Data-driven HRF estimation for encoding and decoding models

Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI da...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Vol. 104; pp. 209 - 220
Main Authors: Pedregosa, Fabian, Eickenberg, Michael, Ciuciu, Philippe, Thirion, Bertrand, Gramfort, Alexandre
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.01.2015
Elsevier Limited
Elsevier
Subjects:
ISSN:1053-8119, 1095-9572, 1095-9572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to differ across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding scores on two different datasets. Our results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency. [Display omitted] •R1-GLM method allows to jointly estimate activation patterns and HRF.•Rank constraint reduces variance in voxelwise fitting and is solved efficiently.•R1-GLM extends to parametric models of HRF and GLM with separate designs.•R1-GLM outperforms competing methods in the fit of the BOLD response (encoding).•R1-GLM also improves decoding accuracy in brain reading settings.
AbstractList Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to differ across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding scores on two different datasets. Our results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency.
Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to differ across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding scores on two different datasets. Our results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency. [Display omitted] •R1-GLM method allows to jointly estimate activation patterns and HRF.•Rank constraint reduces variance in voxelwise fitting and is solved efficiently.•R1-GLM extends to parametric models of HRF and GLM with separate designs.•R1-GLM outperforms competing methods in the fit of the BOLD response (encoding).•R1-GLM also improves decoding accuracy in brain reading settings.
Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF using a rank constraint causing the estimated HRF to be equal across events/conditions, yet permitting it to be different across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding score in two different datasets. Our results show that the R1-GLM model significantly outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency.
Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to differ across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding scores on two different datasets. Our results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency.Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to differ across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding scores on two different datasets. Our results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency.
Author Ciuciu, Philippe
Eickenberg, Michael
Thirion, Bertrand
Pedregosa, Fabian
Gramfort, Alexandre
Author_xml – sequence: 1
  givenname: Fabian
  orcidid: 0000-0003-4025-3953
  surname: Pedregosa
  fullname: Pedregosa, Fabian
  email: fabian.pedregosa@inria.fr
  organization: Parietal Team, INRIA Saclay-Île-de-France, Saclay, France
– sequence: 2
  givenname: Michael
  surname: Eickenberg
  fullname: Eickenberg, Michael
  organization: Parietal Team, INRIA Saclay-Île-de-France, Saclay, France
– sequence: 3
  givenname: Philippe
  surname: Ciuciu
  fullname: Ciuciu, Philippe
  organization: Parietal Team, INRIA Saclay-Île-de-France, Saclay, France
– sequence: 4
  givenname: Bertrand
  surname: Thirion
  fullname: Thirion, Bertrand
  organization: Parietal Team, INRIA Saclay-Île-de-France, Saclay, France
– sequence: 5
  givenname: Alexandre
  surname: Gramfort
  fullname: Gramfort, Alexandre
  organization: Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, 37-39 Rue Dareau, 75014 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25304775$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-00952554$$DView record in HAL
BookMark eNqNkV1rFDEUhoNU7If-BRnwRi9mPJlJJgmCWFvrCguC6HXI5qNmnU3aZGah_95Md6uwV3uVD548Oee85-gkxGARqjA0GHD_ft0EO6XoN-rWNi1g0oBooIdn6AyDoLWgrD2Z97SrOcbiFJ3nvAYAgQl_gU5b2gFhjJ6hD9dqVLVJfmtDtfhxU9k8Fu3oY6hcTJUNOhofbisVTGXs_rCJxg75JXru1JDtq_16gX7dfPl5taiX379-u7pc1pqKfqyd6qlQbqX1CrDWlDKOwRHV9YYo2nPqMCU9Zhh3XFPLWscpc8wwxkEo47oL9G7n_a0GeZdKeelBRuXl4nIp57vSF20pJVtS2Lc79i7F-6k0Izc-azsMKtg4ZYn7jgLmQI5CScsAC1rQNwfoOk4plKYL1VLBWwGz8PWemlYba_6V-jTtAnzcATrFnJN1UvvxcdZjUn6QGOQcr1zL__HKOV4JQpZ4i4AfCJ7-OOLp593TEpzdeptk1r6ka41PVo_SRH-M5NOBRA8-eK2GP_bhOMVfprzYGw
CitedBy_id crossref_primary_10_1016_j_neuroimage_2019_116059
crossref_primary_10_1016_j_isci_2024_110395
crossref_primary_10_1177_0013164416667982
crossref_primary_10_3389_fncom_2017_00007
crossref_primary_10_1162_imag_a_00469
crossref_primary_10_1371_journal_pcbi_1010819
crossref_primary_10_1093_cercor_bhae292
crossref_primary_10_1016_j_neuroimage_2018_10_080
crossref_primary_10_1371_journal_pone_0277801
crossref_primary_10_3389_fnins_2015_00375
crossref_primary_10_1016_j_jpsychires_2023_11_043
crossref_primary_10_1016_j_neuroimage_2021_117814
crossref_primary_10_1038_s41592_020_0941_6
crossref_primary_10_1007_s11682_020_00304_8
crossref_primary_10_1016_j_neuroimage_2021_118418
crossref_primary_10_1007_s42113_025_00257_5
crossref_primary_10_1002_mrm_26365
crossref_primary_10_1016_j_neuroimage_2019_07_006
crossref_primary_10_1088_1361_6587_add052
crossref_primary_10_3389_fnins_2017_00543
crossref_primary_10_1016_j_jmp_2016_06_009
crossref_primary_10_1016_j_neuroimage_2025_121338
crossref_primary_10_1162_imag_a_00285
crossref_primary_10_7554_eLife_36928
crossref_primary_10_1016_j_jneumeth_2020_108778
crossref_primary_10_1038_s42003_021_02294_9
crossref_primary_10_1016_j_neuroimage_2023_120224
crossref_primary_10_1016_j_neuroimage_2017_08_018
crossref_primary_10_1109_JPROC_2015_2425807
crossref_primary_10_7554_eLife_82566
crossref_primary_10_1016_j_ecosta_2021_02_006
crossref_primary_10_1016_j_tics_2016_03_014
crossref_primary_10_1109_TMI_2014_2379914
crossref_primary_10_1016_j_pneurobio_2021_102174
crossref_primary_10_1016_j_neuroimage_2019_04_012
crossref_primary_10_1016_j_neuroimage_2020_117652
crossref_primary_10_1111_epi_13717
crossref_primary_10_1109_TMI_2016_2544251
crossref_primary_10_1016_j_neuroimage_2021_118266
crossref_primary_10_3389_fpubh_2024_1417966
crossref_primary_10_1038_s41598_021_83420_9
Cites_doi 10.1007/BF01589116
10.1126/science.1134239
10.1002/mrm.1910390109
10.1016/j.neuroimage.2012.05.057
10.1155/2013/643129
10.1016/j.neuroimage.2003.11.029
10.2307/2332226
10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W
10.1016/j.neuroimage.2008.05.052
10.1002/hbm.10100
10.1016/j.neuroimage.2013.07.043
10.1214/12-AOAS609
10.1038/nature06713
10.1016/j.neuroimage.2010.07.073
10.1021/ac60214a047
10.1016/j.neuroimage.2003.12.024
10.1016/j.neuroimage.2013.05.100
10.1002/(SICI)1521-4036(199905)41:2<149::AID-BIMJ149>3.0.CO;2-E
10.1016/j.neuroimage.2012.01.133
10.1109/TMI.2003.817759
10.1080/00401706.1979.10489751
10.1016/j.neuroimage.2011.08.076
10.1016/j.neuroimage.2013.02.048
10.1002/hbm.20310
10.1109/42.897811
10.1038/nrn1931
10.1016/S1053-8119(03)00049-1
10.1016/j.neuroimage.2012.08.014
10.1016/j.neuroimage.2008.01.011
10.1016/j.neuron.2008.11.004
10.1016/j.neuroimage.2014.04.052
10.1006/nimg.2001.0940
10.1109/TSP.2005.853303
10.1016/j.neuron.2009.09.006
10.1016/j.neuroimage.2007.02.020
10.1109/TMI.2010.2042064
10.1006/nimg.1998.0419
10.1016/j.neuroimage.2013.05.036
10.1214/11-AOAS476
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 1, 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 1, 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
1XC
VOOES
DOI 10.1016/j.neuroimage.2014.09.060
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest One Psychology
Engineering Research Database


MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1095-9572
EndPage 220
ExternalDocumentID oai:HAL:hal-00952554v4
3500825621
25304775
10_1016_j_neuroimage_2014_09_060
S1053811914008027
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFFHD
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
7QO
1XC
VOOES
ID FETCH-LOGICAL-c596t-fa659afbccb01cc557810f4a36d4a5685f1546171138c5e72f857f7d77809adf3
IEDL.DBID M7P
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345393800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Sat Oct 25 11:31:55 EDT 2025
Tue Oct 07 09:14:24 EDT 2025
Sun Sep 28 06:06:10 EDT 2025
Thu Nov 20 19:10:45 EST 2025
Mon Jul 21 05:50:43 EDT 2025
Tue Nov 18 20:36:48 EST 2025
Sat Nov 29 03:33:26 EST 2025
Fri Feb 23 02:24:27 EST 2024
Tue Oct 14 19:34:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Machine learning
Hemodynamic response function (HRF)
Finite impulse response (FIR)
BOLD
Encoding
Functional MRI (fMRI)
Decoding
Optimization
Finite Impulse Response (FIR)
Hemodynamic Response Function (HRF)
Machine Learning
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-fa659afbccb01cc557810f4a36d4a5685f1546171138c5e72f857f7d77809adf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4025-3953
0000-0001-5374-962X
0000-0001-9791-4404
OpenAccessLink https://inria.hal.science/hal-00952554
PMID 25304775
PQID 1625982904
PQPubID 2031077
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_00952554v4
proquest_miscellaneous_1635018044
proquest_miscellaneous_1634270195
proquest_journals_1625982904
pubmed_primary_25304775
crossref_citationtrail_10_1016_j_neuroimage_2014_09_060
crossref_primary_10_1016_j_neuroimage_2014_09_060
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_09_060
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_09_060
PublicationCentury 2000
PublicationDate 2015-01-01
2015-01-00
2015-Jan-01
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Turner, Mumford, Poldrack, Ashby (bb0230) 2012; 62
Lindquist, Wager (bb0135) 2007; 28
Badillo, Vincent, Ciuciu (bb0010) 2013; 82
Mumford, Turner, Ashby, Poldrack (bb0170) 2012; 59
Dale (bb0045) 1999; 8
Kendall (bb0120) 1938; 30
Woolrich, Behrens, Smith (bb0250) 2004; 21
Chaari, Forbes, Vincent, Ciuciu (bb0030) 2012; 15 (Pt 3)
Kriegeskorte, Mur, Bandettini (bb0125) 2008; 2
Makni, Beckmann, Smith, Woolrich (bb0145) 2008; 42
Lei, Tong, Yan (bb0130) 2013; 2013
Cox, Savoy (bb0040) 2003; 19
Ciuciu, Poline, Marrelec, Idier, Pallier, Benali (bb0035) 2003; 22
Vincent, Risser, Ciuciu (bb0235) 2010; 29
Zhang, Li, Beckes, Brown, Coan (bb0255) 2012; 63
Kay, Naselaris, Prenger, Gallant (bb0115) 2008; 452
Poline, Brett (bb0205) 2012; 62
Glover (bb0075) 1999; 9
Friston, Holmes, Poline (bb0065) 1995
Doyle, Ashburner, Zelaya, Williams, Mehta, Marquand (bb0055) 2013; 81
Vu, Ravikumar, Naselaris, Kay, Gallant, Yu (bb0240) 2011; 5
Tom, Fox, Trepel, Poldrack (bb0225) 2007; 315
Boynton, Engel, Glover, Heeger (bb0020) 1996; 16
Nocedal, Wright (bb0185) 2006
Naselaris, Kay, Nishimoto, Gallant (bb0175) 2011; 56
Wang, Zhu, Fan, Giovanello, Lin (bb0245) 2013; 7
Goutte, Nielsen, Hansen (bb0085) 2000; 19
Kay, Naselaris, Gallant (bb0110) 2011
Miyawaki, Uchida, Yamashita, Sato, Morito, Tanabe, Sadato, Kamitani (bb0160) 2008; 60
Pedregosa, Grisel, Weiss, Passos, Brucher (bb0195) 2011; 12
Horn, Johnson (bb0105) 1991
Handwerker, Ollinger, D'Esposito (bb0090) 2004; 21
Golub, Heath, Wahba (bb0080) 1979; 21
Zhang, Li, Beckes, Coan (bb0260) 2013; 75
Casanova, Ryali, Serences, Yang, Kraft, Laurienti, Maldjian (bb0025) 2008; 40
Bekhti, Zilber, Pedregosa, Ciuciu, Van Wassenhove, Gramfort (bb0015) 2014
Savitzky, Golay (bb0215) 1964; 36
Friston, Ashburner, Kiebel, Nichols, Penny (bb0060) 2011
Schoenmakers, Barth, Heskes, van Gerven (bb0220) 2013; 83
Degras, Lindquist (bb0050) 2014; 98C
Haynes, Rees (bb0095) 2006; 7
Liu, Nocedal (bb0140) 1989; 45
Naselaris, Prenger, Kay, Oliver, Gallant (bb0180) 2009; 63
Poldrack, Mumford, Nichols (bb0200) 2011
Henson, Price, Rugg, Turner, Friston (bb0100) 2002; 15
Marrelec, Benali, Ciuciu, Pélégrini-Issac, Poline (bb0155) 2003; 19
Röhmel, Mansmann (bb0210) 1999; 41
Friston, Josephs, Rees, Turner (bb0070) 1998; 39
Badillo, Varoquaux, Ciuciu (bb0005) 2013
Mourão Miranda, Friston, Brammer (bb0165) 2007; 36
Makni, Ciuciu, Idier, Poline (bb0150) 2005; 53
Pedregosa, Eickenberg, Thirion, Gramfort (bb0190) 2013
Badillo (10.1016/j.neuroimage.2014.09.060_bb0005) 2013
Golub (10.1016/j.neuroimage.2014.09.060_bb0080) 1979; 21
Naselaris (10.1016/j.neuroimage.2014.09.060_bb0180) 2009; 63
Mourão Miranda (10.1016/j.neuroimage.2014.09.060_bb0165) 2007; 36
Henson (10.1016/j.neuroimage.2014.09.060_bb0100) 2002; 15
Schoenmakers (10.1016/j.neuroimage.2014.09.060_bb0220) 2013; 83
Degras (10.1016/j.neuroimage.2014.09.060_bb0050) 2014; 98C
Tom (10.1016/j.neuroimage.2014.09.060_bb0225) 2007; 315
Doyle (10.1016/j.neuroimage.2014.09.060_bb0055) 2013; 81
Röhmel (10.1016/j.neuroimage.2014.09.060_bb0210) 1999; 41
Marrelec (10.1016/j.neuroimage.2014.09.060_bb0155) 2003; 19
Goutte (10.1016/j.neuroimage.2014.09.060_bb0085) 2000; 19
Woolrich (10.1016/j.neuroimage.2014.09.060_bb0250) 2004; 21
Handwerker (10.1016/j.neuroimage.2014.09.060_bb0090) 2004; 21
Friston (10.1016/j.neuroimage.2014.09.060_bb0070) 1998; 39
Friston (10.1016/j.neuroimage.2014.09.060_bb0060) 2011
Badillo (10.1016/j.neuroimage.2014.09.060_bb0010) 2013; 82
Bekhti (10.1016/j.neuroimage.2014.09.060_bb0015) 2014
Makni (10.1016/j.neuroimage.2014.09.060_bb0150) 2005; 53
Naselaris (10.1016/j.neuroimage.2014.09.060_bb0175) 2011; 56
Miyawaki (10.1016/j.neuroimage.2014.09.060_bb0160) 2008; 60
Zhang (10.1016/j.neuroimage.2014.09.060_bb0255) 2012; 63
Casanova (10.1016/j.neuroimage.2014.09.060_bb0025) 2008; 40
Zhang (10.1016/j.neuroimage.2014.09.060_bb0260) 2013; 75
Kay (10.1016/j.neuroimage.2014.09.060_bb0115) 2008; 452
Pedregosa (10.1016/j.neuroimage.2014.09.060_bb0190) 2013
Boynton (10.1016/j.neuroimage.2014.09.060_bb0020) 1996; 16
Poline (10.1016/j.neuroimage.2014.09.060_bb0205) 2012; 62
Vincent (10.1016/j.neuroimage.2014.09.060_bb0235) 2010; 29
Kriegeskorte (10.1016/j.neuroimage.2014.09.060_bb0125) 2008; 2
Chaari (10.1016/j.neuroimage.2014.09.060_bb0030) 2012; 15 (Pt 3)
Mumford (10.1016/j.neuroimage.2014.09.060_bb0170) 2012; 59
Vu (10.1016/j.neuroimage.2014.09.060_bb0240) 2011; 5
Liu (10.1016/j.neuroimage.2014.09.060_bb0140) 1989; 45
Glover (10.1016/j.neuroimage.2014.09.060_bb0075) 1999; 9
Kendall (10.1016/j.neuroimage.2014.09.060_bb0120) 1938; 30
Nocedal (10.1016/j.neuroimage.2014.09.060_bb0185) 2006
Friston (10.1016/j.neuroimage.2014.09.060_bb0065) 1995
Haynes (10.1016/j.neuroimage.2014.09.060_bb0095) 2006; 7
Horn (10.1016/j.neuroimage.2014.09.060_bb0105) 1991
Lindquist (10.1016/j.neuroimage.2014.09.060_bb0135) 2007; 28
Poldrack (10.1016/j.neuroimage.2014.09.060_bb0200) 2011
Turner (10.1016/j.neuroimage.2014.09.060_bb0230) 2012; 62
Cox (10.1016/j.neuroimage.2014.09.060_bb0040) 2003; 19
Pedregosa (10.1016/j.neuroimage.2014.09.060_bb0195) 2011; 12
Savitzky (10.1016/j.neuroimage.2014.09.060_bb0215) 1964; 36
Dale (10.1016/j.neuroimage.2014.09.060_bb0045) 1999; 8
Kay (10.1016/j.neuroimage.2014.09.060_bb0110)
Wang (10.1016/j.neuroimage.2014.09.060_bb0245) 2013; 7
Makni (10.1016/j.neuroimage.2014.09.060_bb0145) 2008; 42
Ciuciu (10.1016/j.neuroimage.2014.09.060_bb0035) 2003; 22
Lei (10.1016/j.neuroimage.2014.09.060_bb0130) 2013; 2013
References_xml – volume: 15 (Pt 3)
  start-page: 180
  year: 2012
  end-page: 188
  ident: bb0030
  article-title: Hemodynamic-informed parcellation of fMRI data in a joint detection estimation framework
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 83
  start-page: 951
  year: 2013
  end-page: 961
  ident: bb0220
  article-title: Linear reconstruction of perceived images from human brain activity
  publication-title: NeuroImage
– volume: 29
  start-page: 1059
  year: 2010
  end-page: 1074
  ident: bb0235
  article-title: Spatially adaptive mixture modeling for analysis of fMRI time series
  publication-title: IEEE Trans. Med. Imaging
– volume: 63
  start-page: 1754
  year: 2012
  end-page: 1765
  ident: bb0255
  article-title: Nonparametric inference of the hemodynamic response using multi-subject fMRI data
  publication-title: NeuroImage
– volume: 28
  start-page: 764
  year: 2007
  end-page: 784
  ident: bb0135
  article-title: Validity and power in hemodynamic response modeling: a comparison study and a new approach
  publication-title: Hum. Brain Mapp.
– volume: 63
  start-page: 902
  year: 2009
  end-page: 915
  ident: bb0180
  article-title: Bayesian reconstruction of natural images from human brain activity
  publication-title: Neuron
– volume: 15
  start-page: 83
  year: 2002
  end-page: 97
  ident: bb0100
  article-title: Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations
  publication-title: NeuroImage
– volume: 60
  start-page: 915
  year: 2008
  end-page: 929
  ident: bb0160
  article-title: Visual image reconstruction from human brain activity using a combination of multiscale local image decoders
  publication-title: Neuron
– volume: 40
  start-page: 1606
  year: 2008
  end-page: 1618
  ident: bb0025
  article-title: The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis
  publication-title: NeuroImage
– volume: 56
  start-page: 400
  year: 2011
  end-page: 410
  ident: bb0175
  article-title: Encoding and decoding in fMRI
  publication-title: NeuroImage
– volume: 75
  start-page: 136
  year: 2013
  end-page: 145
  ident: bb0260
  article-title: A semi-parametric model of the hemodynamic response for multi-subject fMRI data
  publication-title: NeuroImage
– volume: 41
  start-page: 149
  year: 1999
  end-page: 170
  ident: bb0210
  article-title: Unconditional non-asymptotic one-sided tests for independent binomial proportions when the interest lies in showing non-inferiority and/or superiority
  publication-title: Biom. J.
– volume: 8
  start-page: 109
  year: 1999
  end-page: 114
  ident: bb0045
  article-title: Optimal experimental design for event-related fMRI
  publication-title: Hum. Brain Mapp.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bb0215
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 98C
  start-page: 61
  year: 2014
  end-page: 72
  ident: bb0050
  article-title: A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies
  publication-title: NeuroImage
– volume: 16
  start-page: 4207
  year: 1996
  end-page: 4221
  ident: bb0020
  article-title: Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1
– volume: 9
  start-page: 416
  year: 1999
  end-page: 429
  ident: bb0075
  article-title: Deconvolution of impulse response in event-related BOLD fMRI
  publication-title: NeuroImage
– start-page: 3
  year: 2013
  end-page: 6
  ident: bb0190
  article-title: HRF estimation improves sensitivity of fMRI encoding and decoding models
  publication-title: Proceedings of the 3nd International Workshop on Pattern Recognition in NeuroImaging
– volume: 39
  start-page: 41
  year: 1998
  end-page: 52
  ident: bb0070
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magn. Reson. Med.
– volume: 62
  start-page: 1429
  year: 2012
  end-page: 1438
  ident: bb0230
  article-title: Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs
  publication-title: NeuroImage
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: bb0040
  article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
– volume: 2013
  start-page: 643129
  year: 2013
  ident: bb0130
  article-title: A mixed L2 norm regularized HRF estimation method for rapid event-related fMRI experiments
  publication-title: Comput. Math. Methods Med.
– volume: 53
  start-page: 3488
  year: 2005
  end-page: 3502
  ident: bb0150
  article-title: Joint detection-estimation of brain activity in functional MRI: a multichannel deconvolution solution
  publication-title: IEEE Trans. Signal Process.
– volume: 21
  start-page: 1639
  year: 2004
  end-page: 1651
  ident: bb0090
  article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
  publication-title: NeuroImage
– volume: 62
  start-page: 871
  year: 2012
  end-page: 880
  ident: bb0205
  article-title: The general linear model and fMRI: does love last forever?
  publication-title: NeuroImage
– volume: 59
  start-page: 2636
  year: 2012
  end-page: 2643
  ident: bb0170
  article-title: Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses
  publication-title: NeuroImage
– volume: 36
  start-page: 88
  year: 2007
  end-page: 99
  ident: bb0165
  article-title: Dynamic discrimination analysis: a spatial–temporal SVM
  publication-title: NeuroImage
– volume: 82
  start-page: 433
  year: 2013
  end-page: 448
  ident: bb0010
  article-title: Group-level impacts of within- and between-subject hemodynamic variability in fMRI
  publication-title: NeuroImage
– volume: 7
  start-page: 523
  year: 2006
  end-page: 534
  ident: bb0095
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
– year: 2006
  ident: bb0185
  article-title: Numerical Optimization, Series in Operations Research and Financial Engineering
– volume: 22
  start-page: 1235
  year: 2003
  end-page: 1251
  ident: bb0035
  article-title: Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
  publication-title: IEEE Trans. Med. Imaging
– volume: 42
  start-page: 1381
  year: 2008
  end-page: 1396
  ident: bb0145
  article-title: Bayesian deconvolution of fMRI data using bilinear dynamical systems
  publication-title: NeuroImage
– volume: 81
  start-page: 347
  year: 2013
  end-page: 357
  ident: bb0055
  article-title: Multivariate decoding of brain images using ordinal regression
  publication-title: NeuroImage
– year: 1991
  ident: bb0105
  article-title: Topics in Matrix Analysis
– year: 2011
  ident: bb0200
  article-title: Handbook of Functional MRI Data Analysis
– start-page: 211
  year: 2013
  end-page: 215
  ident: bb0005
  article-title: Hemodynamic estimation based on consensus clustering
  publication-title: 2013 International Workshop on Pattern Recognition in Neuroimaging
– volume: 452
  start-page: 352
  year: 2008
  end-page: 355
  ident: bb0115
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– year: 2014
  ident: bb0015
  article-title: Decoding perceptual thresholds from MEG/EEG
  publication-title: Pattern Recoginition in Neuroimaging (PRNI) (2014). Tubingen, Germany
– volume: 315
  start-page: 515
  year: 2007
  end-page: 518
  ident: bb0225
  article-title: The neural basis of loss aversion in decision-making under risk
  publication-title: Science (New York, N.Y.)
– volume: 30
  start-page: 81
  year: 1938
  end-page: 93
  ident: bb0120
  article-title: A new measure of rank correlation
  publication-title: Biometrika
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bb0140
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 5
  start-page: 1159
  year: 2011
  ident: bb0240
  article-title: Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models
  publication-title: Ann. Appl. Stat.
– year: 2011
  ident: bb0110
  article-title: fMRI of Human Visual Areas in Response to Natural Images
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0195
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 904
  year: 2013
  end-page: 935
  ident: bb0245
  article-title: Multiscale adaptive smoothing models for the hemodynamic response function in fMRI
  publication-title: Ann. Appl. Stat.
– year: 2011
  ident: bb0060
  article-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images: The Analysis of Functional Brain Images
– volume: 19
  start-page: 1188
  year: 2000
  end-page: 1201
  ident: bb0085
  article-title: Modeling the haemodynamic response in fMRI using smooth FIR filters
  publication-title: IEEE Trans. Med. Imaging
– volume: 19
  start-page: 1
  year: 2003
  end-page: 17
  ident: bb0155
  article-title: Robust bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information
  publication-title: Hum. Brain Mapp.
– volume: 21
  start-page: 215
  year: 1979
  end-page: 223
  ident: bb0080
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
– volume: 21
  start-page: 1748
  year: 2004
  end-page: 1761
  ident: bb0250
  article-title: Constrained linear basis sets for HRF modelling using variational bayes
  publication-title: NeuroImage
– volume: 2
  year: 2008
  ident: bb0125
  article-title: Representational similarity analysis—connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– year: 1995
  ident: bb0065
  article-title: Statistical Parametric Maps in Functional Imaging: A General Linear Approach
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  ident: 10.1016/j.neuroimage.2014.09.060_bb0140
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 315
  start-page: 515
  issue: 5811
  year: 2007
  ident: 10.1016/j.neuroimage.2014.09.060_bb0225
  article-title: The neural basis of loss aversion in decision-making under risk
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1134239
– volume: 39
  start-page: 41
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2014.09.060_bb0070
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390109
– volume: 62
  start-page: 1429
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2014.09.060_bb0230
  article-title: Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.05.057
– volume: 2013
  start-page: 643129
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0130
  article-title: A mixed L2 norm regularized HRF estimation method for rapid event-related fMRI experiments
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/643129
– year: 2011
  ident: 10.1016/j.neuroimage.2014.09.060_bb0060
– volume: 21
  start-page: 1639
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2014.09.060_bb0090
  article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.029
– volume: 30
  start-page: 81
  issue: 1/2
  year: 1938
  ident: 10.1016/j.neuroimage.2014.09.060_bb0120
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.2307/2332226
– year: 2011
  ident: 10.1016/j.neuroimage.2014.09.060_bb0200
– volume: 8
  start-page: 109
  issue: 2–3
  year: 1999
  ident: 10.1016/j.neuroimage.2014.09.060_bb0045
  article-title: Optimal experimental design for event-related fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W
– volume: 42
  start-page: 1381
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2014.09.060_bb0145
  article-title: Bayesian deconvolution of fMRI data using bilinear dynamical systems
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.052
– volume: 19
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2014.09.060_bb0155
  article-title: Robust bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10100
– start-page: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0190
  article-title: HRF estimation improves sensitivity of fMRI encoding and decoding models
– volume: 83
  start-page: 951
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0220
  article-title: Linear reconstruction of perceived images from human brain activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.043
– year: 2014
  ident: 10.1016/j.neuroimage.2014.09.060_bb0015
  article-title: Decoding perceptual thresholds from MEG/EEG
– volume: 7
  start-page: 904
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0245
  article-title: Multiscale adaptive smoothing models for the hemodynamic response function in fMRI
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS609
– volume: 452
  start-page: 352
  issue: 7185
  year: 2008
  ident: 10.1016/j.neuroimage.2014.09.060_bb0115
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– volume: 56
  start-page: 400
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2014.09.060_bb0175
  article-title: Encoding and decoding in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.073
– year: 2006
  ident: 10.1016/j.neuroimage.2014.09.060_bb0185
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.neuroimage.2014.09.060_bb0215
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 21
  start-page: 1748
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2014.09.060_bb0250
  article-title: Constrained linear basis sets for HRF modelling using variational bayes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.12.024
– volume: 82
  start-page: 433
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0010
  article-title: Group-level impacts of within- and between-subject hemodynamic variability in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.100
– volume: 41
  start-page: 149
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2014.09.060_bb0210
  article-title: Unconditional non-asymptotic one-sided tests for independent binomial proportions when the interest lies in showing non-inferiority and/or superiority
  publication-title: Biom. J.
  doi: 10.1002/(SICI)1521-4036(199905)41:2<149::AID-BIMJ149>3.0.CO;2-E
– volume: 62
  start-page: 871
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2014.09.060_bb0205
  article-title: The general linear model and fMRI: does love last forever?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.133
– start-page: 211
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0005
  article-title: Hemodynamic estimation based on consensus clustering
– volume: 16
  start-page: 4207
  issue: 13
  year: 1996
  ident: 10.1016/j.neuroimage.2014.09.060_bb0020
  article-title: Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1
– volume: 22
  start-page: 1235
  issue: 10
  year: 2003
  ident: 10.1016/j.neuroimage.2014.09.060_bb0035
  article-title: Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.817759
– volume: 21
  start-page: 215
  issue: 2
  year: 1979
  ident: 10.1016/j.neuroimage.2014.09.060_bb0080
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489751
– volume: 59
  start-page: 2636
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2014.09.060_bb0170
  article-title: Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.076
– volume: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2014.09.060_bb0125
  article-title: Representational similarity analysis—connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 75
  start-page: 136
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0260
  article-title: A semi-parametric model of the hemodynamic response for multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.02.048
– volume: 28
  start-page: 764
  issue: 8
  year: 2007
  ident: 10.1016/j.neuroimage.2014.09.060_bb0135
  article-title: Validity and power in hemodynamic response modeling: a comparison study and a new approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20310
– volume: 19
  start-page: 1188
  issue: 12
  year: 2000
  ident: 10.1016/j.neuroimage.2014.09.060_bb0085
  article-title: Modeling the haemodynamic response in fMRI using smooth FIR filters
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.897811
– volume: 7
  start-page: 523
  issue: 7
  year: 2006
  ident: 10.1016/j.neuroimage.2014.09.060_bb0095
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1931
– ident: 10.1016/j.neuroimage.2014.09.060_bb0110
– volume: 19
  start-page: 261
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2014.09.060_bb0040
  article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 63
  start-page: 1754
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2014.09.060_bb0255
  article-title: Nonparametric inference of the hemodynamic response using multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.014
– volume: 40
  start-page: 1606
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2014.09.060_bb0025
  article-title: The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.01.011
– year: 1991
  ident: 10.1016/j.neuroimage.2014.09.060_bb0105
– year: 1995
  ident: 10.1016/j.neuroimage.2014.09.060_bb0065
– volume: 60
  start-page: 915
  issue: 5
  year: 2008
  ident: 10.1016/j.neuroimage.2014.09.060_bb0160
  article-title: Visual image reconstruction from human brain activity using a combination of multiscale local image decoders
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.11.004
– volume: 98C
  start-page: 61
  year: 2014
  ident: 10.1016/j.neuroimage.2014.09.060_bb0050
  article-title: A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.052
– volume: 15
  start-page: 83
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2014.09.060_bb0100
  article-title: Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0940
– volume: 53
  start-page: 3488
  issue: 9
  year: 2005
  ident: 10.1016/j.neuroimage.2014.09.060_bb0150
  article-title: Joint detection-estimation of brain activity in functional MRI: a multichannel deconvolution solution
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.853303
– volume: 63
  start-page: 902
  issue: 6
  year: 2009
  ident: 10.1016/j.neuroimage.2014.09.060_bb0180
  article-title: Bayesian reconstruction of natural images from human brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.006
– volume: 36
  start-page: 88
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2014.09.060_bb0165
  article-title: Dynamic discrimination analysis: a spatial–temporal SVM
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.020
– volume: 29
  start-page: 1059
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2014.09.060_bb0235
  article-title: Spatially adaptive mixture modeling for analysis of fMRI time series
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2042064
– volume: 9
  start-page: 416
  issue: 4
  year: 1999
  ident: 10.1016/j.neuroimage.2014.09.060_bb0075
  article-title: Deconvolution of impulse response in event-related BOLD fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0419
– volume: 81
  start-page: 347
  year: 2013
  ident: 10.1016/j.neuroimage.2014.09.060_bb0055
  article-title: Multivariate decoding of brain images using ordinal regression
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.036
– volume: 5
  start-page: 1159
  issue: 2B
  year: 2011
  ident: 10.1016/j.neuroimage.2014.09.060_bb0240
  article-title: Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/11-AOAS476
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neuroimage.2014.09.060_bb0195
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 15 (Pt 3)
  start-page: 180
  year: 2012
  ident: 10.1016/j.neuroimage.2014.09.060_bb0030
  article-title: Hemodynamic-informed parcellation of fMRI data in a joint detection estimation framework
SSID ssj0009148
Score 2.3967185
Snippet Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms BOLD
Brain - physiology
Brain Mapping - methods
Computer Science
Decoding
Derivatives
Economic models
Encoding
Estimates
Finite impulse response (FIR)
Functional MRI (fMRI)
Hemodynamic response function (HRF)
Humans
Image Processing, Computer-Assisted
Machine Learning
Magnetic Resonance Imaging - methods
Methods
Models, Neurological
Neurovascular Coupling
Optimization
Regression Analysis
Studies
Visual Perception - physiology
Title Data-driven HRF estimation for encoding and decoding models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914008027
https://dx.doi.org/10.1016/j.neuroimage.2014.09.060
https://www.ncbi.nlm.nih.gov/pubmed/25304775
https://www.proquest.com/docview/1625982904
https://www.proquest.com/docview/1634270195
https://www.proquest.com/docview/1635018044
https://inria.hal.science/hal-00952554
Volume 104
WOSCitedRecordID wos000345393800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RDaG9jG_oGFVAvFrEjj9i7QGNsaoPa1VNIPXNcpxYDEG6td3-fnyJk77AVGkvkZz4Ijs-n3_xnX8H8ClNneU680Rw7gkvJCc6F5KwKnPe5QWTtqHMv1CzWb5Y6HnccFvHsMrOJjaGulw63CP_TBGoo9ePf7m-IZg1Cr2rMYXGAPaRJYE1oXvzLeku5e1ROJGRnFIdI3na-K6GL_LqT5i1GODVsp02RJX_XJ4GPzFO8n8gtFmMxk8f2o1ncBhhaHLa6s1zeFTVL-DJNDraX8LJN7uxpFyhLUwml-MEyTjaU45JgLkJ0l_iqpfYukzKKhaatDrrV_BjfP79bEJingXihJYb4q0U2vrCuSKlzokwiWnquc1kya2QufABZwWkQ2mWO1Ep5nOhvCqVylNtS5-9hr16WVdvIZGZU55JjbxkPKtYEGcBY_q0cLbSpRyC6j6vcZGEHHNh_DZdtNkvsx0YgwNjUm3CwAyB9pLXLRHHDjK6G0HTHTQNptGE1WIH2ZNeNoKRFmTsKP0xKEzfUOTwnpxeGLyHoDb8x_E7PoTjTkdMtBxrs1WQIXzoH4c5j44cW1fLW6yTcYY8-uLeOsjVmPLwnjetrvbNYQKdrUoc3d-Ad3AQuiTaDadj2Nusbqv38Njdba7WqxEM1EI113wE-1_PZ_PLUJqy6aiZhH8B04EzkQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQEX3o-FAgHB0SJ2bCdWhVBFWW3V3RVCRerNdRxbFEG27G6L-FP8Rjxxkr1AtZceOOYxkZN8nvkSz3wD8CpNreEq80Rw7gkvJSeqEJIwl1lvi5JJ00jmj_PptDg6Uh834HdXC4NplZ1PbBx1NbP4j_wNRaKOq3783ekPgl2jcHW1a6ERYXHgfv0Mn2yLt_t74f2-Zmz44fD9iLRdBYgVSi6JN1Io40try5RaKwJkaeq5yWTFjZCF8IFVhLhOaVZY4XLmC5H7vMrzIlWm8lm47iZc4VgyiqmCbLIS-aU8lt6JjBSUqjZzKOaTNfqUJ9-Dl8CEsqiu2ghj_jUcbn7BvMx_kd4m-A1v_W-P7TbcbGl2shvnxR3YcPVduDZpEwnuwc6eWRpSzdHXJ6NPwwTFRmIVZxJofILynhjVE1NXSeXajaZt0OI-fL6UoT-ArXpWu0eQyMzmnkmFums8cyyYs8ChfVpa41QlB5B3r1PbVmQde31801023Ve9AoJGIOhU6QCEAdDe8jQKjaxhozrE6K6QNrh-HaLhGrY7vW1LtiKJWtP6ZQBoP1DUKB_tjjXuQ9IevlP5OR_AdodJ3XrGhV4BcgAv-sPBp-FCland7AzPyTjDPgHiwnNQizLl4ToP49zoh8MELibn4vHFA3gO10eHk7Ee708PnsCNcHsi_lzbhq3l_Mw9hav2fHmymD9rpnkCx5c9Qf4AnTKLkQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61Kaq48H4EChgER6t-7Hq9qhAqpFGqhiiqQOptu157RRE4JUmL-Gv8Oma8a-cCVS49cPRjrLX9zcxn7-w3AK-jyGgmUxtyxmzIioyFMudZmFSpsSYvkkw3kvljMZnkJydyugG_27UwVFbZxsQmUJczQ__Id2Mi6jTrx3atL4uYDobvzn-E1EGKZlrbdhoOIkfVr5_4-bZ4ezjAd_0mSYYHnz6MQt9hIDRcZsvQ6oxLbQtjiig2hiN848gynWYl0zzLuUWGgTk-jtPc8EokNufCilKIPJK6tCledxO2BJIM1oOt9weT6fFK8jdmbiEeT8M8jqWvI3LVZY1a5dl3jBlUXua0VhuZzL8mx80vVKX5LwrcpMLh7f_5Id6BW56AB_vOY-7CRlXfg-2PvsTgPuwN9FKH5ZyyQDA6HgYkQ-LWdwZI8AMS_qR8H-i6DMrKbzQNhRYP4PO1DP0h9OpZXT2GIEuNsEkmSZGNpVWC5gmyaxsVRleyzPog2lerjJdfpy4g31RbZ_dVrUChCBQqkgpB0Ye4szx3EiRr2MgWPapdYotJQWGeXMN2r7P1NMzRqzWtXyFYu4GSevlof6xoH9F5_IJll6wPOy0-lY-ZC7UCZx9edocx2tEUlq6r2QWdk7KEOgjwK88hlcqI4XUeOT_phpNwmmYW_MnVA3gB2-gXanw4OXoKN_HuuPvrtgO95fyiegY3zOXybDF_7n0-gNPr9pA_dK2Vqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+HRF+estimation+for+encoding+and+decoding+models&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Pedregosa%2C+Fabian&rft.au=Eickenberg%2C+Michael&rft.au=Ciuciu%2C+Philippe&rft.au=Thirion%2C+Bertrand&rft.date=2015-01-01&rft.eissn=1095-9572&rft.volume=104&rft.spage=209&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.09.060&rft_id=info%3Apmid%2F25304775&rft.externalDocID=25304775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon