Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements

Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., cla...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 21; číslo 16; s. 5677
Hlavní autori: Abbaspour, Sara, Naber, Autumn, Ortiz-Catalan, Max, GholamHosseini, Hamid, Lindén, Maria
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 2021
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., classification when new data becomes available, with limits on latency under 200–300 milliseconds) plays an important role in the control of prosthetics, less knowledge has been gained with respect to real-time performance. Recent literature has underscored the differences between offline classification accuracy, the most common performance metric, and the usability of upper limb prostheses. Therefore, a comparative offline and real-time performance analysis between common algorithms had yet to be performed. In this study, we investigated the offline and real-time performance of nine different classification algorithms, decoding ten individual hand and wrist movements. Surface myoelectric signals were recorded from fifteen able-bodied subjects while performing the ten movements. The offline decoding demonstrated that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) significantly (p < 0.05) outperformed other classifiers, with an average classification accuracy of above 97%. On the other hand, the real-time investigation revealed that, in addition to the LDA and MLE, multilayer perceptron also outperformed the other algorithms and achieved a classification accuracy and completion rate of above 68% and 69%, respectively.
AbstractList Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., classification when new data becomes available, with limits on latency under 200–300 milliseconds) plays an important role in the control of prosthetics, less knowledge has been gained with respect to real-time performance. Recent literature has underscored the differences between offline classification accuracy, the most common performance metric, and the usability of upper limb prostheses. Therefore, a comparative offline and real-time performance analysis between common algorithms had yet to be performed. In this study, we investigated the offline and real-time performance of nine different classification algorithms, decoding ten individual hand and wrist movements. Surface myoelectric signals were recorded from fifteen able-bodied subjects while performing the ten movements. The offline decoding demonstrated that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) significantly (p < 0.05) outperformed other classifiers, with an average classification accuracy of above 97%. On the other hand, the real-time investigation revealed that, in addition to the LDA and MLE, multilayer perceptron also outperformed the other algorithms and achieved a classification accuracy and completion rate of above 68% and 69%, respectively.
Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre‐recorded datasets. While real‐time data analysis (i.e., classification when new data becomes available, with limits on latency under 200–300 milliseconds) plays an important role in the control of prosthetics, less knowledge has been gained with respect to real‐time performance. Recent literature has underscored the differences between offline classification accuracy, the most common performance metric, and the usability of upper limb prostheses. Therefore, a comparative offline and real‐time performance analysis between common algorithms had yet to be performed. In this study, we investigated the offline and real‐time performance of nine different classification algorithms, decoding ten individual hand and wrist movements. Surface myoelectric signals were recorded from fifteen able‐bodied subjects while performing the ten movements. The offline decoding demonstrated that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) significantly (p &lt; 0.05) outperformed other clas-sifiers, with an average classification accuracy of above 97%. On the other hand, the real‐time investigation revealed that, in addition to the LDA and MLE, multilayer perceptron also outperformed the other algorithms and achieved a classification accuracy and completion rate of above 68% and 69%, respectively.
Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., classification when new data becomes available, with limits on latency under 200-300 milliseconds) plays an important role in the control of prosthetics, less knowledge has been gained with respect to real-time performance. Recent literature has underscored the differences between offline classification accuracy, the most common performance metric, and the usability of upper limb prostheses. Therefore, a comparative offline and real-time performance analysis between common algorithms had yet to be performed. In this study, we investigated the offline and real-time performance of nine different classification algorithms, decoding ten individual hand and wrist movements. Surface myoelectric signals were recorded from fifteen able-bodied subjects while performing the ten movements. The offline decoding demonstrated that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) significantly (p < 0.05) outperformed other classifiers, with an average classification accuracy of above 97%. On the other hand, the real-time investigation revealed that, in addition to the LDA and MLE, multilayer perceptron also outperformed the other algorithms and achieved a classification accuracy and completion rate of above 68% and 69%, respectively.Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., classification when new data becomes available, with limits on latency under 200-300 milliseconds) plays an important role in the control of prosthetics, less knowledge has been gained with respect to real-time performance. Recent literature has underscored the differences between offline classification accuracy, the most common performance metric, and the usability of upper limb prostheses. Therefore, a comparative offline and real-time performance analysis between common algorithms had yet to be performed. In this study, we investigated the offline and real-time performance of nine different classification algorithms, decoding ten individual hand and wrist movements. Surface myoelectric signals were recorded from fifteen able-bodied subjects while performing the ten movements. The offline decoding demonstrated that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) significantly (p < 0.05) outperformed other classifiers, with an average classification accuracy of above 97%. On the other hand, the real-time investigation revealed that, in addition to the LDA and MLE, multilayer perceptron also outperformed the other algorithms and achieved a classification accuracy and completion rate of above 68% and 69%, respectively.
Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., classification when new data becomes available, with limits on latency under 200-300 milliseconds) plays an important role in the control of prosthetics, less knowledge has been gained with respect to real-time performance. Recent literature has underscored the differences between offline classification accuracy, the most common performance metric, and the usability of upper limb prostheses. Therefore, a comparative offline and real-time performance analysis between common algorithms had yet to be performed. In this study, we investigated the offline and real-time performance of nine different classification algorithms, decoding ten individual hand and wrist movements. Surface myoelectric signals were recorded from fifteen able-bodied subjects while performing the ten movements. The offline decoding demonstrated that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) significantly (p &lt; 0.05) outperformed other classifiers, with an average classification accuracy of above 97%. On the other hand, the real-time investigation revealed that, in addition to the LDA and MLE, multilayer perceptron also outperformed the other algorithms and achieved a classification accuracy and completion rate of above 68% and 69%, respectively.
Author Lindén, Maria
GholamHosseini, Hamid
Abbaspour, Sara
Naber, Autumn
Ortiz-Catalan, Max
AuthorAffiliation 3 Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
4 Operational Area 3, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
6 Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand; hamid.gholamhosseini@aut.ac.nz
7 School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden; maria.linden@mdh.se
1 Department of Neurology, Massachusetts General Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02114, USA
2 Center for Bionics and Pain Research, 431 80 Möndal, Sweden; anaber@pm.me (A.N.); maxo@chalmers.se (M.O.-C.)
5 Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
AuthorAffiliation_xml – name: 2 Center for Bionics and Pain Research, 431 80 Möndal, Sweden; anaber@pm.me (A.N.); maxo@chalmers.se (M.O.-C.)
– name: 5 Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
– name: 1 Department of Neurology, Massachusetts General Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02114, USA
– name: 7 School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden; maria.linden@mdh.se
– name: 6 Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand; hamid.gholamhosseini@aut.ac.nz
– name: 3 Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
– name: 4 Operational Area 3, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
Author_xml – sequence: 1
  givenname: Sara
  surname: Abbaspour
  fullname: Abbaspour, Sara
– sequence: 2
  givenname: Autumn
  orcidid: 0000-0002-8284-5503
  surname: Naber
  fullname: Naber, Autumn
– sequence: 3
  givenname: Max
  surname: Ortiz-Catalan
  fullname: Ortiz-Catalan, Max
– sequence: 4
  givenname: Hamid
  surname: GholamHosseini
  fullname: GholamHosseini, Hamid
– sequence: 5
  givenname: Maria
  orcidid: 0000-0003-1940-1747
  surname: Lindén
  fullname: Lindén, Maria
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55822$$DView record from Swedish Publication Index (Mälardalens högskola)
https://gup.ub.gu.se/publication/307872$$DView record from Swedish Publication Index (Göteborgs universitet)
https://research.chalmers.se/publication/525856$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp1kl1vFCEUhiemxn7ohf9gEm80cSwwMMCNSdNW26RNTa3eEoY57LKZgS3MrOm_l92txq3pDZAzz_sAwzks9nzwUBRvMfpU1xIdJ4JxwxrOXxQHmBJaCULQ3j_r_eIwpQVCpK5r8arYryllGGN5UNhb0H115wYote_KG2t756E8X-l-0qMLvgy2vH4I0IMZozPlNz2OEH15CybMvNsgNsRynEN5lmud87N15mKtuw4rGMCP6XXx0uo-wZvH-aj48eX87vSiurr5enl6clUZJvlYCWo5WIu1xJR3xBjTNmAZB95y2uhWIIah5kxzqSltaou4JVRqxhg1OVEfFZdbbxf0Qi2jG3R8UEE7tSmEOFM6js70oBCiSOBWYIsbKpHQUjIiWqCSYS0oZNf3rSv9guXU7tgiJNDRzJWZ636AmFQCxVCDadtJZbXUinYWK9HkoRbZzKlAxPBsrZ61zqalyqXZtLbViAtOMv_xWf7M_TzZ3Gno5oqx_NIZ_7zFMztAZ_LPj7rfSe1-8W6uZmGlBEWEEZwF7x8FMdxPkEY1uGSg77WHMCVFWNOguhFUZPTdE3QRpujz-64pxhHPU6aOt5SJIaUIVhk3blor7-96hZFaN7H628Q58eFJ4s_x_2d_A9SM8TY
CitedBy_id crossref_primary_10_3390_s22093424
crossref_primary_10_1080_02564602_2023_2265897
crossref_primary_10_1088_1741_2552_ad331f
crossref_primary_10_1007_s13246_025_01557_7
crossref_primary_10_1016_j_compbiomed_2024_109169
crossref_primary_10_1016_j_medengphy_2025_104432
crossref_primary_10_1007_s42600_025_00426_2
crossref_primary_10_1038_s41598_024_82519_z
crossref_primary_10_1109_THMS_2024_3389690
crossref_primary_10_3390_s22010225
crossref_primary_10_1109_TNSRE_2025_3573917
crossref_primary_10_1080_10255842_2025_2526017
crossref_primary_10_1109_TNSRE_2024_3371896
crossref_primary_10_1016_j_eswa_2024_124373
crossref_primary_10_1186_s12984_025_01672_2
Cites_doi 10.3390/s16081304
10.1109/MECBME.2014.6783276
10.1109/EMBC.2018.8513427
10.1155/2017/5090454
10.1109/TNSRE.2010.2100828
10.1109/TBME.2007.909536
10.1001/jama.2009.116
10.1109/TNSRE.2014.2305097
10.1109/10.204774
10.3390/app7111163
10.1007/BF00996704
10.1016/j.eswa.2012.01.102
10.1186/1751-0473-8-11
10.1504/IJMIC.2017.083780
10.1016/S1350-4533(99)00066-1
10.1186/s12984-017-0284-4
10.1109/ROBIO.2006.340145
10.1186/1751-0473-8-10
10.1007/s11517-019-02073-z
10.1682/JRRD.2010.07.0127
10.3390/s150409022
10.1109/BSN.2017.7935997
10.1109/86.481972
10.3390/s19204596
10.1615/CritRevBiomedEng.v30.i456.80
10.1016/j.neucom.2013.02.012
10.1016/j.bspc.2014.02.005
10.1186/1475-925X-9-72
10.1109/TBME.2008.2005485
10.2316/P.2012.764-035
10.1016/j.aca.2012.12.027
10.1109/TBME.2011.2113182
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
F1U
ABBSD
F1S
DOA
DOI 10.3390/s21165677
DatabaseName CrossRef
ProQuest Central (Corporate)
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Mälardalens högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Mälardalens högskola
SwePub Articles full text
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola full text
SWEPUB Chalmers tekniska högskola
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_004081b81f164908a99528be4951a84e
oai_research_chalmers_se_50614bd9_fa9a_4df1_86f1_3895274802c7
oai_gup_ub_gu_se_307872
oai_DiVA_org_mdh_55822
PMC8402521
10_3390_s21165677
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ABGEM
ADRAZ
ADTPV
AOWAS
D8T
DF7
IPNFZ
RIG
ZZAVC
F1U
ABBSD
F1S
ID FETCH-LOGICAL-c597t-84f7eff1a9147d2cccb6ef57e7b746ab8051e375a79a4463f07f249a5554c47d3
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000689821000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:09:19 EDT 2025
Wed Nov 05 04:10:02 EST 2025
Tue Nov 04 16:40:28 EST 2025
Thu Oct 30 11:26:10 EDT 2025
Tue Nov 04 01:48:37 EST 2025
Sun Nov 09 09:36:30 EST 2025
Tue Oct 07 07:37:04 EDT 2025
Sat Nov 29 07:18:18 EST 2025
Tue Nov 18 22:33:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-84f7eff1a9147d2cccb6ef57e7b746ab8051e375a79a4463f07f249a5554c47d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8284-5503
0000-0003-1940-1747
OpenAccessLink https://doaj.org/article/004081b81f164908a99528be4951a84e
PMID 34451119
PQID 2565707256
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_004081b81f164908a99528be4951a84e
swepub_primary_oai_research_chalmers_se_50614bd9_fa9a_4df1_86f1_3895274802c7
swepub_primary_oai_gup_ub_gu_se_307872
swepub_primary_oai_DiVA_org_mdh_55822
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402521
proquest_miscellaneous_2566036848
proquest_journals_2565707256
crossref_citationtrail_10_3390_s21165677
crossref_primary_10_3390_s21165677
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Geng (ref_7) 2017; 2017
Wheeler (ref_23) 1995; 3
Politti (ref_18) 2010; 9
Phinyomark (ref_24) 2012; 39
Englehart (ref_1) 1999; 21
Kuiken (ref_14) 2009; 301
ref_12
ref_34
ref_33
ref_32
ref_30
Tenore (ref_22) 2009; 56
ref_19
Li (ref_36) 2013; 8
ref_17
ref_15
Ballabio (ref_29) 2013; 765
(ref_13) 2014; 22
(ref_10) 2013; 8
Li (ref_37) 2013; 118
Guo (ref_8) 2015; 15
Resnik (ref_38) 2011; 48
Krasoulis (ref_11) 2017; 14
Achler (ref_27) 2008; 171
ref_3
Wang (ref_9) 2017; 27
Hudgins (ref_25) 1993; 40
ref_28
Shenoy (ref_6) 2008; 55
Smith (ref_20) 2010; 19
ref_26
Tsai (ref_31) 2014; 11
Scheme (ref_2) 2011; 58
ref_5
Abbaspour (ref_16) 2020; 58
ref_4
Zecca (ref_21) 2002; 30
Kokol (ref_35) 1994; 9
References_xml – ident: ref_28
– ident: ref_30
  doi: 10.3390/s16081304
– ident: ref_32
  doi: 10.1109/MECBME.2014.6783276
– ident: ref_26
– ident: ref_34
– ident: ref_5
  doi: 10.1109/EMBC.2018.8513427
– volume: 2017
  start-page: 5090454
  year: 2017
  ident: ref_7
  article-title: Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees
  publication-title: BioMed Res. Int.
  doi: 10.1155/2017/5090454
– volume: 19
  start-page: 186
  year: 2010
  ident: ref_20
  article-title: Determining the optimal window length for pattern recogni-tion-based myoelectric control: Balancing the competing effects of classification error and controller delay
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2100828
– volume: 55
  start-page: 1128
  year: 2008
  ident: ref_6
  article-title: Online Electromyographic Control of a Robotic Prosthesis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.909536
– volume: 301
  start-page: 619
  year: 2009
  ident: ref_14
  article-title: Targeted Muscle Reinnervation for Real-time Myoelectric Control of Multifunction Artificial Arms
  publication-title: JAMA
  doi: 10.1001/jama.2009.116
– volume: 22
  start-page: 756
  year: 2014
  ident: ref_13
  article-title: Real-Time and Simultaneous Control of Artificial Limbs Based on Pat-tern Recognition Algorithms
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305097
– volume: 40
  start-page: 82
  year: 1993
  ident: ref_25
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– ident: ref_12
  doi: 10.3390/app7111163
– volume: 9
  start-page: 201
  year: 1994
  ident: ref_35
  article-title: Decision Trees Based on Automatic Learning and Their Use in Cardiology
  publication-title: J. Med. Syst.
  doi: 10.1007/BF00996704
– volume: 39
  start-page: 7420
  year: 2012
  ident: ref_24
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.102
– volume: 8
  start-page: 11
  year: 2013
  ident: ref_10
  article-title: BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms
  publication-title: Source Code Biol. Med.
  doi: 10.1186/1751-0473-8-11
– volume: 27
  start-page: 181
  year: 2017
  ident: ref_9
  article-title: Multi-finger myoelectric signals for controlling a virtual robotic prosthetic hand
  publication-title: Int. J. Model. Identif. Control
  doi: 10.1504/IJMIC.2017.083780
– volume: 21
  start-page: 431
  year: 1999
  ident: ref_1
  article-title: Classification of the myoelectric signal using time-frequency based representations
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(99)00066-1
– volume: 14
  start-page: 71
  year: 2017
  ident: ref_11
  article-title: Improved prosthetic hand control with concur-rent use of myoelectric and inertial measurements
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-017-0284-4
– ident: ref_3
  doi: 10.1109/ROBIO.2006.340145
– volume: 8
  start-page: 10
  year: 2013
  ident: ref_36
  article-title: The non-negative matrix factorization toolbox for biological data mining
  publication-title: Source Code Biol. Med.
  doi: 10.1186/1751-0473-8-10
– volume: 58
  start-page: 83
  year: 2020
  ident: ref_16
  article-title: Evaluation of surface EMG-based recogni-tion algorithms for decoding hand movements
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-02073-z
– volume: 48
  start-page: 707
  year: 2011
  ident: ref_38
  article-title: Using virtual reality environment to facilitate training with advanced up-per-limb prosthesis
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2010.07.0127
– volume: 15
  start-page: 9022
  year: 2015
  ident: ref_8
  article-title: Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement
  publication-title: Sensors
  doi: 10.3390/s150409022
– ident: ref_17
  doi: 10.1109/BSN.2017.7935997
– volume: 171
  start-page: 15
  year: 2008
  ident: ref_27
  article-title: Input feedback networks: Classification and inference based on network structure
  publication-title: Artif. Gen. Intell. Proc.
– ident: ref_4
– ident: ref_33
– volume: 3
  start-page: 324
  year: 1995
  ident: ref_23
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.481972
– ident: ref_15
  doi: 10.3390/s19204596
– volume: 30
  start-page: 459
  year: 2002
  ident: ref_21
  article-title: Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal
  publication-title: Crit. Rev. Biomed. Eng.
  doi: 10.1615/CritRevBiomedEng.v30.i456.80
– volume: 118
  start-page: 41
  year: 2013
  ident: ref_37
  article-title: Classification approach based on non-negative least squares
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.012
– volume: 11
  start-page: 17
  year: 2014
  ident: ref_31
  article-title: A comparison of upper-limb motion pattern recognition using EMG signals during dynamic and isometric muscle contractions
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2014.02.005
– volume: 9
  start-page: 72
  year: 2010
  ident: ref_18
  article-title: Evaluation of EMG processing techniques using Information Theory
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-9-72
– volume: 56
  start-page: 1427
  year: 2009
  ident: ref_22
  article-title: Decoding of Individuated Finger Movements Using Surface Electromyography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005485
– ident: ref_19
  doi: 10.2316/P.2012.764-035
– volume: 765
  start-page: 45
  year: 2013
  ident: ref_29
  article-title: Effects of supervised Self Organizing Maps parameters on classification perfor-mance
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.12.027
– volume: 58
  start-page: 1698
  year: 2011
  ident: ref_2
  article-title: Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2113182
SSID ssj0023338
Score 2.4229276
Snippet Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However,...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5677
SubjectTerms Accuracy
Amputation
Built-in gains & losses
Business metrics
Chemistry
Classification
Control algorithms
Discriminant analysis
Electromyography
Engineering
Hand movement
Instruments & Instrumentation
Medical Engineering
Medicinteknik
Orthopaedics
Ortopedi
Pattern recognition
Prostheses
Real‐time
signals
Software
Support vector machines
Usability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg4wAHfiMCAxkEiEu0xLFj54Q2tmmHrVQVTLtZjmO3lSApTYvEf897bhoIqrhwaSX7uXL6_Ozvs53vEfKmVDa3TOVx6Ysk5oplcaGYj71hXJRJ7kTIonB1IUcjdX1djLsNt7a7VrmdE8NEXTUW98gPGZ7PJRK-Piy-x5g1Ck9XuxQaN8k-KpXBON8_Ph2NJz3lyoCBbfSEMiD3hy0LajNSDlahINY_QJh_348cqIiGlefs3v_2-T6522FOerQZJA_IDVc_JHf-UCJ8RPwEAGOM74NQU1f0k_cIP-lprwVOG08vfzabrDlzS8dBl7Omk-0FJDAB_EsBT9ITKMMlEduc489dNkGVfNU-Jl_OTj9_PI-7FAyxBaaxihX30nmfmiLlsmLW2jJ3XkgnS8lzUyqIaZdJYWRhgFhmPpEeCJ0RgFIstMiekL26qd1TQnOByjwcEAozvIJVsHSVS41HBOikrSLyfusSbTt9ckyT8VUDT0Hv6d57EXndmy42ohy7jI7Rr70B6miHgmY51V1YapzDALir1EPXikSZohBMlQ5oY2oUdxE52HpWd8Hd6t9ujcirvhrCEs9aTO2adbDJARworiIiB6Np0KFhTT2fBYFvIN0MYFVE3m7G3aDJyfzqKDzDt2qmhQCAF5F3O-ym64WGoulat07DTK4kGF7sMOxUpWbazkLKnhYbCNwpKKtCe1MYzSufapXDB-BbwSRXCbPy2b__nOfkNsMLQGG_6oDsrZZr94Lcsj9W83b5sovUXxagS8c
  priority: 102
  providerName: ProQuest
Title Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements
URI https://www.proquest.com/docview/2565707256
https://www.proquest.com/docview/2566036848
https://pubmed.ncbi.nlm.nih.gov/PMC8402521
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55822
https://gup.ub.gu.se/publication/307872
https://research.chalmers.se/publication/525856
https://doaj.org/article/004081b81f164908a99528be4951a84e
Volume 21
WOSCitedRecordID wos000689821000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgcIDDxE8tbFQGAeISkTh2bB831mlIa6kqmMrJchx7rQTJtLRIXPjbeXbSaEGVuHBxJOc5Sl6e874vcb6H0JtCmNwQkceFk0lMBcliKYiLnSaUFUluWaiicHnBp1OxWMjZrVJffk1YKw_cOs6L70DWKkTqANjLRGgpGRGFBWCfakGtf_omXG7JVEe1MmBerY5QBqT-Q0OCygzng-wTRPoHyPLvdZED9dCQcc4eof0OKuLj9hQfozu2eoIe3hIQfIrcHHBe7H_jwLoq8WfnPGrE417CG9cOT37VbbGblcGzIKdZ4fl23RCYAGzFAAPxKfT5TObHnPvDTeogJr5unqGvZ-MvH8_jrnJCbIAgrGNBHbfOpVqmlJfEGFPk1jFuecFprgsBU9FmnGkuNfDBzCXcAQ_TDMCFgRHZc7RX1ZU9QDhnXlCHArAgmpaQvApb2lQ7D9wsN2WE3m89qkwnK-6rW3xXQC-881Xv_Ai97k2vWy2NXUYn_rb0Bl7-OnRAUKguKNS_giJCR9ubqro52Sjiv_AmHDYRetXvhtnkP5HoytabYJNDThdURIgPgmFwQsM91WoZdLmBKxNAQxF624bNYMjp6vI4XMOPcqkYA1wWoXc77K421wq6rjaqsQoewIKD4cUOw04MaqnMMlTaafwA5gl-UUrltNSKli5VIocGYCkjnIqEGP7if3j4ED0gfnVPeBl1hPbWNxv7Et03P9er5maE7vIFD60YoXsn4-lsPgoTFNrJ7zH0zT5NZt_-AH5zQO8
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQ8cEcEBgTEEC_REseJnQeEBt20am2ppjGNJ-M4dlsJktK0oP0pfiPHzgWCKt72wEsiOcdRLl_O-Y7tfAehlymTscQs9lKd-B5hOPQShrWnBSZR6scqslUUzoZ0PGbn58lkC_1s_oUxyyobn2gddVZIM0a-h838nE9h93bxzTNVo8zsalNCo4LFsbr4ASlb-WbQh_e7i_Hhwen7I6-uKuBJIM8rjxFNldaBSAJCMyylTGOlI6poSkksUgYwVSGNBE0E5Eqh9qmGHEVEEHgl9AjhvFfQNgGw-z20PRmMJp_aFC-EjK_SLwrDxN8rsVW3obQT9WxxgA6j_Xs9Zke11Ea6w1v_2zO6jW7WnNrdrz6CO2hL5XfRjT-UFu8hfQKE2DP_u7giz9wPWht67R60Wuduod3RRVFVBZpLd2J1R3P3pFlgBSbA713gy24f2kzIN32OzOlGhVVdX5X30cdLudEHqJcXuXqI3DgyykMEGBgWJIMon6pMBUIbhquozBz0uoEAl7X-uikD8oVDHmbQwlu0OOhFa7qoREc2Gb0zOGoNjE64bSiWU167HW58NCQmLNBwaYnPRJJEmKUK0uJAMKIctNMgidfOq-S_YeSg5-1hcDtmLknkqlhbmxjIDyPMQbSD3s4FdY_k85kVMGcEmDYOHLRb4bzTpT8_27f38DWb8SgCAuugVxvspusFh6bpmpeKQ6RiFAyHGwxr1awZlzNbkqg0HSIzEpJmCdciEZxkOuAshg3w9whTwnws6aN_P5xn6NrR6WjIh4Px8WN0HZvFTnZsbgf1Vsu1eoKuyu-rebl8WnsJF32-7I_uF1piqPU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLXGQAge-EYEBhjEEC9RE8eJnQeEBl21aV2ZJpj6ZhzHbitBUpoWtL_Gr-PaSTqCKt72wEsrOddRPo6vz7VvzkXoVcZVoghP_MykgU85ifyUE-MbSWicBYmOXRWFsyEbjfh4nJ5soV_ttzA2rbL1ic5R56Wya-Q9YvfnAgZ_PdOkRZz0B-_m331bQcrutLblNGqIHOnznxC-VW8P-_CudwkZ7H_6cOA3FQZ8BUR66XNqmDYmlGlIWU6UUlmiTcw0yxhNZMYBsjpisWSphLgpMgEzEK_IGCZhBT0iOO8VdNVKClqnwMYXwV4EsV-tZBRFadCriNO5Yawz_7kyAR1u-3dmZke_1M15g9v_89O6g241TBvv1UPjLtrSxT108w_9xfvInAJN9u1XMFgWOf5ojCXdeH-tgI5Lg4_Py7pW0EzhE6dGWuDTNu0KTID1Y2DRuA9tlgjYPgf2dMel02JfVg_Q50u50YdouygL_QjhJLZ6RBR4GZE0h7k_07kOpbG8VzOVe-hNCwehGlV2Wxzkq4DozCJHrJHjoZdr03ktRbLJ6L3F1NrAqoe7hnIxEY0zEtZzQ7jCQwOXlgZcpmlMeKYhWA4lp9pDOy2qROPSKnEBKQ-9WB8GZ2R3mGShy5WzSYAScco9xDpI7lxQ90gxmzpZc06Bf5PQQ7s15jtd-rOzPXcP3_KpiGOgtR56vcFuspoLaJqsRKUFzF-cgeFwg2GjpTUVauoKFVW2Q2zXR7I8FUamUtDchIIn8AOsPiaM8oAo9vjfD-c5ug4jTQwPR0dP0A1iM6Dcgt0O2l4uVvopuqZ-LGfV4plzFxh9uewR9xsvdrAi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+and+Offline+Evaluation+of+Myoelectric+Pattern+Recognition+for+the+Decoding+of+Hand+Movements&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Abbaspour%2C+Sara&rft.au=Naber%2C+Autumn&rft.au=Ortiz-Catalan%2C+Max&rft.au=GholamHosseini%2C+Hamid&rft.date=2021&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=16&rft_id=info:doi/10.3390%2Fs21165677&rft.externalDocID=oai_DiVA_org_mdh_55822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon