Survival parametric modeling for patients with heart failure based on Kernel learning

Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC medical research methodology Ročník 25; číslo 1; s. 7 - 13
Hlavní autoři: Montaseri, Maryam, Rezaei, Mansour, Khayati, Armin, Mostafaei, Shayan, Taheri, Mohammad
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 11.01.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2288, 1471-2288
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.
AbstractList Abstract Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.
Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL. Keywords: Survival Analysis, Frailty Model, Accelerated Failure Time Model, Heart Failure, Multiple Kernel Learning
Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.
Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.
ArticleNumber 7
Audience Academic
Author Montaseri, Maryam
Taheri, Mohammad
Khayati, Armin
Rezaei, Mansour
Mostafaei, Shayan
Author_xml – sequence: 1
  givenname: Maryam
  surname: Montaseri
  fullname: Montaseri, Maryam
  email: Maryam.Montaseri@Kums.ac.ir
  organization: School of Health, Kermanshah University of Medical Sciences
– sequence: 2
  givenname: Mansour
  surname: Rezaei
  fullname: Rezaei, Mansour
  organization: Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences
– sequence: 3
  givenname: Armin
  surname: Khayati
  fullname: Khayati, Armin
  organization: Computer Sci. & Eng. Department, School of Elec. & Comp. Eng, Shiraz University
– sequence: 4
  givenname: Shayan
  surname: Mostafaei
  fullname: Mostafaei, Shayan
  organization: Department of Medical Epidemiology and Biostatistics, Karolinska Institute
– sequence: 5
  givenname: Mohammad
  surname: Taheri
  fullname: Taheri, Mohammad
  organization: Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39799283$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGzYpPgV21mhqqKlohIL6NqynZuMR4k92MlU_Hs8k9J2EEKWZev6u8c-1jktjnzwUBRvMTrHWPKPCRMpWIXIftZ1xV4UJ5gJXBEi5dGz_XFxmtIaISwk5a-KY9qIpiGSnhR33-e4dVs9lBsd9QhTdLYcQwuD833ZhZjrkwM_pfLeTatyBTpOZafdMEcojU7QlsGXXyF6GMohn_rc-Lp42ekhwZuH9ay4u_r84_JLdfvt-uby4raydSOmionaYExbioAzZC1ignWcYiOEscgQIkxjdUNFh1rgbWMBoc5ig6W1xiBGz4qbRbcNeq020Y06_lJBO7UvhNir_FxnB1BIcku5ZS0CwrhGRmiwkgiQDDCvedb6tGhtZjNCa7PnqIcD0cMT71aqD1uFsSCMyd1rPjwoxPBzhjSp0SULw6A9hDkpimsmpeBEZPT9X-g6zNHnv1KUIFzXNRb0iep1duB8F_LFdieqLiShWNZUkEyd_4PKo4XR2RyZzuX6QcO7504fLf5JRQbIAtgYUorQPSIYqV301BI9lWOn9tFTO_d0aUoZ9j3EJ0v_6foN247Z8w
Cites_doi 10.1111/biom.12098
10.1002/sim.6415
10.15587/2313-8416.2014.27968
10.1001/jama.1982.03320430047030
10.1146/annurev.publhealth.18.1.105
10.1142/9789812776303_0007
10.1109/IEMBS.2009.5334847
10.1371/journal.pone.0210602
10.1213/ANE.0000000000003653
10.1161/CIRCULATIONAHA.119.041297
10.1016/j.jacc.2020.11.010
10.1111/j.1541-0420.2010.01544.x
10.1109/TPAMI.2011.153
10.34172/aim.2021.119
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1101/2022.02.18.481114
10.1016/j.artmed.2021.102077
10.1002/sim.4154
10.1093/ehjqcco/qcx031
10.1007/11559887_3
10.1007/978-1-4419-6646-9
10.5244/C.30.98
10.1109/ICDM.2008.50
10.1186/1471-2105-9-292
10.1145/2661829.2662065
10.1109/TNNLS.2015.2420611
10.1186/1471-2261-14-126
10.1186/1471-2288-10-40
10.1007/978-3-319-89725-7_7
10.1371/journal.pone.0181001
10.1002/sim.9717
10.1201/b14978
10.21037/atm.2016.08.45
10.1109/TCBB.2007.070208
10.1111/biom.13880
10.1002/sim.4780111409
10.18637/jss.v011.i09
10.1002/sim.7681
10.1007/s10985-020-09509-x
10.1214/009053607000000677
10.18637/jss.v090.i07
10.1201/9781003282525
10.32614/CRAN.package.bigSurvSGD
10.1088/1742-6596/974/1/012008
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12874-024-02455-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 13
ExternalDocumentID oai_doaj_org_article_086c36c4d0e246a0b7aec827e84e1656
PMC11724484
A823185372
39799283
10_1186_s12874_024_02455_4
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c597t-475b113d30e640cc0474f631b77bc0b227b9ca937f0de6d9ce00fc1b18ccbb043
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001394559100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2288
IngestDate Fri Oct 03 12:52:49 EDT 2025
Tue Nov 04 02:05:13 EST 2025
Wed Oct 01 14:43:00 EDT 2025
Tue Oct 07 05:34:32 EDT 2025
Tue Nov 11 10:51:48 EST 2025
Tue Nov 04 18:12:09 EST 2025
Fri May 02 01:41:46 EDT 2025
Sat Nov 29 06:39:05 EST 2025
Sat Sep 06 07:35:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heart Failure
Multiple Kernel Learning
Frailty Model
Survival Analysis
Accelerated Failure Time Model
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-475b113d30e640cc0474f631b77bc0b227b9ca937f0de6d9ce00fc1b18ccbb043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/086c36c4d0e246a0b7aec827e84e1656
PMID 39799283
PQID 3201555173
PQPubID 42579
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_086c36c4d0e246a0b7aec827e84e1656
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11724484
proquest_miscellaneous_3154887627
proquest_journals_3201555173
gale_infotracmisc_A823185372
gale_infotracacademiconefile_A823185372
pubmed_primary_39799283
crossref_primary_10_1186_s12874_024_02455_4
springer_journals_10_1186_s12874_024_02455_4
PublicationCentury 2000
PublicationDate 2025-01-11
PublicationDateYYYYMMDD 2025-01-11
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 2455_CR15
2455_CR16
2455_CR1
D Liu (2455_CR18) 2008; 9
2455_CR19
2455_CR6
G Heller (2455_CR41) 2021; 27
2455_CR11
2455_CR12
2455_CR13
ET Lee (2455_CR4) 1997; 18
2455_CR26
2455_CR27
A Vedaldi (2455_CR45) 2012; 34
2455_CR29
T Cai (2455_CR20) 2011; 67
Z Zhang (2455_CR25) 2016; 4
N Hartman (2455_CR39) 2023; 42
TA Balan (2455_CR7) 2019; 90
M Gönen (2455_CR33) 2011; 12
2455_CR21
JA Sinnott (2455_CR17) 2013; 69
2455_CR23
P Schober (2455_CR5) 2018; 127
S Chiou (2455_CR24) 2015; 34
Y Chandrashekhar (2455_CR3) 2020; 141
C Bredy (2455_CR49) 2018; 4
H Uno (2455_CR38) 2011; 30
CM Wilson (2455_CR50) 2021; 116
T Ahmad (2455_CR47) 2017; 12
F Kiaee (2455_CR28) 2016; 27
2455_CR30
2455_CR32
G Grover (2455_CR10) 2014; 3
2455_CR35
2455_CR36
L-J Wei (2455_CR8) 1992; 11
X Kong (2455_CR31) 2010; 10
L Kats (2455_CR9) 2023; 79
GW Brier (2455_CR42) 1950; 78
A Karatzoglou (2455_CR14) 2004; 11
FE Harrell (2455_CR37) 1982; 247
N Salehi (2455_CR43) 2021; 24
C Igel (2455_CR34) 2007; 4
2455_CR40
GA Roth (2455_CR44) 2020; 76
FM Zahid (2455_CR48) 2019; 14
EH Bradley (2455_CR2) 2014; 14
2455_CR46
JA Sinnott (2455_CR22) 2018; 37
References_xml – volume: 69
  start-page: 861
  issue: 4
  year: 2013
  ident: 2455_CR17
  publication-title: Biometrics
  doi: 10.1111/biom.12098
– volume: 34
  start-page: 1495
  issue: 9
  year: 2015
  ident: 2455_CR24
  publication-title: Stat Med
  doi: 10.1002/sim.6415
– volume: 3
  start-page: 42
  year: 2014
  ident: 2455_CR10
  publication-title: SRL
  doi: 10.15587/2313-8416.2014.27968
– volume: 247
  start-page: 2543
  issue: 18
  year: 1982
  ident: 2455_CR37
  publication-title: JAMA
  doi: 10.1001/jama.1982.03320430047030
– volume: 18
  start-page: 105
  issue: 1
  year: 1997
  ident: 2455_CR4
  publication-title: Annu Rev Public Health
  doi: 10.1146/annurev.publhealth.18.1.105
– ident: 2455_CR19
  doi: 10.1142/9789812776303_0007
– ident: 2455_CR21
  doi: 10.1109/IEMBS.2009.5334847
– volume: 14
  issue: 2
  year: 2019
  ident: 2455_CR48
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210602
– volume: 127
  start-page: 792
  issue: 3
  year: 2018
  ident: 2455_CR5
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000003653
– volume: 141
  start-page: 2004
  issue: 24
  year: 2020
  ident: 2455_CR3
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.041297
– volume: 76
  start-page: 2982
  issue: 25
  year: 2020
  ident: 2455_CR44
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.11.010
– volume: 67
  start-page: 975
  issue: 3
  year: 2011
  ident: 2455_CR20
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01544.x
– volume: 34
  start-page: 480
  issue: 3
  year: 2012
  ident: 2455_CR45
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.153
– volume: 12
  start-page: 2211
  year: 2011
  ident: 2455_CR33
  publication-title: The Journal of Machine Learning Research
– volume: 24
  start-page: 796
  issue: 11
  year: 2021
  ident: 2455_CR43
  publication-title: Arch Iran Med
  doi: 10.34172/aim.2021.119
– ident: 2455_CR30
– volume: 78
  start-page: 1
  issue: 1
  year: 1950
  ident: 2455_CR42
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– ident: 2455_CR11
  doi: 10.1101/2022.02.18.481114
– ident: 2455_CR40
– volume: 116
  year: 2021
  ident: 2455_CR50
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102077
– volume: 30
  start-page: 1105
  issue: 10
  year: 2011
  ident: 2455_CR38
  publication-title: Stat Med
  doi: 10.1002/sim.4154
– volume: 4
  start-page: 51
  issue: 1
  year: 2018
  ident: 2455_CR49
  publication-title: European Heart Journal-Quality of Care and Clinical Outcomes
  doi: 10.1093/ehjqcco/qcx031
– ident: 2455_CR15
  doi: 10.1007/11559887_3
– ident: 2455_CR29
  doi: 10.1007/978-1-4419-6646-9
– ident: 2455_CR46
  doi: 10.5244/C.30.98
– ident: 2455_CR12
  doi: 10.1109/ICDM.2008.50
– volume: 9
  start-page: 1
  year: 2008
  ident: 2455_CR18
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-292
– ident: 2455_CR23
  doi: 10.1145/2661829.2662065
– volume: 27
  start-page: 648
  issue: 3
  year: 2016
  ident: 2455_CR28
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2420611
– volume: 14
  start-page: 1
  year: 2014
  ident: 2455_CR2
  publication-title: BMC Cardiovasc Disord
  doi: 10.1186/1471-2261-14-126
– volume: 10
  start-page: 40
  issue: 1
  year: 2010
  ident: 2455_CR31
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-10-40
– ident: 2455_CR1
  doi: 10.1007/978-3-319-89725-7_7
– volume: 12
  issue: 7
  year: 2017
  ident: 2455_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0181001
– ident: 2455_CR16
– volume: 42
  start-page: 2179
  issue: 13
  year: 2023
  ident: 2455_CR39
  publication-title: Stat Med
  doi: 10.1002/sim.9717
– ident: 2455_CR27
  doi: 10.1201/b14978
– ident: 2455_CR35
– volume: 4
  start-page: 484
  issue: 24
  year: 2016
  ident: 2455_CR25
  publication-title: Annals of Translational Medicine
  doi: 10.21037/atm.2016.08.45
– volume: 4
  start-page: 216
  issue: 2
  year: 2007
  ident: 2455_CR34
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2007.070208
– volume: 79
  start-page: 3066
  issue: 4
  year: 2023
  ident: 2455_CR9
  publication-title: Biometrics
  doi: 10.1111/biom.13880
– volume: 11
  start-page: 1871
  issue: 14–15
  year: 1992
  ident: 2455_CR8
  publication-title: Stat Med
  doi: 10.1002/sim.4780111409
– volume: 11
  start-page: 1
  year: 2004
  ident: 2455_CR14
  publication-title: J Stat Softw
  doi: 10.18637/jss.v011.i09
– volume: 37
  start-page: 2501
  issue: 16
  year: 2018
  ident: 2455_CR22
  publication-title: Stat Med
  doi: 10.1002/sim.7681
– volume: 27
  start-page: 1
  issue: 1
  year: 2021
  ident: 2455_CR41
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-020-09509-x
– ident: 2455_CR13
  doi: 10.1214/009053607000000677
– volume: 90
  start-page: 1
  year: 2019
  ident: 2455_CR7
  publication-title: J Stat Softw
  doi: 10.18637/jss.v090.i07
– ident: 2455_CR36
– ident: 2455_CR32
  doi: 10.1201/9781003282525
– ident: 2455_CR6
  doi: 10.32614/CRAN.package.bigSurvSGD
– ident: 2455_CR26
  doi: 10.1088/1742-6596/974/1/012008
SSID ssj0017836
Score 2.437353
Snippet Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis....
Abstract Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7
SubjectTerms Accelerated Failure Time Model
Algorithms
Angioplasty
Artificial intelligence
Care and treatment
Event history analysis
Frailty
Frailty Model
Health Sciences
Heart Failure
Heart Failure - mortality
Humans
Machine Learning
Medicine
Medicine & Public Health
Methods
Models, Statistical
Mortality
Multiple Kernel Learning
Prognosis
Proportional Hazards Models
Statistical models
Statistical Theory and Methods
Statistics for Life Sciences
Support vector machines
Survival Analysis
Theory of Medicine/Bioethics
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSFNyVQkJGQOIBVO3Fi54QKokICKiSotDcrnjjtSjQpm11-PzNe75YUwYVDLrETeTyf5-GxZxh70ZW6AW8aIRuQQqOKEr6SAbHc1RZR7QsfLwp_MkdHdjarv6QNtzEdq9zIxCio2wFoj3y_yEm7l8oUb85_CKoaRdHVVELjKrtGZbMJ52a2dbgU3VDYXJSx1f6oKLm7QK1ET1kKPVFGMWf_n5L5N9V0-djkpdhpVEmHt_-XmDvsVjJG-cEaPXfZldDfYzc-p3D7fXb8dYWSBLHIKUP4GRXfAh5r5-B4OJq7PKVlHTnt53Kqjr3kXTOns-6cFGTLh55_DIs-fOepQMXJA3Z8-P7buw8i1WEQgO7GUmhTeqWKtpCh0hJAaqO7qlDeGA_S57nxNTRo53SyDVVbQ5CyA-WVBfBe6uIh2-mHPjxiHK3RBh3OEvAX2qNp1hahtl2oVZd7W5uMvdowxJ2v02246KbYyq3Z55B1LrLP6Yy9JZ5te1Kq7PhiWJy4tPIc-mxQVKBbGXJdNRKBGcDmJlgdKPVQxl4Sxx0taGQrNOleAg6YUmO5AwqUolFj8oztTXriQoRp84bZLgmC0V1wOmPPt830JR1u68Owwj7kNpJWQvJ31xDbkhTDrmgCZsxOwDehedrSz09jmnCFtik63zhLrzc4vRjX3yf18b_JeMJu5lQCWSqh1B7bWS5W4Sm7Dj-X83HxLK6_XxPyNsw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDLdgIMSFb0ZhoCAhcYCKpE2b9DimTUjAhBhDu0WNm25P2vrQ63v8_dh57YMOOMChlyZtE8eO7Tr-GeBFW-gavalTWaNMNamo1JcyEC-3lSWu9rmPicIfzOGhPTmpPg1JYf142n0MScadOoq1Ld_0iqHZU9IpfBVFqq_CNVJ3lgs2fD76uokdcF7CmB7zx-cmKigi9f--H_-ikC4flrwUMY2K6OD2_03hDtwaDE-xu-aUu3AldPfgxschtH4fjo9WtGsQ3wlGA7_gQlsoYp0c-oIg01YMEKy94H-3githL0Vbz_hcu2Bl2Ih5J96HRRfOxVCM4vQBHB_sf9l7lw41F1Ik12KZalN4pfIml6HUElFqo9syV94Yj9JnmfEV1mTTtLIJZVNhkLJF5ZVF9F7q_CFsdfMuPAJBlmdNzmWB9ArtyQxr8lDZNlSqzbytTAKvxmVw39bQGi66JLZ0a0o5opKLlHI6gbe8UpueDIsdb8wXp26QMkf-GeYl6kaGTJe1JCYMaDMTrA4MM5TAS15nx8JLi4n1kINAA2YYLLfLQVEyYEyWwM6kJwkdTptHTnGD0Pcuz9gALZTJE3i-aeYn-SBbF-Yr6sMuImsgmv72mrE2U4ohVjL3ErATlpvMedrSzc4iJLgiO5QcbaLS65Hzfo7r70R9_G_dn8DNjMsfS5UqtQNby8UqPIXr-H056xfPohT-AG4WLRw
  priority: 102
  providerName: Springer Nature
Title Survival parametric modeling for patients with heart failure based on Kernel learning
URI https://link.springer.com/article/10.1186/s12874-024-02455-4
https://www.ncbi.nlm.nih.gov/pubmed/39799283
https://www.proquest.com/docview/3201555173
https://www.proquest.com/docview/3154887627
https://pubmed.ncbi.nlm.nih.gov/PMC11724484
https://doaj.org/article/086c36c4d0e246a0b7aec827e84e1656
Volume 25
WOSCitedRecordID wos001394559100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQIgXxOfI2CojIfEA0ezEiZ3HDW0CwapqY6g8WbHjbJUgnfrB38-dk5RlE-KFh1ZK7Vr23dn3u9j-HcCbOpOls6qMeel4LNFFxTbnHm25LjRatU1tuCj8RY3HejotJtdSfdGZsJYeuBXcPkJul-ZOVtwnMi85tuudTpTX0hNzDK2-XBV9MNXtH9DdhP6KjM73l4Jo3WP0R_TJslgO3FBg67-9Jl9zSjcPTN7YNQ3O6PgxPOpQJDtoe_8E7vjmKTw46fbJn8H52RqXADQiRtTePylrlmMh6Q02xxCnso5PdcnoRSyjtNYrVpczOqTOyLNVbN6wz37R-B-syyxx8RzOj4--fvgYdwkUYodxwiqWKrNCpFXKfS65c1wqWeepsEpZx22SKFu4EgFKzSufV4XznNdOWKGds5bL9AVsNfPGvwSGMLLESDFz2IS0iKmq1Be69oWoE6sLFcG7Xp7mquXJMCG-0LlppW9Q8iZI38gIDknkm5rEcR1-QM2bTvPmX5qP4C0pzNBMRK24srtQgB0mTitzQDuciEZUEsHuoCbOIDcs7lVuuhm8NGlCaDITKo3g9aaY_kmn0ho_X2MdivfIneDwt1sL2Qwp7JcidotAD2xnMOZhSTO7DPzeAkElRs0opfe9mf3p19-FuvM_hPoKHiaU4ZiLWIhd2Fot1n4P7rtfq9lyMYK7aqrCtx7BvcOj8eR0FCYePk0-nUy-49Pp2bffja8u3A
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQEX9iVQwEggDhDVTpzYOSBUlqrVTCskWmluJnacMhJkyiwg_hS_kfc8yZQUwa0HDrnETpTnfG-z3wLwpM5k6awqY146HktUUbHNuUcs14VGVNvUhkThodrf16NR8X4Nfna5MBRW2cnEIKiriaM98s00Ie2eCZW-Ov4aU9coOl3tWmgsYTHwP76jyzZ7ufsW_-_TJNl-d_BmJ267CsQOjed5LFVmhUirlPtccue4VLLOU2GVso7bJFG2cCVq7ZpXPq8K5zmvnbBCO2ctlym-9xycRzmuyNlTo5WDJygjokvM0fnmTFAx-Ri1IF1ZFsue8gs9Av7UBL-pwtNhmqfOaoMK3L76vy3eNbjSGttsa8kd12HNNzfg4l4bTnATDj8sUFIirzGqgP6Fmos5FnoDIf0MzXnWlp2dMdqvZtT9e87qckyx_IwMgIpNGjbw08Z_Zm0DjqNbcHgmRN2G9WbS-LvA0Nou0aHOHL5CWjQ9q9QXuvaFqBOrCxXB8w4A5nhZTsQEN0znZgkXg1AxAS5GRvCaMLKaSaXAw43J9Mi0ksWgT-rS3MmK-0TmJUfG804nymvpqbRSBM8IYYYEFsLIlW3eBX4wlf4yW3QQjEabSiLY6M1EQeP6wx24TCvoZuYEWRE8Xg3TkxS81_jJAueQW0xaF8m_s4T0iqRwrIwmbgS6B_Yezf2RZvwplEEXaHtLqXGVXnR8cfJdf1_Ue_8m4xFc2jnYG5rh7v7gPlxOqN0zF7EQG7A-ny78A7jgvs3Hs-nDwPsMPp41v_wCdweUQw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgoImX8TnoGBAkJB6gWtKmTfo4Pk6gjdOkMbS3qEnTcRL0prve_v7ZaXusAx4QD_fSpL3GsWO7tn8GeFVnsnRWlTEvHY8lqqjY5twjL9eFRq62qQ2FwodqOtWnp8XRlSr-kO0-hCS7mgZCaWravfOq7kRc53tLQTDtMeoX-mVZLG_CLUmJ9OSvH39bxxGoRmEolfnjfSN1FFD7fz-bryin64mT16KnQSlN7v7_cu7BVm-Qsv2Og-7DDd88gM0vfcj9IZwcr_A0QX5khBL-kxpwORb65-C_MTR5WQ_NumT0TZdRh-yW1eWM8t0ZKcmKzRt24BeN_8H6JhVnj-Bk8vHr-09x34shduhytLFUmRUirVLuc8md41LJOk-FVco6bpNE2cKVaOvUvPJ5VTjPee2EFdo5a7lMt2GjmTf-CTC0SEt0OjOHj5AWzbMq9YWufSHqxOpCRfBm2BJz3kFumOCq6Nx0lDJIJRMoZWQE72jX1jMJLjtcmC_OTC99Bv02l-ZOVtwnMi85Mqd3OlFeS0_wQxG8pj03JNS4sa7saxPwhQkey-xTsBQNG5VEsDuaicLoxsMD15j-MFiaNCHDNBMqjeDlepjupAS3xs9XOIdcR9JMuPzHHZOtlxRCr2gGRqBH7Dda83ikmX0PUOEC7VN0wJFKbwcu_PVefyfqzr9NfwGbRx8m5vDz9OAp3EmoQzIXsRC7sNEuVv4Z3HYX7Wy5eB6E8xIhNTjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+parametric+modeling+for+patients+with+heart+failure+based+on+Kernel+learning&rft.jtitle=BMC+medical+research+methodology&rft.au=Maryam+Montaseri&rft.au=Mansour+Rezaei&rft.au=Armin+Khayati&rft.au=Shayan+Mostafaei&rft.date=2025-01-11&rft.pub=BMC&rft.eissn=1471-2288&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12874-024-02455-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_086c36c4d0e246a0b7aec827e84e1656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon