Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed

Accurately modeling the mean and volatility of wind speed can be beneficial to effective wind energy utilization. For this purpose, this paper evaluates the effectiveness of autoregressive moving average–generalized autoregressive conditional heteroscedasticity (ARMA–GARCH) approaches for modeling t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 88; číslo 3; s. 724 - 732
Hlavní autori: Liu, Heping, Erdem, Ergin, Shi, Jing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.03.2011
Elsevier
Edícia:Applied Energy
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurately modeling the mean and volatility of wind speed can be beneficial to effective wind energy utilization. For this purpose, this paper evaluates the effectiveness of autoregressive moving average–generalized autoregressive conditional heteroscedasticity (ARMA–GARCH) approaches for modeling the mean and volatility of wind speed. Five different GARCH approaches are included, and each consists of an original form and a modified form, GARCH-in-mean (GARCH-M). As a result, 10 different model structures are evaluated, based on the 7-year hourly wind speed data collected at four different heights from an observation site in Colorado, USA. Multiple evaluation methods of modeling sufficiency are used. The results show that the ARMA–GARCH(-M) approaches can effectively catch the trend change of the mean and volatility of wind speed. Also, the volatility of wind speed has the nonlinear and asymmetric time-varying feature, and the ARMA–GARCH-M structures can consistently improve the modeling sufficiency of mean wind speed. As the height increases, the explanatory power of all ARMA–GARCH(-M) models slightly deteriorates. On the other hand, no single model structure outperforms the others at all heights, and this confirms that for any wind speed dataset, the potential models should be evaluated to find the most appropriate one for the highest modeling sufficiency.
AbstractList Accurately modeling the mean and volatility of wind speed can be beneficial to effective wind energy utilization. For this purpose, this paper evaluates the effectiveness of autoregressive moving average–generalized autoregressive conditional heteroscedasticity (ARMA–GARCH) approaches for modeling the mean and volatility of wind speed. Five different GARCH approaches are included, and each consists of an original form and a modified form, GARCH-in-mean (GARCH-M). As a result, 10 different model structures are evaluated, based on the 7-year hourly wind speed data collected at four different heights from an observation site in Colorado, USA. Multiple evaluation methods of modeling sufficiency are used. The results show that the ARMA–GARCH(-M) approaches can effectively catch the trend change of the mean and volatility of wind speed. Also, the volatility of wind speed has the nonlinear and asymmetric time-varying feature, and the ARMA–GARCH-M structures can consistently improve the modeling sufficiency of mean wind speed. As the height increases, the explanatory power of all ARMA–GARCH(-M) models slightly deteriorates. On the other hand, no single model structure outperforms the others at all heights, and this confirms that for any wind speed dataset, the potential models should be evaluated to find the most appropriate one for the highest modeling sufficiency.
Author Erdem, Ergin
Liu, Heping
Shi, Jing
Author_xml – sequence: 1
  givenname: Heping
  surname: Liu
  fullname: Liu, Heping
– sequence: 2
  givenname: Ergin
  surname: Erdem
  fullname: Erdem, Ergin
– sequence: 3
  givenname: Jing
  surname: Shi
  fullname: Shi, Jing
  email: jing.shi@ndsu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23825413$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a3_3ap_3a724-732.htm$$DView record in RePEc
BookMark eNqNks9u1DAQxiNUJLaFV4BcEOWQxX8SO5E4sFpBC2qFVOjZcpxx16vETu3sor3xDrwhT8Is23LgQDmMRxr95puR5zvOjnzwkGXPKZlTQsWb9VyP4CHe7OaMYJE0c8LqR9mM1pIVDaX1UTYjnIiCCdo8yY5TWhNCGGVklq2XYRgjrMAnt4Uctrrf6MkFnwebL64uFz-__zhbXC3PT4vL17kexxi0WUHKbYj5EDronb_JpxXkA2ifa9_l29CjQu-m3V7jm8NSGgG6p9ljq_sEz-7ySXb94f3X5Xlx8fns43JxUZiqkVMhGuBtayrRyFbqFkjTUtlaq0tTSl2zrmuBi5YYoRtgUFrSWi0J65q6Krm1_CR7ddDFXW83kCY1uGSg77WHsEmqripJa1pRJE__SVIpJeWi5v-BCsEFZ6wUiH46oBFGMGqMbtBxpwAAvw8PpbaK67rGZ4eBJ6OYHAbHGDEkK5XkTK2mAcVe3s3VyejeRu2NS39EGa9ZVVKO3NsDZ2JIKYJVxk2_DzlF7XpFidqbRa3VvVnU3iyKNArNgu3ir_b7CQ82vjg0Wh2Uvom42_UXBCp0mBCCMiTeHQjAm28dRJWMA2-gcxHMpLrgHhryC6LH6SQ
CODEN APENDX
CitedBy_id crossref_primary_10_1186_s40854_023_00500_7
crossref_primary_10_3390_en13071666
crossref_primary_10_1016_j_jclepro_2024_142500
crossref_primary_10_1016_j_rser_2015_10_071
crossref_primary_10_1016_j_jeconom_2020_06_011
crossref_primary_10_1007_s11431_013_5195_4
crossref_primary_10_1016_j_dsp_2016_11_003
crossref_primary_10_1016_j_asoc_2023_110310
crossref_primary_10_1016_j_energy_2014_08_064
crossref_primary_10_1007_s00521_015_2012_y
crossref_primary_10_1016_j_renene_2021_01_003
crossref_primary_10_1109_ACCESS_2022_3171610
crossref_primary_10_1016_j_apenergy_2012_11_073
crossref_primary_10_1016_j_ecolind_2017_09_041
crossref_primary_10_1016_j_jweia_2021_104561
crossref_primary_10_1016_j_jweia_2023_105499
crossref_primary_10_1155_2015_785215
crossref_primary_10_1016_j_enconman_2014_12_072
crossref_primary_10_1016_j_energy_2016_05_133
crossref_primary_10_1007_s00521_016_2679_8
crossref_primary_10_1016_j_renene_2025_122775
crossref_primary_10_1155_2015_815253
crossref_primary_10_1061__ASCE_ST_1943_541X_0002211
crossref_primary_10_1016_j_jweia_2021_104565
crossref_primary_10_1017_jfm_2024_85
crossref_primary_10_1016_j_apenergy_2013_05_002
crossref_primary_10_1155_2013_461983
crossref_primary_10_1016_j_renene_2021_11_072
crossref_primary_10_1016_j_esr_2022_100864
crossref_primary_10_1016_j_apenergy_2024_123589
crossref_primary_10_1016_j_apenergy_2016_05_071
crossref_primary_10_1016_j_energy_2015_10_026
crossref_primary_10_3390_en9040261
crossref_primary_10_1016_j_enconman_2017_06_021
crossref_primary_10_1080_15435075_2025_2545497
crossref_primary_10_1016_j_apenergy_2016_02_125
crossref_primary_10_1016_j_enconman_2012_10_016
crossref_primary_10_1080_15435075_2025_2471997
crossref_primary_10_1109_ACCESS_2020_2964896
crossref_primary_10_3390_en81212428
crossref_primary_10_1016_j_enconman_2019_111981
crossref_primary_10_1109_ACCESS_2019_2915582
crossref_primary_10_1016_j_heliyon_2023_e18053
crossref_primary_10_1016_j_energy_2015_11_058
crossref_primary_10_1080_15567036_2021_1922550
crossref_primary_10_1109_ACCESS_2020_2966275
crossref_primary_10_1016_j_apenergy_2012_04_001
crossref_primary_10_1016_j_enconman_2017_04_064
crossref_primary_10_4236_jmf_2016_62027
crossref_primary_10_3390_su11030650
crossref_primary_10_1016_j_rser_2016_07_028
crossref_primary_10_1016_j_eswa_2022_116509
crossref_primary_10_1371_journal_pone_0116832
crossref_primary_10_1016_j_enconman_2016_08_086
crossref_primary_10_3390_su11030652
crossref_primary_10_1016_j_apenergy_2017_02_037
crossref_primary_10_3390_su8080754
crossref_primary_10_1049_rpg2_12157
crossref_primary_10_1109_TGRS_2024_3369640
crossref_primary_10_1080_15567036_2019_1632980
crossref_primary_10_1016_j_enconman_2022_116221
crossref_primary_10_1109_TSTE_2019_2940590
crossref_primary_10_1016_j_chemosphere_2020_126474
crossref_primary_10_1016_j_ijepes_2013_03_034
crossref_primary_10_1016_j_energy_2018_08_212
crossref_primary_10_1016_j_apenergy_2012_10_006
crossref_primary_10_1016_j_enconman_2016_04_036
crossref_primary_10_1016_j_engappai_2024_108201
crossref_primary_10_1108_IRJMS_11_2024_0140
crossref_primary_10_1016_j_rser_2016_01_103
crossref_primary_10_1016_j_rser_2020_109839
crossref_primary_10_3390_en9080585
crossref_primary_10_3390_en9120989
crossref_primary_10_1109_TITS_2019_2902405
crossref_primary_10_1016_j_jksuci_2020_09_009
crossref_primary_10_1002_we_2354
crossref_primary_10_1016_j_enconman_2016_01_007
crossref_primary_10_1016_j_rser_2016_01_106
crossref_primary_10_4316_AECE_2017_01001
crossref_primary_10_1002_we_2906
crossref_primary_10_1061_JOEEDU_EEENG_7445
crossref_primary_10_1016_j_apenergy_2011_07_044
crossref_primary_10_1016_j_jweia_2017_12_019
crossref_primary_10_3390_app11209441
crossref_primary_10_1016_j_renene_2014_12_074
crossref_primary_10_1080_15435075_2011_647170
crossref_primary_10_1186_s13634_017_0518_4
crossref_primary_10_1016_j_asoc_2022_109010
crossref_primary_10_1016_j_renene_2013_08_011
crossref_primary_10_1016_j_rser_2016_01_114
crossref_primary_10_3390_su10113913
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1155_2017_6856139
crossref_primary_10_3390_app9040699
crossref_primary_10_1016_j_renene_2017_06_095
crossref_primary_10_1016_j_rser_2019_109387
crossref_primary_10_1109_TPWRS_2013_2282366
crossref_primary_10_1016_j_asoc_2018_07_041
crossref_primary_10_4028_www_scientific_net_AMM_448_453_1875
crossref_primary_10_1016_j_renene_2014_03_016
crossref_primary_10_1016_j_enconman_2019_111914
crossref_primary_10_1016_j_apenergy_2011_04_051
crossref_primary_10_1109_TII_2015_2431642
crossref_primary_10_3390_s18010298
crossref_primary_10_1016_j_apenergy_2012_09_055
crossref_primary_10_1016_j_jclepro_2022_131898
crossref_primary_10_3390_math8101795
crossref_primary_10_1016_j_energy_2015_04_075
crossref_primary_10_3390_en11112976
crossref_primary_10_1155_2022_5823656
crossref_primary_10_1016_j_clet_2025_100883
crossref_primary_10_1016_j_future_2024_107565
crossref_primary_10_1155_2014_972580
crossref_primary_10_1002_for_2477
crossref_primary_10_1016_j_asoc_2020_106917
crossref_primary_10_1016_j_energy_2024_130875
crossref_primary_10_1016_j_enconman_2020_113456
crossref_primary_10_1080_13658816_2015_1135928
crossref_primary_10_1016_j_apenergy_2017_01_043
crossref_primary_10_3390_en14092352
crossref_primary_10_3390_en10111903
crossref_primary_10_1080_02664763_2013_839634
crossref_primary_10_1177_00368504221132144
crossref_primary_10_3390_en9020109
crossref_primary_10_1155_2015_740490
crossref_primary_10_3390_app10041295
crossref_primary_10_1016_j_oceaneng_2021_110308
crossref_primary_10_1016_j_jweia_2024_105898
crossref_primary_10_1109_TSTE_2015_2441747
crossref_primary_10_1016_j_enconman_2025_119752
crossref_primary_10_1002_tee_22853
crossref_primary_10_1155_2015_464153
crossref_primary_10_1049_iet_rpg_2018_5203
crossref_primary_10_1109_TSIPN_2023_3304142
crossref_primary_10_1016_j_seta_2021_101780
crossref_primary_10_3390_en7074185
crossref_primary_10_1016_j_renene_2021_03_020
crossref_primary_10_1007_s40565_018_0471_8
crossref_primary_10_1016_j_enconman_2020_113076
crossref_primary_10_1016_j_energy_2021_120057
crossref_primary_10_1016_j_apenergy_2013_02_002
crossref_primary_10_1016_j_matpr_2020_12_1090
crossref_primary_10_1016_j_apenergy_2018_08_114
crossref_primary_10_1016_j_enpol_2016_04_027
crossref_primary_10_3390_en8076585
crossref_primary_10_1093_erae_jbu006
Cites_doi 10.1002/env.714
10.2307/1912773
10.1257/.41.2.478
10.1016/j.solener.2004.09.013
10.1016/j.jweia.2006.06.001
10.1016/0304-4076(86)90063-1
10.1016/j.renene.2006.10.005
10.1080/15567240701232162
10.2307/2938260
10.1080/07350015.1992.10509902
10.1016/S0960-1481(99)00125-1
10.2307/1913829
10.1016/0038-092X(95)00103-X
10.1080/15567030802462267
10.1111/j.1540-6261.1993.tb05127.x
10.2307/2298081
10.1002/env.754
10.1214/aos/1176345144
10.1111/j.1540-6261.1993.tb05128.x
10.1214/aos/1176344136
10.1016/j.jweia.2008.03.013
10.1016/j.renene.2010.06.049
10.1007/BF00863788
10.1093/biomet/65.2.297
10.1016/j.apenergy.2009.12.013
10.1111/j.1467-8454.1978.tb00635.x
10.1016/S0038-092X(98)00032-2
10.1016/j.rser.2008.02.002
10.1257/jep.15.4.157
10.1080/15567030801911223
10.1002/jae.693
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
DKI
X2L
7S9
L.6
7SU
7TA
8FD
C1K
FR3
JG9
7ST
SOI
DOI 10.1016/j.apenergy.2010.09.028
DatabaseName AGRIS
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Materials Business File
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Materials Research Database
Engineering Research Database
Technology Research Database
Materials Business File
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList

Environment Abstracts
Materials Research Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 732
ExternalDocumentID eeeappene_v_3a88_3ay_3a2011_3ai_3a3_3ap_3a724_732_htm
23825413
10_1016_j_apenergy_2010_09_028
US201500066612
S0306261910003934
GeographicLocations Colorado
USA, Colorado
GeographicLocations_xml – name: Colorado
– name: USA, Colorado
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
0R
1
8P
AAPBV
ADALY
DKI
G-
HZ
IPNFZ
K
M
X2L
7S9
L.6
7SU
7TA
8FD
C1K
FR3
JG9
7ST
SOI
ID FETCH-LOGICAL-c597t-69e3bbc5697b7abe09b17bffa4c47a82ddbe36b0c6a9e2e4f0bfa702d98543ff3
ISICitedReferencesCount 172
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285217400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Oct 07 09:08:16 EDT 2025
Tue Oct 07 09:41:25 EDT 2025
Sun Nov 09 11:55:15 EST 2025
Thu Dec 16 09:11:49 EST 2021
Mon Jul 21 09:16:04 EDT 2025
Sat Nov 29 07:18:06 EST 2025
Tue Nov 18 21:22:08 EST 2025
Wed Dec 27 19:11:15 EST 2023
Fri Feb 23 02:30:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GARCH
ARMA
Wind speed
GARCH-M
Forecasting
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597t-69e3bbc5697b7abe09b17bffa4c47a82ddbe36b0c6a9e2e4f0bfa702d98543ff3
Notes http://dx.doi.org/10.1016/j.apenergy.2010.09.028
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663632246
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_855718151
proquest_miscellaneous_1777136831
proquest_miscellaneous_1663632246
repec_primary_eeeappene_v_3a88_3ay_3a2011_3ai_3a3_3ap_3a724_732_htm
pascalfrancis_primary_23825413
crossref_citationtrail_10_1016_j_apenergy_2010_09_028
crossref_primary_10_1016_j_apenergy_2010_09_028
fao_agris_US201500066612
elsevier_sciencedirect_doi_10_1016_j_apenergy_2010_09_028
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationSeriesTitle Applied Energy
PublicationTitle Applied energy
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kariniotakis G, Stavrakakis G, Nogaret E. A fuzzy logic and neural network based wind power model. In: Proceedings of the european wind energy conference, Goteborg, Sweden; 1996. p. 596–9.
Ewing, Kruse, Schroeder, Smith (b0060) 2007; 95
Ljung, Box (b0185) 1978; 65
Lange, Focken (b0015) 2009
Engle, Ng (b0130) 1993; 48
Fuentes, Chen, Davis, Lackmann (b0030) 2005; 16
Nfaoui, Buret, Sayigh (b0035) 1995; 56
Engle (b0095) 1982; 50
Ewing, Kruse, Thompson (b0085) 2008; 3
Erasmo, Wilfrido (b0025) 2007; 32
American Wind Energy Association, 2010, Year End 2009 Market Report.
Alexiadis, Dokopoulos, Sahsamanoglou, Manousaridis (b0040) 1998; 63
Verbeek M. A guide to modern econometrics. 2rd version, John Wiley & Sons Inc.; 2004. p. 31, 285–8.
Torres, Garcia, Deblas, Defrancisco (b0020) 2005; 79
Ma, Luan, Jiang, Liu, Zhang (b0070) 2009; 13
Engle (b0080) 2001; 15
Sentana (b0140) 1995; 62
Franses, McAleer (b0120) 2002; 17
Li G, Shi J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy; 2010.
Hannan (b0170) 1980; 8
Payne, Carroll (b0115) 2009; 31
Breusch (b0190) 1978; 17
Poon, Granger (b0125) 2003; 41
Tol (b0105) 1997; 56
Nelson, Cao (b0150) 1992; 10
Payne (b0090) 2009; 31
Godfrey (b0195) 1978; 46
[accessed March 2010].
Ewing, Kruse, Schroeder (b0110) 2006; 17
Poon, Granger (b0155) 2003; XLI
Akaike H. Information theory and extension of the maximum likelihood principle. In: Petrov BN, Cszaki F, editors. Second international symposium on information theory. Akademiai Kiado, Budapest; 1973. p. 267–81.
.
Sfetsos (b0045) 2000; 21
World Wind Energy Association. World Wind Energy Report; 2009.
Nelson (b0135) 1991; 59
Louka, Galanis, Siebert, Kariniotakis, Katsafados, Pytharoulis (b0055) 2008; 96
Glosten, Jagannathan, Runkle (b0145) 1993; 48
Schwarz (b0180) 1978; 6
[accessed July 2010].
Bollerslev (b0100) 1986; 31
Steel, Torrie (b0160) 1960
Li, Shi (b0050) 2010; 87
10.1016/j.apenergy.2010.09.028_b0065
Franses (10.1016/j.apenergy.2010.09.028_b0120) 2002; 17
Engle (10.1016/j.apenergy.2010.09.028_b0095) 1982; 50
Sentana (10.1016/j.apenergy.2010.09.028_b0140) 1995; 62
10.1016/j.apenergy.2010.09.028_b0165
Lange (10.1016/j.apenergy.2010.09.028_b0015) 2009
Ma (10.1016/j.apenergy.2010.09.028_b0070) 2009; 13
Louka (10.1016/j.apenergy.2010.09.028_b0055) 2008; 96
Hannan (10.1016/j.apenergy.2010.09.028_b0170) 1980; 8
Ewing (10.1016/j.apenergy.2010.09.028_b0085) 2008; 3
Godfrey (10.1016/j.apenergy.2010.09.028_b0195) 1978; 46
Nelson (10.1016/j.apenergy.2010.09.028_b0135) 1991; 59
Payne (10.1016/j.apenergy.2010.09.028_b0115) 2009; 31
10.1016/j.apenergy.2010.09.028_b0005
Payne (10.1016/j.apenergy.2010.09.028_b0090) 2009; 31
Fuentes (10.1016/j.apenergy.2010.09.028_b0030) 2005; 16
Alexiadis (10.1016/j.apenergy.2010.09.028_b0040) 1998; 63
Li (10.1016/j.apenergy.2010.09.028_b0050) 2010; 87
Tol (10.1016/j.apenergy.2010.09.028_b0105) 1997; 56
Ewing (10.1016/j.apenergy.2010.09.028_b0060) 2007; 95
10.1016/j.apenergy.2010.09.028_b0010
Erasmo (10.1016/j.apenergy.2010.09.028_b0025) 2007; 32
Poon (10.1016/j.apenergy.2010.09.028_b0155) 2003; XLI
10.1016/j.apenergy.2010.09.028_b0175
10.1016/j.apenergy.2010.09.028_b0075
Poon (10.1016/j.apenergy.2010.09.028_b0125) 2003; 41
Engle (10.1016/j.apenergy.2010.09.028_b0130) 1993; 48
Bollerslev (10.1016/j.apenergy.2010.09.028_b0100) 1986; 31
Schwarz (10.1016/j.apenergy.2010.09.028_b0180) 1978; 6
Breusch (10.1016/j.apenergy.2010.09.028_b0190) 1978; 17
Nelson (10.1016/j.apenergy.2010.09.028_b0150) 1992; 10
Sfetsos (10.1016/j.apenergy.2010.09.028_b0045) 2000; 21
Engle (10.1016/j.apenergy.2010.09.028_b0080) 2001; 15
Ewing (10.1016/j.apenergy.2010.09.028_b0110) 2006; 17
Nfaoui (10.1016/j.apenergy.2010.09.028_b0035) 1995; 56
Torres (10.1016/j.apenergy.2010.09.028_b0020) 2005; 79
Ljung (10.1016/j.apenergy.2010.09.028_b0185) 1978; 65
Steel (10.1016/j.apenergy.2010.09.028_b0160) 1960
Glosten (10.1016/j.apenergy.2010.09.028_b0145) 1993; 48
References_xml – volume: 96
  start-page: 2348
  year: 2008
  end-page: 2362
  ident: b0055
  article-title: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
  publication-title: J Wind Eng Ind Aerodynam
– volume: 16
  start-page: 449
  year: 2005
  end-page: 464
  ident: b0030
  article-title: Modeling and predicting complex space-time structures and patterns of coastal wind fields
  publication-title: Environmetrics
– volume: 41
  start-page: 478
  year: 2003
  end-page: 539
  ident: b0125
  article-title: Forecasting volatility in financial markets: a review
  publication-title: J Econ Literature, Amer Econ Assoc
– volume: 17
  start-page: 334
  year: 1978
  end-page: 355
  ident: b0190
  article-title: Testing for autocorrelation in dynamic linear models
  publication-title: Aust Econ Papers
– reference: Akaike H. Information theory and extension of the maximum likelihood principle. In: Petrov BN, Cszaki F, editors. Second international symposium on information theory. Akademiai Kiado, Budapest; 1973. p. 267–81.
– volume: 8
  start-page: 1071
  year: 1980
  end-page: 1081
  ident: b0170
  article-title: The estimation of the order of an ARMA process
  publication-title: Ann Stat
– volume: 79
  start-page: 65
  year: 2005
  end-page: 77
  ident: b0020
  article-title: Forecast of hourly average wind speed with Arma models in Navarre (Spain)
  publication-title: Sol Energy
– volume: 56
  start-page: 113
  year: 1997
  end-page: 122
  ident: b0105
  article-title: Autoregressive conditional heteroscedasticity in daily wind speed measurements
  publication-title: Theor Appl Climatol
– volume: 46
  start-page: 1293
  year: 1978
  end-page: 1302
  ident: b0195
  article-title: Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables
  publication-title: Econometrica
– reference: Kariniotakis G, Stavrakakis G, Nogaret E. A fuzzy logic and neural network based wind power model. In: Proceedings of the european wind energy conference, Goteborg, Sweden; 1996. p. 596–9.
– volume: 56
  start-page: 301
  year: 1995
  end-page: 314
  ident: b0035
  article-title: Stochastic simulation of hourly average wind speed sequences in Tangiers (Morocco)
  publication-title: Sol Energy
– volume: 31
  start-page: 1194
  year: 2009
  end-page: 1203
  ident: b0090
  article-title: Further evidence on modeling wind speed and time-varying turbulence
  publication-title: Energy Sources, Part A: Recovery, Utiliz, Environ Effects
– volume: 62
  start-page: 639
  year: 1995
  end-page: 661
  ident: b0140
  article-title: Quadratic arch models
  publication-title: Rev Econ Studies
– year: 1960
  ident: b0160
  article-title: Principles and procedures of statistics
– volume: 31
  start-page: 307
  year: 1986
  end-page: 327
  ident: b0100
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: J Econ
– volume: 95
  start-page: 209
  year: 2007
  end-page: 219
  ident: b0060
  article-title: Time series analysis of wind speed using VAR and the generalized impulse response technique
  publication-title: J Wind Eng Ind Aerodynam
– volume: 17
  start-page: 419
  year: 2002
  end-page: 424
  ident: b0120
  article-title: Financial volatility: an introduction
  publication-title: J Appl Economet
– reference: > [accessed July 2010].
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: b0180
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
– volume: 32
  start-page: 2116
  year: 2007
  end-page: 2128
  ident: b0025
  article-title: Wind speed forecasting in the south coast of Oaxaca, Mexico
  publication-title: Renew Energy
– reference: Li G, Shi J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy; 2010.
– reference: World Wind Energy Association. World Wind Energy Report; 2009. <
– volume: 31
  start-page: 1759
  year: 2009
  end-page: 1769
  ident: b0115
  article-title: Modeling wind speed and time-varying turbulence in geographically dispersed wind energy markets in China
  publication-title: Energy Sources, Part A: Recovery, Utiliz, Environ Effects
– volume: XLI
  start-page: 478
  year: 2003
  end-page: 539
  ident: b0155
  article-title: Forecasting volatility in financial markets: a review
  publication-title: J Econ Literature
– year: 2009
  ident: b0015
  article-title: Physical approach to short term wind power prediction
– volume: 48
  start-page: 1749
  year: 1993
  end-page: 1778
  ident: b0130
  article-title: Measuring and testing the impact of news on volatility
  publication-title: J Finance
– reference: > [accessed March 2010].
– volume: 21
  start-page: 23
  year: 2000
  end-page: 35
  ident: b0045
  article-title: A comparison of various forecasting techniques applied to mean hourly wind speed time series
  publication-title: Renew Energy
– reference: American Wind Energy Association, 2010, Year End 2009 Market Report. <
– volume: 50
  start-page: 987
  year: 1982
  end-page: 1000
  ident: b0095
  article-title: Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation
  publication-title: Econometrica
– volume: 48
  start-page: 1779
  year: 1993
  end-page: 1801
  ident: b0145
  article-title: On the relationship between the expected value and the volatility of the nominal excess returns on stocks
  publication-title: J Finance
– volume: 87
  start-page: 2313
  year: 2010
  end-page: 2320
  ident: b0050
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
– volume: 17
  start-page: 119
  year: 2006
  end-page: 127
  ident: b0110
  article-title: Time series analysis of wind speed with time-varying turbulence
  publication-title: Environmetrics
– volume: 15
  start-page: 157
  year: 2001
  end-page: 168
  ident: b0080
  article-title: GARCH 101: the use of ARCH/GARCH models in applied econometrics
  publication-title: J Econ Perspect
– volume: 63
  start-page: 61
  year: 1998
  end-page: 68
  ident: b0040
  article-title: Short term forecasting of wind speed and related electrical power
  publication-title: Sol Energy
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0070
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 59
  start-page: 347
  year: 1991
  end-page: 370
  ident: b0135
  article-title: Conditional heteroskedasticity in asset returns: a new approach
  publication-title: Econometrica
– volume: 65
  start-page: 297
  year: 1978
  end-page: 303
  ident: b0185
  article-title: On a measure of a lack of fit in time series models
  publication-title: Biometrika
– volume: 3
  start-page: 340
  year: 2008
  end-page: 347
  ident: b0085
  article-title: Analysis of time-varying turbulence in geographically-dispersed wind energy markets
  publication-title: Energy Sources, Part B: Econ, Plan, Policy
– volume: 10
  start-page: 229
  year: 1992
  end-page: 235
  ident: b0150
  article-title: Inequality constraints in the univariate GARCH model
  publication-title: J Business Econ Stat
– reference: .
– reference: Verbeek M. A guide to modern econometrics. 2rd version, John Wiley & Sons Inc.; 2004. p. 31, 285–8.
– volume: 16
  start-page: 449
  issue: 5
  year: 2005
  ident: 10.1016/j.apenergy.2010.09.028_b0030
  article-title: Modeling and predicting complex space-time structures and patterns of coastal wind fields
  publication-title: Environmetrics
  doi: 10.1002/env.714
– volume: 50
  start-page: 987
  year: 1982
  ident: 10.1016/j.apenergy.2010.09.028_b0095
  article-title: Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation
  publication-title: Econometrica
  doi: 10.2307/1912773
– volume: 41
  start-page: 478
  issue: 2
  year: 2003
  ident: 10.1016/j.apenergy.2010.09.028_b0125
  article-title: Forecasting volatility in financial markets: a review
  publication-title: J Econ Literature, Amer Econ Assoc
  doi: 10.1257/.41.2.478
– volume: 79
  start-page: 65
  issue: 1
  year: 2005
  ident: 10.1016/j.apenergy.2010.09.028_b0020
  article-title: Forecast of hourly average wind speed with Arma models in Navarre (Spain)
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.013
– year: 1960
  ident: 10.1016/j.apenergy.2010.09.028_b0160
– volume: 95
  start-page: 209
  issue: 3
  year: 2007
  ident: 10.1016/j.apenergy.2010.09.028_b0060
  article-title: Time series analysis of wind speed using VAR and the generalized impulse response technique
  publication-title: J Wind Eng Ind Aerodynam
  doi: 10.1016/j.jweia.2006.06.001
– volume: 31
  start-page: 307
  year: 1986
  ident: 10.1016/j.apenergy.2010.09.028_b0100
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: J Econ
  doi: 10.1016/0304-4076(86)90063-1
– volume: 32
  start-page: 2116
  issue: 12
  year: 2007
  ident: 10.1016/j.apenergy.2010.09.028_b0025
  article-title: Wind speed forecasting in the south coast of Oaxaca, Mexico
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.10.005
– volume: 3
  start-page: 340
  year: 2008
  ident: 10.1016/j.apenergy.2010.09.028_b0085
  article-title: Analysis of time-varying turbulence in geographically-dispersed wind energy markets
  publication-title: Energy Sources, Part B: Econ, Plan, Policy
  doi: 10.1080/15567240701232162
– volume: 59
  start-page: 347
  year: 1991
  ident: 10.1016/j.apenergy.2010.09.028_b0135
  article-title: Conditional heteroskedasticity in asset returns: a new approach
  publication-title: Econometrica
  doi: 10.2307/2938260
– ident: 10.1016/j.apenergy.2010.09.028_b0010
– volume: 10
  start-page: 229
  year: 1992
  ident: 10.1016/j.apenergy.2010.09.028_b0150
  article-title: Inequality constraints in the univariate GARCH model
  publication-title: J Business Econ Stat
  doi: 10.1080/07350015.1992.10509902
– volume: 21
  start-page: 23
  issue: 1
  year: 2000
  ident: 10.1016/j.apenergy.2010.09.028_b0045
  article-title: A comparison of various forecasting techniques applied to mean hourly wind speed time series
  publication-title: Renew Energy
  doi: 10.1016/S0960-1481(99)00125-1
– volume: 46
  start-page: 1293
  year: 1978
  ident: 10.1016/j.apenergy.2010.09.028_b0195
  article-title: Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables
  publication-title: Econometrica
  doi: 10.2307/1913829
– volume: 56
  start-page: 301
  year: 1995
  ident: 10.1016/j.apenergy.2010.09.028_b0035
  article-title: Stochastic simulation of hourly average wind speed sequences in Tangiers (Morocco)
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(95)00103-X
– ident: 10.1016/j.apenergy.2010.09.028_b0175
– ident: 10.1016/j.apenergy.2010.09.028_b0005
– volume: 31
  start-page: 1759
  issue: 19
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.028_b0115
  article-title: Modeling wind speed and time-varying turbulence in geographically dispersed wind energy markets in China
  publication-title: Energy Sources, Part A: Recovery, Utiliz, Environ Effects
  doi: 10.1080/15567030802462267
– volume: 48
  start-page: 1749
  issue: 5
  year: 1993
  ident: 10.1016/j.apenergy.2010.09.028_b0130
  article-title: Measuring and testing the impact of news on volatility
  publication-title: J Finance
  doi: 10.1111/j.1540-6261.1993.tb05127.x
– year: 2009
  ident: 10.1016/j.apenergy.2010.09.028_b0015
– volume: 62
  start-page: 639
  year: 1995
  ident: 10.1016/j.apenergy.2010.09.028_b0140
  article-title: Quadratic arch models
  publication-title: Rev Econ Studies
  doi: 10.2307/2298081
– volume: 17
  start-page: 119
  year: 2006
  ident: 10.1016/j.apenergy.2010.09.028_b0110
  article-title: Time series analysis of wind speed with time-varying turbulence
  publication-title: Environmetrics
  doi: 10.1002/env.754
– volume: 8
  start-page: 1071
  year: 1980
  ident: 10.1016/j.apenergy.2010.09.028_b0170
  article-title: The estimation of the order of an ARMA process
  publication-title: Ann Stat
  doi: 10.1214/aos/1176345144
– volume: 48
  start-page: 1779
  year: 1993
  ident: 10.1016/j.apenergy.2010.09.028_b0145
  article-title: On the relationship between the expected value and the volatility of the nominal excess returns on stocks
  publication-title: J Finance
  doi: 10.1111/j.1540-6261.1993.tb05128.x
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.apenergy.2010.09.028_b0180
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 96
  start-page: 2348
  issue: 12
  year: 2008
  ident: 10.1016/j.apenergy.2010.09.028_b0055
  article-title: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
  publication-title: J Wind Eng Ind Aerodynam
  doi: 10.1016/j.jweia.2008.03.013
– ident: 10.1016/j.apenergy.2010.09.028_b0075
  doi: 10.1016/j.renene.2010.06.049
– volume: 56
  start-page: 113
  issue: 1–2
  year: 1997
  ident: 10.1016/j.apenergy.2010.09.028_b0105
  article-title: Autoregressive conditional heteroscedasticity in daily wind speed measurements
  publication-title: Theor Appl Climatol
  doi: 10.1007/BF00863788
– volume: 65
  start-page: 297
  issue: 2
  year: 1978
  ident: 10.1016/j.apenergy.2010.09.028_b0185
  article-title: On a measure of a lack of fit in time series models
  publication-title: Biometrika
  doi: 10.1093/biomet/65.2.297
– volume: 87
  start-page: 2313
  year: 2010
  ident: 10.1016/j.apenergy.2010.09.028_b0050
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.12.013
– volume: 17
  start-page: 334
  issue: 31
  year: 1978
  ident: 10.1016/j.apenergy.2010.09.028_b0190
  article-title: Testing for autocorrelation in dynamic linear models
  publication-title: Aust Econ Papers
  doi: 10.1111/j.1467-8454.1978.tb00635.x
– ident: 10.1016/j.apenergy.2010.09.028_b0065
– ident: 10.1016/j.apenergy.2010.09.028_b0165
– volume: 63
  start-page: 61
  issue: 1
  year: 1998
  ident: 10.1016/j.apenergy.2010.09.028_b0040
  article-title: Short term forecasting of wind speed and related electrical power
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(98)00032-2
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.028_b0070
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 15
  start-page: 157
  issue: 4
  year: 2001
  ident: 10.1016/j.apenergy.2010.09.028_b0080
  article-title: GARCH 101: the use of ARCH/GARCH models in applied econometrics
  publication-title: J Econ Perspect
  doi: 10.1257/jep.15.4.157
– volume: 31
  start-page: 1194
  issue: 13
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.028_b0090
  article-title: Further evidence on modeling wind speed and time-varying turbulence
  publication-title: Energy Sources, Part A: Recovery, Utiliz, Environ Effects
  doi: 10.1080/15567030801911223
– volume: XLI
  start-page: 478
  year: 2003
  ident: 10.1016/j.apenergy.2010.09.028_b0155
  article-title: Forecasting volatility in financial markets: a review
  publication-title: J Econ Literature
  doi: 10.1257/.41.2.478
– volume: 17
  start-page: 419
  issue: 5
  year: 2002
  ident: 10.1016/j.apenergy.2010.09.028_b0120
  article-title: Financial volatility: an introduction
  publication-title: J Appl Economet
  doi: 10.1002/jae.693
SSID ssj0002120
Score 2.426556
Snippet Accurately modeling the mean and volatility of wind speed can be beneficial to effective wind energy utilization. For this purpose, this paper evaluates the...
SourceID proquest
repec
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 724
SubjectTerms Applied sciences
ARMA
Asymmetry
Colorado
data collection
Deterioration
Energy
Energy utilization
Exact sciences and technology
Forecasting
GARCH
GARCH-M
heteroskedasticity
Mathematical models
Natural energy
Nonlinearity
Trends
Volatility
Wind energy
Wind power generation
Wind speed
Wind speed Forecasting ARMA GARCH GARCH-M
Title Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed
URI https://dx.doi.org/10.1016/j.apenergy.2010.09.028
http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a3_3ap_3a724-732.htm
https://www.proquest.com/docview/1663632246
https://www.proquest.com/docview/1777136831
https://www.proquest.com/docview/855718151
Volume 88
WOSCitedRecordID wos000285217400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6lgM7IBhMKx-TkTiAUEYaJ7FzrKbyMdEJsU3qzXISe2vVplG_GDdO_AP8h_wlPCd20gLb2IGD3SpyLCfv5_eV954ReuH6AgwJP3EE8ZTjx17giEDFjmKhTFSqEukXicIf6fExGwyiT43Gd5sLsxrTLGOXl1H-X0kN14DYOnX2FuSuJoUL8B-IDj2QHfp_Irze4TN5YQLT62rehc75ud-14Q3knf5QBAqm09euAVtcXBYFGsoTcmwq1US767WHHXgZzDU2YRxfhtrpnsvNwz6tXiuLrMIq4Ge4LKVcbmWlVuNnqZyU3Ph8WKH0pDhn-PWRHZjWTlYblGVzsdzQ0bbZOp9lbA1PZI1p0jKL2shfWvo7_2DtpZdhdCDycv0mLC86cE12-UYt7d9kXBV5aIPaRtzOw_U83I04zLOFWh4NItZEre6H3uCokumeKfBpn2st1_zvK7pKzdlSYqrjb8UctqAqz07ZMG5aM5nLZE3HOb2P7hnjBHdLUD1ADZntoO21kpU7aLdXZ0bCUCMa5g_RaAN3uMYdniqscffz248CcS-d_itcow0D2rBFGwa0YY02DGjDNdr0HBptuEDbI3T2tnd6-N4xB3k4CdirCyeMJInjJAgjGlMRSzeKOzRWSviJTwXz0jSWJIzdJBSR9KSv3FgJ6nppxAKfKEV2UTObZnIPYQIWi-frso0q9T0B6rarQrCZaUcqN4g7bRTY984TU-VeH7Yy5tdTvo3eVPflZZ2XG--ILFm50VZLLZQDYm-8dw9wwMU5CHJ-duJpt6NW_sHcaKP9DXBUqwHd2gtA5Wyj5xYtHESB_r4nMjldznkHrIeQ6AqR14yhlHZIyAi8KXzFGBYEoLGCKdBGhwUaqzVIKQEf8Dx8xYlgDLqv0DQLgJ8hNAIthwZ7msNO5heLyeNbv9on6G7NVZ6i5mK2lM_QnWS1GM5n-2Zv_gLA2Qd3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+evaluation+of+ARMA%E2%80%93GARCH%28-M%29+approaches+for+modeling+the+mean+and+volatility+of+wind+speed&rft.jtitle=Applied+energy&rft.au=Liu%2C+Heping&rft.au=Erdem%2C+Ergin&rft.au=Shi%2C+Jing&rft.date=2011-03-01&rft.issn=0306-2619&rft.volume=88&rft.issue=3&rft.spage=724&rft.epage=732&rft_id=info:doi/10.1016%2Fj.apenergy.2010.09.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2010_09_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon