Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes

Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC systems biology Jg. 7; H. 1; S. 101
Hauptverfasser: Shi, Hongbo, Xu, Juan, Zhang, Guangde, Xu, Liangde, Li, Chunquan, Wang, Li, Zhao, Zheng, Jiang, Wei, Guo, Zheng, Li, Xia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 08.10.2013
BioMed Central Ltd
Schlagworte:
ISSN:1752-0509, 1752-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
AbstractList Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results: We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions: In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. Keywords: MiRNA, Disease genes, Random walk analysis, MiRNA-disease network
Doc number: 101 Abstract Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results: We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions: In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed.BACKGROUNDMicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed.We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms.RESULTSWe developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms.In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.CONCLUSIONSIn this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
ArticleNumber 101
Audience Academic
Author Shi, Hongbo
Guo, Zheng
Wang, Li
Zhang, Guangde
Xu, Juan
Jiang, Wei
Li, Chunquan
Xu, Liangde
Li, Xia
Zhao, Zheng
AuthorAffiliation 1 College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
2 Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
AuthorAffiliation_xml – name: 1 College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
– name: 2 Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
Author_xml – sequence: 1
  givenname: Hongbo
  surname: Shi
  fullname: Shi, Hongbo
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 2
  givenname: Juan
  surname: Xu
  fullname: Xu, Juan
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 3
  givenname: Guangde
  surname: Zhang
  fullname: Zhang, Guangde
  organization: Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University
– sequence: 4
  givenname: Liangde
  surname: Xu
  fullname: Xu, Liangde
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 5
  givenname: Chunquan
  surname: Li
  fullname: Li, Chunquan
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 6
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 7
  givenname: Zheng
  surname: Zhao
  fullname: Zhao, Zheng
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 8
  givenname: Wei
  surname: Jiang
  fullname: Jiang, Wei
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 9
  givenname: Zheng
  surname: Guo
  fullname: Guo, Zheng
  email: guoz@ems.hrbmu.edu.cn
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
– sequence: 10
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  email: lixia@hrbmu.edu.cn
  organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24103777$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-wZocssYFFWjux42SDNKp4VKpAKiCWluNcZ9wmdrEdoP-An43TmQ4zFSDkha3r75xrX53DbM86C1n2lOBjQurqhHBW5JjhJuc5weRBdrCp7G2d97PDEC4xZmVR8EfZfkEJLjnnB9nPL3K4MrZHcQnI2AhequhGQNEh04GNRt-g5TRKi0Zz8X6RdyaADIBkCE4ZGY2zIYm9m_rlrYmerJqrckCDsVeohfgdYC1HUfoeYkDSdujOqgcL4XH2UMshwJP1fpR9fvP60-m7_PzD27PTxXmuWFPFXPNWl0yXpZStxAQ3DavbdKpaRjihNSVNx1ouW93VhOhWs6Zl6dsVKXHXFU15lL1a-V5P7QidSl_0chDX3ozS3wgnjdi9sWYpevdNUFJQXtFk8GJt4N3XCUIUowkKhkFacFMQhFZ1yXBVFv-BsoawkhYz-vweeukmn4Y4U7TiBaEN_031cgBhrHbpiWo2FYvkU1Gauifq-A9UWh2MRqUAaZPqO4KXO4LERPgRezmFIM4-Xuyyz7bntxncXaQScLIClHcheNAbhGAxh1bMsRRzLAVPNZIU7J5CmXibrPRuM_xDh1e6kDrYHvzWzP4i-QU95_1v
CitedBy_id crossref_primary_10_1016_j_neunet_2023_05_052
crossref_primary_10_1093_bib_bbad270
crossref_primary_10_1039_C7RA08894A
crossref_primary_10_3390_ijms222111397
crossref_primary_10_1016_j_ygeno_2016_01_005
crossref_primary_10_1155_2016_4130861
crossref_primary_10_3390_cells8091040
crossref_primary_10_1039_C9RA05554A
crossref_primary_10_1111_jcmm_13336
crossref_primary_10_1371_journal_pone_0166509
crossref_primary_10_3390_biomedicines13010136
crossref_primary_10_1038_s41598_017_06201_3
crossref_primary_10_1186_s12859_018_2146_x
crossref_primary_10_1186_s12859_020_03765_2
crossref_primary_10_1371_journal_pone_0148521
crossref_primary_10_1186_s12859_023_05152_z
crossref_primary_10_1016_j_neucom_2018_03_003
crossref_primary_10_1016_j_compbiomed_2023_107165
crossref_primary_10_1038_s41419_017_0003_x
crossref_primary_10_1109_TNB_2016_2633276
crossref_primary_10_1155_2017_5741948
crossref_primary_10_3390_cells8111405
crossref_primary_10_1007_s11042_017_5291_8
crossref_primary_10_1016_j_omtn_2019_06_014
crossref_primary_10_7717_peerj_cs_2070
crossref_primary_10_1371_journal_pone_0244394
crossref_primary_10_1186_s12859_019_3066_0
crossref_primary_10_1016_j_chemolab_2022_104603
crossref_primary_10_1111_jcmm_13583
crossref_primary_10_1093_bib_bbad418
crossref_primary_10_1007_s12559_022_10092_6
crossref_primary_10_1016_j_ymeth_2020_05_010
crossref_primary_10_1038_srep21106
crossref_primary_10_1186_s12859_020_3409_x
crossref_primary_10_1016_j_compbiomed_2022_106069
crossref_primary_10_1038_srep43792
crossref_primary_10_1109_TCBB_2019_2937774
crossref_primary_10_3390_molecules27144371
crossref_primary_10_1186_s12859_019_3260_0
crossref_primary_10_3389_fgene_2018_00576
crossref_primary_10_1109_TNNLS_2023_3289182
crossref_primary_10_3389_fgene_2019_01234
crossref_primary_10_1016_j_omtn_2018_10_005
crossref_primary_10_3389_fgene_2019_00385
crossref_primary_10_1016_j_jbi_2017_01_008
crossref_primary_10_1186_s12911_020_01320_w
crossref_primary_10_32604_biocell_2022_017538
crossref_primary_10_1007_s11390_021_0740_2
crossref_primary_10_1109_JBHI_2021_3088342
crossref_primary_10_1111_jcmm_13799
crossref_primary_10_1111_jcmm_14765
crossref_primary_10_2174_1574893618666230222124311
crossref_primary_10_1109_ACCESS_2017_2766758
crossref_primary_10_1016_j_biopha_2018_09_147
crossref_primary_10_7717_peerj_3682
crossref_primary_10_1007_s12539_021_00459_y
crossref_primary_10_1016_j_mbs_2018_10_004
crossref_primary_10_1109_TCBB_2023_3235299
crossref_primary_10_1016_j_compbiomed_2019_05_014
crossref_primary_10_1186_s12859_019_2998_8
crossref_primary_10_1016_j_ymeth_2021_10_006
crossref_primary_10_1186_s12859_019_2956_5
crossref_primary_10_1038_srep32566
crossref_primary_10_1016_j_compbiolchem_2020_107369
crossref_primary_10_1109_ACCESS_2019_2940470
crossref_primary_10_1016_j_csbj_2020_08_023
crossref_primary_10_1016_j_ins_2014_09_016
crossref_primary_10_1016_j_knosys_2019_03_023
crossref_primary_10_1109_TCBB_2021_3127017
crossref_primary_10_1109_TNNLS_2021_3129772
crossref_primary_10_1371_journal_pcbi_1005912
crossref_primary_10_1016_j_engappai_2025_111222
crossref_primary_10_3389_fbioe_2020_00040
crossref_primary_10_3390_biom11121835
crossref_primary_10_1186_s12967_018_1722_1
crossref_primary_10_1093_bib_bbac623
crossref_primary_10_1371_journal_pcbi_1009048
crossref_primary_10_1093_bib_bbv033
crossref_primary_10_1186_1756_0500_7_403
crossref_primary_10_1155_2020_3978702
crossref_primary_10_1371_journal_pcbi_1009165
crossref_primary_10_1109_TCBB_2018_2872574
crossref_primary_10_3390_ijms20153648
crossref_primary_10_1109_TCBB_2017_2776280
crossref_primary_10_1038_s41598_017_15235_6
crossref_primary_10_3389_fgene_2022_995535
crossref_primary_10_1093_bib_bbae443
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_1016_j_omtn_2024_102139
crossref_primary_10_3892_ijo_2014_2516
crossref_primary_10_1186_s12967_017_1340_3
crossref_primary_10_1093_bib_bbab174
crossref_primary_10_3390_genes8120392
crossref_primary_10_1093_bib_bbac021
crossref_primary_10_1038_srep32571
crossref_primary_10_1371_journal_pcbi_1007209
crossref_primary_10_1186_s12918_018_0664_9
crossref_primary_10_1016_j_biosystems_2020_104292
crossref_primary_10_3390_jpm12060885
crossref_primary_10_1109_TCBB_2022_3187739
crossref_primary_10_1109_TCBB_2022_3195514
crossref_primary_10_3389_fgene_2018_00303
crossref_primary_10_1016_j_ymeth_2017_05_024
crossref_primary_10_3389_fgene_2020_00384
crossref_primary_10_1016_j_bdr_2015_02_002
crossref_primary_10_1038_srep27036
crossref_primary_10_1186_s12920_020_00783_0
crossref_primary_10_1007_s00438_020_01693_7
crossref_primary_10_1038_s41598_020_63735_9
crossref_primary_10_1111_jcmm_13429
crossref_primary_10_1016_j_compbiolchem_2021_107566
crossref_primary_10_1038_srep05501
crossref_primary_10_1093_bioinformatics_btx546
crossref_primary_10_1186_s12967_018_1741_y
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1016_j_sigpro_2021_108312
crossref_primary_10_1371_journal_pone_0117090
crossref_primary_10_1016_j_compbiomed_2021_104706
crossref_primary_10_2174_1574893615999200715165335
crossref_primary_10_1186_s12859_021_04092_w
crossref_primary_10_1016_j_jbi_2018_02_013
crossref_primary_10_3390_genes10090685
crossref_primary_10_1108_IDD_04_2019_0026
crossref_primary_10_1155_2021_9678747
crossref_primary_10_1186_s12864_018_5273_x
crossref_primary_10_1109_TCBB_2020_3027444
crossref_primary_10_1016_j_jbi_2017_10_014
crossref_primary_10_12677_HJCB_2021_113005
crossref_primary_10_1371_journal_pone_0129474
crossref_primary_10_3389_fphys_2018_00092
crossref_primary_10_1016_j_knosys_2023_110295
crossref_primary_10_3390_genes10020080
crossref_primary_10_3390_genes13061021
crossref_primary_10_1134_S0026893318050151
crossref_primary_10_1007_s00438_018_1438_1
crossref_primary_10_1093_bioinformatics_btv039
crossref_primary_10_1109_TCBB_2016_2599866
crossref_primary_10_1039_C8RA07519K
crossref_primary_10_3390_cells9040881
crossref_primary_10_1371_journal_pcbi_1006931
crossref_primary_10_1039_C7MB00485K
crossref_primary_10_1016_j_ymeth_2020_08_004
crossref_primary_10_1371_journal_pcbi_1006418
crossref_primary_10_1038_s41598_018_24532_7
crossref_primary_10_1038_s41598_018_34180_6
crossref_primary_10_1109_TCBB_2024_3421924
crossref_primary_10_1371_journal_pone_0252971
crossref_primary_10_3389_fgene_2022_936823
crossref_primary_10_1186_s12864_024_11078_4
crossref_primary_10_1371_journal_pcbi_1005455
crossref_primary_10_1186_s12911_022_01807_8
crossref_primary_10_1016_j_jbi_2019_103180
crossref_primary_10_1038_srep13877
crossref_primary_10_1038_srep11338
crossref_primary_10_1109_TCBB_2016_2550432
crossref_primary_10_1109_TCBB_2022_3191972
crossref_primary_10_3390_ijms20020421
crossref_primary_10_1016_j_knosys_2024_112222
crossref_primary_10_1109_ACCESS_2021_3084148
crossref_primary_10_1155_2021_6652948
crossref_primary_10_1038_s41598_017_12763_z
crossref_primary_10_1186_s12859_021_04266_6
crossref_primary_10_1186_s12859_019_2640_9
crossref_primary_10_3390_biomedicines13030536
crossref_primary_10_1186_s12864_020_07006_x
crossref_primary_10_1038_srep36054
crossref_primary_10_1016_j_omtn_2019_04_010
crossref_primary_10_1177_1176934320919707
crossref_primary_10_1109_ACCESS_2017_2672600
crossref_primary_10_1172_JCI74773
crossref_primary_10_3390_ijms23169348
crossref_primary_10_1093_bib_bbz159
crossref_primary_10_3389_fgene_2018_00234
crossref_primary_10_12677_HJCB_2022_113005
crossref_primary_10_1093_bib_bbx130
Cites_doi 10.1088/1478-3975/2/2/S01
10.1016/j.leukres.2011.09.027
10.1016/j.ajhg.2008.02.013
10.1038/msb4100200
10.4110/in.2011.11.3.135
10.1016/j.nbd.2007.11.001
10.1186/1752-0509-4-S1-S2
10.1371/journal.pcbi.0030131
10.1523/JNEUROSCI.2390-08.2008
10.1073/pnas.0506580102
10.1016/S1470-2045(09)70386-9
10.1093/bioinformatics/btq076
10.1093/bib/bbr043
10.1371/journal.pcbi.1000521
10.1073/pnas.0701361104
10.1038/ng1536
10.1093/nar/gkj112
10.1038/nmeth.1280
10.1016/j.cell.2009.01.002
10.1128/MCB.01977-07
10.1016/j.semcancer.2013.06.002
10.1038/ng.619
10.1038/nature11453
10.1371/journal.pone.0021131
10.1093/nar/gkp002
10.1038/msb.2013.12
10.1016/j.expneurol.2010.10.012
10.1049/iet-syb:20060068
10.1093/nar/gkn892
10.1126/science.1164382
10.1093/cvr/cvs096
10.1161/ATVBAHA.109.197434
10.1016/j.cell.2006.07.031
10.1016/j.ccr.2008.02.013
10.1093/nar/gkn714
10.1093/nar/gkp292
10.1039/c2mb25180a
10.1093/nar/gkl243
10.1186/1471-2105-6-136
10.1093/nar/gkm995
10.1101/gad.1777409
10.1093/nar/gki863
10.1371/journal.pone.0003420
10.1101/gr.128819.111
10.1093/nar/gkq832
10.3233/JAD-2008-14103
10.1126/science.1140481
10.1038/nmeth.1284
10.1038/nature10166
10.1016/j.molcel.2007.06.017
10.1186/1471-2105-7-S5-S19
10.1038/onc.2011.624
10.1093/cvr/cvp130
10.1002/ijc.23948
ContentType Journal Article
Copyright Shi et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2013 BioMed Central Ltd.
2013 Shi et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Shi et al.; licensee BioMed Central Ltd. 2013 Shi et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Shi et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Shi et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Shi et al.; licensee BioMed Central Ltd. 2013 Shi et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7TM
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1186/1752-0509-7-101
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE


Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1752-0509
EndPage 101
ExternalDocumentID PMC4124764
3111706751
A534644146
24103777
10_1186_1752_0509_7_101
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SJN
SOJ
SV3
TR2
TUS
UKHRP
WOQ
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c596t-f7bf35f33aaba0109958bba06b517148419d5b7abfd811fbf59b55326130dd293
IEDL.DBID RSV
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327502400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1752-0509
IngestDate Tue Nov 04 01:49:19 EST 2025
Sun Nov 09 13:20:27 EST 2025
Thu Oct 02 11:39:50 EDT 2025
Sat Nov 29 14:48:13 EST 2025
Tue Nov 11 10:57:48 EST 2025
Tue Nov 04 18:18:44 EST 2025
Thu Nov 13 16:20:04 EST 2025
Mon Jul 21 05:21:27 EDT 2025
Sat Nov 29 02:47:20 EST 2025
Tue Nov 18 21:49:20 EST 2025
Sat Sep 06 07:24:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Random walk analysis
Disease genes
MiRNA-disease network
MiRNA
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-f7bf35f33aaba0109958bba06b517148419d5b7abfd811fbf59b55326130dd293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://link.springer.com/10.1186/1752-0509-7-101
PMID 24103777
PQID 1446721497
PQPubID 55238
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4124764
proquest_miscellaneous_1468350632
proquest_miscellaneous_1459153422
proquest_journals_1446721497
gale_infotracmisc_A534644146
gale_infotracacademiconefile_A534644146
gale_incontextgauss_ISR_A534644146
pubmed_primary_24103777
crossref_primary_10_1186_1752_0509_7_101
crossref_citationtrail_10_1186_1752_0509_7_101
springer_journals_10_1186_1752_0509_7_101
PublicationCentury 2000
PublicationDate 2013-10-08
PublicationDateYYYYMMDD 2013-10-08
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-08
  day: 08
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC systems biology
PublicationTitleAbbrev BMC Syst Biol
PublicationTitleAlternate BMC Syst Biol
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References M Maragkakis (1189_CR18) 2009; 37
ME Cusick (1189_CR11) 2009; 6
X Wang (1189_CR49) 2012; 94
SE Jalava (1189_CR41) 2012; 31
ST Lee (1189_CR42) 2011; 227
J Xu (1189_CR25) 2011; 39
CGAR Network (1189_CR35) 2011; 474
X Li (1189_CR14) 2011; 6
Q Jiang (1189_CR27) 2009; 37
J Jiang (1189_CR37) 2005; 33
J Weidhaas (1189_CR3) 2010; 11
T Jiang (1189_CR7) 2005; 6
RH Newman (1189_CR32) 2013; 9
CGA Network (1189_CR33) 2012; 490
Q Jiang (1189_CR5) 2010; 4
J Kim (1189_CR53) 2007; 317
S Griffiths-Jones (1189_CR21) 2006; 34
I Ivanovska (1189_CR46) 2008; 28
F Petrocca (1189_CR47) 2008; 13
A Subramanian (1189_CR23) 2005; 102
E Wang (1189_CR28) 2013; 23
Q Cui (1189_CR29) 2007; 3
A Krek (1189_CR16) 2005; 37
L Li (1189_CR31) 2012; 22
JP Sluijter (1189_CR50) 2010; 30
TY Ha (1189_CR2) 2011; 11
JP Cogswell (1189_CR52) 2008; 14
A Awan (1189_CR30) 2007; 1
K Venkatesan (1189_CR12) 2009; 6
A Grimson (1189_CR17) 2007; 27
J Wang (1189_CR24) 2009; 5
JT Huse (1189_CR38) 2009; 23
DW Parsons (1189_CR34) 2008; 321
S Navlakha (1189_CR10) 2010; 26
KC Miranda (1189_CR19) 2006; 126
E Ferretti (1189_CR51) 2009; 124
A Szilagyi (1189_CR8) 2005; 2
AJ Favreau (1189_CR40) 2012; 36
J Barretina (1189_CR36) 2010; 42
S Mathivanan (1189_CR54) 2006; 7
R Johnson (1189_CR44) 2008; 29
DP Bartel (1189_CR1) 2009; 136
M Lu (1189_CR4) 2008; 3
KI Goh (1189_CR45) 2007; 104
S Kohler (1189_CR9) 2008; 82
D Betel (1189_CR15) 2008; 36
YK Kim (1189_CR48) 2009; 37
R Shalgi (1189_CR26) 2007; 3
TS Keshava Prasad (1189_CR13) 2009; 37
J Kruger (1189_CR20) 2006; 34
AN Packer (1189_CR43) 2008; 28
H Shan (1189_CR39) 2009; 83
X Chen (1189_CR6) 2012; 8
X Li (1189_CR22) 2011; 13
16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4
18973228 - Int J Cancer. 2009 Feb 1;124(3):568-77
18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53
16192569 - Nucleic Acids Res. 2005;33(17):5394-403
17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
16204844 - Phys Biol. 2005 Jun;2(2):S1-16
22194470 - Genome Res. 2012 Jul;22(7):1222-30
20522252 - BMC Syst Biol. 2010;4 Suppl 1:S2
17254303 - BMC Bioinformatics. 2006;7 Suppl 5:S19
18328430 - Cancer Cell. 2008 Mar;13(3):272-86
15929793 - BMC Bioinformatics. 2005;6:136
18091723 - Mol Syst Biol. 2007;3:152
21035445 - Exp Neurol. 2011 Jan;227(1):172-9
19060904 - Nat Methods. 2009 Jan;6(1):83-90
20185403 - Bioinformatics. 2010 Apr 15;26(8):1057-63
21720365 - Nature. 2011 Jun 30;474(7353):609-15
21860607 - Immune Netw. 2011 Jun;11(3):135-54
20081117 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):859-68
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
22015065 - Leuk Res. 2012 Mar;36(3):334-41
19406924 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W273-6
20929877 - Nucleic Acids Res. 2011 Feb;39(3):825-36
18525125 - J Alzheimers Dis. 2008 May;14(1):27-41
23791722 - Semin Cancer Biol. 2013 Aug;23(4):279-85
22875290 - Mol Biosyst. 2012 Oct;8(10):2792-8
23549483 - Mol Syst Biol. 2013;9:655
18371930 - Am J Hum Genet. 2008 Apr;82(4):949-58
19398468 - Cardiovasc Res. 2009 Aug 1;83(3):465-72
20601955 - Nat Genet. 2010 Aug;42(8):715-21
18772396 - Science. 2008 Sep 26;321(5897):1807-12
19153141 - Nucleic Acids Res. 2009 Apr;37(5):1672-81
18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72
17630826 - PLoS Comput Biol. 2007 Jul;3(7):e131
16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4
17907678 - IET Syst Biol. 2007 Sep;1(5):292-7
17761882 - Science. 2007 Aug 31;317(5842):1220-4
20022811 - Lancet Oncol. 2010 Feb;11(2):106-7
21695054 - PLoS One. 2011;6(6):e21131
18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104
15806104 - Nat Genet. 2005 May;37(5):495-500
21908864 - Brief Bioinform. 2012 Mar;13(2):175-86
19167326 - Cell. 2009 Jan 23;136(2):215-33
18923704 - PLoS One. 2008;3(10):e3420
19487573 - Genes Dev. 2009 Jun 1;23(11):1327-37
19116613 - Nat Methods. 2009 Jan;6(1):39-46
22354898 - Cardiovasc Res. 2012 May 1;94(2):379-90
17502601 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90
23000897 - Nature. 2012 Oct 4;490(7418):61-70
22266859 - Oncogene. 2012 Oct 11;31(41):4460-71
19118166 - J Neurosci. 2008 Dec 31;28(53):14341-6
18082412 - Neurobiol Dis. 2008 Mar;29(3):438-45
19779549 - PLoS Comput Biol. 2009 Sep;5(9):e1000521
16990141 - Cell. 2006 Sep 22;126(6):1203-17
18212054 - Mol Cell Biol. 2008 Apr;28(7):2167-74
References_xml – volume: 2
  start-page: S1
  year: 2005
  ident: 1189_CR8
  publication-title: Phys Biol
  doi: 10.1088/1478-3975/2/2/S01
– volume: 36
  start-page: 334
  year: 2012
  ident: 1189_CR40
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2011.09.027
– volume: 82
  start-page: 949
  year: 2008
  ident: 1189_CR9
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.02.013
– volume: 3
  start-page: 152
  year: 2007
  ident: 1189_CR29
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100200
– volume: 11
  start-page: 135
  year: 2011
  ident: 1189_CR2
  publication-title: Immune Netw
  doi: 10.4110/in.2011.11.3.135
– volume: 29
  start-page: 438
  year: 2008
  ident: 1189_CR44
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2007.11.001
– volume: 4
  start-page: 2
  issue: 1
  year: 2010
  ident: 1189_CR5
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 3
  start-page: e131
  year: 2007
  ident: 1189_CR26
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030131
– volume: 28
  start-page: 14341
  year: 2008
  ident: 1189_CR43
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2390-08.2008
– volume: 102
  start-page: 15545
  year: 2005
  ident: 1189_CR23
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506580102
– volume: 11
  start-page: 106
  year: 2010
  ident: 1189_CR3
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(09)70386-9
– volume: 26
  start-page: 1057
  year: 2010
  ident: 1189_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq076
– volume: 13
  start-page: 175
  year: 2011
  ident: 1189_CR22
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr043
– volume: 5
  start-page: e1000521
  year: 2009
  ident: 1189_CR24
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000521
– volume: 104
  start-page: 8685
  year: 2007
  ident: 1189_CR45
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0701361104
– volume: 37
  start-page: 495
  year: 2005
  ident: 1189_CR16
  publication-title: Nat Genet
  doi: 10.1038/ng1536
– volume: 34
  start-page: D140
  year: 2006
  ident: 1189_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj112
– volume: 6
  start-page: 83
  year: 2009
  ident: 1189_CR12
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1280
– volume: 136
  start-page: 215
  year: 2009
  ident: 1189_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 28
  start-page: 2167
  year: 2008
  ident: 1189_CR46
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01977-07
– volume: 23
  start-page: 279
  year: 2013
  ident: 1189_CR28
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2013.06.002
– volume: 42
  start-page: 715
  year: 2010
  ident: 1189_CR36
  publication-title: Nat Genet
  doi: 10.1038/ng.619
– volume: 490
  start-page: 61
  year: 2012
  ident: 1189_CR33
  publication-title: Nature
  doi: 10.1038/nature11453
– volume: 6
  start-page: e21131
  year: 2011
  ident: 1189_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021131
– volume: 37
  start-page: 1672
  year: 2009
  ident: 1189_CR48
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp002
– volume: 9
  start-page: 655
  year: 2013
  ident: 1189_CR32
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2013.12
– volume: 227
  start-page: 172
  year: 2011
  ident: 1189_CR42
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2010.10.012
– volume: 1
  start-page: 292
  year: 2007
  ident: 1189_CR30
  publication-title: IET Syst Biol
  doi: 10.1049/iet-syb:20060068
– volume: 37
  start-page: D767
  year: 2009
  ident: 1189_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn892
– volume: 321
  start-page: 1807
  year: 2008
  ident: 1189_CR34
  publication-title: Science
  doi: 10.1126/science.1164382
– volume: 94
  start-page: 379
  year: 2012
  ident: 1189_CR49
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvs096
– volume: 30
  start-page: 859
  year: 2010
  ident: 1189_CR50
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.109.197434
– volume: 126
  start-page: 1203
  year: 2006
  ident: 1189_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.031
– volume: 13
  start-page: 272
  year: 2008
  ident: 1189_CR47
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.02.013
– volume: 37
  start-page: D98
  year: 2009
  ident: 1189_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– volume: 37
  start-page: W273
  year: 2009
  ident: 1189_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp292
– volume: 8
  start-page: 2792
  year: 2012
  ident: 1189_CR6
  publication-title: Mol Biosyst
  doi: 10.1039/c2mb25180a
– volume: 34
  start-page: W451
  year: 2006
  ident: 1189_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl243
– volume: 6
  start-page: 136
  year: 2005
  ident: 1189_CR7
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-6-136
– volume: 36
  start-page: D149
  year: 2008
  ident: 1189_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm995
– volume: 23
  start-page: 1327
  year: 2009
  ident: 1189_CR38
  publication-title: Genes Dev
  doi: 10.1101/gad.1777409
– volume: 33
  start-page: 5394
  year: 2005
  ident: 1189_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki863
– volume: 3
  start-page: e3420
  year: 2008
  ident: 1189_CR4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003420
– volume: 22
  start-page: 1222
  year: 2012
  ident: 1189_CR31
  publication-title: Genome Res
  doi: 10.1101/gr.128819.111
– volume: 39
  start-page: 825
  year: 2011
  ident: 1189_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq832
– volume: 14
  start-page: 27
  year: 2008
  ident: 1189_CR52
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2008-14103
– volume: 317
  start-page: 1220
  year: 2007
  ident: 1189_CR53
  publication-title: Science
  doi: 10.1126/science.1140481
– volume: 6
  start-page: 39
  year: 2009
  ident: 1189_CR11
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1284
– volume: 474
  start-page: 609
  year: 2011
  ident: 1189_CR35
  publication-title: Nature
  doi: 10.1038/nature10166
– volume: 27
  start-page: 91
  year: 2007
  ident: 1189_CR17
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.06.017
– volume: 7
  start-page: 19
  issue: 5
  year: 2006
  ident: 1189_CR54
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-7-S5-S19
– volume: 31
  start-page: 4460
  year: 2012
  ident: 1189_CR41
  publication-title: Oncogene
  doi: 10.1038/onc.2011.624
– volume: 83
  start-page: 465
  year: 2009
  ident: 1189_CR39
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvp130
– volume: 124
  start-page: 568
  year: 2009
  ident: 1189_CR51
  publication-title: Int J Cancer
  doi: 10.1002/ijc.23948
– reference: 18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72
– reference: 18371930 - Am J Hum Genet. 2008 Apr;82(4):949-58
– reference: 20601955 - Nat Genet. 2010 Aug;42(8):715-21
– reference: 16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4
– reference: 18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53
– reference: 17907678 - IET Syst Biol. 2007 Sep;1(5):292-7
– reference: 19153141 - Nucleic Acids Res. 2009 Apr;37(5):1672-81
– reference: 19487573 - Genes Dev. 2009 Jun 1;23(11):1327-37
– reference: 18328430 - Cancer Cell. 2008 Mar;13(3):272-86
– reference: 22266859 - Oncogene. 2012 Oct 11;31(41):4460-71
– reference: 18082412 - Neurobiol Dis. 2008 Mar;29(3):438-45
– reference: 17630826 - PLoS Comput Biol. 2007 Jul;3(7):e131
– reference: 19406924 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W273-6
– reference: 22875290 - Mol Biosyst. 2012 Oct;8(10):2792-8
– reference: 16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4
– reference: 18973228 - Int J Cancer. 2009 Feb 1;124(3):568-77
– reference: 18923704 - PLoS One. 2008;3(10):e3420
– reference: 21035445 - Exp Neurol. 2011 Jan;227(1):172-9
– reference: 16204844 - Phys Biol. 2005 Jun;2(2):S1-16
– reference: 19398468 - Cardiovasc Res. 2009 Aug 1;83(3):465-72
– reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
– reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33
– reference: 20081117 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):859-68
– reference: 21720365 - Nature. 2011 Jun 30;474(7353):609-15
– reference: 16192569 - Nucleic Acids Res. 2005;33(17):5394-403
– reference: 16990141 - Cell. 2006 Sep 22;126(6):1203-17
– reference: 23791722 - Semin Cancer Biol. 2013 Aug;23(4):279-85
– reference: 18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104
– reference: 20929877 - Nucleic Acids Res. 2011 Feb;39(3):825-36
– reference: 20022811 - Lancet Oncol. 2010 Feb;11(2):106-7
– reference: 20185403 - Bioinformatics. 2010 Apr 15;26(8):1057-63
– reference: 18212054 - Mol Cell Biol. 2008 Apr;28(7):2167-74
– reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70
– reference: 19779549 - PLoS Comput Biol. 2009 Sep;5(9):e1000521
– reference: 19118166 - J Neurosci. 2008 Dec 31;28(53):14341-6
– reference: 22015065 - Leuk Res. 2012 Mar;36(3):334-41
– reference: 18091723 - Mol Syst Biol. 2007;3:152
– reference: 18525125 - J Alzheimers Dis. 2008 May;14(1):27-41
– reference: 18772396 - Science. 2008 Sep 26;321(5897):1807-12
– reference: 15929793 - BMC Bioinformatics. 2005;6:136
– reference: 21860607 - Immune Netw. 2011 Jun;11(3):135-54
– reference: 17502601 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90
– reference: 23549483 - Mol Syst Biol. 2013;9:655
– reference: 19116613 - Nat Methods. 2009 Jan;6(1):39-46
– reference: 17254303 - BMC Bioinformatics. 2006;7 Suppl 5:S19
– reference: 22194470 - Genome Res. 2012 Jul;22(7):1222-30
– reference: 21908864 - Brief Bioinform. 2012 Mar;13(2):175-86
– reference: 22354898 - Cardiovasc Res. 2012 May 1;94(2):379-90
– reference: 19060904 - Nat Methods. 2009 Jan;6(1):83-90
– reference: 17761882 - Science. 2007 Aug 31;317(5842):1220-4
– reference: 15806104 - Nat Genet. 2005 May;37(5):495-500
– reference: 20522252 - BMC Syst Biol. 2010;4 Suppl 1:S2
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 21695054 - PLoS One. 2011;6(6):e21131
SSID ssj0053227
Score 2.4768248
Snippet Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases....
MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the...
Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases....
Doc number: 101 Abstract Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in...
Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Cancer
Cellular and Medical Topics
Computational Biology - methods
Computational Biology/Bioinformatics
Disease
Disease - genetics
Disease susceptibility
Gene expression
Genetic regulation
Humans
Life Sciences
Medical research
Medicine, Experimental
Methods
MicroRNA
MicroRNAs - genetics
Nervous system diseases
pharmacology and medicine
Physiological
Protein Interaction Mapping - methods
Protein-protein interactions
Proteins
Regulation
Research Article
Simulation and Modeling
Stochastic Processes
Studies
Systems Biology
Systems physiology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgCxIX3tBAQQYhAQe3m4fj5IQW1AoktKqWV2-WH3FZqU3aZhep_4CfzYzjbJsV9MIliuRxEsfjmbE9_j5CXmnBK23GmiXOCJbZPGaqSJBEIFGOj12Serim75_FdFocHJT7YcGtDWmVvU30hto2BtfId3DeArOVrBTvTk4Zskbh7mqg0LhONhCpLBuRjfe70_1Zb4s5qKsIgD5xke-Ar0wYIp4wAfYnHviidYt8ySWtp0uu7Zl6V7R3538bcZfcDkEonXRac49cq-r75GZHS3n-gPz-oY5wBZ1CcEgRTwJPUjXHFV00dO4P9rpz6sn96PF8Np2wsMtD1UVftzQwAPmHoPfsFh0p7hjTkB3WVaddNnpLVW1p_6hDtMEPybe93a8fPrLA2MAML_MFc0K7lLs0VUorv-nGCw13ueZItF5kcWm5Fko7W8Sx046XmkMn4STGWog8HpFR3dTVJqGmgImp0a7Ulcrgosc2VsJB9GfLqrBVRLb7vpMmwJkjq8aR9NOaIpfY2RI7WwpMZIvIm1WFkw7J49-iL1EZJOJj1JiAc6iWbSs_fZnJCU8zDCGzPCKvg5Br4MVGhfMM8PkIqTWQ3BpIwgA2w-JeWWQwIK280JSIvFgVY01MiqurZokyvASHlSXJVTI5xNgQh4LM406NV62H4G2cCgFvEAMFXwkg9PiwpJ7_9BDkyFku8iwib_uhcOnT__5Tn1zdzKfkVoJMIz69couMFmfL6hm5YX4t5u3Z8zCu_wAOy1ea
  priority: 102
  providerName: ProQuest
Title Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
URI https://link.springer.com/article/10.1186/1752-0509-7-101
https://www.ncbi.nlm.nih.gov/pubmed/24103777
https://www.proquest.com/docview/1446721497
https://www.proquest.com/docview/1459153422
https://www.proquest.com/docview/1468350632
https://pubmed.ncbi.nlm.nih.gov/PMC4124764
Volume 7
WOSCitedRecordID wos000327502400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: RBZ
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: RSV
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKCxIX3tBAWRmEBBwCm4dj57hFragEqyiFsnCx7CRuV2oT1Owi9R_ws5lxnKVZFSS4RIk8jh17PI94_A0hLzRnlS7G2g9Nwf24TAJfiRCTCITKsLEJIwvXdPSBT6diNkuzDRL0Z2FstHu_JWkltV3WInkLei70Ea3E5yA7wOHZgnuBazE_POqFLwP-5A7B54pKA-WzLoIv6aD1-Mi1TVKre_Zv_0ev75BbztCkk44z7pKNqr5HbnSpJy_uk59f1Cn-JadgAFLEjMDTUs1ZRRcNndvDu-aC2gR-9GyeTye-28mh6vd8ttRl-bEvQQ3Z_Vik2FHqIsC66rSLOG-pqkvav-oY5ewD8nl_79O7977LyuAXLE0WvuHaRMxEkVJa2Y01JjTcJZphMnURB2nJNFfalCIIjDYs1QzmBR2VsgTr4iHZrJu62ia0EOB8FtqkulIxXPS4DBQ3YOGVaSXKyiNv-umShYMsx8wZp9K6LiKROLwSh1dyDFbzyKtVhe8dWsefSZ_j_EvEwKgxyOZYLdtWHhzmcsKiGM3EOPHIS0dkGmi4UO7MAnQfYbMGlDsDSlikxbC4ZzPphEQr0RUHBzxOuUeerYqxJga-1VWzRBqWglKKw_BvNAnY0WBrAs2jjnNXXw8G2jjiHFrgA55eESC8-LCknp9YmHHMS86T2COve86-1PWrB_XxP9A-ITdDTC1i4yl3yObifFk9JdeLH4t5ez4i1_iM26sYka3dvWmWjzAuN4On7OBj9hWe8t1vI7v6fwErcFDg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL70eggEEg4JB248RxckBoBVRddVmhUmBvru3EZaU2Kc0uaP8Bv4bfyIyTbJsV9NYDl9VKGefhjOeRGX8fIc-04Lk2Pe0za4QfZXHgq4QhiQBTlvcsCx1c05ehGI2S8Tj9uEJ-t3thsK2ytYnOUGelwW_kG5i3QLYSpeLN0XcfWaOwutpSaNRqsZ3Pf0LKVr0evIP3-5yxzfe7b7f8hlXANzyNp74V2obchqFSWrnCEE80_Is1RzLwJArSjGuhtM2SILDa8lRzDlEOWPssYwi-BCb_AthxgS1kYrxI8ECIiQY-KEjiDfDMzEd8FV-AtQs6nm_Z_p9ygMvNmUsVWuf4Nq_9b1N2nVxtQmzar9fEDbKSFzfJpZp0c36L_PqqDrA-QCH0pYiWgfvEysOcTks6cduW7Zw66kJ6ONkZ9f2mhkXViSZXtOE3cifB2KD-pEqxHk6b3rd6OK177Suqioy2p9pHD3ObfD6XabhDVouyyO8RahJIu422qc5VBD-6lwVKWIhtszRPstwj662uSNOAtSNnyIF0SVsSS1QuicolBbbpeeTlYsBRjVPyb9GnqHwS0T8KbC_aV7OqkoNPO7LPwwgD5Cj2yItGyJZwYaOa3Rpw-wgY1pFc60iCeTLdw61yysY8VvJEMz3yZHEYR2LLX5GXM5ThKbjjiLGzZGLIICDKBpm79bJZPD2Epr1QCLiC6CyohQACq3ePFJNvDmAdGdlFHHnkVbv0Tt363yf1_tmP-Zhc3tr9MJTDwWj7AbnCkFPFNZKukdXp8Sx_SC6aH9NJdfzIWRRK9s57Pf4B5euyxQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKYgLlGcDLRiEBD2Ybh6Ok-OqsKKiWlUtlN4sO47bldqkarJI_Qf8bGYcZ2lWBQlxiSJ5nDj22DMTj7-PkLda8FIXI80iWwiWmDRkKouQRCBSlo9sFDu4pqM9MZ1mx8f5vs_Nafps935LsjvTgChNVbt9YWw3xbN0G2xexBC5hAlYRyD4uZ0gYxAG64dH_ULMQVeFR_O5odLAEC0vx9fs0XKu5NKGqbNDkwf_-QVr5L53QOm405iH5FZZPSJ3OkrKq8fk53d1hn_PKTiGFLEk8BRVfV7StqYzd6jXXlFH7EfPZwfTMfM7PFT9HueGevYf9xC0nN0PR4qNpj4zrKtOu0z0hqrK0P5RJ7j-PiHfJp--7nxmnq2BFTxPW2aFtjG3cayUVm7DjWca7lLNkWQ9S8LccC2UtiYLQ6stzzWHMcIAxhjwOp6SlaquynVCiwyC0kLbXJcqgYsemVAJC56fycvMlAH50A-dLDyUOTJqnEkX0mSpxO6V2L1SYBJbQN4vKlx0KB5_Fn2DuiARG6PC5JsTNW8auXt4IMc8TtB9TNKAvPNCtoYXF8qfZYDmI5zWQHJjIAmTtxgW9yon_eLRSAzRITBPchGQ14tirIkJcVVZz1GG52Cskij6m0wK_jX4oCDzrNPixdeD4zaKhYA3iIF-LwQQdnxYUs1OHfw48pWLNAnIVq_l15p-c6c-_wfZV-Tu_seJ3NudfnlB7kXIPuJyJzfISns5LzfJavGjnTWXL91k_wXi8FWC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Walking+the+interactome+to+identify+human+miRNA-disease+associations+through+the+functional+link+between+miRNA+targets+and+disease+genes&rft.jtitle=BMC+systems+biology&rft.au=Shi%2C+Hongbo&rft.au=Xu%2C+Juan&rft.au=Zhang%2C+Guangde&rft.au=Xu%2C+Liangde&rft.date=2013-10-08&rft.eissn=1752-0509&rft.volume=7&rft.spage=101&rft_id=info:doi/10.1186%2F1752-0509-7-101&rft_id=info%3Apmid%2F24103777&rft.externalDocID=24103777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0509&client=summon