Robust Two-Step Wavelet-Based Inference for Time Series Models

Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association Jg. 117; H. 540; S. 1996 - 2013
Hauptverfasser: Guerrier, Stéphane, Molinari, Roberto, Victoria-Feser, Maria-Pia, Xu, Haotian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 02.10.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:0162-1459, 1537-274X, 1537-274X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.
AbstractList Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.
Latent time series models such as (the independent sum of) ARMA( , ) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.
Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.
Author Molinari, Roberto
Victoria-Feser, Maria-Pia
Guerrier, Stéphane
Xu, Haotian
Author_xml – sequence: 1
  givenname: Stéphane
  surname: Guerrier
  fullname: Guerrier, Stéphane
  organization: University of Geneva
– sequence: 2
  givenname: Roberto
  surname: Molinari
  fullname: Molinari, Roberto
  organization: Auburn University
– sequence: 3
  givenname: Maria-Pia
  surname: Victoria-Feser
  fullname: Victoria-Feser, Maria-Pia
  organization: University of Geneva
– sequence: 4
  givenname: Haotian
  surname: Xu
  fullname: Xu, Haotian
  organization: University of Geneva
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39845942$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEYhYNU7Lb6E5QBb7yZNW8ykw8EtS1-FCqCXdG7kJl5R1NmkzWZaem_N8PuivbC5iaQPOfkzTlH5MAHj4Q8BboEquhLCoJBVeslowyWoHQNUjwgC6i5LJmsvh-QxcyUM3RIjlK6onlJpR6RQ65VPq3Ygrz-EpopjcXqJpSXI26Kb_YaBxzLU5uwK859jxF9i0UfYrFyaywuMTpMxafQ4ZAek4e9HRI-2e3H5Ov7d6uzj-XF5w_nZycXZVtrMZaNhpo1la54r6lQbUep7aS0FHlHoZHCKmhqRkFy3YCmHddc6K4VaBkT1vJj8mbru5maNXYt-jHawWyiW9t4a4J15t8b736aH-HaAMia5kyyw4udQwy_JkyjWbvU4jBYj2FKhkOtpKgU6HtRpnjFQOQRM_r8DnoVpuhzFIZJQXnFKbBMPft7-j9j72vIwKst0MaQUsTetG60owvzZ9xggJq5dLMv3cylm13pWV3fUe8fuE_3dqtzPre7tjchDp0Z7e0QYh-tb90cy38tfgPkRcAt
CitedBy_id crossref_primary_10_1007_s00190_023_01702_8
crossref_primary_10_1109_TSP_2024_3387313
crossref_primary_10_1109_TSP_2022_3208733
crossref_primary_10_1109_TSP_2023_3262179
crossref_primary_10_1016_j_apm_2024_115712
Cites_doi 10.1016/S0304-4076(00)00073-7
10.1080/01621459.2013.799920
10.1198/10618600152628347
10.17713/ajs.v43i4.45
10.1016/j.jmva.2010.05.006
10.5705/ss.2008.223
10.1002/for.3980110106
10.1073/pnas.0506715102
10.2307/1912775
10.2307/2951768
10.1109/TUFFC.2015.2495012
10.1002/for.1125
10.1007/s11517-012-0967-8
10.1109/18.119724
10.1016/j.csda.2010.11.003
10.1109/TAES.2012.6237576
10.1007/BF00339936
10.1080/01621459.1993.10476408
10.1109/TIP.2011.2164412
10.1002/wics.1351
10.1080/10618600.2014.969431
10.1214/07-AOS570
10.1109/TIM
10.1002/0471725250
10.1111/j.2517-6161.1984.tb01274.x
10.1016/S1573-4412(05)80005-4
10.1111/1467-9868.00231
10.1111/1467-9892.00203
10.1214/aoms/1177703732
10.1198/016214504000001402
10.1016/S0304-4076(00)00077-4
10.1109/TIM.2007.908635
10.1111/1467-9868.00373
10.1088/0026-1394/45/5/009
10.1214/aos/1176350027
10.1002/jae.3950080506
10.1214/16-AOS1512
10.1016/j.eneco.2015.03.008
10.1080/00949655.2015.1077387
10.1016/S1573-4412(05)80014-5
10.1016/j.csda.2009.05.003
10.1257/aer.98.3.713
10.1093/biomet/82.3.619
10.1111/j.1467-9892.1992.tb00091.x
10.1007/s00181-006-0115-0
10.1109/TSP.2019.2935902
10.1002/env.2563
10.1111/1468-0262.00036
10.1080/02664760903093609
10.1080/01621459.1979.10481630
10.1093/acprof:oso/9780199641178.001.0001
10.1198/016214507000001166
10.1007/978-1-4614-4340-7
10.1080/01621459.2014.983520
10.1109/MAES.2018.170153
10.1198/016214503388619102
10.2307/1913621
10.1080/01621459.2000.10473913
10.1109/19.744312
10.1111/j.1467-9892.2010.00688.x
10.1109/PLANS.2018.8373423
10.4310/SII.2011.v4.n2.a15
10.1016/j.jspi.2015.11.004
10.1017/S0266466600006976
10.1198/016214504000000692
10.1002/0470010940
10.1109/78.923297
10.1214/aos/1176346706
10.1080/01621459.2013.847374
10.1002/jae.3950080507
10.1080/01621459.1986.10478253
10.1023/A:1008975231866
10.1109/18.761331
10.1016/j.jspi.2008.12.014
10.1177/1077546314532859
10.1016/j.dsp.2017.09.014
10.1080/01621459.1988.10478611
10.1117/12.170036
10.1007/s10463-010-0282-9
10.1198/jasa.2010.tm08383
10.1007/978-3-642-46992-3_3
10.2307/2345178
10.1007/s10492-008-0009-x
10.3150/15-BEJ790
10.1109/TAC.1977.1101538
10.1016/j.jeconom.2004.08.008
10.1214/08-AOS636
ContentType Journal Article
Copyright 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021
2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021
– notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
– notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 The Author(s)
DBID 0YH
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
DOI 10.1080/01621459.2021.1895176
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

AGRICOLA
PubMed
International Bibliography of the Social Sciences (IBSS)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Ecology
Economics
DocumentTitleAlternate S. Guerrier et al
EISSN 1537-274X
EndPage 2013
ExternalDocumentID PMC11750153
39845942
10_1080_01621459_2021_1895176
1895176
Genre Research Article
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
– fundername: NCATS NIH HHS
  grantid: UL1 TR002014
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
0YH
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
.-4
.GJ
07G
1OL
2AX
3R3
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8P6
8R4
8R5
AAFWJ
AAIKQ
AAKBW
ABBHK
ABEFU
ABJCF
ABPQH
ABUWG
ABXSQ
ABYAD
ACAGQ
ACGEE
ACTWD
ACUBG
ADBBV
ADODI
ADULT
ADYSH
AELPN
AEUMN
AEUPB
AFKRA
AFQQW
AFSUE
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIHAF
ALCKM
ALIPV
ALRMG
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
EJD
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IAO
IEA
IGG
IOF
IPO
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
N95
NHB
NPM
NUSFT
P-O
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
VXZ
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c596t-b9152b4943f9068cd00ad77a0e3d01b76a81b5201739b190d39369dc6ea226aa3
IEDL.DBID 0YH
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642545400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Tue Nov 04 02:04:17 EST 2025
Sat Sep 27 21:17:43 EDT 2025
Sun Sep 28 01:37:38 EDT 2025
Fri Nov 14 18:49:09 EST 2025
Wed Feb 19 02:12:05 EST 2025
Sat Nov 29 03:56:46 EST 2025
Tue Nov 18 22:37:08 EST 2025
Mon Oct 20 23:45:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 540
Keywords Large-scale time series
Signal processing
Scale-based analysis of variance
Generalized method of wavelet moments
State-space models
Wavelet variance
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-b9152b4943f9068cd00ad77a0e3d01b76a81b5201739b190d39369dc6ea226aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1895176
PMID 39845942
PQID 2760343012
PQPubID 41715
PageCount 18
ParticipantIDs proquest_miscellaneous_2834216936
informaworld_taylorfrancis_310_1080_01621459_2021_1895176
pubmed_primary_39845942
crossref_citationtrail_10_1080_01621459_2021_1895176
proquest_journals_2760343012
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11750153
crossref_primary_10_1080_01621459_2021_1895176
proquest_miscellaneous_3158764819
PublicationCentury 2000
PublicationDate 2022-10-02
PublicationDateYYYYMMDD 2022-10-02
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_5_100_1
e_1_3_5_23_1
e_1_3_5_46_1
e_1_3_5_69_1
e_1_3_5_88_1
e_1_3_5_108_1
e_1_3_5_104_1
e_1_3_5_61_1
e_1_3_5_80_1
e_1_3_5_42_1
e_1_3_5_65_1
e_1_3_5_84_1
e_1_3_5_9_1
Tukey J. W. (e_1_3_5_96_1) 1977
e_1_3_5_5_1
e_1_3_5_39_1
e_1_3_5_16_1
e_1_3_5_35_1
e_1_3_5_77_1
e_1_3_5_58_1
Slacalek J. (e_1_3_5_93_1) 2012; 10
e_1_3_5_50_1
e_1_3_5_73_1
e_1_3_5_54_1
Hampel F. R. (e_1_3_5_48_1) 1986
e_1_3_5_31_1
Christmann A. (e_1_3_5_17_1) 2008; 9
e_1_3_5_101_1
e_1_3_5_28_1
e_1_3_5_24_1
e_1_3_5_109_1
e_1_3_5_66_1
e_1_3_5_47_1
e_1_3_5_89_1
e_1_3_5_105_1
e_1_3_5_62_1
e_1_3_5_43_1
e_1_3_5_85_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
Maronna R. A. (e_1_3_5_63_1) 2019
Van der Vaart A. (e_1_3_5_97_1) 2000
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_55_1
e_1_3_5_59_1
Foufoula-Georgiou E. (e_1_3_5_34_1) 2014
Shumway R. H. (e_1_3_5_92_1) 2013
e_1_3_5_70_1
Percival D. B. (e_1_3_5_79_1) 2000
e_1_3_5_51_1
e_1_3_5_74_1
Burkholder D. L. (e_1_3_5_12_1) 1988; 157
e_1_3_5_32_1
Zhang X. (e_1_3_5_106_1) 2020
e_1_3_5_29_1
e_1_3_5_102_1
e_1_3_5_25_1
Ruckdeschel P. (e_1_3_5_86_1) 2014
e_1_3_5_44_1
e_1_3_5_67_1
e_1_3_5_3_1
e_1_3_5_40_1
e_1_3_5_21_1
e_1_3_5_7_1
e_1_3_5_18_1
Pankratz A. (e_1_3_5_75_1) 2012
e_1_3_5_37_1
e_1_3_5_14_1
e_1_3_5_33_1
Cipra T. (e_1_3_5_19_1) 2011; 4
e_1_3_5_56_1
Percival D. B. (e_1_3_5_78_1) 2006
Reisen V. A. (e_1_3_5_81_1) 2012; 39
e_1_3_5_94_1
e_1_3_5_71_1
e_1_3_5_52_1
e_1_3_5_98_1
e_1_3_5_10_1
e_1_3_5_90_1
e_1_3_5_26_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_107_1
e_1_3_5_68_1
e_1_3_5_49_1
e_1_3_5_103_1
e_1_3_5_83_1
e_1_3_5_2_1
e_1_3_5_60_1
Künsch H. (e_1_3_5_57_1) 1984
e_1_3_5_41_1
e_1_3_5_87_1
Renaud O. (e_1_3_5_82_1) 2002; 12
e_1_3_5_64_1
e_1_3_5_6_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_11_1
e_1_3_5_99_1
Dhrymes J. (e_1_3_5_27_1) 2005; 10
e_1_3_5_72_1
e_1_3_5_91_1
e_1_3_5_53_1
e_1_3_5_76_1
e_1_3_5_95_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_84_1
  doi: 10.1016/S0304-4076(00)00073-7
– ident: e_1_3_5_46_1
  doi: 10.1080/01621459.2013.799920
– ident: e_1_3_5_25_1
  doi: 10.1198/10618600152628347
– ident: e_1_3_5_47_1
  doi: 10.17713/ajs.v43i4.45
– ident: e_1_3_5_89_1
  doi: 10.1016/j.jmva.2010.05.006
– ident: e_1_3_5_101_1
  doi: 10.5705/ss.2008.223
– ident: e_1_3_5_18_1
  doi: 10.1002/for.3980110106
– ident: e_1_3_5_99_1
  doi: 10.1073/pnas.0506715102
– ident: e_1_3_5_49_1
  doi: 10.2307/1912775
– ident: e_1_3_5_28_1
  doi: 10.2307/2951768
– ident: e_1_3_5_77_1
  doi: 10.1109/TUFFC.2015.2495012
– ident: e_1_3_5_38_1
  doi: 10.1002/for.1125
– ident: e_1_3_5_102_1
  doi: 10.1007/s11517-012-0967-8
– ident: e_1_3_5_83_1
  doi: 10.1109/18.119724
– ident: e_1_3_5_37_1
  doi: 10.1016/j.csda.2010.11.003
– ident: e_1_3_5_45_1
  doi: 10.1109/TAES.2012.6237576
– ident: e_1_3_5_22_1
  doi: 10.1007/BF00339936
– ident: e_1_3_5_85_1
  doi: 10.1080/01621459.1993.10476408
– ident: e_1_3_5_69_1
  doi: 10.1109/TIP.2011.2164412
– ident: e_1_3_5_30_1
  doi: 10.1002/wics.1351
– ident: e_1_3_5_16_1
  doi: 10.1080/10618600.2014.969431
– ident: e_1_3_5_70_1
  doi: 10.1214/07-AOS570
– ident: e_1_3_5_80_1
  doi: 10.1109/TIM
– ident: e_1_3_5_52_1
  doi: 10.1002/0471725250
– start-page: 55
  year: 2014
  ident: e_1_3_5_86_1
  article-title: “Robust Kalman Tracking and Smoothing With Propagating and Non-propagating Outliers
  publication-title: Statistical Papers
– ident: e_1_3_5_50_1
  doi: 10.1111/j.2517-6161.1984.tb01274.x
– ident: e_1_3_5_72_1
  doi: 10.1016/S1573-4412(05)80005-4
– ident: e_1_3_5_71_1
  doi: 10.1111/1467-9868.00231
– ident: e_1_3_5_60_1
  doi: 10.1111/1467-9892.00203
– volume-title: Robust Statistics: The Approach Based on Influence Functions
  year: 1986
  ident: e_1_3_5_48_1
– ident: e_1_3_5_51_1
  doi: 10.1214/aoms/1177703732
– ident: e_1_3_5_61_1
  doi: 10.1198/016214504000001402
– volume-title: Wavelet Methods for Time Series Analysis
  year: 2006
  ident: e_1_3_5_78_1
– ident: e_1_3_5_6_1
  doi: 10.1016/S0304-4076(00)00077-4
– ident: e_1_3_5_32_1
  doi: 10.1109/TIM.2007.908635
– ident: e_1_3_5_88_1
  doi: 10.1016/j.jmva.2010.05.006
– ident: e_1_3_5_39_1
  doi: 10.1111/1467-9868.00373
– ident: e_1_3_5_105_1
  doi: 10.1088/0026-1394/45/5/009
– ident: e_1_3_5_64_1
  doi: 10.1214/aos/1176350027
– volume-title: Forecasting with Dynamic Regression Models
  year: 2012
  ident: e_1_3_5_75_1
– ident: e_1_3_5_94_1
  doi: 10.1002/jae.3950080506
– volume: 12
  start-page: 1275
  year: 2002
  ident: e_1_3_5_82_1
  article-title: “Sensitivity and Other Properties of Wavelet Regression and Density Estimators
  publication-title: Statistica Sinica
– ident: e_1_3_5_108_1
  doi: 10.1214/16-AOS1512
– ident: e_1_3_5_53_1
  doi: 10.1016/j.eneco.2015.03.008
– ident: e_1_3_5_7_1
  doi: 10.1080/00949655.2015.1077387
– ident: e_1_3_5_98_1
  doi: 10.1016/S1573-4412(05)80014-5
– ident: e_1_3_5_24_1
  doi: 10.1016/j.csda.2009.05.003
– ident: e_1_3_5_11_1
  doi: 10.1257/aer.98.3.713
– ident: e_1_3_5_76_1
  doi: 10.1093/biomet/82.3.619
– start-page: 843
  year: 1984
  ident: e_1_3_5_57_1
  article-title: “Infinitesimal Robustness for Autoregressive Processes
  publication-title: The Annals of Statistics
– ident: e_1_3_5_4_1
  doi: 10.1111/j.1467-9892.1992.tb00091.x
– ident: e_1_3_5_74_1
  doi: 10.1007/s00181-006-0115-0
– ident: e_1_3_5_103_1
  doi: 10.1109/TSP.2019.2935902
– ident: e_1_3_5_33_1
  doi: 10.1002/env.2563
– ident: e_1_3_5_5_1
  doi: 10.1111/1468-0262.00036
– ident: e_1_3_5_3_1
  doi: 10.1080/02664760903093609
– volume: 10
  start-page: 95
  year: 2005
  ident: e_1_3_5_27_1
  article-title: “Moments of Truncated (Normal) Distributions,”
  publication-title: Unpublished note
– ident: e_1_3_5_26_1
  doi: 10.1080/01621459.1979.10481630
– ident: e_1_3_5_29_1
  doi: 10.1093/acprof:oso/9780199641178.001.0001
– ident: e_1_3_5_35_1
  doi: 10.1198/016214507000001166
– volume-title: Time Series Analysis and Its Applications. Springer
  year: 2013
  ident: e_1_3_5_92_1
– volume: 157
  start-page: 75
  year: 1988
  ident: e_1_3_5_12_1
  article-title: “Sharp Inequalities for Martingales and Stochastic Integrals,”
  publication-title: Astérisque
– ident: e_1_3_5_90_1
  doi: 10.1007/978-1-4614-4340-7
– ident: e_1_3_5_14_1
  doi: 10.1080/01621459.2014.983520
– ident: e_1_3_5_23_1
  doi: 10.1109/MAES.2018.170153
– ident: e_1_3_5_40_1
  doi: 10.1198/016214503388619102
– ident: e_1_3_5_66_1
  doi: 10.2307/1913621
– ident: e_1_3_5_91_1
  doi: 10.1080/01621459.2000.10473913
– ident: e_1_3_5_43_1
  doi: 10.1109/19.744312
– ident: e_1_3_5_59_1
  doi: 10.1111/j.1467-9892.2010.00688.x
– ident: e_1_3_5_8_1
  doi: 10.1109/PLANS.2018.8373423
– volume: 4
  start-page: 165
  year: 2011
  ident: e_1_3_5_19_1
  article-title: “Exponential Smoothing for Time Series With Outliers,”
  publication-title: Kybernetika
– ident: e_1_3_5_100_1
  doi: 10.4310/SII.2011.v4.n2.a15
– ident: e_1_3_5_21_1
  doi: 10.1016/j.jspi.2015.11.004
– ident: e_1_3_5_36_1
  doi: 10.1017/S0266466600006976
– ident: e_1_3_5_31_1
  doi: 10.1198/016214504000000692
– ident: e_1_3_5_62_1
  doi: 10.1002/0470010940
– volume-title: Exploratory Data Analysis
  year: 1977
  ident: e_1_3_5_96_1
– start-page: 1
  year: 2020
  ident: e_1_3_5_106_1
  article-title: “Covariance Penalty Based Model Selection Criterion for Indirect Estimators,”
  publication-title: Submitted Working Paper
– ident: e_1_3_5_87_1
  doi: 10.1109/78.923297
– ident: e_1_3_5_56_1
  doi: 10.1214/aos/1176346706
– ident: e_1_3_5_54_1
  doi: 10.1080/01621459.2013.847374
– ident: e_1_3_5_44_1
– volume: 39
  start-page: 207
  year: 2012
  ident: e_1_3_5_81_1
  article-title: “Robust Estimation in Time Series With Long and Short Memory Properties
  publication-title: Annales Mathematicae et Informaticae
– ident: e_1_3_5_41_1
  doi: 10.1002/jae.3950080507
– ident: e_1_3_5_13_1
  doi: 10.1080/01621459.1986.10478253
– ident: e_1_3_5_15_1
  doi: 10.1023/A:1008975231866
– ident: e_1_3_5_55_1
  doi: 10.1109/18.761331
– volume-title: Robust Statistics: Theory and Methods (with R
  year: 2019
  ident: e_1_3_5_63_1
– ident: e_1_3_5_67_1
  doi: 10.1016/j.jspi.2008.12.014
– ident: e_1_3_5_109_1
  doi: 10.1177/1077546314532859
– volume-title: Wavelets in Geophysics
  year: 2014
  ident: e_1_3_5_34_1
– ident: e_1_3_5_95_1
  doi: 10.1016/j.dsp.2017.09.014
– ident: e_1_3_5_104_1
  doi: 10.1080/01621459.1988.10478611
– ident: e_1_3_5_10_1
  doi: 10.1117/12.170036
– ident: e_1_3_5_68_1
  doi: 10.1007/s10463-010-0282-9
– volume-title: Cambridge Series in Statistical and Probabilistic Mathematics
  year: 2000
  ident: e_1_3_5_79_1
– volume: 9
  start-page: 915
  year: 2008
  ident: e_1_3_5_17_1
  article-title: “Bouligand Derivatives and Robustness of Support Vector Machines for Regression,”
  publication-title: The Journal of Machine Learning Research
– ident: e_1_3_5_58_1
  doi: 10.1198/jasa.2010.tm08383
– ident: e_1_3_5_9_1
  doi: 10.1007/978-3-642-46992-3_3
– ident: e_1_3_5_42_1
  doi: 10.2307/2345178
– ident: e_1_3_5_20_1
  doi: 10.1007/s10492-008-0009-x
– ident: e_1_3_5_2_1
  doi: 10.3150/15-BEJ790
– volume-title: Asymptotic Statistics
  year: 2000
  ident: e_1_3_5_97_1
– volume: 10
  start-page: 95
  year: 2012
  ident: e_1_3_5_93_1
  article-title: “What Drives Household Saving?”
  publication-title: Unpublished note
– ident: e_1_3_5_65_1
  doi: 10.1109/TAC.1977.1101538
– ident: e_1_3_5_73_1
  doi: 10.1016/j.jeconom.2004.08.008
– ident: e_1_3_5_107_1
  doi: 10.1214/08-AOS636
SSID ssj0000788
Score 2.4299624
Snippet Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in...
Latent time series models such as (the independent sum of) ARMA( , ) models with additional stochastic processes are increasingly used for data analysis in...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1996
SubjectTerms Asymptotic properties
Biology
Complexity
Data analysis
Ecology
Economic analysis
Economic models
economics
Estimation
Generalized method of wavelet moments
Inference
Large-scale time series
Normality
Outliers (statistics)
prediction
Prediction models
Property
Regression analysis
Robustness
Scale-based analysis of variance
Signal processing
Simulation
State-space models
Statistical methods
Statistics
Stochastic models
Stochastic processes
Theory and Methods
Time series
time series analysis
variance
wavelet
Wavelet variance
Title Robust Two-Step Wavelet-Based Inference for Time Series Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1895176
https://www.ncbi.nlm.nih.gov/pubmed/39845942
https://www.proquest.com/docview/2760343012
https://www.proquest.com/docview/2834216936
https://www.proquest.com/docview/3158764819
https://pubmed.ncbi.nlm.nih.gov/PMC11750153
Volume 117
WOSCitedRecordID wos000642545400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R6IFLgb5YCsiVejV1bCeOL0gUsQIJoaraiu0pshNHVEJZRLLt3-9MHguLijjAxVIUTxI_5xtn5huAL4WL8zJ2ETcq9migpBH30lhOw1_GBjVQaCnzz83FRTqd2u-9N2Hdu1WSDV12RBHtXk2L2_l68Ij7iiiF-LUpzERGB1GKIMEkr2BNomlC9pf4dXq3GZs29SSJcJIZgngee8ySeloiL_0fBH3oSXlPNY03XqBRm_Cmx6XsqJtIW7ASqrewTlC0Y3J-B4c_Zn5eN2zyd8bJN4xdOkpa0fBvqAgLdjZEDjJsDKPIEkYnb6FmlG7tun4PP8cnk-NT3mdf4Hlsk4Z7i6rda6tVaUWS5oUQrjDGiaAKEXmTOES8MeIHo6xHWFEoyg1Y5ElwCOmcUx9gtZpVYRuY0CooH3QeEuL-Md5pLwVemBI3ahdGoIdOz_KempwyZFxn0cBg2vdORr2T9b0zgoOF2E3HzfGUgL0_olnTHoqUXQaTTD0huzsMf9Yv8zqTJhFK4x4pR_B5cRsXKP11cVWYzbFOqrQkypvk8ToqilEraURnI_jYzahFi5RN8Vs0viFdmmuLCkQQvnyn-n3VEoUTDSvCPbXzjHZ_gnVJER_kMyF3YbW5nYc9eJ3_wel3u98uNizNNMVyMr78B2dVI_I
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9BhwQvbLANyvjwJF7NktiJ45dJ27SqaF0fpiJ4s-zEEZNQimgK_z53-ejaaYiH8RjFl8T2ne9n5-53AKe5jbMitiFXIna4QUlD7iKlOU1_ESv0QL6mzB-p8Ti9utLLuTAUVkl76KIhiqjXajJuOozuQuI-IUwhgm3KM4nCszBFlKCSdXgVo68l_vzJ4PLPaqzq2pMkwkmmy-J56jEr_mmFvfRfGPTvUMol3zR4_RK9egPbLTJlXxpV2oE1X-7CFoHRhsv5LXz-NXXzWcUmD1NO0WHs0lLZiop_RVeYs_Mud5BhbxjlljA6e_MzRgXXbmbv4GLwffJtyNv6CzyLdVJxp9G5O6mlKHSQpFkeBDZXygZe5EHoVGIR88aIIJTQDoFFLqg6YJ4l3iKos1a8h145Lf0-sEAKL5yXmU-I_Uc5K10U4IUqcKm2vg-yG3WTteTkVCPjxoQdh2k7OoZGx7Sj04ezhdhtw87xnIBenlJT1cciRVPDxIhnZA-7-Tetoc9MpJJASFwloz58XNxGE6X_Lrb00zm2SYWMiPQmebqNCGP0SxLxWR_2GpVa9EjoFL9F4hvSFWVbNCCK8NU75e_rmiqciFgR8ImD_-j3CWwOJz9HZnQ-_vEBtiLK_6AIiugQetXd3B_BRnaPqnh3XFveI40XJiI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RqCou9N0u0NZIvZomsWPHFyRaWBUVrRDaCm6WnTiiEsoikoW_z0weW7Yq4tAeo3iSjD32fHZmvgH4XLg0L1MXcy1SjxuULOY-0YbT8JepRg8UWsr8Yz2ZZOfn5qSPJqz7sEraQ5cdUUS7VtPkvirKISLuC6IU4temNJMk3o0zBAlaPYE1hM6KjHw6Pvu9GOu29CSJcJIZkngeesySe1oiL_0bBP0zkvKeaxo__w9KvYCNHpey_c6QXsJKqF7BOkHRjsn5Neydzvy8btj0dsYpNoydOSpa0fCv6AgLdjRkDjJUhlFmCaOTt1AzKrd2Wb-Bn-PD6bfvvK--wPPUqIZ7g67dSyNFaSKV5UUUuUJrFwVRRLHXyiHiTRE_aGE8wopCUG3AIlfBIaRzTryF1WpWhffAIimC8EHmQRH3j_ZO-iTCC13iQu3CCOTQ6TbvqcmpQsaljQcG0753LPWO7XtnBLsLsauOm-MxAXN_RG3THoqUXQUTKx6R3R6G3_bTvLaJVpGQuEYmI9hZ3MYJSn9dXBVmc2yTCZkQ5Y16uI2IU_RKEtHZCN51FrXQSJgMv0XiG7IlW1s0IILw5TvVr4uWKJxoWBHuic1_0PsTPDs5GNvjo8mPLVhPKPmDwieSbVhtrufhAzzNb9ASrz-28-4O7Bok1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Two-Step+Wavelet-Based+Inference+for+Time+Series+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Guerrier%2C+St%C3%A9phane&rft.au=Molinari%2C+Roberto&rft.au=Victoria-Feser%2C+Maria-Pia&rft.au=Xu%2C+Haotian&rft.date=2022-10-02&rft.issn=0162-1459&rft.volume=117&rft.issue=540&rft.spage=1996&rft_id=info:doi/10.1080%2F01621459.2021.1895176&rft_id=info%3Apmid%2F39845942&rft.externalDocID=39845942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon