Survival parametric modeling for patients with heart failure based on Kernel learning
Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this...
Uloženo v:
| Vydáno v: | BMC medical research methodology Ročník 25; číslo 1; s. 7 - 13 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
11.01.2025
BioMed Central Ltd Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 1471-2288, 1471-2288 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL. |
|---|---|
| AbstractList | Abstract Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL. Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL. Keywords: Survival Analysis, Frailty Model, Accelerated Failure Time Model, Heart Failure, Multiple Kernel Learning Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL. Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL. |
| ArticleNumber | 7 |
| Audience | Academic |
| Author | Montaseri, Maryam Taheri, Mohammad Khayati, Armin Rezaei, Mansour Mostafaei, Shayan |
| Author_xml | – sequence: 1 givenname: Maryam surname: Montaseri fullname: Montaseri, Maryam email: Maryam.Montaseri@Kums.ac.ir organization: School of Health, Kermanshah University of Medical Sciences – sequence: 2 givenname: Mansour surname: Rezaei fullname: Rezaei, Mansour organization: Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences – sequence: 3 givenname: Armin surname: Khayati fullname: Khayati, Armin organization: Computer Sci. & Eng. Department, School of Elec. & Comp. Eng, Shiraz University – sequence: 4 givenname: Shayan surname: Mostafaei fullname: Mostafaei, Shayan organization: Department of Medical Epidemiology and Biostatistics, Karolinska Institute – sequence: 5 givenname: Mohammad surname: Taheri fullname: Taheri, Mohammad organization: Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39799283$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_wB1igSGzYpPgV21mhqqKlohIL6NqynZuMR4k92MlU_Hs8k9J2EEKWZev6u8c-1jktjnzwUBRvMTrHWPKPCRMpWIXIftZ1xV4UJ5gJXBEi5dGz_XFxmtIaISwk5a-KY9qIpiGSnhR33-e4dVs9lBsd9QhTdLYcQwuD833ZhZjrkwM_pfLeTatyBTpOZafdMEcojU7QlsGXXyF6GMohn_rc-Lp42ekhwZuH9ay4u_r84_JLdfvt-uby4raydSOmionaYExbioAzZC1ignWcYiOEscgQIkxjdUNFh1rgbWMBoc5ig6W1xiBGz4qbRbcNeq020Y06_lJBO7UvhNir_FxnB1BIcku5ZS0CwrhGRmiwkgiQDDCvedb6tGhtZjNCa7PnqIcD0cMT71aqD1uFsSCMyd1rPjwoxPBzhjSp0SULw6A9hDkpimsmpeBEZPT9X-g6zNHnv1KUIFzXNRb0iep1duB8F_LFdieqLiShWNZUkEyd_4PKo4XR2RyZzuX6QcO7504fLf5JRQbIAtgYUorQPSIYqV301BI9lWOn9tFTO_d0aUoZ9j3EJ0v_6foN247Z8w |
| Cites_doi | 10.1111/biom.12098 10.1002/sim.6415 10.15587/2313-8416.2014.27968 10.1001/jama.1982.03320430047030 10.1146/annurev.publhealth.18.1.105 10.1142/9789812776303_0007 10.1109/IEMBS.2009.5334847 10.1371/journal.pone.0210602 10.1213/ANE.0000000000003653 10.1161/CIRCULATIONAHA.119.041297 10.1016/j.jacc.2020.11.010 10.1111/j.1541-0420.2010.01544.x 10.1109/TPAMI.2011.153 10.34172/aim.2021.119 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.1101/2022.02.18.481114 10.1016/j.artmed.2021.102077 10.1002/sim.4154 10.1093/ehjqcco/qcx031 10.1007/11559887_3 10.1007/978-1-4419-6646-9 10.5244/C.30.98 10.1109/ICDM.2008.50 10.1186/1471-2105-9-292 10.1145/2661829.2662065 10.1109/TNNLS.2015.2420611 10.1186/1471-2261-14-126 10.1186/1471-2288-10-40 10.1007/978-3-319-89725-7_7 10.1371/journal.pone.0181001 10.1002/sim.9717 10.1201/b14978 10.21037/atm.2016.08.45 10.1109/TCBB.2007.070208 10.1111/biom.13880 10.1002/sim.4780111409 10.18637/jss.v011.i09 10.1002/sim.7681 10.1007/s10985-020-09509-x 10.1214/009053607000000677 10.18637/jss.v090.i07 10.1201/9781003282525 10.32614/CRAN.package.bigSurvSGD 10.1088/1742-6596/974/1/012008 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1186/s12874-024-02455-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1471-2288 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_086c36c4d0e246a0b7aec827e84e1656 PMC11724484 A823185372 39799283 10_1186_s12874_024_02455_4 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK IAO IHR INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c597t-475b113d30e640cc0474f631b77bc0b227b9ca937f0de6d9ce00fc1b18ccbb043 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001394559100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2288 |
| IngestDate | Fri Oct 03 12:52:49 EDT 2025 Tue Nov 04 02:05:13 EST 2025 Wed Oct 01 14:43:00 EDT 2025 Tue Oct 07 05:34:32 EDT 2025 Tue Nov 11 10:51:48 EST 2025 Tue Nov 04 18:12:09 EST 2025 Fri May 02 01:41:46 EDT 2025 Sat Nov 29 06:39:05 EST 2025 Sat Sep 06 07:35:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Heart Failure Multiple Kernel Learning Frailty Model Survival Analysis Accelerated Failure Time Model |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c597t-475b113d30e640cc0474f631b77bc0b227b9ca937f0de6d9ce00fc1b18ccbb043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/086c36c4d0e246a0b7aec827e84e1656 |
| PMID | 39799283 |
| PQID | 3201555173 |
| PQPubID | 42579 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_086c36c4d0e246a0b7aec827e84e1656 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11724484 proquest_miscellaneous_3154887627 proquest_journals_3201555173 gale_infotracmisc_A823185372 gale_infotracacademiconefile_A823185372 pubmed_primary_39799283 crossref_primary_10_1186_s12874_024_02455_4 springer_journals_10_1186_s12874_024_02455_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-11 |
| PublicationDateYYYYMMDD | 2025-01-11 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical research methodology |
| PublicationTitleAbbrev | BMC Med Res Methodol |
| PublicationTitleAlternate | BMC Med Res Methodol |
| PublicationYear | 2025 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 2455_CR15 2455_CR16 2455_CR1 D Liu (2455_CR18) 2008; 9 2455_CR19 2455_CR6 G Heller (2455_CR41) 2021; 27 2455_CR11 2455_CR12 2455_CR13 ET Lee (2455_CR4) 1997; 18 2455_CR26 2455_CR27 A Vedaldi (2455_CR45) 2012; 34 2455_CR29 T Cai (2455_CR20) 2011; 67 Z Zhang (2455_CR25) 2016; 4 N Hartman (2455_CR39) 2023; 42 TA Balan (2455_CR7) 2019; 90 M Gönen (2455_CR33) 2011; 12 2455_CR21 JA Sinnott (2455_CR17) 2013; 69 2455_CR23 P Schober (2455_CR5) 2018; 127 S Chiou (2455_CR24) 2015; 34 Y Chandrashekhar (2455_CR3) 2020; 141 C Bredy (2455_CR49) 2018; 4 H Uno (2455_CR38) 2011; 30 CM Wilson (2455_CR50) 2021; 116 T Ahmad (2455_CR47) 2017; 12 F Kiaee (2455_CR28) 2016; 27 2455_CR30 2455_CR32 G Grover (2455_CR10) 2014; 3 2455_CR35 2455_CR36 L-J Wei (2455_CR8) 1992; 11 X Kong (2455_CR31) 2010; 10 L Kats (2455_CR9) 2023; 79 GW Brier (2455_CR42) 1950; 78 A Karatzoglou (2455_CR14) 2004; 11 FE Harrell (2455_CR37) 1982; 247 N Salehi (2455_CR43) 2021; 24 C Igel (2455_CR34) 2007; 4 2455_CR40 GA Roth (2455_CR44) 2020; 76 FM Zahid (2455_CR48) 2019; 14 EH Bradley (2455_CR2) 2014; 14 2455_CR46 JA Sinnott (2455_CR22) 2018; 37 |
| References_xml | – volume: 69 start-page: 861 issue: 4 year: 2013 ident: 2455_CR17 publication-title: Biometrics doi: 10.1111/biom.12098 – volume: 34 start-page: 1495 issue: 9 year: 2015 ident: 2455_CR24 publication-title: Stat Med doi: 10.1002/sim.6415 – volume: 3 start-page: 42 year: 2014 ident: 2455_CR10 publication-title: SRL doi: 10.15587/2313-8416.2014.27968 – volume: 247 start-page: 2543 issue: 18 year: 1982 ident: 2455_CR37 publication-title: JAMA doi: 10.1001/jama.1982.03320430047030 – volume: 18 start-page: 105 issue: 1 year: 1997 ident: 2455_CR4 publication-title: Annu Rev Public Health doi: 10.1146/annurev.publhealth.18.1.105 – ident: 2455_CR19 doi: 10.1142/9789812776303_0007 – ident: 2455_CR21 doi: 10.1109/IEMBS.2009.5334847 – volume: 14 issue: 2 year: 2019 ident: 2455_CR48 publication-title: PLoS ONE doi: 10.1371/journal.pone.0210602 – volume: 127 start-page: 792 issue: 3 year: 2018 ident: 2455_CR5 publication-title: Anesth Analg doi: 10.1213/ANE.0000000000003653 – volume: 141 start-page: 2004 issue: 24 year: 2020 ident: 2455_CR3 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.041297 – volume: 76 start-page: 2982 issue: 25 year: 2020 ident: 2455_CR44 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.11.010 – volume: 67 start-page: 975 issue: 3 year: 2011 ident: 2455_CR20 publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01544.x – volume: 34 start-page: 480 issue: 3 year: 2012 ident: 2455_CR45 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.153 – volume: 12 start-page: 2211 year: 2011 ident: 2455_CR33 publication-title: The Journal of Machine Learning Research – volume: 24 start-page: 796 issue: 11 year: 2021 ident: 2455_CR43 publication-title: Arch Iran Med doi: 10.34172/aim.2021.119 – ident: 2455_CR30 – volume: 78 start-page: 1 issue: 1 year: 1950 ident: 2455_CR42 publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – ident: 2455_CR11 doi: 10.1101/2022.02.18.481114 – ident: 2455_CR40 – volume: 116 year: 2021 ident: 2455_CR50 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102077 – volume: 30 start-page: 1105 issue: 10 year: 2011 ident: 2455_CR38 publication-title: Stat Med doi: 10.1002/sim.4154 – volume: 4 start-page: 51 issue: 1 year: 2018 ident: 2455_CR49 publication-title: European Heart Journal-Quality of Care and Clinical Outcomes doi: 10.1093/ehjqcco/qcx031 – ident: 2455_CR15 doi: 10.1007/11559887_3 – ident: 2455_CR29 doi: 10.1007/978-1-4419-6646-9 – ident: 2455_CR46 doi: 10.5244/C.30.98 – ident: 2455_CR12 doi: 10.1109/ICDM.2008.50 – volume: 9 start-page: 1 year: 2008 ident: 2455_CR18 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-292 – ident: 2455_CR23 doi: 10.1145/2661829.2662065 – volume: 27 start-page: 648 issue: 3 year: 2016 ident: 2455_CR28 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2420611 – volume: 14 start-page: 1 year: 2014 ident: 2455_CR2 publication-title: BMC Cardiovasc Disord doi: 10.1186/1471-2261-14-126 – volume: 10 start-page: 40 issue: 1 year: 2010 ident: 2455_CR31 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-10-40 – ident: 2455_CR1 doi: 10.1007/978-3-319-89725-7_7 – volume: 12 issue: 7 year: 2017 ident: 2455_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0181001 – ident: 2455_CR16 – volume: 42 start-page: 2179 issue: 13 year: 2023 ident: 2455_CR39 publication-title: Stat Med doi: 10.1002/sim.9717 – ident: 2455_CR27 doi: 10.1201/b14978 – ident: 2455_CR35 – volume: 4 start-page: 484 issue: 24 year: 2016 ident: 2455_CR25 publication-title: Annals of Translational Medicine doi: 10.21037/atm.2016.08.45 – volume: 4 start-page: 216 issue: 2 year: 2007 ident: 2455_CR34 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2007.070208 – volume: 79 start-page: 3066 issue: 4 year: 2023 ident: 2455_CR9 publication-title: Biometrics doi: 10.1111/biom.13880 – volume: 11 start-page: 1871 issue: 14–15 year: 1992 ident: 2455_CR8 publication-title: Stat Med doi: 10.1002/sim.4780111409 – volume: 11 start-page: 1 year: 2004 ident: 2455_CR14 publication-title: J Stat Softw doi: 10.18637/jss.v011.i09 – volume: 37 start-page: 2501 issue: 16 year: 2018 ident: 2455_CR22 publication-title: Stat Med doi: 10.1002/sim.7681 – volume: 27 start-page: 1 issue: 1 year: 2021 ident: 2455_CR41 publication-title: Lifetime Data Anal doi: 10.1007/s10985-020-09509-x – ident: 2455_CR13 doi: 10.1214/009053607000000677 – volume: 90 start-page: 1 year: 2019 ident: 2455_CR7 publication-title: J Stat Softw doi: 10.18637/jss.v090.i07 – ident: 2455_CR36 – ident: 2455_CR32 doi: 10.1201/9781003282525 – ident: 2455_CR6 doi: 10.32614/CRAN.package.bigSurvSGD – ident: 2455_CR26 doi: 10.1088/1742-6596/974/1/012008 |
| SSID | ssj0017836 |
| Score | 2.437353 |
| Snippet | Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis.... Abstract Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 7 |
| SubjectTerms | Accelerated Failure Time Model Algorithms Angioplasty Artificial intelligence Care and treatment Event history analysis Frailty Frailty Model Health Sciences Heart Failure Heart Failure - mortality Humans Machine Learning Medicine Medicine & Public Health Methods Models, Statistical Mortality Multiple Kernel Learning Prognosis Proportional Hazards Models Statistical models Statistical Theory and Methods Statistics for Life Sciences Support vector machines Survival Analysis Theory of Medicine/Bioethics |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSFNyVQkJGQOIBVO3Fi54QKokICKiSotDcrnjjtSjQpm11-PzNe75YUwYVDLrETeTyf5-GxZxh70ZW6AW8aIRuQQqOKEr6SAbHc1RZR7QsfLwp_MkdHdjarv6QNtzEdq9zIxCio2wFoj3y_yEm7l8oUb85_CKoaRdHVVELjKrtGZbMJ52a2dbgU3VDYXJSx1f6oKLm7QK1ET1kKPVFGMWf_n5L5N9V0-djkpdhpVEmHt_-XmDvsVjJG-cEaPXfZldDfYzc-p3D7fXb8dYWSBLHIKUP4GRXfAh5r5-B4OJq7PKVlHTnt53Kqjr3kXTOns-6cFGTLh55_DIs-fOepQMXJA3Z8-P7buw8i1WEQgO7GUmhTeqWKtpCh0hJAaqO7qlDeGA_S57nxNTRo53SyDVVbQ5CyA-WVBfBe6uIh2-mHPjxiHK3RBh3OEvAX2qNp1hahtl2oVZd7W5uMvdowxJ2v02246KbYyq3Z55B1LrLP6Yy9JZ5te1Kq7PhiWJy4tPIc-mxQVKBbGXJdNRKBGcDmJlgdKPVQxl4Sxx0taGQrNOleAg6YUmO5AwqUolFj8oztTXriQoRp84bZLgmC0V1wOmPPt830JR1u68Owwj7kNpJWQvJ31xDbkhTDrmgCZsxOwDehedrSz09jmnCFtik63zhLrzc4vRjX3yf18b_JeMJu5lQCWSqh1B7bWS5W4Sm7Dj-X83HxLK6_XxPyNsw priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDLdgIMSFb0ZhoCAhcYCKpE2b9DimTUjAhBhDu0WNm25P2vrQ63v8_dh57YMOOMChlyZtE8eO7Tr-GeBFW-gavalTWaNMNamo1JcyEC-3lSWu9rmPicIfzOGhPTmpPg1JYf142n0MScadOoq1Ld_0iqHZU9IpfBVFqq_CNVJ3lgs2fD76uokdcF7CmB7zx-cmKigi9f--H_-ikC4flrwUMY2K6OD2_03hDtwaDE-xu-aUu3AldPfgxschtH4fjo9WtGsQ3wlGA7_gQlsoYp0c-oIg01YMEKy94H-3githL0Vbz_hcu2Bl2Ih5J96HRRfOxVCM4vQBHB_sf9l7lw41F1Ik12KZalN4pfIml6HUElFqo9syV94Yj9JnmfEV1mTTtLIJZVNhkLJF5ZVF9F7q_CFsdfMuPAJBlmdNzmWB9ArtyQxr8lDZNlSqzbytTAKvxmVw39bQGi66JLZ0a0o5opKLlHI6gbe8UpueDIsdb8wXp26QMkf-GeYl6kaGTJe1JCYMaDMTrA4MM5TAS15nx8JLi4n1kINAA2YYLLfLQVEyYEyWwM6kJwkdTptHTnGD0Pcuz9gALZTJE3i-aeYn-SBbF-Yr6sMuImsgmv72mrE2U4ohVjL3ErATlpvMedrSzc4iJLgiO5QcbaLS65Hzfo7r70R9_G_dn8DNjMsfS5UqtQNby8UqPIXr-H056xfPohT-AG4WLRw priority: 102 providerName: Springer Nature |
| Title | Survival parametric modeling for patients with heart failure based on Kernel learning |
| URI | https://link.springer.com/article/10.1186/s12874-024-02455-4 https://www.ncbi.nlm.nih.gov/pubmed/39799283 https://www.proquest.com/docview/3201555173 https://www.proquest.com/docview/3154887627 https://pubmed.ncbi.nlm.nih.gov/PMC11724484 https://doaj.org/article/086c36c4d0e246a0b7aec827e84e1656 |
| Volume | 25 |
| WOSCitedRecordID | wos001394559100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RSV dateStart: 20011201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQIgXxOfI2CojIfEA0ezEiZ3HDW0CwapqY6g8WbHjbJUgnfrB38-dk5RlE-KFh1ZK7Vr23dn3u9j-HcCbOpOls6qMeel4LNFFxTbnHm25LjRatU1tuCj8RY3HejotJtdSfdGZsJYeuBXcPkJul-ZOVtwnMi85tuudTpTX0hNzDK2-XBV9MNXtH9DdhP6KjM73l4Jo3WP0R_TJslgO3FBg67-9Jl9zSjcPTN7YNQ3O6PgxPOpQJDtoe_8E7vjmKTw46fbJn8H52RqXADQiRtTePylrlmMh6Q02xxCnso5PdcnoRSyjtNYrVpczOqTOyLNVbN6wz37R-B-syyxx8RzOj4--fvgYdwkUYodxwiqWKrNCpFXKfS65c1wqWeepsEpZx22SKFu4EgFKzSufV4XznNdOWKGds5bL9AVsNfPGvwSGMLLESDFz2IS0iKmq1Be69oWoE6sLFcG7Xp7mquXJMCG-0LlppW9Q8iZI38gIDknkm5rEcR1-QM2bTvPmX5qP4C0pzNBMRK24srtQgB0mTitzQDuciEZUEsHuoCbOIDcs7lVuuhm8NGlCaDITKo3g9aaY_kmn0ho_X2MdivfIneDwt1sL2Qwp7JcidotAD2xnMOZhSTO7DPzeAkElRs0opfe9mf3p19-FuvM_hPoKHiaU4ZiLWIhd2Fot1n4P7rtfq9lyMYK7aqrCtx7BvcOj8eR0FCYePk0-nUy-49Pp2bffja8u3A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQEX9iVQwEggDhDVTpzYOSBUlqrVTCskWmluJnacMhJkyiwg_hS_kfc8yZQUwa0HDrnETpTnfG-z3wLwpM5k6awqY146HktUUbHNuUcs14VGVNvUhkThodrf16NR8X4Nfna5MBRW2cnEIKiriaM98s00Ie2eCZW-Ov4aU9coOl3tWmgsYTHwP76jyzZ7ufsW_-_TJNl-d_BmJ267CsQOjed5LFVmhUirlPtccue4VLLOU2GVso7bJFG2cCVq7ZpXPq8K5zmvnbBCO2ctlym-9xycRzmuyNlTo5WDJygjokvM0fnmTFAx-Ri1IF1ZFsue8gs9Av7UBL-pwtNhmqfOaoMK3L76vy3eNbjSGttsa8kd12HNNzfg4l4bTnATDj8sUFIirzGqgP6Fmos5FnoDIf0MzXnWlp2dMdqvZtT9e87qckyx_IwMgIpNGjbw08Z_Zm0DjqNbcHgmRN2G9WbS-LvA0Nou0aHOHL5CWjQ9q9QXuvaFqBOrCxXB8w4A5nhZTsQEN0znZgkXg1AxAS5GRvCaMLKaSaXAw43J9Mi0ksWgT-rS3MmK-0TmJUfG804nymvpqbRSBM8IYYYEFsLIlW3eBX4wlf4yW3QQjEabSiLY6M1EQeP6wx24TCvoZuYEWRE8Xg3TkxS81_jJAueQW0xaF8m_s4T0iqRwrIwmbgS6B_Yezf2RZvwplEEXaHtLqXGVXnR8cfJdf1_Ue_8m4xFc2jnYG5rh7v7gPlxOqN0zF7EQG7A-ny78A7jgvs3Hs-nDwPsMPp41v_wCdweUQw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgoImX8TnoGBAkJB6gWtKmTfo4Pk6gjdOkMbS3qEnTcRL0prve_v7ZaXusAx4QD_fSpL3GsWO7tn8GeFVnsnRWlTEvHY8lqqjY5twjL9eFRq62qQ2FwodqOtWnp8XRlSr-kO0-hCS7mgZCaWravfOq7kRc53tLQTDtMeoX-mVZLG_CLUmJ9OSvH39bxxGoRmEolfnjfSN1FFD7fz-bryin64mT16KnQSlN7v7_cu7BVm-Qsv2Og-7DDd88gM0vfcj9IZwcr_A0QX5khBL-kxpwORb65-C_MTR5WQ_NumT0TZdRh-yW1eWM8t0ZKcmKzRt24BeN_8H6JhVnj-Bk8vHr-09x34shduhytLFUmRUirVLuc8md41LJOk-FVco6bpNE2cKVaOvUvPJ5VTjPee2EFdo5a7lMt2GjmTf-CTC0SEt0OjOHj5AWzbMq9YWufSHqxOpCRfBm2BJz3kFumOCq6Nx0lDJIJRMoZWQE72jX1jMJLjtcmC_OTC99Bv02l-ZOVtwnMi85Mqd3OlFeS0_wQxG8pj03JNS4sa7saxPwhQkey-xTsBQNG5VEsDuaicLoxsMD15j-MFiaNCHDNBMqjeDlepjupAS3xs9XOIdcR9JMuPzHHZOtlxRCr2gGRqBH7Dda83ikmX0PUOEC7VN0wJFKbwcu_PVefyfqzr9NfwGbRx8m5vDz9OAp3EmoQzIXsRC7sNEuVv4Z3HYX7Wy5eB6E8xIhNTjk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+parametric+modeling+for+patients+with+heart+failure+based+on+Kernel+learning&rft.jtitle=BMC+medical+research+methodology&rft.au=Maryam+Montaseri&rft.au=Mansour+Rezaei&rft.au=Armin+Khayati&rft.au=Shayan+Mostafaei&rft.date=2025-01-11&rft.pub=BMC&rft.eissn=1471-2288&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12874-024-02455-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_086c36c4d0e246a0b7aec827e84e1656 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |