLoS One. 2010;5(1):e8595
11771995 - Neuroimage. 2002 Jan;15(1):273-89
15037456 - AJNR Am J Neuroradiol. 2004 Mar;25(3):356-69
14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88
12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80
18574518 - Soc Cogn Affect Neurosci. 2006 Jun;1(1):56-64
15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
8753888 - J Neurosci. 1996 Jul 1;16(13):4275-82
References_xml – volume: 25
  start-page: 8854
  year: 2005
  end-page: 8866
  ident: bb0055
  article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography
  publication-title: J. Neurosci.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0175
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 34
  start-page: 144
  year: 2007
  end-page: 155
  ident: bb0035
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
– volume: 15
  start-page: 135
  year: 2002
  end-page: 145
  ident: bb0005
  article-title: Cluster analysis of activity–time series in motor learning
  publication-title: Hum. Brain Mapp.
– volume: 24
  start-page: 524
  year: 2005
  end-page: 532
  ident: bb0125
  article-title: Bootstrap white matter tractography (BOOT-TRAC)
  publication-title: Neuroimage
– volume: 18
  start-page: 89
  year: 2000
  end-page: 94
  ident: bb0010
  article-title: Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis
  publication-title: Magn. Reson. Imaging
– volume: 16
  start-page: 4275
  year: 1996
  end-page: 4282
  ident: bb0075
  article-title: Cerebral representation of one's own past: neural networks involved in autobiographical memory
  publication-title: J. Neurosci.
– year: 2011
  ident: bb0050
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 468
  year: 2002
  end-page: 480
  ident: bb0155
  article-title: Fiber tracking: principles and strategies—a technical review
  publication-title: NMR Biomed.
– volume: 20
  start-page: 305
  year: 2002
  end-page: 317
  ident: bb0045
  article-title: Hierchical clustering to measure connectivity in fMRI resting-state data
  publication-title: MRI
– volume: 22
  start-page: 310
  year: 1999
  end-page: 316
  ident: bb0140
  article-title: The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain
  publication-title: Trends Neurosci.
– volume: 18
  start-page: 242
  year: 2003
  end-page: 254
  ident: bb0160
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J. Magn. Reson. Imaging
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: bb0030
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
– volume: 30
  start-page: 4152
  year: 2009
  end-page: 4166
  ident: bb0145
  article-title: Auditory orienting and inhibition of return in mild traumatic brain injury: a fMRI study
  publication-title: Hum. Brain Mapp.
– volume: 13
  start-page: 5
  year: 1993
  end-page: 14
  ident: bb0080
  article-title: Functional connectivity: the principal component analysis of large data sets
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 106
  start-page: 2035
  year: 2008
  end-page: 2040
  ident: bb0100
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: PNAS
– volume: 19
  start-page: 72
  year: 2009
  end-page: 78
  ident: bb0095
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb. Cortex
– volume: 3
  start-page: 45
  year: 2010
  end-page: 58
  ident: bb0060
  article-title: Evaluating functional autocorrelation within spatially distributed neural processing networks
  publication-title: Stat. Interface
– volume: 43
  start-page: 554
  year: 2008
  end-page: 561
  ident: bb0170
  article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations
  publication-title: Neuroimage
– volume: 4
  start-page: e6660
  year: 2009
  ident: bb0150
  article-title: Integrating functional and diffusion magnetic resonance imaging for analysis of structure–function relationship in the human language network
  publication-title: PLoS One
– volume: 20
  start-page: 201
  year: 2003
  end-page: 219
  ident: bb0180
  article-title: Cluster analysis of fMRI data using dendrogram sharpening
  publication-title: Hum. Brain Mapp.
– volume: 30
  start-page: 3127
  year: 2009
  end-page: 3141
  ident: bb0190
  article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Hum. Brain Mapp.
– volume: 13
  start-page: 165
  year: 2001
  end-page: 183
  ident: bb0090
  article-title: Feature-space clustering for fMRI meta-analysis
  publication-title: Hum. Brain Mapp.
– volume: 5
  start-page: e8595
  year: 2010
  ident: bb0130
  article-title: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain
  publication-title: PLoS One
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  ident: bb0025
  article-title: The brain's default network: anatomy, function, and relevance to disease
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 33
  start-page: 50
  year: 2012
  end-page: 62
  ident: bb0135
  article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0110
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 25
  start-page: 356
  year: 2004
  end-page: 369
  ident: bb0105
  article-title: Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy and tumor imaging patterns
  publication-title: Am. J. Neuroradiol.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bb0185
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 1
  start-page: 56
  year: 2006
  end-page: 64
  ident: bb0115
  article-title: Dissociating medial frontal and posterior cingulate activity during self-reflection
  publication-title: Soc. Cogn. Affect. Neurosci.
– volume: 39
  start-page: 62
  year: 2008
  end-page: 79
  ident: bb0120
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: Neuroimage
– volume: 18
  start-page: 697
  year: 2008
  end-page: 704
  ident: bb0195
  article-title: Spontaneous activity associated with primary visual cortex: a resting-state fMRI study
  publication-title: Cereb. Cortex
– volume: 5
  start-page: 55
  year: 2001
  end-page: 67
  ident: bb0070
  article-title: On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 109
  year: 2004
  end-page: 119
  ident: bb0020
  article-title: Methods for detecting functional classifications in neuroimaging data
  publication-title: Hum. Brain Mapp.
– volume: 129
  start-page: 564
  year: 2006
  end-page: 583
  ident: bb0040
  article-title: The precuneus: a review of its functional anatomy and behavioural correlates
  publication-title: Brain
– volume: 23
  start-page: 260
  year: 2004
  end-page: 268
  ident: bb0015
  article-title: Identifying spatial relationships in neural processing using a multiple classification approach
  publication-title: Neuroimage
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bb0085
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: PNAS
– volume: 45
  start-page: 173
  year: 2008
  end-page: 187
  ident: bb0165
  article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review
  publication-title: Psychophysiology
– year: 1973
  ident: bb0065
  article-title: Pattern Classification and Scene Analysis
– volume: 1
  start-page: 56
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2012.05.032_bb0115
  article-title: Dissociating medial frontal and posterior cingulate activity during self-reflection
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nsl004
– volume: 25
  start-page: 8854
  year: 2005
  ident: 10.1016/j.neuroimage.2012.05.032_bb0055
  article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1311-05.2005
– volume: 45
  start-page: 173
  year: 2008
  ident: 10.1016/j.neuroimage.2012.05.032_bb0165
  article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00621.x
– volume: 43
  start-page: 554
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2012.05.032_bb0170
  article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.063
– volume: 15
  start-page: 135
  year: 2002
  ident: 10.1016/j.neuroimage.2012.05.032_bb0005
  article-title: Cluster analysis of activity–time series in motor learning
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10015
– volume: 30
  start-page: 3127
  year: 2009
  ident: 10.1016/j.neuroimage.2012.05.032_bb0190
  article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20737
– volume: 4
  start-page: e6660
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2012.05.032_bb0150
  article-title: Integrating functional and diffusion magnetic resonance imaging for analysis of structure–function relationship in the human language network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006660
– volume: 50
  start-page: 1077
  year: 2003
  ident: 10.1016/j.neuroimage.2012.05.032_bb0030
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 22
  start-page: 310
  issue: 7
  year: 1999
  ident: 10.1016/j.neuroimage.2012.05.032_bb0140
  article-title: The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(98)01374-5
– volume: 129
  start-page: 564
  year: 2006
  ident: 10.1016/j.neuroimage.2012.05.032_bb0040
  article-title: The precuneus: a review of its functional anatomy and behavioural correlates
  publication-title: Brain
  doi: 10.1093/brain/awl004
– volume: 106
  start-page: 2035
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2012.05.032_bb0100
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: PNAS
  doi: 10.1073/pnas.0811168106
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2012.05.032_bb0175
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– year: 2011
  ident: 10.1016/j.neuroimage.2012.05.032_bb0050
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
– volume: 18
  start-page: 697
  year: 2008
  ident: 10.1016/j.neuroimage.2012.05.032_bb0195
  article-title: Spontaneous activity associated with primary visual cortex: a resting-state fMRI study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm105
– volume: 20
  start-page: 305
  year: 2002
  ident: 10.1016/j.neuroimage.2012.05.032_bb0045
  article-title: Hierchical clustering to measure connectivity in fMRI resting-state data
  publication-title: MRI
  doi: 10.1016/S0730-725X(02)00503-9
– volume: 3
  start-page: 45
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.05.032_bb0060
  article-title: Evaluating functional autocorrelation within spatially distributed neural processing networks
  publication-title: Stat. Interface
  doi: 10.4310/SII.2010.v3.n1.a4
– volume: 20
  start-page: 201
  year: 2003
  ident: 10.1016/j.neuroimage.2012.05.032_bb0180
  article-title: Cluster analysis of fMRI data using dendrogram sharpening
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10143
– volume: 23
  start-page: 260
  year: 2004
  ident: 10.1016/j.neuroimage.2012.05.032_bb0015
  article-title: Identifying spatial relationships in neural processing using a multiple classification approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.04.022
– volume: 5
  start-page: 55
  year: 2001
  ident: 10.1016/j.neuroimage.2012.05.032_bb0070
  article-title: On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00035-9
– volume: 25
  start-page: 356
  year: 2004
  ident: 10.1016/j.neuroimage.2012.05.032_bb0105
  article-title: Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy and tumor imaging patterns
  publication-title: Am. J. Neuroradiol.
– volume: 34
  start-page: 144
  year: 2007
  ident: 10.1016/j.neuroimage.2012.05.032_bb0035
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 23
  start-page: 109
  year: 2004
  ident: 10.1016/j.neuroimage.2012.05.032_bb0020
  article-title: Methods for detecting functional classifications in neuroimaging data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20050
– volume: 16
  start-page: 4275
  issue: 13
  year: 1996
  ident: 10.1016/j.neuroimage.2012.05.032_bb0075
  article-title: Cerebral representation of one's own past: neural networks involved in autobiographical memory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-13-04275.1996
– year: 1973
  ident: 10.1016/j.neuroimage.2012.05.032_bb0065
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: 10.1016/j.neuroimage.2012.05.032_bb0085
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: PNAS
  doi: 10.1073/pnas.0504136102
– volume: 1124
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2012.05.032_bb0025
  article-title: The brain's default network: anatomy, function, and relevance to disease
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1440.011
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2012.05.032_bb0110
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 18
  start-page: 89
  year: 2000
  ident: 10.1016/j.neuroimage.2012.05.032_bb0010
  article-title: Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(99)00102-2
– volume: 13
  start-page: 5
  year: 1993
  ident: 10.1016/j.neuroimage.2012.05.032_bb0080
  article-title: Functional connectivity: the principal component analysis of large data sets
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1993.4
– volume: 15
  start-page: 468
  year: 2002
  ident: 10.1016/j.neuroimage.2012.05.032_bb0155
  article-title: Fiber tracking: principles and strategies—a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.781
– volume: 39
  start-page: 62
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2012.05.032_bb0120
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.041
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2012.05.032_bb0185
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 24
  start-page: 524
  year: 2005
  ident: 10.1016/j.neuroimage.2012.05.032_bb0125
  article-title: Bootstrap white matter tractography (BOOT-TRAC)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.08.050
– volume: 33
  start-page: 50
  year: 2012
  ident: 10.1016/j.neuroimage.2012.05.032_bb0135
  article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21192
– volume: 18
  start-page: 242
  year: 2003
  ident: 10.1016/j.neuroimage.2012.05.032_bb0160
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10350
– volume: 5
  start-page: e8595
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.05.032_bb0130
  article-title: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008595
– volume: 13
  start-page: 165
  issue: 3
  year: 2001
  ident: 10.1016/j.neuroimage.2012.05.032_bb0090
  article-title: Feature-space clustering for fMRI meta-analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1031
– volume: 30
  start-page: 4152
  year: 2009
  ident: 10.1016/j.neuroimage.2012.05.032_bb0145
  article-title: Auditory orienting and inhibition of return in mild traumatic brain injury: a fMRI study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20836
– volume: 19
  start-page: 72
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.05.032_bb0095
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn059
– reference: 14673804 - Hum Brain Mapp. 2003 Dec;20(4):201-19
– reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40
– reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 21391258 - Hum Brain Mapp. 2012 Jan;33(1):50-62
– reference: 15340933 - Hum Brain Mapp. 2004 Oct;23(2):109-19
– reference: 10370255 - Trends Neurosci. 1999 Jul;22(7):310-6
– reference: 11376501 - Hum Brain Mapp. 2001 Jul;13(3):165-83
– reference: 19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41
– reference: 19684850 - PLoS One. 2009;4(8):e6660
– reference: 17602140 - Cereb Cortex. 2008 Mar;18(3):697-704
– reference: 18574518 - Soc Cogn Affect Neurosci. 2006 Jun;1(1):56-64
– reference: 19554558 - Hum Brain Mapp. 2009 Dec;30(12):4152-66
– reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
– reference: 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17
– reference: 16399806 - Brain. 2006 Mar;129(Pt 3):564-83
– reference: 18771736 - Neuroimage. 2008 Nov 15;43(3):554-61
– reference: 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80
– reference: 16192375 - J Neurosci. 2005 Sep 28;25(39):8854-66
– reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
– reference: 21643436 - Stat Interface. 2010;3(1):45-58
– reference: 11231177 - Med Image Anal. 2001 Mar;5(1):55-67
– reference: 8753888 - J Neurosci. 1996 Jul 1;16(13):4275-82
– reference: 15325373 - Neuroimage. 2004 Sep;23(1):260-8
– reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41
– reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
– reference: 15627594 - Neuroimage. 2005 Jan 15;24(2):524-32
– reference: 17070705 - Neuroimage. 2007 Jan 1;34(1):144-55
– reference: 20062822 - PLoS One. 2010;5(1):e8595
– reference: 17919935 - Neuroimage. 2008 Jan 1;39(1):62-79
– reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
– reference: 17995910 - Psychophysiology. 2008 Mar;45(2):173-87
– reference: 15037456 - AJNR Am J Neuroradiol. 2004 Mar;25(3):356-69
– reference: 11835604 - Hum Brain Mapp. 2002 Mar;15(3):135-45
– reference: 12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54
– reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
– reference: 14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88
– reference: 10642106 - Magn Reson Imaging. 2000 Jan;18(1):89-94
– reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
SSID ssj0009148
Score 2.3261757
Snippet There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC)...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1769
SubjectTerms Algorithms
Auditory processing
Brain - physiology
Brain Mapping - methods
Brain research
Cluster Analysis
Clustering
Diffusion
Diffusion Tensor Imaging
DTI
Female
fMRI
Fourier transforms
Functional connectivity
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
Medical imaging
Neural Pathways - physiology
NMR
Nuclear magnetic resonance
Resting-state networks
Statistical analysis
Statistical methods
Structural connectivity
Title Determining functional connectivity using fMRI data with diffusion-based anatomical weighting
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912005204
https://dx.doi.org/10.1016/j.neuroimage.2012.05.032
https://www.ncbi.nlm.nih.gov/pubmed/22634220
https://www.proquest.com/docview/1668107782
https://www.proquest.com/docview/1030349305
https://www.proquest.com/docview/1038600531
https://pubmed.ncbi.nlm.nih.gov/PMC3408852
Volume 62
WOSCitedRecordID wos000307369000044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfH-UjcpIvFokdhI74gEx2AQSraoJpL4gy7UdrQjSsbbs39-d7aQMxFSJl1SpfVLis-_O519-R8hLW6nK1S5jznLDwN86ZlSD9NqZMcq7Spig6U9yPFbTaT1JCbdlglV2NjEYarewmCN_lVfInCXBob05-8mwahSerqYSGjtkD1kSeIDuTTaku3kRP4UrBVN5XickT8R3Bb7I-Q9YtQjw4oG_U_B_uae_w88_UZS_uaXju__7QvfInRSQ0rdxBt0nN3z7gNwapSP3h-Tr-wSYAR9H0QvG5CG1iJCxsfYERfQ8tI5OPlKEnFLM7lKsvbLGZBxDV-moaWGDH9gJ6EVIyILMI_Ll-Ojzuw8s1WRgFrYeK2aqspGwrXJF4UsIDqQFH59JZ8FYeGUhIMk858YLY8vG5jMvVMNFVcEf0susFo_Jbrto_VNQhTfczuQMfk3R1PWsKHMQtE2TG7AFbkBkpwptE2E51s34rjtk2je9UaJGJeqs1KDEAcl7ybNI2rGFTN1pW3cfpYIZ1eBZtpB93cumwCUGJFtKH3QTRCcDstSb2TEgL_pmWPp4nmNav1hDHxhzUdRgsa_to6pgaQfkSZyv_ZBA5C0KzjMY6Cszue-A1ONXW9r5aaAgFwV4p5I_u_7R98ltfM8IyTsgu6vztX9Obtpfq_nyfEh25FSGqxqSvcOj8eQE7kZ8NAyr-BLuuVCs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamDQEvG78GhQFGgkeLxHbiRAhNiDGtWlshNKS9IOPajiiCdKwtE_8UfyN3dpIyEFNf9sBTpdgnNfb5vrPz-TtCntq8yF3pEuYsNwzw1jFTVCivnRhTeJcLE2Z6oEaj4vi4fLtGfrZ3YZBW2cbEEKjd1OIZ-fM0R-UsBYC2e_KNYdUo_LraltCIbnHof5zBlm32sr8H8_uM8_03R68PWFNVgFlInufM5FmlYGPgpPQZwJuygFKJchbc3RcWIDXxnBsvjM0qm469KCou8hweKK-C-BKE_A2JV0aRKsiHS5HfVMard5lgRZqWDXMo8smCPuXkK0QJJJTxoBcq-L_g8O9090_W5m8wuL_1vw3gDbLZJNz0VVwhN8mar2-Rq8OGUnCbfNhrCEGA4RRRPh6OUosMIBtra1C8HQCtw3d9ipRaiqfXFGvLLPCwkWEq4KipzXwa1BfoWThwBps75P2lvNw2Wa-ntb8HU-8Nt2M1hl8jq7IcyywFQ1tVqYFY53pEtVOvbSPIjnVBvuiWefdZL51Go9PoJNPgND2SdpYnUZRkBZuy9S7dXroFmNCAnCvYvuhsm8QsJlwrWu-0DqmbADnTS2_skSddM4Q2_F5laj9dQB8YcyFLQKQL-xR5QJIeuRvXRzcksLMQkvMEBvrcyuk6oLT6-ZZ68ilIrAsJ6Jvx-xf_9cfk2sHRcKAH_dHhA3Id3znSD3fI-vx04R-SK_b7fDI7fRTiBCUfL3td_QKBrqen
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5NHZp44TejYwMjwWO0xPnhRAghWFdRbauqCaS9IOPajiiCdFtbJv41_jruYidlIKa-7IGnSLFPSpzzfWfn83cAz3WWZ6YwYWA0VwHirQlUXpK8dqhUbk0Wq_pLH4rhMD85KUZr8LM5C0O0yiYm1oHaTDXtke9GGSlnCQS03dLTIka9_uvTs4AqSNGf1qachnORA_vjApdvs1eDHn7rF5z399_vvQt8hYFAYyI9D1SWlgIXCSZJbIpQJzQiViiMRte3uUZ4DS3nysZKp6WOxjbOSx5nGd4QVtRCTBj-1wUmGUkH1t_uD0fHS8nfKHEH8dI4yKOo8Dwixy6r1Son3zBmEL2M1-qhMf8XOP6d_P7J4fwNFPu3_-fhvAO3fCrO3ri5cxfWbHUPNo482eA-fOx5qhCiOyP8d9umTBM3SLuqG4zODWDr0fGAEdmW0b42o6ozC9qGDChJMExVaj6tdRnYRb0VjTYP4MO1vNxD6FTTyj5CN7CK67EY41UlZVGMkzRCQ12WkcIoaLogGjeQ2ku1U8WQr7Lh5H2RSweS5EAyTCU6UBei1vLUyZWsYFM0niab47gIIBIxdQXbl62tT9lcKrai9XbjnNKHzplcemYXnrXNGPToT5aq7HSBfXDM46RArLqyT57VGNOFTTdX2iHBNUeccB7iQF-aRW0HEl2_3FJNPtfi63GCuJzyrasf_Sls4HSSh4PhwWO4Sa_seInb0JmfL-wO3NDf55PZ-RMfNBh8uu6J9QsANbHB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+functional+connectivity+using+fMRI+data+with+diffusion-based+anatomical+weighting&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bowman%2C+F.+DuBois&rft.au=Zhang%2C+Lijun&rft.au=Derado%2C+Gordana&rft.au=Chen%2C+Shuo&rft.date=2012-09-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=62&rft.issue=3&rft.spage=1769&rft.epage=1779&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.05.032&rft.externalDocID=S1053811912005204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon