Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases....
Gespeichert in:
| Veröffentlicht in: | BMC systems biology Jg. 7; H. 1; S. 101 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
08.10.2013
BioMed Central Ltd |
| Schlagworte: | |
| ISSN: | 1752-0509, 1752-0509 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed.
Results
We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms.
Conclusions
In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. |
|---|---|
| AbstractList | Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results: We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions: In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. Keywords: MiRNA, Disease genes, Random walk analysis, MiRNA-disease network Doc number: 101 Abstract Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results: We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions: In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed. Results We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms. Conclusions In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed.BACKGROUNDMicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease associations identified by previous computational methods are far from completeness and more effort is needed.We developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms.RESULTSWe developed a computational framework to identify miRNA-disease associations by performing random walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the same co-regulated module tended to belong to the same disease category, indicating that these diseases might share similar miRNA regulatory mechanisms.In this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.CONCLUSIONSIn this study, we present a computational framework to identify miRNA-disease associations, and further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis. |
| ArticleNumber | 101 |
| Audience | Academic |
| Author | Shi, Hongbo Guo, Zheng Wang, Li Zhang, Guangde Xu, Juan Jiang, Wei Li, Chunquan Xu, Liangde Li, Xia Zhao, Zheng |
| AuthorAffiliation | 1 College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang 150081, PR China 2 Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China |
| AuthorAffiliation_xml | – name: 1 College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang 150081, PR China – name: 2 Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China |
| Author_xml | – sequence: 1 givenname: Hongbo surname: Shi fullname: Shi, Hongbo organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 2 givenname: Juan surname: Xu fullname: Xu, Juan organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 3 givenname: Guangde surname: Zhang fullname: Zhang, Guangde organization: Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University – sequence: 4 givenname: Liangde surname: Xu fullname: Xu, Liangde organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 5 givenname: Chunquan surname: Li fullname: Li, Chunquan organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 6 givenname: Li surname: Wang fullname: Wang, Li organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 7 givenname: Zheng surname: Zhao fullname: Zhao, Zheng organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 8 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 9 givenname: Zheng surname: Guo fullname: Guo, Zheng email: guoz@ems.hrbmu.edu.cn organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University – sequence: 10 givenname: Xia surname: Li fullname: Li, Xia email: lixia@hrbmu.edu.cn organization: College of Bioinformatics Science and Technology and State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24103777$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB-wZocssYFFWjux42SDNKp4VKpAKiCWluNcZ9wmdrEdoP-An43TmQ4zFSDkha3r75xrX53DbM86C1n2lOBjQurqhHBW5JjhJuc5weRBdrCp7G2d97PDEC4xZmVR8EfZfkEJLjnnB9nPL3K4MrZHcQnI2AhequhGQNEh04GNRt-g5TRKi0Zz8X6RdyaADIBkCE4ZGY2zIYm9m_rlrYmerJqrckCDsVeohfgdYC1HUfoeYkDSdujOqgcL4XH2UMshwJP1fpR9fvP60-m7_PzD27PTxXmuWFPFXPNWl0yXpZStxAQ3DavbdKpaRjihNSVNx1ouW93VhOhWs6Zl6dsVKXHXFU15lL1a-V5P7QidSl_0chDX3ozS3wgnjdi9sWYpevdNUFJQXtFk8GJt4N3XCUIUowkKhkFacFMQhFZ1yXBVFv-BsoawkhYz-vweeukmn4Y4U7TiBaEN_031cgBhrHbpiWo2FYvkU1Gauifq-A9UWh2MRqUAaZPqO4KXO4LERPgRezmFIM4-Xuyyz7bntxncXaQScLIClHcheNAbhGAxh1bMsRRzLAVPNZIU7J5CmXibrPRuM_xDh1e6kDrYHvzWzP4i-QU95_1v |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2023_05_052 crossref_primary_10_1093_bib_bbad270 crossref_primary_10_1039_C7RA08894A crossref_primary_10_3390_ijms222111397 crossref_primary_10_1016_j_ygeno_2016_01_005 crossref_primary_10_1155_2016_4130861 crossref_primary_10_3390_cells8091040 crossref_primary_10_1039_C9RA05554A crossref_primary_10_1111_jcmm_13336 crossref_primary_10_1371_journal_pone_0166509 crossref_primary_10_3390_biomedicines13010136 crossref_primary_10_1038_s41598_017_06201_3 crossref_primary_10_1186_s12859_018_2146_x crossref_primary_10_1186_s12859_020_03765_2 crossref_primary_10_1371_journal_pone_0148521 crossref_primary_10_1186_s12859_023_05152_z crossref_primary_10_1016_j_neucom_2018_03_003 crossref_primary_10_1016_j_compbiomed_2023_107165 crossref_primary_10_1038_s41419_017_0003_x crossref_primary_10_1109_TNB_2016_2633276 crossref_primary_10_1155_2017_5741948 crossref_primary_10_3390_cells8111405 crossref_primary_10_1007_s11042_017_5291_8 crossref_primary_10_1016_j_omtn_2019_06_014 crossref_primary_10_7717_peerj_cs_2070 crossref_primary_10_1371_journal_pone_0244394 crossref_primary_10_1186_s12859_019_3066_0 crossref_primary_10_1016_j_chemolab_2022_104603 crossref_primary_10_1111_jcmm_13583 crossref_primary_10_1093_bib_bbad418 crossref_primary_10_1007_s12559_022_10092_6 crossref_primary_10_1016_j_ymeth_2020_05_010 crossref_primary_10_1038_srep21106 crossref_primary_10_1186_s12859_020_3409_x crossref_primary_10_1016_j_compbiomed_2022_106069 crossref_primary_10_1038_srep43792 crossref_primary_10_1109_TCBB_2019_2937774 crossref_primary_10_3390_molecules27144371 crossref_primary_10_1186_s12859_019_3260_0 crossref_primary_10_3389_fgene_2018_00576 crossref_primary_10_1109_TNNLS_2023_3289182 crossref_primary_10_3389_fgene_2019_01234 crossref_primary_10_1016_j_omtn_2018_10_005 crossref_primary_10_3389_fgene_2019_00385 crossref_primary_10_1016_j_jbi_2017_01_008 crossref_primary_10_1186_s12911_020_01320_w crossref_primary_10_32604_biocell_2022_017538 crossref_primary_10_1007_s11390_021_0740_2 crossref_primary_10_1109_JBHI_2021_3088342 crossref_primary_10_1111_jcmm_13799 crossref_primary_10_1111_jcmm_14765 crossref_primary_10_2174_1574893618666230222124311 crossref_primary_10_1109_ACCESS_2017_2766758 crossref_primary_10_1016_j_biopha_2018_09_147 crossref_primary_10_7717_peerj_3682 crossref_primary_10_1007_s12539_021_00459_y crossref_primary_10_1016_j_mbs_2018_10_004 crossref_primary_10_1109_TCBB_2023_3235299 crossref_primary_10_1016_j_compbiomed_2019_05_014 crossref_primary_10_1186_s12859_019_2998_8 crossref_primary_10_1016_j_ymeth_2021_10_006 crossref_primary_10_1186_s12859_019_2956_5 crossref_primary_10_1038_srep32566 crossref_primary_10_1016_j_compbiolchem_2020_107369 crossref_primary_10_1109_ACCESS_2019_2940470 crossref_primary_10_1016_j_csbj_2020_08_023 crossref_primary_10_1016_j_ins_2014_09_016 crossref_primary_10_1016_j_knosys_2019_03_023 crossref_primary_10_1109_TCBB_2021_3127017 crossref_primary_10_1109_TNNLS_2021_3129772 crossref_primary_10_1371_journal_pcbi_1005912 crossref_primary_10_1016_j_engappai_2025_111222 crossref_primary_10_3389_fbioe_2020_00040 crossref_primary_10_3390_biom11121835 crossref_primary_10_1186_s12967_018_1722_1 crossref_primary_10_1093_bib_bbac623 crossref_primary_10_1371_journal_pcbi_1009048 crossref_primary_10_1093_bib_bbv033 crossref_primary_10_1186_1756_0500_7_403 crossref_primary_10_1155_2020_3978702 crossref_primary_10_1371_journal_pcbi_1009165 crossref_primary_10_1109_TCBB_2018_2872574 crossref_primary_10_3390_ijms20153648 crossref_primary_10_1109_TCBB_2017_2776280 crossref_primary_10_1038_s41598_017_15235_6 crossref_primary_10_3389_fgene_2022_995535 crossref_primary_10_1093_bib_bbae443 crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_1016_j_omtn_2024_102139 crossref_primary_10_3892_ijo_2014_2516 crossref_primary_10_1186_s12967_017_1340_3 crossref_primary_10_1093_bib_bbab174 crossref_primary_10_3390_genes8120392 crossref_primary_10_1093_bib_bbac021 crossref_primary_10_1038_srep32571 crossref_primary_10_1371_journal_pcbi_1007209 crossref_primary_10_1186_s12918_018_0664_9 crossref_primary_10_1016_j_biosystems_2020_104292 crossref_primary_10_3390_jpm12060885 crossref_primary_10_1109_TCBB_2022_3187739 crossref_primary_10_1109_TCBB_2022_3195514 crossref_primary_10_3389_fgene_2018_00303 crossref_primary_10_1016_j_ymeth_2017_05_024 crossref_primary_10_3389_fgene_2020_00384 crossref_primary_10_1016_j_bdr_2015_02_002 crossref_primary_10_1038_srep27036 crossref_primary_10_1186_s12920_020_00783_0 crossref_primary_10_1007_s00438_020_01693_7 crossref_primary_10_1038_s41598_020_63735_9 crossref_primary_10_1111_jcmm_13429 crossref_primary_10_1016_j_compbiolchem_2021_107566 crossref_primary_10_1038_srep05501 crossref_primary_10_1093_bioinformatics_btx546 crossref_primary_10_1186_s12967_018_1741_y crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1016_j_sigpro_2021_108312 crossref_primary_10_1371_journal_pone_0117090 crossref_primary_10_1016_j_compbiomed_2021_104706 crossref_primary_10_2174_1574893615999200715165335 crossref_primary_10_1186_s12859_021_04092_w crossref_primary_10_1016_j_jbi_2018_02_013 crossref_primary_10_3390_genes10090685 crossref_primary_10_1108_IDD_04_2019_0026 crossref_primary_10_1155_2021_9678747 crossref_primary_10_1186_s12864_018_5273_x crossref_primary_10_1109_TCBB_2020_3027444 crossref_primary_10_1016_j_jbi_2017_10_014 crossref_primary_10_12677_HJCB_2021_113005 crossref_primary_10_1371_journal_pone_0129474 crossref_primary_10_3389_fphys_2018_00092 crossref_primary_10_1016_j_knosys_2023_110295 crossref_primary_10_3390_genes10020080 crossref_primary_10_3390_genes13061021 crossref_primary_10_1134_S0026893318050151 crossref_primary_10_1007_s00438_018_1438_1 crossref_primary_10_1093_bioinformatics_btv039 crossref_primary_10_1109_TCBB_2016_2599866 crossref_primary_10_1039_C8RA07519K crossref_primary_10_3390_cells9040881 crossref_primary_10_1371_journal_pcbi_1006931 crossref_primary_10_1039_C7MB00485K crossref_primary_10_1016_j_ymeth_2020_08_004 crossref_primary_10_1371_journal_pcbi_1006418 crossref_primary_10_1038_s41598_018_24532_7 crossref_primary_10_1038_s41598_018_34180_6 crossref_primary_10_1109_TCBB_2024_3421924 crossref_primary_10_1371_journal_pone_0252971 crossref_primary_10_3389_fgene_2022_936823 crossref_primary_10_1186_s12864_024_11078_4 crossref_primary_10_1371_journal_pcbi_1005455 crossref_primary_10_1186_s12911_022_01807_8 crossref_primary_10_1016_j_jbi_2019_103180 crossref_primary_10_1038_srep13877 crossref_primary_10_1038_srep11338 crossref_primary_10_1109_TCBB_2016_2550432 crossref_primary_10_1109_TCBB_2022_3191972 crossref_primary_10_3390_ijms20020421 crossref_primary_10_1016_j_knosys_2024_112222 crossref_primary_10_1109_ACCESS_2021_3084148 crossref_primary_10_1155_2021_6652948 crossref_primary_10_1038_s41598_017_12763_z crossref_primary_10_1186_s12859_021_04266_6 crossref_primary_10_1186_s12859_019_2640_9 crossref_primary_10_3390_biomedicines13030536 crossref_primary_10_1186_s12864_020_07006_x crossref_primary_10_1038_srep36054 crossref_primary_10_1016_j_omtn_2019_04_010 crossref_primary_10_1177_1176934320919707 crossref_primary_10_1109_ACCESS_2017_2672600 crossref_primary_10_1172_JCI74773 crossref_primary_10_3390_ijms23169348 crossref_primary_10_1093_bib_bbz159 crossref_primary_10_3389_fgene_2018_00234 crossref_primary_10_12677_HJCB_2022_113005 crossref_primary_10_1093_bib_bbx130 |
| Cites_doi | 10.1088/1478-3975/2/2/S01 10.1016/j.leukres.2011.09.027 10.1016/j.ajhg.2008.02.013 10.1038/msb4100200 10.4110/in.2011.11.3.135 10.1016/j.nbd.2007.11.001 10.1186/1752-0509-4-S1-S2 10.1371/journal.pcbi.0030131 10.1523/JNEUROSCI.2390-08.2008 10.1073/pnas.0506580102 10.1016/S1470-2045(09)70386-9 10.1093/bioinformatics/btq076 10.1093/bib/bbr043 10.1371/journal.pcbi.1000521 10.1073/pnas.0701361104 10.1038/ng1536 10.1093/nar/gkj112 10.1038/nmeth.1280 10.1016/j.cell.2009.01.002 10.1128/MCB.01977-07 10.1016/j.semcancer.2013.06.002 10.1038/ng.619 10.1038/nature11453 10.1371/journal.pone.0021131 10.1093/nar/gkp002 10.1038/msb.2013.12 10.1016/j.expneurol.2010.10.012 10.1049/iet-syb:20060068 10.1093/nar/gkn892 10.1126/science.1164382 10.1093/cvr/cvs096 10.1161/ATVBAHA.109.197434 10.1016/j.cell.2006.07.031 10.1016/j.ccr.2008.02.013 10.1093/nar/gkn714 10.1093/nar/gkp292 10.1039/c2mb25180a 10.1093/nar/gkl243 10.1186/1471-2105-6-136 10.1093/nar/gkm995 10.1101/gad.1777409 10.1093/nar/gki863 10.1371/journal.pone.0003420 10.1101/gr.128819.111 10.1093/nar/gkq832 10.3233/JAD-2008-14103 10.1126/science.1140481 10.1038/nmeth.1284 10.1038/nature10166 10.1016/j.molcel.2007.06.017 10.1186/1471-2105-7-S5-S19 10.1038/onc.2011.624 10.1093/cvr/cvp130 10.1002/ijc.23948 |
| ContentType | Journal Article |
| Copyright | Shi et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2013 BioMed Central Ltd. 2013 Shi et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Shi et al.; licensee BioMed Central Ltd. 2013 Shi et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Shi et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: 2013 Shi et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Shi et al.; licensee BioMed Central Ltd. 2013 Shi et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7TM 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
| DOI | 10.1186/1752-0509-7-101 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1752-0509 |
| EndPage | 101 |
| ExternalDocumentID | PMC4124764 3111706751 A534644146 24103777 10_1186_1752_0509_7_101 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBS EJD EMOBN ESX F5P FYUFA GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SJN SOJ SV3 TR2 TUS UKHRP WOQ ~8M AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c596t-f7bf35f33aaba0109958bba06b517148419d5b7abfd811fbf59b55326130dd293 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327502400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1752-0509 |
| IngestDate | Tue Nov 04 01:49:19 EST 2025 Sun Nov 09 13:20:27 EST 2025 Thu Oct 02 11:39:50 EDT 2025 Sat Nov 29 14:48:13 EST 2025 Tue Nov 11 10:57:48 EST 2025 Tue Nov 04 18:18:44 EST 2025 Thu Nov 13 16:20:04 EST 2025 Mon Jul 21 05:21:27 EDT 2025 Sat Nov 29 02:47:20 EST 2025 Tue Nov 18 21:49:20 EST 2025 Sat Sep 06 07:24:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Random walk analysis Disease genes MiRNA-disease network MiRNA |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c596t-f7bf35f33aaba0109958bba06b517148419d5b7abfd811fbf59b55326130dd293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://link.springer.com/10.1186/1752-0509-7-101 |
| PMID | 24103777 |
| PQID | 1446721497 |
| PQPubID | 55238 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4124764 proquest_miscellaneous_1468350632 proquest_miscellaneous_1459153422 proquest_journals_1446721497 gale_infotracmisc_A534644146 gale_infotracacademiconefile_A534644146 gale_incontextgauss_ISR_A534644146 pubmed_primary_24103777 crossref_primary_10_1186_1752_0509_7_101 crossref_citationtrail_10_1186_1752_0509_7_101 springer_journals_10_1186_1752_0509_7_101 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-08 |
| PublicationDateYYYYMMDD | 2013-10-08 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC systems biology |
| PublicationTitleAbbrev | BMC Syst Biol |
| PublicationTitleAlternate | BMC Syst Biol |
| PublicationYear | 2013 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | M Maragkakis (1189_CR18) 2009; 37 ME Cusick (1189_CR11) 2009; 6 X Wang (1189_CR49) 2012; 94 SE Jalava (1189_CR41) 2012; 31 ST Lee (1189_CR42) 2011; 227 J Xu (1189_CR25) 2011; 39 CGAR Network (1189_CR35) 2011; 474 X Li (1189_CR14) 2011; 6 Q Jiang (1189_CR27) 2009; 37 J Jiang (1189_CR37) 2005; 33 J Weidhaas (1189_CR3) 2010; 11 T Jiang (1189_CR7) 2005; 6 RH Newman (1189_CR32) 2013; 9 CGA Network (1189_CR33) 2012; 490 Q Jiang (1189_CR5) 2010; 4 J Kim (1189_CR53) 2007; 317 S Griffiths-Jones (1189_CR21) 2006; 34 I Ivanovska (1189_CR46) 2008; 28 F Petrocca (1189_CR47) 2008; 13 A Subramanian (1189_CR23) 2005; 102 E Wang (1189_CR28) 2013; 23 Q Cui (1189_CR29) 2007; 3 A Krek (1189_CR16) 2005; 37 L Li (1189_CR31) 2012; 22 JP Sluijter (1189_CR50) 2010; 30 TY Ha (1189_CR2) 2011; 11 JP Cogswell (1189_CR52) 2008; 14 A Awan (1189_CR30) 2007; 1 K Venkatesan (1189_CR12) 2009; 6 A Grimson (1189_CR17) 2007; 27 J Wang (1189_CR24) 2009; 5 JT Huse (1189_CR38) 2009; 23 DW Parsons (1189_CR34) 2008; 321 S Navlakha (1189_CR10) 2010; 26 KC Miranda (1189_CR19) 2006; 126 E Ferretti (1189_CR51) 2009; 124 A Szilagyi (1189_CR8) 2005; 2 AJ Favreau (1189_CR40) 2012; 36 J Barretina (1189_CR36) 2010; 42 S Mathivanan (1189_CR54) 2006; 7 R Johnson (1189_CR44) 2008; 29 DP Bartel (1189_CR1) 2009; 136 M Lu (1189_CR4) 2008; 3 KI Goh (1189_CR45) 2007; 104 S Kohler (1189_CR9) 2008; 82 D Betel (1189_CR15) 2008; 36 YK Kim (1189_CR48) 2009; 37 R Shalgi (1189_CR26) 2007; 3 TS Keshava Prasad (1189_CR13) 2009; 37 J Kruger (1189_CR20) 2006; 34 AN Packer (1189_CR43) 2008; 28 H Shan (1189_CR39) 2009; 83 X Chen (1189_CR6) 2012; 8 X Li (1189_CR22) 2011; 13 16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4 18973228 - Int J Cancer. 2009 Feb 1;124(3):568-77 18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53 16192569 - Nucleic Acids Res. 2005;33(17):5394-403 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 16204844 - Phys Biol. 2005 Jun;2(2):S1-16 22194470 - Genome Res. 2012 Jul;22(7):1222-30 20522252 - BMC Syst Biol. 2010;4 Suppl 1:S2 17254303 - BMC Bioinformatics. 2006;7 Suppl 5:S19 18328430 - Cancer Cell. 2008 Mar;13(3):272-86 15929793 - BMC Bioinformatics. 2005;6:136 18091723 - Mol Syst Biol. 2007;3:152 21035445 - Exp Neurol. 2011 Jan;227(1):172-9 19060904 - Nat Methods. 2009 Jan;6(1):83-90 20185403 - Bioinformatics. 2010 Apr 15;26(8):1057-63 21720365 - Nature. 2011 Jun 30;474(7353):609-15 21860607 - Immune Netw. 2011 Jun;11(3):135-54 20081117 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):859-68 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 22015065 - Leuk Res. 2012 Mar;36(3):334-41 19406924 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W273-6 20929877 - Nucleic Acids Res. 2011 Feb;39(3):825-36 18525125 - J Alzheimers Dis. 2008 May;14(1):27-41 23791722 - Semin Cancer Biol. 2013 Aug;23(4):279-85 22875290 - Mol Biosyst. 2012 Oct;8(10):2792-8 23549483 - Mol Syst Biol. 2013;9:655 18371930 - Am J Hum Genet. 2008 Apr;82(4):949-58 19398468 - Cardiovasc Res. 2009 Aug 1;83(3):465-72 20601955 - Nat Genet. 2010 Aug;42(8):715-21 18772396 - Science. 2008 Sep 26;321(5897):1807-12 19153141 - Nucleic Acids Res. 2009 Apr;37(5):1672-81 18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72 17630826 - PLoS Comput Biol. 2007 Jul;3(7):e131 16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4 17907678 - IET Syst Biol. 2007 Sep;1(5):292-7 17761882 - Science. 2007 Aug 31;317(5842):1220-4 20022811 - Lancet Oncol. 2010 Feb;11(2):106-7 21695054 - PLoS One. 2011;6(6):e21131 18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104 15806104 - Nat Genet. 2005 May;37(5):495-500 21908864 - Brief Bioinform. 2012 Mar;13(2):175-86 19167326 - Cell. 2009 Jan 23;136(2):215-33 18923704 - PLoS One. 2008;3(10):e3420 19487573 - Genes Dev. 2009 Jun 1;23(11):1327-37 19116613 - Nat Methods. 2009 Jan;6(1):39-46 22354898 - Cardiovasc Res. 2012 May 1;94(2):379-90 17502601 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90 23000897 - Nature. 2012 Oct 4;490(7418):61-70 22266859 - Oncogene. 2012 Oct 11;31(41):4460-71 19118166 - J Neurosci. 2008 Dec 31;28(53):14341-6 18082412 - Neurobiol Dis. 2008 Mar;29(3):438-45 19779549 - PLoS Comput Biol. 2009 Sep;5(9):e1000521 16990141 - Cell. 2006 Sep 22;126(6):1203-17 18212054 - Mol Cell Biol. 2008 Apr;28(7):2167-74 |
| References_xml | – volume: 2 start-page: S1 year: 2005 ident: 1189_CR8 publication-title: Phys Biol doi: 10.1088/1478-3975/2/2/S01 – volume: 36 start-page: 334 year: 2012 ident: 1189_CR40 publication-title: Leuk Res doi: 10.1016/j.leukres.2011.09.027 – volume: 82 start-page: 949 year: 2008 ident: 1189_CR9 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.02.013 – volume: 3 start-page: 152 year: 2007 ident: 1189_CR29 publication-title: Mol Syst Biol doi: 10.1038/msb4100200 – volume: 11 start-page: 135 year: 2011 ident: 1189_CR2 publication-title: Immune Netw doi: 10.4110/in.2011.11.3.135 – volume: 29 start-page: 438 year: 2008 ident: 1189_CR44 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2007.11.001 – volume: 4 start-page: 2 issue: 1 year: 2010 ident: 1189_CR5 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S1-S2 – volume: 3 start-page: e131 year: 2007 ident: 1189_CR26 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030131 – volume: 28 start-page: 14341 year: 2008 ident: 1189_CR43 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2390-08.2008 – volume: 102 start-page: 15545 year: 2005 ident: 1189_CR23 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume: 11 start-page: 106 year: 2010 ident: 1189_CR3 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(09)70386-9 – volume: 26 start-page: 1057 year: 2010 ident: 1189_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq076 – volume: 13 start-page: 175 year: 2011 ident: 1189_CR22 publication-title: Brief Bioinform doi: 10.1093/bib/bbr043 – volume: 5 start-page: e1000521 year: 2009 ident: 1189_CR24 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000521 – volume: 104 start-page: 8685 year: 2007 ident: 1189_CR45 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0701361104 – volume: 37 start-page: 495 year: 2005 ident: 1189_CR16 publication-title: Nat Genet doi: 10.1038/ng1536 – volume: 34 start-page: D140 year: 2006 ident: 1189_CR21 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj112 – volume: 6 start-page: 83 year: 2009 ident: 1189_CR12 publication-title: Nat Methods doi: 10.1038/nmeth.1280 – volume: 136 start-page: 215 year: 2009 ident: 1189_CR1 publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 28 start-page: 2167 year: 2008 ident: 1189_CR46 publication-title: Mol Cell Biol doi: 10.1128/MCB.01977-07 – volume: 23 start-page: 279 year: 2013 ident: 1189_CR28 publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2013.06.002 – volume: 42 start-page: 715 year: 2010 ident: 1189_CR36 publication-title: Nat Genet doi: 10.1038/ng.619 – volume: 490 start-page: 61 year: 2012 ident: 1189_CR33 publication-title: Nature doi: 10.1038/nature11453 – volume: 6 start-page: e21131 year: 2011 ident: 1189_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0021131 – volume: 37 start-page: 1672 year: 2009 ident: 1189_CR48 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp002 – volume: 9 start-page: 655 year: 2013 ident: 1189_CR32 publication-title: Mol Syst Biol doi: 10.1038/msb.2013.12 – volume: 227 start-page: 172 year: 2011 ident: 1189_CR42 publication-title: Exp Neurol doi: 10.1016/j.expneurol.2010.10.012 – volume: 1 start-page: 292 year: 2007 ident: 1189_CR30 publication-title: IET Syst Biol doi: 10.1049/iet-syb:20060068 – volume: 37 start-page: D767 year: 2009 ident: 1189_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn892 – volume: 321 start-page: 1807 year: 2008 ident: 1189_CR34 publication-title: Science doi: 10.1126/science.1164382 – volume: 94 start-page: 379 year: 2012 ident: 1189_CR49 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvs096 – volume: 30 start-page: 859 year: 2010 ident: 1189_CR50 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.109.197434 – volume: 126 start-page: 1203 year: 2006 ident: 1189_CR19 publication-title: Cell doi: 10.1016/j.cell.2006.07.031 – volume: 13 start-page: 272 year: 2008 ident: 1189_CR47 publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.02.013 – volume: 37 start-page: D98 year: 2009 ident: 1189_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – volume: 37 start-page: W273 year: 2009 ident: 1189_CR18 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp292 – volume: 8 start-page: 2792 year: 2012 ident: 1189_CR6 publication-title: Mol Biosyst doi: 10.1039/c2mb25180a – volume: 34 start-page: W451 year: 2006 ident: 1189_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl243 – volume: 6 start-page: 136 year: 2005 ident: 1189_CR7 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-6-136 – volume: 36 start-page: D149 year: 2008 ident: 1189_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm995 – volume: 23 start-page: 1327 year: 2009 ident: 1189_CR38 publication-title: Genes Dev doi: 10.1101/gad.1777409 – volume: 33 start-page: 5394 year: 2005 ident: 1189_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki863 – volume: 3 start-page: e3420 year: 2008 ident: 1189_CR4 publication-title: PLoS One doi: 10.1371/journal.pone.0003420 – volume: 22 start-page: 1222 year: 2012 ident: 1189_CR31 publication-title: Genome Res doi: 10.1101/gr.128819.111 – volume: 39 start-page: 825 year: 2011 ident: 1189_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq832 – volume: 14 start-page: 27 year: 2008 ident: 1189_CR52 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2008-14103 – volume: 317 start-page: 1220 year: 2007 ident: 1189_CR53 publication-title: Science doi: 10.1126/science.1140481 – volume: 6 start-page: 39 year: 2009 ident: 1189_CR11 publication-title: Nat Methods doi: 10.1038/nmeth.1284 – volume: 474 start-page: 609 year: 2011 ident: 1189_CR35 publication-title: Nature doi: 10.1038/nature10166 – volume: 27 start-page: 91 year: 2007 ident: 1189_CR17 publication-title: Mol Cell doi: 10.1016/j.molcel.2007.06.017 – volume: 7 start-page: 19 issue: 5 year: 2006 ident: 1189_CR54 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-7-S5-S19 – volume: 31 start-page: 4460 year: 2012 ident: 1189_CR41 publication-title: Oncogene doi: 10.1038/onc.2011.624 – volume: 83 start-page: 465 year: 2009 ident: 1189_CR39 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvp130 – volume: 124 start-page: 568 year: 2009 ident: 1189_CR51 publication-title: Int J Cancer doi: 10.1002/ijc.23948 – reference: 18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72 – reference: 18371930 - Am J Hum Genet. 2008 Apr;82(4):949-58 – reference: 20601955 - Nat Genet. 2010 Aug;42(8):715-21 – reference: 16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4 – reference: 18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53 – reference: 17907678 - IET Syst Biol. 2007 Sep;1(5):292-7 – reference: 19153141 - Nucleic Acids Res. 2009 Apr;37(5):1672-81 – reference: 19487573 - Genes Dev. 2009 Jun 1;23(11):1327-37 – reference: 18328430 - Cancer Cell. 2008 Mar;13(3):272-86 – reference: 22266859 - Oncogene. 2012 Oct 11;31(41):4460-71 – reference: 18082412 - Neurobiol Dis. 2008 Mar;29(3):438-45 – reference: 17630826 - PLoS Comput Biol. 2007 Jul;3(7):e131 – reference: 19406924 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W273-6 – reference: 22875290 - Mol Biosyst. 2012 Oct;8(10):2792-8 – reference: 16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4 – reference: 18973228 - Int J Cancer. 2009 Feb 1;124(3):568-77 – reference: 18923704 - PLoS One. 2008;3(10):e3420 – reference: 21035445 - Exp Neurol. 2011 Jan;227(1):172-9 – reference: 16204844 - Phys Biol. 2005 Jun;2(2):S1-16 – reference: 19398468 - Cardiovasc Res. 2009 Aug 1;83(3):465-72 – reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 – reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33 – reference: 20081117 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):859-68 – reference: 21720365 - Nature. 2011 Jun 30;474(7353):609-15 – reference: 16192569 - Nucleic Acids Res. 2005;33(17):5394-403 – reference: 16990141 - Cell. 2006 Sep 22;126(6):1203-17 – reference: 23791722 - Semin Cancer Biol. 2013 Aug;23(4):279-85 – reference: 18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104 – reference: 20929877 - Nucleic Acids Res. 2011 Feb;39(3):825-36 – reference: 20022811 - Lancet Oncol. 2010 Feb;11(2):106-7 – reference: 20185403 - Bioinformatics. 2010 Apr 15;26(8):1057-63 – reference: 18212054 - Mol Cell Biol. 2008 Apr;28(7):2167-74 – reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70 – reference: 19779549 - PLoS Comput Biol. 2009 Sep;5(9):e1000521 – reference: 19118166 - J Neurosci. 2008 Dec 31;28(53):14341-6 – reference: 22015065 - Leuk Res. 2012 Mar;36(3):334-41 – reference: 18091723 - Mol Syst Biol. 2007;3:152 – reference: 18525125 - J Alzheimers Dis. 2008 May;14(1):27-41 – reference: 18772396 - Science. 2008 Sep 26;321(5897):1807-12 – reference: 15929793 - BMC Bioinformatics. 2005;6:136 – reference: 21860607 - Immune Netw. 2011 Jun;11(3):135-54 – reference: 17502601 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90 – reference: 23549483 - Mol Syst Biol. 2013;9:655 – reference: 19116613 - Nat Methods. 2009 Jan;6(1):39-46 – reference: 17254303 - BMC Bioinformatics. 2006;7 Suppl 5:S19 – reference: 22194470 - Genome Res. 2012 Jul;22(7):1222-30 – reference: 21908864 - Brief Bioinform. 2012 Mar;13(2):175-86 – reference: 22354898 - Cardiovasc Res. 2012 May 1;94(2):379-90 – reference: 19060904 - Nat Methods. 2009 Jan;6(1):83-90 – reference: 17761882 - Science. 2007 Aug 31;317(5842):1220-4 – reference: 15806104 - Nat Genet. 2005 May;37(5):495-500 – reference: 20522252 - BMC Syst Biol. 2010;4 Suppl 1:S2 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 21695054 - PLoS One. 2011;6(6):e21131 |
| SSID | ssj0053227 |
| Score | 2.4768248 |
| Snippet | Background
MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases.... MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases. Elucidating the... Background MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases.... Doc number: 101 Abstract Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in... Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to play an important role in human diseases.... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101 |
| SubjectTerms | Algorithms Analysis Bioinformatics Biomedical and Life Sciences Cancer Cellular and Medical Topics Computational Biology - methods Computational Biology/Bioinformatics Disease Disease - genetics Disease susceptibility Gene expression Genetic regulation Humans Life Sciences Medical research Medicine, Experimental Methods MicroRNA MicroRNAs - genetics Nervous system diseases pharmacology and medicine Physiological Protein Interaction Mapping - methods Protein-protein interactions Proteins Regulation Research Article Simulation and Modeling Stochastic Processes Studies Systems Biology Systems physiology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgCxIX3tBAQQYhAQe3m4fj5IQW1AoktKqWV2-WH3FZqU3aZhep_4CfzYzjbJsV9MIliuRxEsfjmbE9_j5CXmnBK23GmiXOCJbZPGaqSJBEIFGOj12Serim75_FdFocHJT7YcGtDWmVvU30hto2BtfId3DeArOVrBTvTk4Zskbh7mqg0LhONhCpLBuRjfe70_1Zb4s5qKsIgD5xke-Ar0wYIp4wAfYnHviidYt8ySWtp0uu7Zl6V7R3538bcZfcDkEonXRac49cq-r75GZHS3n-gPz-oY5wBZ1CcEgRTwJPUjXHFV00dO4P9rpz6sn96PF8Np2wsMtD1UVftzQwAPmHoPfsFh0p7hjTkB3WVaddNnpLVW1p_6hDtMEPybe93a8fPrLA2MAML_MFc0K7lLs0VUorv-nGCw13ueZItF5kcWm5Fko7W8Sx046XmkMn4STGWog8HpFR3dTVJqGmgImp0a7Ulcrgosc2VsJB9GfLqrBVRLb7vpMmwJkjq8aR9NOaIpfY2RI7WwpMZIvIm1WFkw7J49-iL1EZJOJj1JiAc6iWbSs_fZnJCU8zDCGzPCKvg5Br4MVGhfMM8PkIqTWQ3BpIwgA2w-JeWWQwIK280JSIvFgVY01MiqurZokyvASHlSXJVTI5xNgQh4LM406NV62H4G2cCgFvEAMFXwkg9PiwpJ7_9BDkyFku8iwib_uhcOnT__5Tn1zdzKfkVoJMIz69couMFmfL6hm5YX4t5u3Z8zCu_wAOy1ea priority: 102 providerName: ProQuest |
| Title | Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes |
| URI | https://link.springer.com/article/10.1186/1752-0509-7-101 https://www.ncbi.nlm.nih.gov/pubmed/24103777 https://www.proquest.com/docview/1446721497 https://www.proquest.com/docview/1459153422 https://www.proquest.com/docview/1468350632 https://pubmed.ncbi.nlm.nih.gov/PMC4124764 |
| Volume | 7 |
| WOSCitedRecordID | wos000327502400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1752-0509 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: RBZ dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1752-0509 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: RSV dateStart: 20070601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKCxIX3tBAWRmEBBwCm4dj57hFragEqyiFsnCx7CRuV2oT1Owi9R_ws5lxnKVZFSS4RIk8jh17PI94_A0hLzRnlS7G2g9Nwf24TAJfiRCTCITKsLEJIwvXdPSBT6diNkuzDRL0Z2FstHu_JWkltV3WInkLei70Ea3E5yA7wOHZgnuBazE_POqFLwP-5A7B54pKA-WzLoIv6aD1-Mi1TVKre_Zv_0ev75BbztCkk44z7pKNqr5HbnSpJy_uk59f1Cn-JadgAFLEjMDTUs1ZRRcNndvDu-aC2gR-9GyeTye-28mh6vd8ttRl-bEvQQ3Z_Vik2FHqIsC66rSLOG-pqkvav-oY5ewD8nl_79O7977LyuAXLE0WvuHaRMxEkVJa2Y01JjTcJZphMnURB2nJNFfalCIIjDYs1QzmBR2VsgTr4iHZrJu62ia0EOB8FtqkulIxXPS4DBQ3YOGVaSXKyiNv-umShYMsx8wZp9K6LiKROLwSh1dyDFbzyKtVhe8dWsefSZ_j_EvEwKgxyOZYLdtWHhzmcsKiGM3EOPHIS0dkGmi4UO7MAnQfYbMGlDsDSlikxbC4ZzPphEQr0RUHBzxOuUeerYqxJga-1VWzRBqWglKKw_BvNAnY0WBrAs2jjnNXXw8G2jjiHFrgA55eESC8-LCknp9YmHHMS86T2COve86-1PWrB_XxP9A-ITdDTC1i4yl3yObifFk9JdeLH4t5ez4i1_iM26sYka3dvWmWjzAuN4On7OBj9hWe8t1vI7v6fwErcFDg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL70eggEEg4JB248RxckBoBVRddVmhUmBvru3EZaU2Kc0uaP8Bv4bfyIyTbJsV9NYDl9VKGefhjOeRGX8fIc-04Lk2Pe0za4QfZXHgq4QhiQBTlvcsCx1c05ehGI2S8Tj9uEJ-t3thsK2ytYnOUGelwW_kG5i3QLYSpeLN0XcfWaOwutpSaNRqsZ3Pf0LKVr0evIP3-5yxzfe7b7f8hlXANzyNp74V2obchqFSWrnCEE80_Is1RzLwJArSjGuhtM2SILDa8lRzDlEOWPssYwi-BCb_AthxgS1kYrxI8ECIiQY-KEjiDfDMzEd8FV-AtQs6nm_Z_p9ygMvNmUsVWuf4Nq_9b1N2nVxtQmzar9fEDbKSFzfJpZp0c36L_PqqDrA-QCH0pYiWgfvEysOcTks6cduW7Zw66kJ6ONkZ9f2mhkXViSZXtOE3cifB2KD-pEqxHk6b3rd6OK177Suqioy2p9pHD3ObfD6XabhDVouyyO8RahJIu422qc5VBD-6lwVKWIhtszRPstwj662uSNOAtSNnyIF0SVsSS1QuicolBbbpeeTlYsBRjVPyb9GnqHwS0T8KbC_aV7OqkoNPO7LPwwgD5Cj2yItGyJZwYaOa3Rpw-wgY1pFc60iCeTLdw61yysY8VvJEMz3yZHEYR2LLX5GXM5ThKbjjiLGzZGLIICDKBpm79bJZPD2Epr1QCLiC6CyohQACq3ePFJNvDmAdGdlFHHnkVbv0Tt363yf1_tmP-Zhc3tr9MJTDwWj7AbnCkFPFNZKukdXp8Sx_SC6aH9NJdfzIWRRK9s57Pf4B5euyxQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKYgLlGcDLRiEBD2Ybh6Ok-OqsKKiWlUtlN4sO47bldqkarJI_Qf8bGYcZ2lWBQlxiSJ5nDj22DMTj7-PkLda8FIXI80iWwiWmDRkKouQRCBSlo9sFDu4pqM9MZ1mx8f5vs_Nafps935LsjvTgChNVbt9YWw3xbN0G2xexBC5hAlYRyD4uZ0gYxAG64dH_ULMQVeFR_O5odLAEC0vx9fs0XKu5NKGqbNDkwf_-QVr5L53QOm405iH5FZZPSJ3OkrKq8fk53d1hn_PKTiGFLEk8BRVfV7StqYzd6jXXlFH7EfPZwfTMfM7PFT9HueGevYf9xC0nN0PR4qNpj4zrKtOu0z0hqrK0P5RJ7j-PiHfJp--7nxmnq2BFTxPW2aFtjG3cayUVm7DjWca7lLNkWQ9S8LccC2UtiYLQ6stzzWHMcIAxhjwOp6SlaquynVCiwyC0kLbXJcqgYsemVAJC56fycvMlAH50A-dLDyUOTJqnEkX0mSpxO6V2L1SYBJbQN4vKlx0KB5_Fn2DuiARG6PC5JsTNW8auXt4IMc8TtB9TNKAvPNCtoYXF8qfZYDmI5zWQHJjIAmTtxgW9yon_eLRSAzRITBPchGQ14tirIkJcVVZz1GG52Cskij6m0wK_jX4oCDzrNPixdeD4zaKhYA3iIF-LwQQdnxYUs1OHfw48pWLNAnIVq_l15p-c6c-_wfZV-Tu_seJ3NudfnlB7kXIPuJyJzfISns5LzfJavGjnTWXL91k_wXi8FWC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Walking+the+interactome+to+identify+human+miRNA-disease+associations+through+the+functional+link+between+miRNA+targets+and+disease+genes&rft.jtitle=BMC+systems+biology&rft.au=Shi%2C+Hongbo&rft.au=Xu%2C+Juan&rft.au=Zhang%2C+Guangde&rft.au=Xu%2C+Liangde&rft.date=2013-10-08&rft.eissn=1752-0509&rft.volume=7&rft.spage=101&rft_id=info:doi/10.1186%2F1752-0509-7-101&rft_id=info%3Apmid%2F24103777&rft.externalDocID=24103777 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0509&client=summon |