Robust Two-Step Wavelet-Based Inference for Time Series Models
Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may cont...
Gespeichert in:
| Veröffentlicht in: | Journal of the American Statistical Association Jg. 117; H. 540; S. 1996 - 2013 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Taylor & Francis
02.10.2022
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach. |
|---|---|
| AbstractList | Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach. Latent time series models such as (the independent sum of) ARMA( , ) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach. Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach. |
| Author | Molinari, Roberto Victoria-Feser, Maria-Pia Guerrier, Stéphane Xu, Haotian |
| Author_xml | – sequence: 1 givenname: Stéphane surname: Guerrier fullname: Guerrier, Stéphane organization: University of Geneva – sequence: 2 givenname: Roberto surname: Molinari fullname: Molinari, Roberto organization: Auburn University – sequence: 3 givenname: Maria-Pia surname: Victoria-Feser fullname: Victoria-Feser, Maria-Pia organization: University of Geneva – sequence: 4 givenname: Haotian surname: Xu fullname: Xu, Haotian organization: University of Geneva |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39845942$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1rFDEYhYNU7Lb6E5QBb7yZNW8ykw8EtS1-FCqCXdG7kJl5R1NmkzWZaem_N8PuivbC5iaQPOfkzTlH5MAHj4Q8BboEquhLCoJBVeslowyWoHQNUjwgC6i5LJmsvh-QxcyUM3RIjlK6onlJpR6RQ65VPq3Ygrz-EpopjcXqJpSXI26Kb_YaBxzLU5uwK859jxF9i0UfYrFyaywuMTpMxafQ4ZAek4e9HRI-2e3H5Ov7d6uzj-XF5w_nZycXZVtrMZaNhpo1la54r6lQbUep7aS0FHlHoZHCKmhqRkFy3YCmHddc6K4VaBkT1vJj8mbru5maNXYt-jHawWyiW9t4a4J15t8b736aH-HaAMia5kyyw4udQwy_JkyjWbvU4jBYj2FKhkOtpKgU6HtRpnjFQOQRM_r8DnoVpuhzFIZJQXnFKbBMPft7-j9j72vIwKst0MaQUsTetG60owvzZ9xggJq5dLMv3cylm13pWV3fUe8fuE_3dqtzPre7tjchDp0Z7e0QYh-tb90cy38tfgPkRcAt |
| CitedBy_id | crossref_primary_10_1007_s00190_023_01702_8 crossref_primary_10_1109_TSP_2024_3387313 crossref_primary_10_1109_TSP_2022_3208733 crossref_primary_10_1109_TSP_2023_3262179 crossref_primary_10_1016_j_apm_2024_115712 |
| Cites_doi | 10.1016/S0304-4076(00)00073-7 10.1080/01621459.2013.799920 10.1198/10618600152628347 10.17713/ajs.v43i4.45 10.1016/j.jmva.2010.05.006 10.5705/ss.2008.223 10.1002/for.3980110106 10.1073/pnas.0506715102 10.2307/1912775 10.2307/2951768 10.1109/TUFFC.2015.2495012 10.1002/for.1125 10.1007/s11517-012-0967-8 10.1109/18.119724 10.1016/j.csda.2010.11.003 10.1109/TAES.2012.6237576 10.1007/BF00339936 10.1080/01621459.1993.10476408 10.1109/TIP.2011.2164412 10.1002/wics.1351 10.1080/10618600.2014.969431 10.1214/07-AOS570 10.1109/TIM 10.1002/0471725250 10.1111/j.2517-6161.1984.tb01274.x 10.1016/S1573-4412(05)80005-4 10.1111/1467-9868.00231 10.1111/1467-9892.00203 10.1214/aoms/1177703732 10.1198/016214504000001402 10.1016/S0304-4076(00)00077-4 10.1109/TIM.2007.908635 10.1111/1467-9868.00373 10.1088/0026-1394/45/5/009 10.1214/aos/1176350027 10.1002/jae.3950080506 10.1214/16-AOS1512 10.1016/j.eneco.2015.03.008 10.1080/00949655.2015.1077387 10.1016/S1573-4412(05)80014-5 10.1016/j.csda.2009.05.003 10.1257/aer.98.3.713 10.1093/biomet/82.3.619 10.1111/j.1467-9892.1992.tb00091.x 10.1007/s00181-006-0115-0 10.1109/TSP.2019.2935902 10.1002/env.2563 10.1111/1468-0262.00036 10.1080/02664760903093609 10.1080/01621459.1979.10481630 10.1093/acprof:oso/9780199641178.001.0001 10.1198/016214507000001166 10.1007/978-1-4614-4340-7 10.1080/01621459.2014.983520 10.1109/MAES.2018.170153 10.1198/016214503388619102 10.2307/1913621 10.1080/01621459.2000.10473913 10.1109/19.744312 10.1111/j.1467-9892.2010.00688.x 10.1109/PLANS.2018.8373423 10.4310/SII.2011.v4.n2.a15 10.1016/j.jspi.2015.11.004 10.1017/S0266466600006976 10.1198/016214504000000692 10.1002/0470010940 10.1109/78.923297 10.1214/aos/1176346706 10.1080/01621459.2013.847374 10.1002/jae.3950080507 10.1080/01621459.1986.10478253 10.1023/A:1008975231866 10.1109/18.761331 10.1016/j.jspi.2008.12.014 10.1177/1077546314532859 10.1016/j.dsp.2017.09.014 10.1080/01621459.1988.10478611 10.1117/12.170036 10.1007/s10463-010-0282-9 10.1198/jasa.2010.tm08383 10.1007/978-3-642-46992-3_3 10.2307/2345178 10.1007/s10492-008-0009-x 10.3150/15-BEJ790 10.1109/TAC.1977.1101538 10.1016/j.jeconom.2004.08.008 10.1214/08-AOS636 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 The Author(s) |
| DBID | 0YH AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| DOI | 10.1080/01621459.2021.1895176 |
| DatabaseName | Taylor & Francis Open Access CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | AGRICOLA PubMed International Bibliography of the Social Sciences (IBSS) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 0YH name: Taylor & Francis Free Journals (Free resource, activated by CARLI) url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Ecology Economics |
| DocumentTitleAlternate | S. Guerrier et al |
| EISSN | 1537-274X |
| EndPage | 2013 |
| ExternalDocumentID | PMC11750153 39845942 10_1080_01621459_2021_1895176 1895176 |
| Genre | Research Article Journal Article |
| GrantInformation_xml | – fundername: Swiss National Science Foundation – fundername: NCATS NIH HHS grantid: UL1 TR002014 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 0YH 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABRLO ABTAI ABUFD ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG ADXHL AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAYXX CITATION .-4 .GJ 07G 1OL 2AX 3R3 3V. 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8P6 8R4 8R5 AAFWJ AAIKQ AAKBW ABBHK ABEFU ABJCF ABPQH ABUWG ABXSQ ABYAD ACAGQ ACGEE ACTWD ACUBG ADBBV ADODI ADULT ADYSH AELPN AEUMN AEUPB AFKRA AFQQW AFSUE AGCQS AGLEN AGROQ AHMOU AI. AIHAF ALCKM ALIPV ALRMG AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DQDLB DSRWC DWIFK DWQXO E.L ECEWR EJD FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HQ6 HVGLF IAO IEA IGG IOF IPO IPSME IVXBP JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM N95 NHB NPM NUSFT P-O PADUT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SA0 SJN TAQ TFMCV UB9 UKHRP UQL VH1 VOH VXZ WHG YXB YYP ZCG ZGI ZUP ZXP 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c596t-b9152b4943f9068cd00ad77a0e3d01b76a81b5201739b190d39369dc6ea226aa3 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642545400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Tue Nov 04 02:04:17 EST 2025 Sat Sep 27 21:17:43 EDT 2025 Sun Sep 28 01:37:38 EDT 2025 Fri Nov 14 18:49:09 EST 2025 Wed Feb 19 02:12:05 EST 2025 Sat Nov 29 03:56:46 EST 2025 Tue Nov 18 22:37:08 EST 2025 Mon Oct 20 23:45:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 540 |
| Keywords | Large-scale time series Signal processing Scale-based analysis of variance Generalized method of wavelet moments State-space models Wavelet variance |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c596t-b9152b4943f9068cd00ad77a0e3d01b76a81b5201739b190d39369dc6ea226aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA. |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1895176 |
| PMID | 39845942 |
| PQID | 2760343012 |
| PQPubID | 41715 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2834216936 informaworld_taylorfrancis_310_1080_01621459_2021_1895176 pubmed_primary_39845942 crossref_citationtrail_10_1080_01621459_2021_1895176 proquest_journals_2760343012 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11750153 crossref_primary_10_1080_01621459_2021_1895176 proquest_miscellaneous_3158764819 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-02 |
| PublicationDateYYYYMMDD | 2022-10-02 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_5_100_1 e_1_3_5_23_1 e_1_3_5_46_1 e_1_3_5_69_1 e_1_3_5_88_1 e_1_3_5_108_1 e_1_3_5_104_1 e_1_3_5_61_1 e_1_3_5_80_1 e_1_3_5_42_1 e_1_3_5_65_1 e_1_3_5_84_1 e_1_3_5_9_1 Tukey J. W. (e_1_3_5_96_1) 1977 e_1_3_5_5_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_35_1 e_1_3_5_77_1 e_1_3_5_58_1 Slacalek J. (e_1_3_5_93_1) 2012; 10 e_1_3_5_50_1 e_1_3_5_73_1 e_1_3_5_54_1 Hampel F. R. (e_1_3_5_48_1) 1986 e_1_3_5_31_1 Christmann A. (e_1_3_5_17_1) 2008; 9 e_1_3_5_101_1 e_1_3_5_28_1 e_1_3_5_24_1 e_1_3_5_109_1 e_1_3_5_66_1 e_1_3_5_47_1 e_1_3_5_89_1 e_1_3_5_105_1 e_1_3_5_62_1 e_1_3_5_43_1 e_1_3_5_85_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 Maronna R. A. (e_1_3_5_63_1) 2019 Van der Vaart A. (e_1_3_5_97_1) 2000 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_55_1 e_1_3_5_59_1 Foufoula-Georgiou E. (e_1_3_5_34_1) 2014 Shumway R. H. (e_1_3_5_92_1) 2013 e_1_3_5_70_1 Percival D. B. (e_1_3_5_79_1) 2000 e_1_3_5_51_1 e_1_3_5_74_1 Burkholder D. L. (e_1_3_5_12_1) 1988; 157 e_1_3_5_32_1 Zhang X. (e_1_3_5_106_1) 2020 e_1_3_5_29_1 e_1_3_5_102_1 e_1_3_5_25_1 Ruckdeschel P. (e_1_3_5_86_1) 2014 e_1_3_5_44_1 e_1_3_5_67_1 e_1_3_5_3_1 e_1_3_5_40_1 e_1_3_5_21_1 e_1_3_5_7_1 e_1_3_5_18_1 Pankratz A. (e_1_3_5_75_1) 2012 e_1_3_5_37_1 e_1_3_5_14_1 e_1_3_5_33_1 Cipra T. (e_1_3_5_19_1) 2011; 4 e_1_3_5_56_1 Percival D. B. (e_1_3_5_78_1) 2006 Reisen V. A. (e_1_3_5_81_1) 2012; 39 e_1_3_5_94_1 e_1_3_5_71_1 e_1_3_5_52_1 e_1_3_5_98_1 e_1_3_5_10_1 e_1_3_5_90_1 e_1_3_5_26_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_107_1 e_1_3_5_68_1 e_1_3_5_49_1 e_1_3_5_103_1 e_1_3_5_83_1 e_1_3_5_2_1 e_1_3_5_60_1 Künsch H. (e_1_3_5_57_1) 1984 e_1_3_5_41_1 e_1_3_5_87_1 Renaud O. (e_1_3_5_82_1) 2002; 12 e_1_3_5_64_1 e_1_3_5_6_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_11_1 e_1_3_5_99_1 Dhrymes J. (e_1_3_5_27_1) 2005; 10 e_1_3_5_72_1 e_1_3_5_91_1 e_1_3_5_53_1 e_1_3_5_76_1 e_1_3_5_95_1 e_1_3_5_30_1 |
| References_xml | – ident: e_1_3_5_84_1 doi: 10.1016/S0304-4076(00)00073-7 – ident: e_1_3_5_46_1 doi: 10.1080/01621459.2013.799920 – ident: e_1_3_5_25_1 doi: 10.1198/10618600152628347 – ident: e_1_3_5_47_1 doi: 10.17713/ajs.v43i4.45 – ident: e_1_3_5_89_1 doi: 10.1016/j.jmva.2010.05.006 – ident: e_1_3_5_101_1 doi: 10.5705/ss.2008.223 – ident: e_1_3_5_18_1 doi: 10.1002/for.3980110106 – ident: e_1_3_5_99_1 doi: 10.1073/pnas.0506715102 – ident: e_1_3_5_49_1 doi: 10.2307/1912775 – ident: e_1_3_5_28_1 doi: 10.2307/2951768 – ident: e_1_3_5_77_1 doi: 10.1109/TUFFC.2015.2495012 – ident: e_1_3_5_38_1 doi: 10.1002/for.1125 – ident: e_1_3_5_102_1 doi: 10.1007/s11517-012-0967-8 – ident: e_1_3_5_83_1 doi: 10.1109/18.119724 – ident: e_1_3_5_37_1 doi: 10.1016/j.csda.2010.11.003 – ident: e_1_3_5_45_1 doi: 10.1109/TAES.2012.6237576 – ident: e_1_3_5_22_1 doi: 10.1007/BF00339936 – ident: e_1_3_5_85_1 doi: 10.1080/01621459.1993.10476408 – ident: e_1_3_5_69_1 doi: 10.1109/TIP.2011.2164412 – ident: e_1_3_5_30_1 doi: 10.1002/wics.1351 – ident: e_1_3_5_16_1 doi: 10.1080/10618600.2014.969431 – ident: e_1_3_5_70_1 doi: 10.1214/07-AOS570 – ident: e_1_3_5_80_1 doi: 10.1109/TIM – ident: e_1_3_5_52_1 doi: 10.1002/0471725250 – start-page: 55 year: 2014 ident: e_1_3_5_86_1 article-title: “Robust Kalman Tracking and Smoothing With Propagating and Non-propagating Outliers publication-title: Statistical Papers – ident: e_1_3_5_50_1 doi: 10.1111/j.2517-6161.1984.tb01274.x – ident: e_1_3_5_72_1 doi: 10.1016/S1573-4412(05)80005-4 – ident: e_1_3_5_71_1 doi: 10.1111/1467-9868.00231 – ident: e_1_3_5_60_1 doi: 10.1111/1467-9892.00203 – volume-title: Robust Statistics: The Approach Based on Influence Functions year: 1986 ident: e_1_3_5_48_1 – ident: e_1_3_5_51_1 doi: 10.1214/aoms/1177703732 – ident: e_1_3_5_61_1 doi: 10.1198/016214504000001402 – volume-title: Wavelet Methods for Time Series Analysis year: 2006 ident: e_1_3_5_78_1 – ident: e_1_3_5_6_1 doi: 10.1016/S0304-4076(00)00077-4 – ident: e_1_3_5_32_1 doi: 10.1109/TIM.2007.908635 – ident: e_1_3_5_88_1 doi: 10.1016/j.jmva.2010.05.006 – ident: e_1_3_5_39_1 doi: 10.1111/1467-9868.00373 – ident: e_1_3_5_105_1 doi: 10.1088/0026-1394/45/5/009 – ident: e_1_3_5_64_1 doi: 10.1214/aos/1176350027 – volume-title: Forecasting with Dynamic Regression Models year: 2012 ident: e_1_3_5_75_1 – ident: e_1_3_5_94_1 doi: 10.1002/jae.3950080506 – volume: 12 start-page: 1275 year: 2002 ident: e_1_3_5_82_1 article-title: “Sensitivity and Other Properties of Wavelet Regression and Density Estimators publication-title: Statistica Sinica – ident: e_1_3_5_108_1 doi: 10.1214/16-AOS1512 – ident: e_1_3_5_53_1 doi: 10.1016/j.eneco.2015.03.008 – ident: e_1_3_5_7_1 doi: 10.1080/00949655.2015.1077387 – ident: e_1_3_5_98_1 doi: 10.1016/S1573-4412(05)80014-5 – ident: e_1_3_5_24_1 doi: 10.1016/j.csda.2009.05.003 – ident: e_1_3_5_11_1 doi: 10.1257/aer.98.3.713 – ident: e_1_3_5_76_1 doi: 10.1093/biomet/82.3.619 – start-page: 843 year: 1984 ident: e_1_3_5_57_1 article-title: “Infinitesimal Robustness for Autoregressive Processes publication-title: The Annals of Statistics – ident: e_1_3_5_4_1 doi: 10.1111/j.1467-9892.1992.tb00091.x – ident: e_1_3_5_74_1 doi: 10.1007/s00181-006-0115-0 – ident: e_1_3_5_103_1 doi: 10.1109/TSP.2019.2935902 – ident: e_1_3_5_33_1 doi: 10.1002/env.2563 – ident: e_1_3_5_5_1 doi: 10.1111/1468-0262.00036 – ident: e_1_3_5_3_1 doi: 10.1080/02664760903093609 – volume: 10 start-page: 95 year: 2005 ident: e_1_3_5_27_1 article-title: “Moments of Truncated (Normal) Distributions,” publication-title: Unpublished note – ident: e_1_3_5_26_1 doi: 10.1080/01621459.1979.10481630 – ident: e_1_3_5_29_1 doi: 10.1093/acprof:oso/9780199641178.001.0001 – ident: e_1_3_5_35_1 doi: 10.1198/016214507000001166 – volume-title: Time Series Analysis and Its Applications. Springer year: 2013 ident: e_1_3_5_92_1 – volume: 157 start-page: 75 year: 1988 ident: e_1_3_5_12_1 article-title: “Sharp Inequalities for Martingales and Stochastic Integrals,” publication-title: Astérisque – ident: e_1_3_5_90_1 doi: 10.1007/978-1-4614-4340-7 – ident: e_1_3_5_14_1 doi: 10.1080/01621459.2014.983520 – ident: e_1_3_5_23_1 doi: 10.1109/MAES.2018.170153 – ident: e_1_3_5_40_1 doi: 10.1198/016214503388619102 – ident: e_1_3_5_66_1 doi: 10.2307/1913621 – ident: e_1_3_5_91_1 doi: 10.1080/01621459.2000.10473913 – ident: e_1_3_5_43_1 doi: 10.1109/19.744312 – ident: e_1_3_5_59_1 doi: 10.1111/j.1467-9892.2010.00688.x – ident: e_1_3_5_8_1 doi: 10.1109/PLANS.2018.8373423 – volume: 4 start-page: 165 year: 2011 ident: e_1_3_5_19_1 article-title: “Exponential Smoothing for Time Series With Outliers,” publication-title: Kybernetika – ident: e_1_3_5_100_1 doi: 10.4310/SII.2011.v4.n2.a15 – ident: e_1_3_5_21_1 doi: 10.1016/j.jspi.2015.11.004 – ident: e_1_3_5_36_1 doi: 10.1017/S0266466600006976 – ident: e_1_3_5_31_1 doi: 10.1198/016214504000000692 – ident: e_1_3_5_62_1 doi: 10.1002/0470010940 – volume-title: Exploratory Data Analysis year: 1977 ident: e_1_3_5_96_1 – start-page: 1 year: 2020 ident: e_1_3_5_106_1 article-title: “Covariance Penalty Based Model Selection Criterion for Indirect Estimators,” publication-title: Submitted Working Paper – ident: e_1_3_5_87_1 doi: 10.1109/78.923297 – ident: e_1_3_5_56_1 doi: 10.1214/aos/1176346706 – ident: e_1_3_5_54_1 doi: 10.1080/01621459.2013.847374 – ident: e_1_3_5_44_1 – volume: 39 start-page: 207 year: 2012 ident: e_1_3_5_81_1 article-title: “Robust Estimation in Time Series With Long and Short Memory Properties publication-title: Annales Mathematicae et Informaticae – ident: e_1_3_5_41_1 doi: 10.1002/jae.3950080507 – ident: e_1_3_5_13_1 doi: 10.1080/01621459.1986.10478253 – ident: e_1_3_5_15_1 doi: 10.1023/A:1008975231866 – ident: e_1_3_5_55_1 doi: 10.1109/18.761331 – volume-title: Robust Statistics: Theory and Methods (with R year: 2019 ident: e_1_3_5_63_1 – ident: e_1_3_5_67_1 doi: 10.1016/j.jspi.2008.12.014 – ident: e_1_3_5_109_1 doi: 10.1177/1077546314532859 – volume-title: Wavelets in Geophysics year: 2014 ident: e_1_3_5_34_1 – ident: e_1_3_5_95_1 doi: 10.1016/j.dsp.2017.09.014 – ident: e_1_3_5_104_1 doi: 10.1080/01621459.1988.10478611 – ident: e_1_3_5_10_1 doi: 10.1117/12.170036 – ident: e_1_3_5_68_1 doi: 10.1007/s10463-010-0282-9 – volume-title: Cambridge Series in Statistical and Probabilistic Mathematics year: 2000 ident: e_1_3_5_79_1 – volume: 9 start-page: 915 year: 2008 ident: e_1_3_5_17_1 article-title: “Bouligand Derivatives and Robustness of Support Vector Machines for Regression,” publication-title: The Journal of Machine Learning Research – ident: e_1_3_5_58_1 doi: 10.1198/jasa.2010.tm08383 – ident: e_1_3_5_9_1 doi: 10.1007/978-3-642-46992-3_3 – ident: e_1_3_5_42_1 doi: 10.2307/2345178 – ident: e_1_3_5_20_1 doi: 10.1007/s10492-008-0009-x – ident: e_1_3_5_2_1 doi: 10.3150/15-BEJ790 – volume-title: Asymptotic Statistics year: 2000 ident: e_1_3_5_97_1 – volume: 10 start-page: 95 year: 2012 ident: e_1_3_5_93_1 article-title: “What Drives Household Saving?” publication-title: Unpublished note – ident: e_1_3_5_65_1 doi: 10.1109/TAC.1977.1101538 – ident: e_1_3_5_73_1 doi: 10.1016/j.jeconom.2004.08.008 – ident: e_1_3_5_107_1 doi: 10.1214/08-AOS636 |
| SSID | ssj0000788 |
| Score | 2.4299624 |
| Snippet | Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in... Latent time series models such as (the independent sum of) ARMA( , ) models with additional stochastic processes are increasingly used for data analysis in... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1996 |
| SubjectTerms | Asymptotic properties Biology Complexity Data analysis Ecology Economic analysis Economic models economics Estimation Generalized method of wavelet moments Inference Large-scale time series Normality Outliers (statistics) prediction Prediction models Property Regression analysis Robustness Scale-based analysis of variance Signal processing Simulation State-space models Statistical methods Statistics Stochastic models Stochastic processes Theory and Methods Time series time series analysis variance wavelet Wavelet variance |
| Title | Robust Two-Step Wavelet-Based Inference for Time Series Models |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1895176 https://www.ncbi.nlm.nih.gov/pubmed/39845942 https://www.proquest.com/docview/2760343012 https://www.proquest.com/docview/2834216936 https://www.proquest.com/docview/3158764819 https://pubmed.ncbi.nlm.nih.gov/PMC11750153 |
| Volume | 117 |
| WOSCitedRecordID | wos000642545400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R6IFLgb5YCsiVejV1bCeOL0gUsQIJoaraiu0pshNHVEJZRLLt3-9MHguLijjAxVIUTxI_5xtn5huAL4WL8zJ2ETcq9migpBH30lhOw1_GBjVQaCnzz83FRTqd2u-9N2Hdu1WSDV12RBHtXk2L2_l68Ij7iiiF-LUpzERGB1GKIMEkr2BNomlC9pf4dXq3GZs29SSJcJIZgngee8ySeloiL_0fBH3oSXlPNY03XqBRm_Cmx6XsqJtIW7ASqrewTlC0Y3J-B4c_Zn5eN2zyd8bJN4xdOkpa0fBvqAgLdjZEDjJsDKPIEkYnb6FmlG7tun4PP8cnk-NT3mdf4Hlsk4Z7i6rda6tVaUWS5oUQrjDGiaAKEXmTOES8MeIHo6xHWFEoyg1Y5ElwCOmcUx9gtZpVYRuY0CooH3QeEuL-Md5pLwVemBI3ahdGoIdOz_KempwyZFxn0cBg2vdORr2T9b0zgoOF2E3HzfGUgL0_olnTHoqUXQaTTD0huzsMf9Yv8zqTJhFK4x4pR_B5cRsXKP11cVWYzbFOqrQkypvk8ToqilEraURnI_jYzahFi5RN8Vs0viFdmmuLCkQQvnyn-n3VEoUTDSvCPbXzjHZ_gnVJER_kMyF3YbW5nYc9eJ3_wel3u98uNizNNMVyMr78B2dVI_I |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9BhwQvbLANyvjwJF7NktiJ45dJ27SqaF0fpiJ4s-zEEZNQimgK_z53-ejaaYiH8RjFl8T2ne9n5-53AKe5jbMitiFXIna4QUlD7iKlOU1_ESv0QL6mzB-p8Ti9utLLuTAUVkl76KIhiqjXajJuOozuQuI-IUwhgm3KM4nCszBFlKCSdXgVo68l_vzJ4PLPaqzq2pMkwkmmy-J56jEr_mmFvfRfGPTvUMol3zR4_RK9egPbLTJlXxpV2oE1X-7CFoHRhsv5LXz-NXXzWcUmD1NO0WHs0lLZiop_RVeYs_Mud5BhbxjlljA6e_MzRgXXbmbv4GLwffJtyNv6CzyLdVJxp9G5O6mlKHSQpFkeBDZXygZe5EHoVGIR88aIIJTQDoFFLqg6YJ4l3iKos1a8h145Lf0-sEAKL5yXmU-I_Uc5K10U4IUqcKm2vg-yG3WTteTkVCPjxoQdh2k7OoZGx7Sj04ezhdhtw87xnIBenlJT1cciRVPDxIhnZA-7-Tetoc9MpJJASFwloz58XNxGE6X_Lrb00zm2SYWMiPQmebqNCGP0SxLxWR_2GpVa9EjoFL9F4hvSFWVbNCCK8NU75e_rmiqciFgR8ImD_-j3CWwOJz9HZnQ-_vEBtiLK_6AIiugQetXd3B_BRnaPqnh3XFveI40XJiI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RqCou9N0u0NZIvZomsWPHFyRaWBUVrRDaCm6WnTiiEsoikoW_z0weW7Yq4tAeo3iSjD32fHZmvgH4XLg0L1MXcy1SjxuULOY-0YbT8JepRg8UWsr8Yz2ZZOfn5qSPJqz7sEraQ5cdUUS7VtPkvirKISLuC6IU4temNJMk3o0zBAlaPYE1hM6KjHw6Pvu9GOu29CSJcJIZkngeesySe1oiL_0bBP0zkvKeaxo__w9KvYCNHpey_c6QXsJKqF7BOkHRjsn5Neydzvy8btj0dsYpNoydOSpa0fCv6AgLdjRkDjJUhlFmCaOTt1AzKrd2Wb-Bn-PD6bfvvK--wPPUqIZ7g67dSyNFaSKV5UUUuUJrFwVRRLHXyiHiTRE_aGE8wopCUG3AIlfBIaRzTryF1WpWhffAIimC8EHmQRH3j_ZO-iTCC13iQu3CCOTQ6TbvqcmpQsaljQcG0753LPWO7XtnBLsLsauOm-MxAXN_RG3THoqUXQUTKx6R3R6G3_bTvLaJVpGQuEYmI9hZ3MYJSn9dXBVmc2yTCZkQ5Y16uI2IU_RKEtHZCN51FrXQSJgMv0XiG7IlW1s0IILw5TvVr4uWKJxoWBHuic1_0PsTPDs5GNvjo8mPLVhPKPmDwieSbVhtrufhAzzNb9ASrz-28-4O7Bok1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Two-Step+Wavelet-Based+Inference+for+Time+Series+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Guerrier%2C+St%C3%A9phane&rft.au=Molinari%2C+Roberto&rft.au=Victoria-Feser%2C+Maria-Pia&rft.au=Xu%2C+Haotian&rft.date=2022-10-02&rft.issn=0162-1459&rft.volume=117&rft.issue=540&rft.spage=1996&rft_id=info:doi/10.1080%2F01621459.2021.1895176&rft_id=info%3Apmid%2F39845942&rft.externalDocID=39845942 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |