Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptab...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on medical imaging Jg. 23; H. 7; S. 903 - 921 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.07.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0062, 1558-254X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance. |
|---|---|
| AbstractList | Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance. Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it re- adily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination - - of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance.Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance. |
| Author | Zou, K.H. Wells, W.M. Warfield, S.K. |
| AuthorAffiliation | S. K. Warfield is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 USA. He is also with the Department of Radiology at Children’s Hospital, Boston, and with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: warfield@bwh.harvard.edu ) K. H. Zou is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, Boston, MA 02115 USA W M. Wells is with Harvard Medical School and the Department of Radiology at Brigham and Women’s Hospital, Boston, MA 02115 USA. He is also with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA |
| AuthorAffiliation_xml | – name: W M. Wells is with Harvard Medical School and the Department of Radiology at Brigham and Women’s Hospital, Boston, MA 02115 USA. He is also with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA – name: K. H. Zou is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, Boston, MA 02115 USA – name: S. K. Warfield is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 USA. He is also with the Department of Radiology at Children’s Hospital, Boston, and with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: warfield@bwh.harvard.edu ) |
| Author_xml | – sequence: 1 givenname: S.K. surname: Warfield fullname: Warfield, S.K. organization: Dept. of Radiol., Brigham & Women's Hosp., Boston, MA, USA – sequence: 2 givenname: K.H. surname: Zou fullname: Zou, K.H. organization: Dept. of Radiol., Brigham & Women's Hosp., Boston, MA, USA – sequence: 3 givenname: W.M. surname: Wells fullname: Wells, W.M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15250643$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9rFDEUx4NU7LZ69iBI8OCPw2xfMvk1HoRSqhZWFLqCt5DNZHZTMpNtZmbB_96sU6320J4Sks_3vcf3fY_QQRc7h9BzAnNCoDpZfrmYUwA2V1SVnD1CM8K5KihnPw7QDKhUBYCgh-io768ACONQPUGHhFMOgpUz1F_6dgyD6Vwcezykcdhg09V461ITU2s663BwOxew6wffmsHHDr-9XJ5-W5y_e59RbMI6Jj9sWpwFeNg4vDPB1xMZG5xFa4d7t25dN_x-fYoeNyb07tnNeYy-fzxfnn0uFl8_XZydLgrLKzEUsq5tSWQjgRpmhZK0cXXFrDJSMApNvqyaUhhBYFVzxQ1Y4VgNVQmK2hUtj9GHqe52XLWutrl_MkFvUx4p_dTReP3_T-c3eh13mmQzs725wJubAilej9kA3freuhAmu7RSJTBWwr7V63tJISQwweSDIFWCEqAPVySSKpmXncFXd8CrOKYuG7ufryIAlcjQy3-t-OvBnyBk4GQCbIp9n1xzi4DeR03nqOl91PQUtazgdxTWT_vNXvpwj-7FpPPOudsuJVSSsPIXEqnglg |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1007_s11042_019_08051_9 crossref_primary_10_1088_0031_9155_60_4_1497 crossref_primary_10_1016_j_future_2019_12_035 crossref_primary_10_1109_TMI_2009_2024743 crossref_primary_10_1109_ACCESS_2021_3133276 crossref_primary_10_3390_app11020782 crossref_primary_10_1118_1_4873677 crossref_primary_10_1016_j_radonc_2023_109870 crossref_primary_10_1118_1_4929561 crossref_primary_10_1007_s11548_019_01989_z crossref_primary_10_1371_journal_pone_0270339 crossref_primary_10_1097_MOU_0000000000001321 crossref_primary_10_1109_JBHI_2014_2311163 crossref_primary_10_1016_j_neuroimage_2008_07_055 crossref_primary_10_1016_j_patcog_2013_04_007 crossref_primary_10_1016_j_media_2012_07_006 crossref_primary_10_1016_j_radonc_2017_11_021 crossref_primary_10_1016_j_media_2018_03_001 crossref_primary_10_7863_ultra_32_9_1659 crossref_primary_10_3390_jcm12155143 crossref_primary_10_1016_j_inffus_2019_12_007 crossref_primary_10_1016_j_jneumeth_2019_05_003 crossref_primary_10_1016_j_media_2018_11_007 crossref_primary_10_1016_j_micron_2017_09_012 crossref_primary_10_1186_s13014_021_01799_1 crossref_primary_10_1371_journal_pone_0133533 crossref_primary_10_1002_jmri_28037 crossref_primary_10_1016_j_ctro_2025_100994 crossref_primary_10_1371_journal_pone_0146868 crossref_primary_10_1038_s41467_025_60466_1 crossref_primary_10_1016_j_neuroimage_2012_10_081 crossref_primary_10_1118_1_4928485 crossref_primary_10_3389_fnins_2019_00679 crossref_primary_10_1118_1_4749967 crossref_primary_10_1016_j_jmir_2016_06_004 crossref_primary_10_1109_ACCESS_2023_3278275 crossref_primary_10_1016_j_ijrobp_2010_07_009 crossref_primary_10_3390_cancers14102372 crossref_primary_10_1088_1361_6560_ab239e crossref_primary_10_1259_bjr_20201174 crossref_primary_10_1109_JBHI_2023_3323582 crossref_primary_10_1109_TMI_2009_2013851 crossref_primary_10_1259_bjr_20201177 crossref_primary_10_3389_fninf_2022_919779 crossref_primary_10_1002_hbm_21057 crossref_primary_10_1016_j_radi_2025_01_013 crossref_primary_10_1088_0031_9155_55_18_020 crossref_primary_10_1109_ACCESS_2020_3017449 crossref_primary_10_1109_TBME_2018_2856501 crossref_primary_10_1002_hbm_22185 crossref_primary_10_1016_j_ijrobp_2016_04_032 crossref_primary_10_1002_rcs_1654 crossref_primary_10_1007_s00234_021_02855_z crossref_primary_10_1016_j_media_2013_02_006 crossref_primary_10_1016_j_patrec_2018_07_008 crossref_primary_10_1109_TMI_2013_2265805 crossref_primary_10_1177_1051228405282864 crossref_primary_10_1016_j_neuroimage_2017_02_035 crossref_primary_10_1016_j_prro_2011_07_002 crossref_primary_10_1016_j_media_2013_10_013 crossref_primary_10_1109_TMI_2011_2156806 crossref_primary_10_1515_bmt_2024_0396 crossref_primary_10_1016_j_cviu_2016_01_006 crossref_primary_10_1016_j_media_2023_102966 crossref_primary_10_1016_j_neuroimage_2011_07_085 crossref_primary_10_1002_acm2_13328 crossref_primary_10_1016_j_patcog_2019_01_031 crossref_primary_10_1109_TMI_2021_3140140 crossref_primary_10_1016_j_media_2015_05_009 crossref_primary_10_3390_diagnostics14242838 crossref_primary_10_1007_s11060_019_03152_9 crossref_primary_10_1109_TMI_2013_2258031 crossref_primary_10_1109_TMI_2015_2496296 crossref_primary_10_1016_j_radonc_2016_09_009 crossref_primary_10_1007_s43683_022_00085_0 crossref_primary_10_1109_TPAMI_2011_280 crossref_primary_10_1016_j_media_2021_102336 crossref_primary_10_1016_j_compbiomed_2024_108586 crossref_primary_10_1371_journal_pone_0109872 crossref_primary_10_1016_j_media_2012_06_009 crossref_primary_10_2139_ssrn_4288950 crossref_primary_10_1109_JBHI_2018_2834551 crossref_primary_10_1016_j_media_2015_06_002 crossref_primary_10_1016_j_radonc_2016_09_005 crossref_primary_10_1016_j_compmedimag_2014_05_012 crossref_primary_10_1016_j_diii_2023_08_001 crossref_primary_10_1186_1471_2342_5_7 crossref_primary_10_1109_TIM_2019_2910345 crossref_primary_10_1109_TMI_2013_2242901 crossref_primary_10_1016_j_neuroimage_2013_08_008 crossref_primary_10_1109_TMI_2014_2347703 crossref_primary_10_1155_2014_182909 crossref_primary_10_1002_hbm_22359 crossref_primary_10_1016_j_mri_2012_02_010 crossref_primary_10_1109_TMI_2012_2202322 crossref_primary_10_1016_j_acra_2010_01_019 crossref_primary_10_1002_jmri_24951 crossref_primary_10_1038_s41598_024_56228_6 crossref_primary_10_3389_fninf_2021_805669 crossref_primary_10_1016_j_media_2015_06_012 crossref_primary_10_1002_ima_22840 crossref_primary_10_1016_j_ijrobp_2024_12_026 crossref_primary_10_1007_s12021_019_09448_5 crossref_primary_10_2340_1651_226X_2024_39041 crossref_primary_10_1007_s10278_025_01570_y crossref_primary_10_1016_j_media_2009_06_003 crossref_primary_10_1111_j_1552_6569_2005_tb00328_x crossref_primary_10_1093_brain_awt065 crossref_primary_10_1186_s40708_023_00207_6 crossref_primary_10_1007_s42452_025_07055_5 crossref_primary_10_1118_1_4829511 crossref_primary_10_3389_fnins_2017_00578 crossref_primary_10_3389_fonc_2022_772403 crossref_primary_10_1016_j_jaci_2015_08_045 crossref_primary_10_1016_j_neuroimage_2009_03_068 crossref_primary_10_1109_TMI_2011_2172215 crossref_primary_10_1007_s00066_018_1348_5 crossref_primary_10_1016_j_neuroimage_2014_12_042 crossref_primary_10_1118_1_4927567 crossref_primary_10_1371_journal_pone_0065591 crossref_primary_10_1109_TMI_2016_2636188 crossref_primary_10_1111_jon_12850 crossref_primary_10_1007_s10334_023_01066_2 crossref_primary_10_1016_j_neuroimage_2016_09_068 crossref_primary_10_1016_j_irbm_2019_02_001 crossref_primary_10_1038_s41598_024_57618_6 crossref_primary_10_1016_j_neuroimage_2014_11_031 crossref_primary_10_1007_s00362_019_01138_3 crossref_primary_10_1002_mrm_25737 crossref_primary_10_1016_j_jksuci_2019_02_008 crossref_primary_10_1111_jon_12623 crossref_primary_10_1016_j_media_2018_02_001 crossref_primary_10_1038_s41597_025_04427_9 crossref_primary_10_1007_s00330_023_09697_8 crossref_primary_10_3389_fnins_2023_1176625 crossref_primary_10_1016_j_nicl_2015_01_008 crossref_primary_10_3390_app15148061 crossref_primary_10_1016_j_jvcir_2022_103505 crossref_primary_10_1109_JBHI_2017_2741501 crossref_primary_10_1016_j_neuroimage_2014_11_025 crossref_primary_10_1111_epi_12408 crossref_primary_10_1016_j_media_2014_09_005 crossref_primary_10_1016_j_compbiomed_2024_108140 crossref_primary_10_1080_0284186X_2017_1279750 crossref_primary_10_1109_TMI_2008_2010438 crossref_primary_10_1007_s11060_020_03605_6 crossref_primary_10_1109_TMI_2024_3394045 crossref_primary_10_1088_1361_6560_ac5a93 crossref_primary_10_1016_j_oraloncology_2022_106261 crossref_primary_10_4103_digm_digm_23_17 crossref_primary_10_1186_s12880_022_00946_8 crossref_primary_10_1016_j_radonc_2014_03_019 crossref_primary_10_1109_TMI_2006_877092 crossref_primary_10_1016_j_radonc_2024_110500 crossref_primary_10_1088_1361_6560_ac9449 crossref_primary_10_1016_j_ijdevneu_2013_11_006 crossref_primary_10_1245_s10434_015_4633_x crossref_primary_10_1038_s41597_025_04467_1 crossref_primary_10_1109_TMI_2008_2010434 crossref_primary_10_1109_TMI_2014_2322280 crossref_primary_10_3390_s21134556 crossref_primary_10_1038_srep32423 crossref_primary_10_1118_1_2826557 crossref_primary_10_7554_eLife_23379 crossref_primary_10_3390_bioengineering10050623 crossref_primary_10_1016_j_ics_2004_03_231 crossref_primary_10_1016_j_knosys_2016_01_033 crossref_primary_10_1109_TMI_2013_2270114 crossref_primary_10_1109_TMI_2019_2905770 crossref_primary_10_1016_j_ijrobp_2011_04_038 crossref_primary_10_1002_hbm_22309 crossref_primary_10_7554_eLife_59780 crossref_primary_10_1155_2012_431095 crossref_primary_10_1016_j_compmedimag_2008_06_003 crossref_primary_10_1002_hbm_20161 crossref_primary_10_1002_hbm_23432 crossref_primary_10_1007_s00330_021_08385_9 crossref_primary_10_1007_s11238_010_9240_5 crossref_primary_10_1088_1742_6596_777_1_012002 crossref_primary_10_1109_JBHI_2024_3489721 crossref_primary_10_3389_fnins_2018_00629 crossref_primary_10_1007_s12021_017_9323_3 crossref_primary_10_1016_j_neuroimage_2009_02_018 crossref_primary_10_1007_s11263_014_0731_7 crossref_primary_10_1177_1559325819897175 crossref_primary_10_1016_j_acra_2004_11_029 crossref_primary_10_1016_j_patcog_2013_02_014 crossref_primary_10_1016_j_media_2018_10_012 crossref_primary_10_1038_srep45501 crossref_primary_10_1016_j_neuroimage_2009_04_068 crossref_primary_10_1111_cns_12658 crossref_primary_10_1111_cns_12415 crossref_primary_10_1109_JSTSP_2008_2011104 crossref_primary_10_1109_TMI_2013_2256922 crossref_primary_10_1002_mrm_28596 crossref_primary_10_1016_j_media_2005_02_002 crossref_primary_10_1109_TBME_2016_2574816 crossref_primary_10_1002_acm2_70152 crossref_primary_10_1016_j_knosys_2025_113381 crossref_primary_10_1109_LSP_2013_2279269 crossref_primary_10_1186_s13014_018_1033_y crossref_primary_10_1002_jcsm_13310 crossref_primary_10_1016_j_ijrobp_2013_07_006 crossref_primary_10_3390_s21030934 crossref_primary_10_1016_j_prro_2012_11_002 crossref_primary_10_1109_TFUZZ_2013_2246761 crossref_primary_10_1007_s12194_025_00946_7 crossref_primary_10_1016_j_media_2015_08_010 crossref_primary_10_1186_s12968_017_0336_8 crossref_primary_10_1118_1_4941011 crossref_primary_10_1002_mp_17964 crossref_primary_10_1016_j_ijrobp_2016_11_050 crossref_primary_10_1016_j_neuroimage_2005_05_005 crossref_primary_10_1109_TMI_2014_2371823 crossref_primary_10_1016_j_gaitpost_2025_03_007 crossref_primary_10_1088_1361_6560_ad84b2 crossref_primary_10_1016_j_ijrobp_2023_08_051 crossref_primary_10_1016_j_cmpb_2020_105839 crossref_primary_10_1016_j_mri_2012_06_010 crossref_primary_10_1016_j_media_2013_12_002 crossref_primary_10_1002_jmrs_453 crossref_primary_10_1111_j_1600_0684_2008_00288_x crossref_primary_10_1007_s00198_019_05214_0 crossref_primary_10_1002_mp_16860 crossref_primary_10_1016_j_compmedimag_2008_05_003 crossref_primary_10_1111_jon_12483 crossref_primary_10_3390_cancers14184435 crossref_primary_10_1186_s13244_021_01010_9 crossref_primary_10_1007_s11548_013_0836_4 crossref_primary_10_3390_diagnostics12081822 crossref_primary_10_1002_mp_16615 crossref_primary_10_1002_mp_12025 crossref_primary_10_3390_diagnostics12051159 crossref_primary_10_1016_j_media_2018_10_004 crossref_primary_10_1016_j_radonc_2011_08_043 crossref_primary_10_1016_j_neuroimage_2014_04_054 crossref_primary_10_1088_0031_9155_61_13_4855 crossref_primary_10_1259_bjr_20140299 crossref_primary_10_1088_0031_9155_56_14_021 crossref_primary_10_1016_j_pediatrneurol_2012_10_011 crossref_primary_10_1016_j_neuroimage_2019_03_041 crossref_primary_10_3390_jpm12122049 crossref_primary_10_1016_j_jogoh_2025_103039 crossref_primary_10_1109_JSTARS_2024_3429491 crossref_primary_10_1007_s12021_018_9359_z crossref_primary_10_1186_s12967_019_2119_5 crossref_primary_10_1007_s11548_020_02254_4 crossref_primary_10_1118_1_4963213 crossref_primary_10_1016_j_radonc_2024_110567 crossref_primary_10_1118_1_2897950 crossref_primary_10_1016_j_meddos_2014_02_003 crossref_primary_10_1002_hbm_20599 crossref_primary_10_1016_j_radonc_2015_10_007 crossref_primary_10_1155_2010_618747 crossref_primary_10_1109_TITB_2007_903514 crossref_primary_10_1002_mp_13375 crossref_primary_10_1016_j_artmed_2015_04_005 crossref_primary_10_1016_j_ejmp_2022_06_015 crossref_primary_10_1038_s41467_023_36960_9 crossref_primary_10_1016_j_compbiomed_2022_106204 crossref_primary_10_1111_1754_9485_12509 crossref_primary_10_1002_hbm_24948 crossref_primary_10_1002_mp_15308 crossref_primary_10_1016_j_pscychresns_2024_111789 crossref_primary_10_1016_j_neuroimage_2009_10_026 crossref_primary_10_1016_j_neuroimage_2014_03_037 crossref_primary_10_1016_j_ijrobp_2014_01_010 crossref_primary_10_1016_j_ijrobp_2023_07_020 crossref_primary_10_1016_j_media_2016_01_004 crossref_primary_10_1016_j_ultrasmedbio_2024_11_020 crossref_primary_10_1109_TMI_2018_2837502 crossref_primary_10_1016_j_neuroimage_2019_03_068 crossref_primary_10_2147_OPTH_S410905 crossref_primary_10_1002_crt2_53 crossref_primary_10_1016_j_neuroimage_2014_01_058 crossref_primary_10_1016_j_mri_2019_05_020 crossref_primary_10_1371_journal_pone_0286485 crossref_primary_10_1118_1_2131093 crossref_primary_10_1016_j_canrad_2010_01_005 crossref_primary_10_1016_j_jbi_2008_11_005 crossref_primary_10_1016_j_neuroimage_2011_02_010 crossref_primary_10_1007_s00256_007_0386_3 crossref_primary_10_1016_j_ijrobp_2010_12_057 crossref_primary_10_1007_s11548_014_1119_4 crossref_primary_10_1109_TMI_2009_2014372 crossref_primary_10_1007_s10334_016_0535_6 crossref_primary_10_1118_1_4963809 crossref_primary_10_1016_j_compmedimag_2018_09_003 crossref_primary_10_1016_j_neurobiolaging_2010_04_011 crossref_primary_10_1016_j_compmedimag_2008_12_002 crossref_primary_10_1016_j_media_2016_11_003 crossref_primary_10_1007_s00138_012_0456_y crossref_primary_10_1007_s11517_025_03337_7 crossref_primary_10_1002_mp_14644 crossref_primary_10_3389_fmed_2025_1653865 crossref_primary_10_1088_1361_6560_aad316 crossref_primary_10_1016_j_ctro_2023_100722 crossref_primary_10_1016_j_pediatrneurol_2020_01_006 crossref_primary_10_1088_1361_6560_ad3325 crossref_primary_10_1259_dmfr_20180099 crossref_primary_10_1007_s00330_020_07070_7 crossref_primary_10_3109_0284186X_2014_953638 crossref_primary_10_1016_j_cmpb_2009_04_009 crossref_primary_10_1016_j_compbiomed_2025_110459 crossref_primary_10_1371_journal_pone_0228119 crossref_primary_10_1016_j_jneumeth_2014_01_033 crossref_primary_10_1016_j_asoc_2010_11_009 crossref_primary_10_1016_j_phro_2022_03_001 crossref_primary_10_1002_jmri_27776 crossref_primary_10_1002_mp_15521 crossref_primary_10_1109_TMI_2020_2968917 crossref_primary_10_1007_s10278_025_01531_5 crossref_primary_10_1016_j_bspc_2018_12_010 crossref_primary_10_1002_mp_15525 crossref_primary_10_1007_s10439_013_0964_6 crossref_primary_10_1007_s10765_018_2417_9 crossref_primary_10_1109_TMI_2010_2049497 crossref_primary_10_1136_jnis_2023_021283 crossref_primary_10_1542_peds_2005_2675 crossref_primary_10_1016_j_brachy_2019_05_007 crossref_primary_10_1016_j_ijrobp_2013_09_008 crossref_primary_10_1016_j_ijrobp_2010_11_033 crossref_primary_10_1016_j_ejmp_2022_09_002 crossref_primary_10_1016_j_neuroimage_2015_11_073 crossref_primary_10_1016_j_neuroimage_2013_06_006 crossref_primary_10_1002_mp_13331 crossref_primary_10_1016_j_neuroimage_2009_05_029 crossref_primary_10_1002_mp_14422 crossref_primary_10_1016_j_ijrobp_2014_03_041 crossref_primary_10_1002_mp_15506 crossref_primary_10_1016_j_ijrobp_2018_11_025 crossref_primary_10_1016_j_neuroimage_2015_10_042 crossref_primary_10_1117_1_JMI_10_6_065503 crossref_primary_10_1016_j_acra_2007_05_025 crossref_primary_10_1016_j_bone_2012_06_005 crossref_primary_10_1167_tvst_14_7_8 crossref_primary_10_1109_TMI_2013_2255309 crossref_primary_10_1148_radiol_2373041630 crossref_primary_10_1016_j_ejmp_2020_04_011 crossref_primary_10_1007_s00247_021_05270_x crossref_primary_10_1016_j_neuroimage_2016_05_030 crossref_primary_10_1088_1361_6560_ac9a98 crossref_primary_10_1016_j_media_2017_04_002 crossref_primary_10_1016_j_jid_2018_12_015 crossref_primary_10_1007_s11263_018_1065_7 crossref_primary_10_1016_j_ctro_2022_06_007 crossref_primary_10_1287_isre_2023_0426 crossref_primary_10_1109_MPUL_2011_2181023 crossref_primary_10_1111_1754_9485_13668 crossref_primary_10_1109_TMI_2010_2050897 crossref_primary_10_1088_2057_1976_ab08fc crossref_primary_10_1016_j_radonc_2022_10_029 crossref_primary_10_1371_journal_pone_0096985 crossref_primary_10_1016_j_bspc_2025_107971 crossref_primary_10_1017_S1460396921000571 crossref_primary_10_1007_s10994_009_5158_y crossref_primary_10_3390_jcm14124042 crossref_primary_10_1109_ACCESS_2021_3090825 crossref_primary_10_1109_TMI_2014_2325596 crossref_primary_10_1186_s13014_015_0439_z crossref_primary_10_1109_TMI_2005_856752 crossref_primary_10_1016_j_irbm_2020_10_007 crossref_primary_10_1016_j_media_2020_101759 crossref_primary_10_1016_j_media_2024_103419 crossref_primary_10_1109_TMI_2018_2824243 crossref_primary_10_1007_s11042_024_18127_w crossref_primary_10_1016_j_neuroimage_2007_07_002 crossref_primary_10_1109_TMI_2015_2418298 crossref_primary_10_3390_app10175948 crossref_primary_10_1148_radiol_2018171756 crossref_primary_10_1177_153303460500400205 crossref_primary_10_1016_j_clon_2016_09_016 crossref_primary_10_3390_app14041339 crossref_primary_10_1016_j_cccb_2025_100393 crossref_primary_10_1155_2013_368514 crossref_primary_10_1038_s41598_019_53387_9 crossref_primary_10_1038_s41597_025_05250_y crossref_primary_10_1259_bjr_20210350 crossref_primary_10_1016_j_asoc_2024_112081 crossref_primary_10_1016_j_neuroimage_2022_119741 crossref_primary_10_1259_bjr_20210356 crossref_primary_10_1016_j_breast_2016_12_010 crossref_primary_10_1016_j_compmedimag_2019_101660 crossref_primary_10_1186_s13244_022_01287_4 crossref_primary_10_1016_j_radonc_2022_11_017 crossref_primary_10_1109_TMI_2015_2393853 crossref_primary_10_1016_j_ejmp_2022_08_011 crossref_primary_10_1016_j_engappai_2019_02_005 crossref_primary_10_1038_ncomms11879 crossref_primary_10_1016_j_semradonc_2022_01_002 crossref_primary_10_1038_s41597_022_01560_7 crossref_primary_10_3389_fphy_2025_1490650 crossref_primary_10_1371_journal_pone_0273395 crossref_primary_10_1109_TMI_2013_2263388 crossref_primary_10_1002_jmri_25148 crossref_primary_10_1002_mp_13771 crossref_primary_10_1002_mp_13773 crossref_primary_10_1109_TMI_2015_2463078 crossref_primary_10_1016_j_clon_2024_103735 crossref_primary_10_1111_jon_13038 crossref_primary_10_1016_j_acra_2012_09_006 crossref_primary_10_1088_0031_9155_60_11_4429 crossref_primary_10_3390_info8020049 crossref_primary_10_1016_j_cviu_2013_06_009 crossref_primary_10_1109_TMI_2011_2181857 crossref_primary_10_1016_j_cell_2021_11_024 crossref_primary_10_1259_bjr_20200543 crossref_primary_10_1007_s10334_015_0521_4 crossref_primary_10_1016_j_camwa_2019_03_022 crossref_primary_10_1109_TMI_2011_2114671 crossref_primary_10_1016_j_phro_2024_100687 crossref_primary_10_1016_j_jmir_2024_101745 crossref_primary_10_1016_j_phro_2025_100736 crossref_primary_10_1016_j_meddos_2019_06_002 crossref_primary_10_1089_neu_2018_6196 crossref_primary_10_1109_TEVC_2017_2694160 crossref_primary_10_1016_j_crad_2025_106921 crossref_primary_10_1016_j_media_2017_07_004 crossref_primary_10_1016_j_neucom_2020_11_028 crossref_primary_10_1016_j_compmedimag_2016_04_002 crossref_primary_10_1016_j_radonc_2024_110186 crossref_primary_10_3389_fonc_2019_00239 crossref_primary_10_1016_j_inffus_2023_102101 crossref_primary_10_3390_e23020197 crossref_primary_10_1080_01621459_2021_2014854 crossref_primary_10_1038_s41746_025_01624_z crossref_primary_10_1016_j_clon_2023_01_016 crossref_primary_10_3389_fneur_2018_00679 crossref_primary_10_1002_mp_13703 crossref_primary_10_1007_s10278_017_9964_7 crossref_primary_10_1016_j_nicl_2022_103071 crossref_primary_10_1016_j_ijrobp_2019_03_003 crossref_primary_10_1109_TIP_2005_852462 crossref_primary_10_1186_1471_2342_12_17 crossref_primary_10_1109_TMI_2005_857652 crossref_primary_10_1002_ima_22478 crossref_primary_10_1016_j_compbiomed_2024_108845 crossref_primary_10_1016_j_compeleceng_2024_109613 crossref_primary_10_1007_s10916_017_0874_5 crossref_primary_10_1088_0031_9155_58_12_4071 crossref_primary_10_1016_j_media_2022_102398 crossref_primary_10_1038_nbt_4225 crossref_primary_10_1016_j_ijrobp_2008_08_070 crossref_primary_10_1016_j_ijrobp_2012_01_023 crossref_primary_10_1016_j_radonc_2014_06_006 crossref_primary_10_1007_s00259_022_06001_6 crossref_primary_10_1016_j_media_2012_09_004 crossref_primary_10_1016_j_neuroimage_2008_12_037 crossref_primary_10_1016_j_neuroimage_2018_06_029 crossref_primary_10_1117_1_JMI_11_5_054003 crossref_primary_10_1134_S105466181703004X crossref_primary_10_1109_TMI_2004_824224 crossref_primary_10_1109_TMI_2016_2578680 crossref_primary_10_1118_1_4947123 crossref_primary_10_1002_cyto_a_22068 crossref_primary_10_1016_j_clon_2021_12_003 crossref_primary_10_1016_j_optcom_2012_10_033 crossref_primary_10_1111_jon_70058 crossref_primary_10_3390_cancers14215312 crossref_primary_10_1177_8756479320908213 crossref_primary_10_1118_1_4794478 crossref_primary_10_1038_s41598_021_95152_x crossref_primary_10_1002_acm2_12529 crossref_primary_10_1186_1532_429X_15_105 crossref_primary_10_1186_s13244_024_01820_7 crossref_primary_10_3389_fonc_2025_1510568 crossref_primary_10_1016_j_neuroimage_2017_10_060 crossref_primary_10_1097_WAD_0b013e318260a79a crossref_primary_10_3390_jimaging6110113 crossref_primary_10_1118_1_4966030 crossref_primary_10_1016_j_patcog_2012_03_001 crossref_primary_10_1002_mp_12820 crossref_primary_10_1186_s12968_015_0170_9 crossref_primary_10_1016_j_compmedimag_2022_102039 crossref_primary_10_1016_j_neuroimage_2011_03_029 crossref_primary_10_1118_1_4810971 crossref_primary_10_1118_1_4948679 crossref_primary_10_1109_TRPMS_2019_2926889 crossref_primary_10_1109_RBME_2017_2749527 crossref_primary_10_1016_j_neuroimage_2015_08_002 crossref_primary_10_7554_eLife_49023 crossref_primary_10_1016_j_acra_2015_08_007 crossref_primary_10_1162_imag_a_00218 crossref_primary_10_1002_mp_16188 crossref_primary_10_1016_j_prro_2014_05_005 crossref_primary_10_3389_fgene_2025_1547788 crossref_primary_10_1016_j_acra_2007_03_009 crossref_primary_10_1016_j_cmpb_2023_107912 crossref_primary_10_1016_j_neuroimage_2016_01_024 crossref_primary_10_1016_j_ctro_2022_08_005 crossref_primary_10_1016_j_phro_2024_100633 crossref_primary_10_1016_j_neuroimage_2018_05_044 crossref_primary_10_1016_j_media_2017_08_008 crossref_primary_10_1002_nbm_4880 crossref_primary_10_1016_j_ijrobp_2014_06_005 crossref_primary_10_1002_ima_22207 crossref_primary_10_1016_j_nicl_2016_09_008 crossref_primary_10_1038_s41467_022_28818_3 crossref_primary_10_26634_jip_1_3_2958 crossref_primary_10_1007_s11548_017_1625_2 crossref_primary_10_1016_j_neuroimage_2011_01_006 crossref_primary_10_1177_0962280214537392 crossref_primary_10_1016_j_cmpb_2011_12_007 crossref_primary_10_1016_j_ijrobp_2020_08_061 crossref_primary_10_1088_0031_9155_58_13_R97 crossref_primary_10_1177_0962280214537390 crossref_primary_10_1016_j_media_2023_102863 crossref_primary_10_1016_j_phro_2021_11_005 crossref_primary_10_3390_bioengineering12030258 crossref_primary_10_1186_1687_6180_2011_128 crossref_primary_10_1109_TMI_2011_2147795 crossref_primary_10_1259_bjr_20180252 crossref_primary_10_1016_j_ijrobp_2016_09_014 crossref_primary_10_1016_j_media_2021_102038 crossref_primary_10_1186_s40708_022_00161_9 crossref_primary_10_1016_j_compbiomed_2015_06_003 crossref_primary_10_1016_j_neuroimage_2020_116946 crossref_primary_10_1109_TASLP_2022_3233468 crossref_primary_10_1088_1361_6560_aaea85 crossref_primary_10_1016_j_jdent_2021_103752 crossref_primary_10_1186_s40658_021_00367_6 crossref_primary_10_1073_pnas_2410341121 crossref_primary_10_1109_TMI_2013_2266258 crossref_primary_10_1007_s00330_018_5674_x crossref_primary_10_1080_0284186X_2021_1967445 crossref_primary_10_1109_TPAMI_2023_3346330 crossref_primary_10_3389_fnins_2019_00011 crossref_primary_10_1111_1754_9485_70016 crossref_primary_10_1186_s41747_024_00520_7 crossref_primary_10_1016_j_neuroimage_2015_09_032 crossref_primary_10_1016_j_phro_2024_100654 crossref_primary_10_1038_s41598_025_15712_3 crossref_primary_10_1371_journal_pone_0122224 crossref_primary_10_3389_fneur_2019_00007 crossref_primary_10_1049_iet_ipr_2019_1212 crossref_primary_10_3389_fnins_2015_00061 crossref_primary_10_1118_1_4867855 crossref_primary_10_1002_mrm_27508 crossref_primary_10_1016_j_neuroimage_2009_08_017 crossref_primary_10_1016_j_ijrobp_2011_06_1961 crossref_primary_10_1016_j_ijrobp_2012_03_009 crossref_primary_10_1016_j_media_2023_102814 crossref_primary_10_1007_s10278_013_9633_4 crossref_primary_10_1016_j_neuroimage_2017_09_007 crossref_primary_10_1111_jon_12313 crossref_primary_10_1016_j_ijrobp_2013_06_2053 crossref_primary_10_1016_j_neuroimage_2009_09_069 crossref_primary_10_1016_j_pan_2023_05_008 crossref_primary_10_1038_s41598_025_07867_w crossref_primary_10_1118_1_2940188 crossref_primary_10_3109_0284186X_2014_970666 crossref_primary_10_1016_j_media_2022_102532 crossref_primary_10_1136_gutjnl_2019_320466 crossref_primary_10_1007_s00330_024_10584_z crossref_primary_10_1016_j_media_2016_07_009 crossref_primary_10_1016_j_media_2021_102029 crossref_primary_10_1016_j_mri_2013_05_007 crossref_primary_10_1007_s10278_017_9983_4 crossref_primary_10_1038_s41598_021_87471_w crossref_primary_10_1148_ryai_230017 crossref_primary_10_3390_s21072264 crossref_primary_10_1016_j_neuroimage_2017_09_011 crossref_primary_10_1016_j_cag_2021_07_012 crossref_primary_10_1016_j_media_2013_09_001 crossref_primary_10_1097_MNM_0b013e32834d736f crossref_primary_10_1016_j_clon_2021_02_003 crossref_primary_10_1186_s13014_014_0251_1 crossref_primary_10_3390_app13095284 crossref_primary_10_1109_TBME_2017_2752701 crossref_primary_10_3389_fneur_2021_740603 crossref_primary_10_1088_1361_6560_aaa50c crossref_primary_10_1002_hbm_24243 crossref_primary_10_1016_j_canrad_2011_07_243 crossref_primary_10_1016_j_radonc_2023_109736 crossref_primary_10_1167_tvst_14_6_30 crossref_primary_10_1016_j_tipsro_2019_10_004 crossref_primary_10_1117_1_JMI_11_2_024504 crossref_primary_10_1148_radiol_2020192224 crossref_primary_10_3233_JAD_142280 crossref_primary_10_1016_j_procs_2018_07_029 crossref_primary_10_1088_2057_1976_aad100 crossref_primary_10_1038_s41598_022_25894_9 crossref_primary_10_1016_j_neucom_2013_09_051 crossref_primary_10_1002_mma_5403 crossref_primary_10_1016_j_phro_2020_04_001 crossref_primary_10_1038_s43586_022_00131_9 crossref_primary_10_1016_j_ejmp_2018_12_012 crossref_primary_10_1016_j_neuroimage_2007_04_023 crossref_primary_10_1016_j_media_2024_103166 crossref_primary_10_1016_j_brachy_2018_08_006 crossref_primary_10_1016_j_media_2022_102549 crossref_primary_10_1111_jon_12549 crossref_primary_10_1016_j_ctro_2018_07_006 crossref_primary_10_1016_j_radonc_2021_12_011 crossref_primary_10_3390_biomedicines12040789 crossref_primary_10_1109_JBHI_2015_2428279 crossref_primary_10_1088_0031_9155_57_1_93 crossref_primary_10_1007_s00450_010_0130_4 crossref_primary_10_1371_journal_pone_0086576 crossref_primary_10_1016_j_ijrobp_2008_08_003 crossref_primary_10_1109_TBME_2020_3016602 crossref_primary_10_1007_s10278_017_0037_8 crossref_primary_10_1016_j_displa_2022_102223 crossref_primary_10_1016_j_media_2011_05_001 crossref_primary_10_1016_j_neuroimage_2007_04_031 crossref_primary_10_1016_j_nicl_2015_07_019 crossref_primary_10_1007_s13246_024_01411_2 crossref_primary_10_1016_j_neuroimage_2013_11_040 crossref_primary_10_1007_s11548_018_1879_3 crossref_primary_10_1016_j_zemedi_2021_11_004 crossref_primary_10_3109_0284186X_2014_930170 crossref_primary_10_1016_j_cmpb_2020_105566 crossref_primary_10_1016_j_procs_2018_07_084 crossref_primary_10_1111_jon_12997 crossref_primary_10_1016_j_patcog_2016_09_030 crossref_primary_10_1016_j_knosys_2014_07_021 crossref_primary_10_1016_j_media_2019_101629 crossref_primary_10_1016_j_media_2019_04_002 crossref_primary_10_1007_s11760_021_02008_y crossref_primary_10_3389_fbioe_2024_1446829 crossref_primary_10_3390_math11173771 crossref_primary_10_1016_j_media_2019_04_005 crossref_primary_10_1118_1_3238101 crossref_primary_10_1109_TMI_2021_3064661 crossref_primary_10_1002_hbm_22478 crossref_primary_10_1109_TPAMI_2017_2711020 crossref_primary_10_1002_mp_16582 crossref_primary_10_1016_j_ctro_2019_01_001 crossref_primary_10_1016_j_cmpb_2006_08_003 crossref_primary_10_1093_bjro_tzae006 crossref_primary_10_1109_TGRS_2017_2782005 crossref_primary_10_1109_TMI_2006_880587 crossref_primary_10_3390_app11167396 crossref_primary_10_1016_j_bspc_2022_104243 crossref_primary_10_1007_s10334_015_0518_z crossref_primary_10_1007_s11265_008_0215_5 crossref_primary_10_3348_kjr_2013_14_4_683 crossref_primary_10_1016_j_patcog_2016_09_028 crossref_primary_10_1109_TMI_2012_2211377 crossref_primary_10_1038_s41598_022_10256_2 crossref_primary_10_1007_s11548_023_02943_w crossref_primary_10_1016_j_neuroimage_2010_03_018 crossref_primary_10_1016_j_media_2014_10_004 crossref_primary_10_1016_j_neuroimage_2012_08_075 crossref_primary_10_3389_fcvm_2022_822269 crossref_primary_10_3414_ME12_01_0005 crossref_primary_10_1016_j_compbiomed_2018_09_002 crossref_primary_10_1016_j_compbiomed_2025_111059 crossref_primary_10_1016_j_media_2017_11_013 crossref_primary_10_1007_s10334_015_0507_2 crossref_primary_10_1088_1361_6560_acc309 crossref_primary_10_1109_TMI_2012_2193896 crossref_primary_10_1016_j_ijrobp_2022_09_072 crossref_primary_10_1016_j_neuroimage_2011_01_078 crossref_primary_10_1016_j_phro_2025_100790 crossref_primary_10_3389_fonc_2017_00221 crossref_primary_10_1016_j_ijrobp_2020_04_011 crossref_primary_10_1259_bjr_20120398 crossref_primary_10_1016_j_media_2025_103489 crossref_primary_10_1093_cercor_bhs135 crossref_primary_10_1016_j_media_2008_04_003 crossref_primary_10_1097_IOP_0000000000001880 crossref_primary_10_1007_s13246_024_01513_x crossref_primary_10_1016_j_prro_2024_11_004 crossref_primary_10_1016_j_ins_2022_01_011 crossref_primary_10_1118_1_4789484 crossref_primary_10_1016_j_neuroimage_2015_12_009 crossref_primary_10_1118_1_4884224 crossref_primary_10_1016_j_media_2017_11_001 crossref_primary_10_1038_s41597_023_01943_4 crossref_primary_10_1111_jon_12506 crossref_primary_10_1016_j_media_2021_102206 crossref_primary_10_1016_j_ctro_2024_100796 crossref_primary_10_1038_s41598_025_94977_0 crossref_primary_10_1111_cgf_13397 crossref_primary_10_1016_j_neuroimage_2011_01_062 crossref_primary_10_1016_j_scib_2024_06_037 crossref_primary_10_1186_1748_717X_6_110 crossref_primary_10_1016_j_neuroimage_2010_03_033 crossref_primary_10_1038_s41598_023_38833_z crossref_primary_10_1137_20M1348303 crossref_primary_10_3389_fnins_2024_1457420 crossref_primary_10_1016_j_ijrobp_2011_08_042 crossref_primary_10_1016_j_compmedimag_2024_102327 crossref_primary_10_1016_j_neuroimage_2012_01_128 crossref_primary_10_1016_j_compmedimag_2010_06_002 crossref_primary_10_1109_JBHI_2015_2391991 crossref_primary_10_1002_cnm_3697 crossref_primary_10_1016_j_meddos_2020_02_004 crossref_primary_10_1080_21681163_2016_1250108 crossref_primary_10_1109_TBME_2011_2122306 crossref_primary_10_1002_jmri_21372 crossref_primary_10_1016_j_compbiomed_2025_110186 crossref_primary_10_1155_2021_8721464 crossref_primary_10_1016_j_radonc_2010_11_017 crossref_primary_10_3389_fneur_2021_616272 crossref_primary_10_1016_j_radonc_2013_01_014 crossref_primary_10_1016_j_neuroimage_2009_07_066 crossref_primary_10_1016_j_bspc_2017_07_008 crossref_primary_10_1109_TMI_2016_2529500 crossref_primary_10_1109_TBME_2009_2017509 crossref_primary_10_1016_j_ins_2011_10_011 crossref_primary_10_1109_TGRS_2025_3555235 crossref_primary_10_3389_fnins_2021_818604 crossref_primary_10_1016_j_neuroimage_2010_10_019 crossref_primary_10_1016_j_jsb_2008_01_017 crossref_primary_10_1016_j_media_2019_07_005 crossref_primary_10_1007_s00330_025_11695_x crossref_primary_10_1007_s10278_023_00857_2 crossref_primary_10_1016_j_acra_2013_09_010 crossref_primary_10_1109_JBHI_2024_3451210 crossref_primary_10_1016_j_compbiomed_2025_111024 crossref_primary_10_1016_j_neuroimage_2010_06_040 crossref_primary_10_1109_TMI_2014_2377694 crossref_primary_10_1109_TIP_2020_2994445 crossref_primary_10_1371_journal_pone_0155862 crossref_primary_10_3390_cancers13122854 crossref_primary_10_1007_s10278_023_00824_x crossref_primary_10_3389_fneur_2022_907581 crossref_primary_10_1016_j_ajog_2004_06_067 crossref_primary_10_1016_j_radonc_2024_110610 crossref_primary_10_1016_j_radonc_2021_11_036 crossref_primary_10_1016_j_radonc_2021_11_034 crossref_primary_10_2217_nmt_12_13 crossref_primary_10_1111_j_1754_9485_2012_02442_x crossref_primary_10_1118_1_4793721 crossref_primary_10_1088_1361_6560_aba166 crossref_primary_10_1109_TMI_2015_2508280 crossref_primary_10_1007_s42486_022_00090_w crossref_primary_10_1109_TMI_2017_2665165 crossref_primary_10_1002_rcs_2229 crossref_primary_10_1038_s41597_025_04709_2 crossref_primary_10_1136_jnnp_2016_314567 crossref_primary_10_1016_j_neuroimage_2015_05_099 crossref_primary_10_1186_s13014_025_02718_4 crossref_primary_10_1016_j_ijrobp_2015_04_039 crossref_primary_10_1016_j_radonc_2008_01_018 crossref_primary_10_3390_cancers14235893 crossref_primary_10_1016_j_prro_2013_06_004 crossref_primary_10_1016_j_compmedimag_2010_07_008 crossref_primary_10_1016_j_radonc_2015_05_012 crossref_primary_10_1109_JTEHM_2014_2312191 crossref_primary_10_1016_j_radonc_2010_06_009 crossref_primary_10_1016_j_cmpb_2018_02_001 crossref_primary_10_1038_srep23470 crossref_primary_10_1002_jmri_22478 crossref_primary_10_1007_s10334_020_00839_3 crossref_primary_10_1007_s12021_015_9264_7 crossref_primary_10_1016_j_media_2005_09_004 crossref_primary_10_1016_j_radonc_2017_09_013 crossref_primary_10_1186_s40478_021_01130_9 crossref_primary_10_1016_j_radonc_2017_09_015 crossref_primary_10_1016_j_media_2008_11_002 crossref_primary_10_1016_j_media_2017_04_005 crossref_primary_10_1016_j_compmedimag_2011_02_006 crossref_primary_10_1038_s41598_024_72649_9 crossref_primary_10_1016_j_radonc_2016_11_016 crossref_primary_10_3389_fonc_2020_567736 crossref_primary_10_1109_JBHI_2019_2944643 crossref_primary_10_1002_hbm_23536 crossref_primary_10_1016_j_artmed_2019_01_002 crossref_primary_10_1177_0962280217754231 crossref_primary_10_1007_s11682_007_9004_1 crossref_primary_10_1016_j_media_2014_06_005 crossref_primary_10_1038_s41597_023_02062_w crossref_primary_10_1016_j_neuroimage_2010_12_067 crossref_primary_10_1016_j_neuroimage_2010_05_029 crossref_primary_10_1002_mp_13243 crossref_primary_10_1016_j_radonc_2021_05_003 crossref_primary_10_1016_j_media_2014_06_007 crossref_primary_10_1038_s41598_017_04276_6 crossref_primary_10_1371_journal_pone_0173476 crossref_primary_10_3390_app9081616 crossref_primary_10_1016_j_mednuc_2011_01_004 crossref_primary_10_1109_TIP_2006_884936 crossref_primary_10_1016_j_jmir_2024_03_004 crossref_primary_10_1016_j_media_2023_103028 crossref_primary_10_1016_j_neuroimage_2019_01_014 crossref_primary_10_1016_j_media_2014_12_003 crossref_primary_10_1016_j_irbm_2015_06_001 crossref_primary_10_1109_TMI_2012_2190992 crossref_primary_10_1016_j_radonc_2021_12_033 crossref_primary_10_1016_j_coldregions_2024_104303 crossref_primary_10_1109_TMI_2010_2057442 crossref_primary_10_1002_mp_13475 crossref_primary_10_1109_TMI_2006_882129 crossref_primary_10_1038_s41597_024_03814_y crossref_primary_10_1007_s12021_012_9159_9 crossref_primary_10_1016_j_jvoice_2025_02_026 crossref_primary_10_1016_j_bspc_2017_08_026 crossref_primary_10_1002_mp_12141 crossref_primary_10_1007_s11548_023_02961_8 crossref_primary_10_1016_j_media_2012_10_002 crossref_primary_10_1007_s10278_015_9844_y crossref_primary_10_3390_cancers12092424 crossref_primary_10_1002_hbm_23713 crossref_primary_10_1007_s00056_016_0069_6 crossref_primary_10_1038_s41598_020_59042_y crossref_primary_10_1111_1754_9485_12884 crossref_primary_10_3389_fninf_2017_00002 crossref_primary_10_1177_0962280220920894 crossref_primary_10_1080_21681163_2014_947006 crossref_primary_10_1016_j_jss_2024_01_008 crossref_primary_10_1016_j_bspc_2019_101602 crossref_primary_10_1242_dmm_049721 crossref_primary_10_1002_nbm_5169 crossref_primary_10_1016_j_tipsro_2017_10_002 crossref_primary_10_1016_j_compbiomed_2020_103701 crossref_primary_10_1002_mrm_28042 crossref_primary_10_1016_j_ijrobp_2009_02_006 crossref_primary_10_1109_TPAMI_2019_2922959 crossref_primary_10_1016_j_oraloncology_2018_04_025 crossref_primary_10_1038_s41598_017_00525_w crossref_primary_10_1038_s41467_022_33407_5 crossref_primary_10_1080_0284186X_2017_1325004 crossref_primary_10_1016_j_ijrobp_2015_03_030 crossref_primary_10_1016_j_wneu_2023_07_009 crossref_primary_10_1016_j_neuroimage_2017_08_021 crossref_primary_10_1088_1361_6560_aaf83c crossref_primary_10_1109_TPAMI_2012_143 crossref_primary_10_1016_j_media_2021_101980 crossref_primary_10_1016_j_irbm_2011_09_011 crossref_primary_10_1088_1361_6560_ab050f crossref_primary_10_1148_ryai_220231 crossref_primary_10_1016_j_brachy_2023_08_001 crossref_primary_10_32604_cmc_2022_028632 crossref_primary_10_1002_mp_14341 crossref_primary_10_1016_j_acra_2007_08_004 crossref_primary_10_1038_s41597_024_03000_0 crossref_primary_10_1016_j_ijdevneu_2013_06_004 crossref_primary_10_1038_s41597_022_01719_2 crossref_primary_10_1007_s11042_019_07829_1 crossref_primary_10_1002_mp_15679 crossref_primary_10_1016_j_acra_2018_08_003 crossref_primary_10_1016_j_ijrobp_2015_03_021 crossref_primary_10_1118_1_4967942 crossref_primary_10_1016_j_phro_2020_07_002 crossref_primary_10_1016_j_nicl_2019_101709 crossref_primary_10_1016_j_neuroimage_2013_02_069 crossref_primary_10_1007_s11548_018_1873_9 crossref_primary_10_1016_j_neucom_2016_05_082 crossref_primary_10_1002_acm2_13093 crossref_primary_10_1016_j_cviu_2014_09_004 crossref_primary_10_1371_journal_pone_0242301 crossref_primary_10_1007_s12021_016_9312_y crossref_primary_10_1002_hbm_20780 crossref_primary_10_1109_TMI_2024_3389776 crossref_primary_10_1016_j_neuroimage_2022_119649 crossref_primary_10_1118_1_2012967 crossref_primary_10_1118_1_2842076 crossref_primary_10_1186_s13014_021_01946_8 crossref_primary_10_1016_j_compbiomed_2015_01_013 crossref_primary_10_1118_1_4948999 crossref_primary_10_1259_bjr_20180948 crossref_primary_10_1016_j_radonc_2019_11_026 crossref_primary_10_1109_TRPMS_2018_2883437 crossref_primary_10_1007_s10115_023_02047_6 crossref_primary_10_1016_j_ijrobp_2018_03_010 crossref_primary_10_1055_a_2562_2163 crossref_primary_10_1016_j_media_2018_07_009 crossref_primary_10_3109_0284186X_2015_1062541 crossref_primary_10_1016_j_jmir_2025_101980 crossref_primary_10_1002_jum_16007 crossref_primary_10_1007_s00034_019_01088_z crossref_primary_10_1016_j_radonc_2014_01_026 crossref_primary_10_1007_s11548_012_0695_4 crossref_primary_10_1016_j_neuroimage_2011_09_012 crossref_primary_10_1016_j_neuroimage_2014_07_001 crossref_primary_10_7759_cureus_49614 crossref_primary_10_3390_jimaging10010027 crossref_primary_10_1007_s10346_022_01983_8 crossref_primary_10_1016_j_nicl_2018_08_005 crossref_primary_10_1088_0031_9155_61_3_1136 crossref_primary_10_1109_TMI_2009_2038693 crossref_primary_10_1016_j_media_2015_09_005 crossref_primary_10_1016_j_crad_2019_04_002 crossref_primary_10_1016_j_ctro_2025_101051 crossref_primary_10_1120_jacmp_v17i2_5889 crossref_primary_10_1016_j_cmpb_2021_106197 crossref_primary_10_3390_diagnostics11112062 crossref_primary_10_1002_mp_14308 crossref_primary_10_1109_TBME_2016_2633277 crossref_primary_10_1109_TIP_2016_2538468 crossref_primary_10_1016_j_radonc_2019_11_004 crossref_primary_10_1016_j_cmpb_2016_04_017 crossref_primary_10_7785_tcrt_2012_500347 crossref_primary_10_1016_j_engappai_2024_108050 crossref_primary_10_1088_0031_9155_61_17_6502 crossref_primary_10_1109_JBHI_2022_3230060 crossref_primary_10_1007_s11042_019_08606_w crossref_primary_10_1371_journal_pone_0216487 crossref_primary_10_1016_j_artmed_2016_09_001 crossref_primary_10_1371_journal_pone_0061737 crossref_primary_10_1038_s41598_025_05744_0 crossref_primary_10_1109_TGRS_2016_2593982 crossref_primary_10_1016_j_cmpb_2012_12_006 crossref_primary_10_1109_TMI_2012_2197406 crossref_primary_10_1016_j_neuroimage_2016_11_017 crossref_primary_10_1080_0284186X_2018_1529421 crossref_primary_10_1088_1361_6560_aa5ed9 crossref_primary_10_1016_j_jbiomech_2022_111074 crossref_primary_10_1016_j_ijrobp_2013_01_032 crossref_primary_10_1016_j_patrec_2014_11_005 crossref_primary_10_1118_1_4899182 crossref_primary_10_1002_mp_12124 crossref_primary_10_1016_j_ejrad_2023_110893 crossref_primary_10_3390_jimaging9060123 crossref_primary_10_1016_j_mri_2021_03_014 crossref_primary_10_1117_1_JBO_24_4_046005 crossref_primary_10_3390_cancers13153795 crossref_primary_10_1088_0031_9155_58_5_1605 crossref_primary_10_1111_vru_13262 crossref_primary_10_1016_j_radonc_2016_04_028 crossref_primary_10_1016_j_media_2020_101887 crossref_primary_10_3389_fonc_2022_945053 crossref_primary_10_1016_j_neurobiolaging_2014_05_028 crossref_primary_10_1109_TMI_2009_2014459 crossref_primary_10_1186_s12983_015_0127_8 crossref_primary_10_1016_j_media_2024_103301 crossref_primary_10_1016_j_radonc_2012_12_017 crossref_primary_10_1186_s13244_023_01502_w crossref_primary_10_1016_j_neuroimage_2016_12_064 crossref_primary_10_1088_1361_6560_ad6743 crossref_primary_10_1016_j_jneumeth_2015_08_006 crossref_primary_10_1088_1361_6560_aacb65 crossref_primary_10_1016_j_semcancer_2020_04_002 crossref_primary_10_1109_TMI_2024_3445999 crossref_primary_10_1007_s00259_024_06616_x crossref_primary_10_1016_j_neuroimage_2017_06_074 crossref_primary_10_1038_s41598_020_64803_w crossref_primary_10_1016_j_ijom_2022_10_015 crossref_primary_10_1148_radiol_2018181432 crossref_primary_10_1118_1_4932366 crossref_primary_10_1016_j_media_2017_12_007 crossref_primary_10_1148_radiol_2020191740 crossref_primary_10_1002_mp_12535 crossref_primary_10_1016_j_media_2016_04_005 crossref_primary_10_1186_s13048_022_01089_8 crossref_primary_10_1007_s11548_013_0915_6 crossref_primary_10_1016_j_prro_2013_01_002 crossref_primary_10_1111_j_1754_9485_2012_02440_x crossref_primary_10_1088_2057_1976_ad0bb3 crossref_primary_10_3389_fnint_2019_00024 crossref_primary_10_1186_s40644_015_0047_z crossref_primary_10_1007_s10334_015_0520_5 crossref_primary_10_1016_j_prro_2017_07_007 crossref_primary_10_3389_fnins_2016_00325 crossref_primary_10_1016_j_bspc_2024_106479 crossref_primary_10_1186_s12885_022_09584_3 crossref_primary_10_3390_jimaging11050170 crossref_primary_10_1088_0031_9155_57_13_4425 crossref_primary_10_1109_TIP_2016_2544703 crossref_primary_10_1016_j_neuroimage_2021_118216 crossref_primary_10_1016_j_jcms_2023_09_003 crossref_primary_10_1007_s10278_020_00367_5 crossref_primary_10_1016_j_ijrobp_2017_10_020 crossref_primary_10_1109_TCYB_2014_2346394 crossref_primary_10_1200_JGO_18_00055 crossref_primary_10_1016_j_ijrobp_2009_09_023 crossref_primary_10_1360_CSB_2025_0501 crossref_primary_10_1016_j_ijrobp_2017_09_047 crossref_primary_10_3390_sci5010013 crossref_primary_10_1259_bjr_20190564 crossref_primary_10_1007_s11682_015_9474_5 crossref_primary_10_1007_s12021_017_9348_7 crossref_primary_10_1203_PDR_0b013e3181b3aec5 crossref_primary_10_1016_j_compmedimag_2012_05_001 crossref_primary_10_1007_s11548_016_1429_9 crossref_primary_10_1371_journal_pone_0124126 crossref_primary_10_1016_j_artmed_2016_08_004 crossref_primary_10_1016_j_radonc_2018_07_013 crossref_primary_10_1118_1_4812428 crossref_primary_10_1016_j_neucom_2024_128531 crossref_primary_10_1016_j_neuroimage_2011_11_043 crossref_primary_10_1109_TMI_2009_2036011 crossref_primary_10_1007_s11548_016_1493_1 crossref_primary_10_1109_TMI_2014_2329603 crossref_primary_10_1016_j_tipsro_2022_12_007 crossref_primary_10_1016_j_artmed_2019_101769 crossref_primary_10_1002_mp_12748 crossref_primary_10_1016_j_ijrobp_2016_02_043 crossref_primary_10_1016_j_cmpb_2025_108882 crossref_primary_10_1002_mp_12511 crossref_primary_10_1016_j_compmedimag_2010_04_002 crossref_primary_10_1002_mrm_28908 crossref_primary_10_1007_s42452_023_05366_z crossref_primary_10_1007_s00330_018_5695_5 crossref_primary_10_1016_j_eswa_2024_125862 crossref_primary_10_1016_j_neuroimage_2014_06_046 crossref_primary_10_1007_s11548_009_0401_3 crossref_primary_10_1007_s12021_014_9243_4 crossref_primary_10_1002_jmrs_64 crossref_primary_10_1016_j_neuroimage_2010_02_025 crossref_primary_10_1002_jmrs_65 crossref_primary_10_1016_j_media_2023_102789 crossref_primary_10_1016_j_neuroimage_2006_05_061 crossref_primary_10_1016_j_nicl_2013_05_004 crossref_primary_10_1155_2021_3422484 crossref_primary_10_1016_j_cmpb_2011_07_015 crossref_primary_10_1002_acm2_13702 crossref_primary_10_1016_j_media_2016_06_038 crossref_primary_10_1016_j_brainres_2019_146558 crossref_primary_10_1002_mp_13825 crossref_primary_10_3389_fphys_2022_951368 crossref_primary_10_1109_TBME_2013_2288258 crossref_primary_10_1109_TBME_2014_2322776 crossref_primary_10_1016_j_ejmp_2024_103340 crossref_primary_10_3389_fonc_2016_00178 crossref_primary_10_1016_j_patcog_2023_109400 crossref_primary_10_3389_fnins_2019_01254 crossref_primary_10_1007_s10334_018_0718_4 crossref_primary_10_1038_s41598_018_19993_9 crossref_primary_10_1016_j_neuroimage_2016_09_026 crossref_primary_10_1109_JBHI_2023_3311189 crossref_primary_10_1016_j_semradonc_2019_02_001 crossref_primary_10_1118_1_4817475 crossref_primary_10_1002_mp_13854 crossref_primary_10_1146_annurev_bioeng_070909_105235 crossref_primary_10_1002_mp_12531 crossref_primary_10_1109_TVCG_2013_230 crossref_primary_10_1016_j_neuroimage_2017_04_004 crossref_primary_10_1016_j_radonc_2022_01_004 crossref_primary_10_1371_journal_pone_0070059 crossref_primary_10_1016_j_media_2019_03_009 crossref_primary_10_2478_raon_2024_0043 crossref_primary_10_1016_j_ijrobp_2023_10_033 crossref_primary_10_1186_1748_717X_9_173 crossref_primary_10_1016_j_media_2018_08_003 crossref_primary_10_1371_journal_pone_0285683 crossref_primary_10_1016_j_media_2018_08_004 crossref_primary_10_1016_j_compmedimag_2005_12_001 crossref_primary_10_1016_j_media_2018_08_006 crossref_primary_10_1016_j_media_2004_11_005 crossref_primary_10_1088_0031_9155_60_24_9227 crossref_primary_10_1016_j_neuroimage_2015_02_065 crossref_primary_10_1088_0031_9155_60_24_9473 crossref_primary_10_1177_1536012116687651 crossref_primary_10_1016_j_media_2014_01_003 crossref_primary_10_1016_j_ijrobp_2019_12_010 crossref_primary_10_1109_TIP_2019_2952079 crossref_primary_10_1038_srep25007 crossref_primary_10_1007_s00429_018_1735_9 crossref_primary_10_1016_j_compmedimag_2022_102155 crossref_primary_10_1088_2515_7647_ac050e crossref_primary_10_1038_nn_2868 crossref_primary_10_1088_1361_6560_ab0ea6 crossref_primary_10_1186_s11689_019_9293_x crossref_primary_10_3390_diagnostics11040616 crossref_primary_10_1016_j_compbiomed_2014_04_014 crossref_primary_10_1109_TMI_2017_2720119 crossref_primary_10_7554_eLife_63455 crossref_primary_10_1186_2191_219X_3_55 crossref_primary_10_1118_1_4864236 crossref_primary_10_1016_j_prro_2013_03_003 crossref_primary_10_1016_j_media_2023_102972 crossref_primary_10_1007_s11548_007_0125_1 crossref_primary_10_1093_bjr_tqad026 crossref_primary_10_3390_app11093733 crossref_primary_10_1007_s13246_012_0136_2 crossref_primary_10_1002_acm2_13507 crossref_primary_10_1118_1_3654160 crossref_primary_10_1109_JBHI_2022_3149114 crossref_primary_10_1109_TMI_2019_2907072 crossref_primary_10_1007_s00259_015_3239_7 crossref_primary_10_1016_j_bspc_2024_106667 crossref_primary_10_1109_TMI_2012_2201737 crossref_primary_10_1007_s00234_011_0992_6 crossref_primary_10_1016_j_neuroimage_2012_05_042 crossref_primary_10_1016_j_media_2021_102183 crossref_primary_10_1259_bjr_20140732 crossref_primary_10_1109_TMI_2004_830803 crossref_primary_10_1016_j_ijrobp_2022_01_050 crossref_primary_10_1016_j_neuroimage_2025_121189 crossref_primary_10_1097_RCT_0000000000001374 crossref_primary_10_1118_1_4921067 crossref_primary_10_3389_fonc_2023_1204323 crossref_primary_10_1016_j_artmed_2019_06_008 crossref_primary_10_1016_j_ijrobp_2021_08_023 crossref_primary_10_1120_jacmp_v16i2_5324 crossref_primary_10_1007_s00066_016_1028_2 crossref_primary_10_1007_s00138_015_0718_6 crossref_primary_10_3389_fncom_2024_1487877 crossref_primary_10_1007_s11831_020_09497_z crossref_primary_10_1109_TMI_2012_2230018 crossref_primary_10_1016_j_meddos_2019_12_003 crossref_primary_10_1002_acm2_12431 crossref_primary_10_1109_JBHI_2015_2439242 crossref_primary_10_1515_raon_2017_0014 crossref_primary_10_1002_hbm_22092 crossref_primary_10_1118_1_4945021 crossref_primary_10_1002_mp_12720 crossref_primary_10_1016_j_ijrobp_2015_08_045 crossref_primary_10_1016_j_media_2018_09_005 crossref_primary_10_1120_jacmp_v15i4_4468 crossref_primary_10_1016_j_phro_2025_100825 crossref_primary_10_1088_1361_6560_aa94ba crossref_primary_10_1515_bmt_2023_0148 crossref_primary_10_1007_s11548_023_02968_1 crossref_primary_10_1146_annurev_bioeng_071812_152335 crossref_primary_10_1200_GO_24_00173 crossref_primary_10_1016_j_ejmp_2019_12_001 crossref_primary_10_1109_ACCESS_2025_3539837 |
| Cites_doi | 10.1118/1.1414009 10.1148/radiology.218.2.r01fe44586 10.1109/83.350816 10.1007/BFb0056285 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C 10.1007/3-540-47979-1_3 10.1109/42.811268 10.1111/j.2517-6161.1989.tb01764.x 10.2307/1932409.JSTOR1932409 10.1002/1531-8249(199911)46:5<755::AID-ANA11>3.0.CO;2-0 10.1136/jamia.1996.96236280 10.1007/978-3-540-39903-2_71 10.1016/0895-4356(94)00099-C 10.1007/978-3-540-39899-8_70 10.1109/34.273716 10.1111/j.2517-6161.1986.tb01412.x 10.1007/BFb0056228 10.1002/uog.122 10.1162/neco.1991.3.1.79 10.1111/j.1469-8137.1912.tb05611.x 10.1007/BFb0056231 10.1007/s100440050029 10.1111/j.2517-6161.1977.tb01600.x 10.1109/42.845174 10.1148/radiology.171.1.2928539 10.1002/9780470191613 10.1148/radiology.216.1.r00jl41291 10.1109/34.667881 10.1002/ana.410430213 10.1007/3-540-45468-3_62 10.1109/TPAMI.2003.1182097 10.1007/BF02980577 10.1002/jmri.1880020603 10.1109/34.134040 10.1002/sim.1723 10.1002/(SICI)1522-2586(200005)11:5<525::AID-JMRI8>3.0.CO;2-2 10.1111/j.2517-6161.1974.tb00999.x 10.1002/hbm.460030303 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P 10.1145/321694.321699 10.1007/3-540-45786-0_37 10.1007/978-3-540-40899-4_43 10.1109/IJCNN.1993.716791 10.1109/42.363096 10.1007/978-3-540-45087-0_18 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B 10.1109/42.712135 10.1109/42.906424 10.1007/3-540-45468-3_110 10.1542/peds.107.2.217 10.1006/nimg.1997.0274 10.1016/S1361-8415(00)00003-7 10.1109/TPAMI.2003.1233908 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
| DBID | RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| DOI | 10.1109/TMI.2004.828354 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Engineering Research Database Engineering Research Database Materials Research Database MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Computer Science |
| EISSN | 1558-254X |
| EndPage | 921 |
| ExternalDocumentID | PMC1283110 2427432041 15250643 10_1109_TMI_2004_828354 1309714 |
| Genre | orig-research Validation Study Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA067165 – fundername: NCRR NIH HHS grantid: P41 RR13218 – fundername: NCI NIH HHS grantid: R01 CA086879 – fundername: NINDS NIH HHS grantid: R01 NS35142 – fundername: NCI NIH HHS grantid: R33 CA99015 – fundername: NCRR NIH HHS grantid: P41 RR013218 – fundername: NIMH NIH HHS grantid: R21 MH67054 – fundername: NIMH NIH HHS grantid: R21 MH067054 – fundername: NIA NIH HHS grantid: R01 AG19513 – fundername: NINDS NIH HHS grantid: R01 NS035142 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c596t-7ddc317f702a4c6872fed94c8a76420fc8abf36a610bd585a0c6e4d093082cb23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1603 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000222428100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 |
| IngestDate | Tue Sep 30 16:56:13 EDT 2025 Tue Oct 07 09:24:01 EDT 2025 Wed Oct 01 14:29:13 EDT 2025 Sun Nov 09 14:25:22 EST 2025 Mon Oct 06 18:32:33 EDT 2025 Sun Jun 29 15:47:08 EDT 2025 Thu Apr 03 07:00:01 EDT 2025 Sat Nov 29 08:01:51 EST 2025 Tue Nov 18 22:21:57 EST 2025 Tue Aug 26 16:39:49 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c596t-7ddc317f702a4c6872fed94c8a76420fc8abf36a610bd585a0c6e4d093082cb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | http://doi.org/10.1109/TMI.2004.828354 |
| PMID | 15250643 |
| PQID | 883910096 |
| PQPubID | 23462 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1109_TMI_2004_828354 pubmed_primary_15250643 proquest_miscellaneous_66704647 ieee_primary_1309714 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1283110 proquest_miscellaneous_28621022 proquest_miscellaneous_17287155 proquest_journals_883910096 proquest_miscellaneous_883044302 crossref_citationtrail_10_1109_TMI_2004_828354 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-07-01 |
| PublicationDateYYYYMMDD | 2004-07-01 |
| PublicationDate_xml | – month: 07 year: 2004 text: 2004-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2004 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 Kapur (ref47) 1999 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref43 ref49 Collins (ref37) 1994 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref36 ref31 Rexilius (ref35) 2001 ref32 ref2 ref39 ref38 Sv (ref30); 3981 Fennema-Notestine (ref60) 2003. [Online] Elfadel (ref44) 1993 ref24 ref23 Nicoll (ref1) 2001 ref25 ref20 ref22 ref21 Melville (ref26); AAAI-2002 ref28 ref27 ref29 Warfield (ref33) ref62 ref61 |
| References_xml | – ident: ref52 doi: 10.1118/1.1414009 – volume-title: From fields to networks year: 1993 ident: ref44 – ident: ref53 doi: 10.1148/radiology.218.2.r01fe44586 – volume-title: (2003) Bias correction, pulse sequence, and neurodegeneration influence performance of automated skull-stripping methods. Program 863.23. 2003 Abstract Viewer/Itinerary Planner year: 2003. [Online] ident: ref60 – volume: AAAI-2002 start-page: 187 volume-title: Proc. 18th Nat. Conf. Artificial Intelligence ident: ref26 article-title: Content-boosted collaborative filtering for improved recommendations – ident: ref48 doi: 10.1109/83.350816 – ident: ref14 doi: 10.1007/BFb0056285 – ident: ref18 doi: 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C – ident: ref10 doi: 10.1007/3-540-47979-1_3 – ident: ref40 doi: 10.1109/42.811268 – ident: ref42 doi: 10.1111/j.2517-6161.1989.tb01764.x – ident: ref11 doi: 10.2307/1932409.JSTOR1932409 – ident: ref57 doi: 10.1002/1531-8249(199911)46:5<755::AID-ANA11>3.0.CO;2-0 – ident: ref4 doi: 10.1136/jamia.1996.96236280 – volume-title: Physics-Based Nonrigid Registration for Medical Image Analysis year: 2001 ident: ref35 – ident: ref62 doi: 10.1007/978-3-540-39903-2_71 – ident: ref27 doi: 10.1016/0895-4356(94)00099-C – ident: ref59 doi: 10.1007/978-3-540-39899-8_70 – ident: ref21 doi: 10.1109/34.273716 – ident: ref45 doi: 10.1111/j.2517-6161.1986.tb01412.x – ident: ref55 doi: 10.1007/BFb0056228 – ident: ref8 doi: 10.1002/uog.122 – ident: ref24 doi: 10.1162/neco.1991.3.1.79 – ident: ref12 doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: ref39 doi: 10.1007/BFb0056231 – ident: ref20 doi: 10.1007/s100440050029 – ident: ref31 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref2 doi: 10.1109/42.845174 – ident: ref9 doi: 10.1148/radiology.171.1.2928539 – ident: ref32 doi: 10.1002/9780470191613 – ident: ref13 doi: 10.1148/radiology.216.1.r00jl41291 – ident: ref22 doi: 10.1109/34.667881 – ident: ref56 doi: 10.1002/ana.410430213 – ident: ref16 doi: 10.1007/3-540-45468-3_62 – ident: ref23 doi: 10.1109/TPAMI.2003.1182097 – ident: ref38 doi: 10.1007/BF02980577 – ident: ref19 doi: 10.1002/jmri.1880020603 – ident: ref49 doi: 10.1109/34.134040 – volume-title: Model-based three-dimensional medical image segmentation year: 1999 ident: ref47 – ident: ref15 doi: 10.1002/sim.1723 – ident: ref7 doi: 10.1002/(SICI)1522-2586(200005)11:5<525::AID-JMRI8>3.0.CO;2-2 – ident: ref46 doi: 10.1111/j.2517-6161.1974.tb00999.x – start-page: 1494:1 volume-title: Proc. Int. Symp. Biomedical Imaging: Macro to Nano ident: ref33 article-title: Simultaneous validation of image segmentation and assessment of expert quality – ident: ref36 doi: 10.1002/hbm.460030303 – ident: ref28 doi: 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P – ident: ref50 doi: 10.1145/321694.321699 – ident: ref34 doi: 10.1007/3-540-45786-0_37 – ident: ref5 doi: 10.1007/978-3-540-40899-4_43 – ident: ref25 doi: 10.1109/IJCNN.1993.716791 – ident: ref17 doi: 10.1109/42.363096 – ident: ref61 doi: 10.1007/978-3-540-45087-0_18 – volume: 3981 start-page: 126 volume-title: Proc. SPIE ident: ref30 article-title: On the problem of ROC analysis without truth: The EM algorithm and the information matrix – ident: ref29 doi: 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B – ident: ref3 doi: 10.1109/42.712135 – ident: ref41 doi: 10.1109/42.906424 – ident: ref51 doi: 10.1007/3-540-45468-3_110 – start-page: 1 volume-title: Basic Principles of Diagnostic Test Use and Interpretation year: 2001 ident: ref1 – ident: ref58 doi: 10.1542/peds.107.2.217 – ident: ref6 doi: 10.1006/nimg.1997.0274 – ident: ref54 doi: 10.1016/S1361-8415(00)00003-7 – volume-title: 3D Model-based segmentation of individual brain structures from magnetic resonance imaging data year: 1994 ident: ref37 – ident: ref43 doi: 10.1109/TPAMI.2003.1233908 |
| SSID | ssj0014509 |
| Score | 2.4249198 |
| Snippet | Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation... The probabilistic estimate of the true segmentation is formed by estimating an optimal combination - - of the segmentations, weighting each segmentation... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 903 |
| SubjectTerms | Algorithms Artificial intelligence Automation Biomedical imaging Brain - anatomy & histology Computer science Decision Making, Computer-Assisted Hospitals Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation Imaging phantoms Infant, Newborn Magnetic Resonance Imaging - methods Markov Chains Models, Statistical Observer Variation Pathology Performance analysis Phantoms, Imaging Radiology Reproducibility of Results Sensitivity and Specificity Studies |
| Title | Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation |
| URI | https://ieeexplore.ieee.org/document/1309714 https://www.ncbi.nlm.nih.gov/pubmed/15250643 https://www.proquest.com/docview/883910096 https://www.proquest.com/docview/17287155 https://www.proquest.com/docview/28621022 https://www.proquest.com/docview/66704647 https://www.proquest.com/docview/883044302 https://pubmed.ncbi.nlm.nih.gov/PMC1283110 |
| Volume | 23 |
| WOSCitedRecordID | wos000222428100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbGhBA8MOgYhMHwAw9Dop2TuHbC24Q2gcSmSStS3yLHdtpIXTI1Kb-fu9hNV7Q-8BYp58jJ3SV3ubvvI-RzmBg-1uBpQsliyGMDPpfkyVAxW0Sx5oVWqiObkNfXyXSa3uyRr_0sjLW2az6zIzzsavmm1iv8VXYG79tUImv1EymFm9XqKwZ87No5IkSMZSLyMD4hS88mVz-7RHCUILiYZ-JBoLZ462PUsas8Fmj-2y_54AN0efB_W39FXvpAk547y3hN9mw1IAdrEgfqfXpAXjxAJByQZ1e-1n5ImtsSuw1VZetVQ9vlqp1TVRl6vxk1oAtsOaII1OEmIOnp7eT85tfFl28gStViVi_Ldn5HYQGFSJOCWZeOxInWBYVFM0sbO7vzA1DVG_L78mLy_cfQUzQM9TgV7VAaoyECKSSLFNcikVFhTcp1oiQkNqyAg7yIhYIgLTeQmSimheWGpYiSo_MoPiL7VV3Zd4SO89jAwpxzrnka56ksECxMilCpPDQyIKO1rjLt8cuRRmORdXkMSzPQM7Jq8szpOSCn_YJ7B92xW_QQVbYRc9oKyPHaGDLv2k2WQEgZYuYXkE_9WfBJLLQ4lWTI-SUhUNstEUEiibn2bgkhJFad4bbpDgnYCOM8ZnCRt84-N_v39h0QuWW5vQCCim-fqcp5By4O8UoMj-j940_kmDx3rUvYr_yB7IPx2Y_kqf7Tls3yBPxympx0fvkXzWs1VQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5tAEB5FadXHoWmdPty0zR56SKXi8Fiz0FtUJUpU24oUV8oNLbuLjeRAZHB_f2dgjeMqPvSGxCxamBmYYWa-D-CrF2k-VOhpoRSZwwONPhelkSNdk_mB4pmSsiGbEJNJdHsbX-_B924WxhjTNJ-ZAR02tXxdqhX9KjvF920siLX6CTFn2WmtrmbAh21Dh0-YsW7oWyAfz41Pp-OrJhUcRAQvZrl4CKot2PocNfwqj4Wa_3ZMPvgEXRz83-ZfwysbarKz1jbewJ4penCwpnFg1qt78PIBJmEPno1ttf0Qqpuc-g1lYcpVxerlqp4zWWh2vxk2YAtqOmIE1dHOQLKTm-nZ9ej82w8UZXIxK5d5Pb9juIBhrMnQsPOWxomVGcNFM8MqM7uzI1DFW_h9cT79eelYkgZHDeOwdoTWCmOQTLi-5CqMhJ8ZHXMVSYGpjZvhQZoFocQwLdWYm0hXhYZrNyacHJX6wTvYL8rCfAA2TAONC1POueJxkMYiI7gwEXpSpp4WfRisdZUoi2BORBqLpMlk3DhBPROvJk9aPffhpFtw34J37BY9JJVtxFpt9eFobQyJde4qiTCo9Cj368Nxdxa9kkotrUoSYv0SGKrtlvAxlaRse7dEGAqqO-Ntsx0SuBGX88DFi7xv7XOzf2vffRBbltsJEKz49pkinzfw4hixBPiIPj7-RI7h-eV0PEpGV5NfR_CibWSi7uVPsI-GaD7DU_Wnzqvll8Y7_wK0mDe2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+truth+and+performance+level+estimation+%28STAPLE%29%3A+an+algorithm+for+the+validation+of+image+segmentation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Warfield%2C+S.K.&rft.au=Zou%2C+K.H.&rft.au=Wells%2C+W.M.&rft.date=2004-07-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=23&rft.issue=7&rft.spage=903&rft.epage=921&rft_id=info:doi/10.1109%2FTMI.2004.828354&rft_id=info%3Apmid%2F15250643&rft.externalDocID=1309714 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |