Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation

Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 23; H. 7; S. 903 - 921
Hauptverfasser: Warfield, S.K., Zou, K.H., Wells, W.M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.07.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance.
AbstractList Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance.
Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it re- adily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance.
The probabilistic estimate of the true segmentation is formed by estimating an optimal combination - - of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints.
Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance.Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intra-rater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters (human or algorithmic) generating segmentations of medical images has been difficult to quantify because of the difficulty of obtaining or estimating a known true segmentation for clinical data. Although physical and digital phantoms can be constructed for which ground truth is known or readily estimated, such phantoms do not fully reflect clinical images due to the difficulty of constructing phantoms which reproduce the full range of imaging characteristics and normal and pathological anatomical variability observed in clinical data. Comparison to a collection of segmentations by raters is an attractive alternative since it can be carried out directly on the relevant clinical imaging data. However, the most appropriate measure or set of measures with which to compare such segmentations has not been clarified and several measures are used in practice. We present here an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE). The algorithm considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation. The source of each segmentation in the collection may be an appropriately trained human rater or raters, or may be an automated segmentation algorithm. The probabilistic estimate of the true segmentation is formed by estimating an optimal combination of the segmentations, weighting each segmentation depending upon the estimated performance level, and incorporating a prior model for the spatial distribution of structures being segmented as well as spatial homogeneity constraints. STAPLE is straightforward to apply to clinical imaging data, it readily enables assessment of the performance of an automated image segmentation algorithm, and enables direct comparison of human rater and algorithm performance.
Author Zou, K.H.
Wells, W.M.
Warfield, S.K.
AuthorAffiliation S. K. Warfield is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 USA. He is also with the Department of Radiology at Children’s Hospital, Boston, and with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: warfield@bwh.harvard.edu )
K. H. Zou is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, Boston, MA 02115 USA
W M. Wells is with Harvard Medical School and the Department of Radiology at Brigham and Women’s Hospital, Boston, MA 02115 USA. He is also with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
AuthorAffiliation_xml – name: W M. Wells is with Harvard Medical School and the Department of Radiology at Brigham and Women’s Hospital, Boston, MA 02115 USA. He is also with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
– name: K. H. Zou is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, Boston, MA 02115 USA
– name: S. K. Warfield is with Harvard Medical School and the Department of Radiology of Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 USA. He is also with the Department of Radiology at Children’s Hospital, Boston, and with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: warfield@bwh.harvard.edu )
Author_xml – sequence: 1
  givenname: S.K.
  surname: Warfield
  fullname: Warfield, S.K.
  organization: Dept. of Radiol., Brigham & Women's Hosp., Boston, MA, USA
– sequence: 2
  givenname: K.H.
  surname: Zou
  fullname: Zou, K.H.
  organization: Dept. of Radiol., Brigham & Women's Hosp., Boston, MA, USA
– sequence: 3
  givenname: W.M.
  surname: Wells
  fullname: Wells, W.M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15250643$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rFDEUx4NU7LZ69iBI8OCPw2xfMvk1HoRSqhZWFLqCt5DNZHZTMpNtZmbB_96sU6320J4Sks_3vcf3fY_QQRc7h9BzAnNCoDpZfrmYUwA2V1SVnD1CM8K5KihnPw7QDKhUBYCgh-io768ACONQPUGHhFMOgpUz1F_6dgyD6Vwcezykcdhg09V461ITU2s663BwOxew6wffmsHHDr-9XJ5-W5y_e59RbMI6Jj9sWpwFeNg4vDPB1xMZG5xFa4d7t25dN_x-fYoeNyb07tnNeYy-fzxfnn0uFl8_XZydLgrLKzEUsq5tSWQjgRpmhZK0cXXFrDJSMApNvqyaUhhBYFVzxQ1Y4VgNVQmK2hUtj9GHqe52XLWutrl_MkFvUx4p_dTReP3_T-c3eh13mmQzs725wJubAilej9kA3freuhAmu7RSJTBWwr7V63tJISQwweSDIFWCEqAPVySSKpmXncFXd8CrOKYuG7ufryIAlcjQy3-t-OvBnyBk4GQCbIp9n1xzi4DeR03nqOl91PQUtazgdxTWT_vNXvpwj-7FpPPOudsuJVSSsPIXEqnglg
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s11042_019_08051_9
crossref_primary_10_1088_0031_9155_60_4_1497
crossref_primary_10_1016_j_future_2019_12_035
crossref_primary_10_1109_TMI_2009_2024743
crossref_primary_10_1109_ACCESS_2021_3133276
crossref_primary_10_3390_app11020782
crossref_primary_10_1118_1_4873677
crossref_primary_10_1016_j_radonc_2023_109870
crossref_primary_10_1118_1_4929561
crossref_primary_10_1007_s11548_019_01989_z
crossref_primary_10_1371_journal_pone_0270339
crossref_primary_10_1097_MOU_0000000000001321
crossref_primary_10_1109_JBHI_2014_2311163
crossref_primary_10_1016_j_neuroimage_2008_07_055
crossref_primary_10_1016_j_patcog_2013_04_007
crossref_primary_10_1016_j_media_2012_07_006
crossref_primary_10_1016_j_radonc_2017_11_021
crossref_primary_10_1016_j_media_2018_03_001
crossref_primary_10_7863_ultra_32_9_1659
crossref_primary_10_3390_jcm12155143
crossref_primary_10_1016_j_inffus_2019_12_007
crossref_primary_10_1016_j_jneumeth_2019_05_003
crossref_primary_10_1016_j_media_2018_11_007
crossref_primary_10_1016_j_micron_2017_09_012
crossref_primary_10_1186_s13014_021_01799_1
crossref_primary_10_1371_journal_pone_0133533
crossref_primary_10_1002_jmri_28037
crossref_primary_10_1016_j_ctro_2025_100994
crossref_primary_10_1371_journal_pone_0146868
crossref_primary_10_1038_s41467_025_60466_1
crossref_primary_10_1016_j_neuroimage_2012_10_081
crossref_primary_10_1118_1_4928485
crossref_primary_10_3389_fnins_2019_00679
crossref_primary_10_1118_1_4749967
crossref_primary_10_1016_j_jmir_2016_06_004
crossref_primary_10_1109_ACCESS_2023_3278275
crossref_primary_10_1016_j_ijrobp_2010_07_009
crossref_primary_10_3390_cancers14102372
crossref_primary_10_1088_1361_6560_ab239e
crossref_primary_10_1259_bjr_20201174
crossref_primary_10_1109_JBHI_2023_3323582
crossref_primary_10_1109_TMI_2009_2013851
crossref_primary_10_1259_bjr_20201177
crossref_primary_10_3389_fninf_2022_919779
crossref_primary_10_1002_hbm_21057
crossref_primary_10_1016_j_radi_2025_01_013
crossref_primary_10_1088_0031_9155_55_18_020
crossref_primary_10_1109_ACCESS_2020_3017449
crossref_primary_10_1109_TBME_2018_2856501
crossref_primary_10_1002_hbm_22185
crossref_primary_10_1016_j_ijrobp_2016_04_032
crossref_primary_10_1002_rcs_1654
crossref_primary_10_1007_s00234_021_02855_z
crossref_primary_10_1016_j_media_2013_02_006
crossref_primary_10_1016_j_patrec_2018_07_008
crossref_primary_10_1109_TMI_2013_2265805
crossref_primary_10_1177_1051228405282864
crossref_primary_10_1016_j_neuroimage_2017_02_035
crossref_primary_10_1016_j_prro_2011_07_002
crossref_primary_10_1016_j_media_2013_10_013
crossref_primary_10_1109_TMI_2011_2156806
crossref_primary_10_1515_bmt_2024_0396
crossref_primary_10_1016_j_cviu_2016_01_006
crossref_primary_10_1016_j_media_2023_102966
crossref_primary_10_1016_j_neuroimage_2011_07_085
crossref_primary_10_1002_acm2_13328
crossref_primary_10_1016_j_patcog_2019_01_031
crossref_primary_10_1109_TMI_2021_3140140
crossref_primary_10_1016_j_media_2015_05_009
crossref_primary_10_3390_diagnostics14242838
crossref_primary_10_1007_s11060_019_03152_9
crossref_primary_10_1109_TMI_2013_2258031
crossref_primary_10_1109_TMI_2015_2496296
crossref_primary_10_1016_j_radonc_2016_09_009
crossref_primary_10_1007_s43683_022_00085_0
crossref_primary_10_1109_TPAMI_2011_280
crossref_primary_10_1016_j_media_2021_102336
crossref_primary_10_1016_j_compbiomed_2024_108586
crossref_primary_10_1371_journal_pone_0109872
crossref_primary_10_1016_j_media_2012_06_009
crossref_primary_10_2139_ssrn_4288950
crossref_primary_10_1109_JBHI_2018_2834551
crossref_primary_10_1016_j_media_2015_06_002
crossref_primary_10_1016_j_radonc_2016_09_005
crossref_primary_10_1016_j_compmedimag_2014_05_012
crossref_primary_10_1016_j_diii_2023_08_001
crossref_primary_10_1186_1471_2342_5_7
crossref_primary_10_1109_TIM_2019_2910345
crossref_primary_10_1109_TMI_2013_2242901
crossref_primary_10_1016_j_neuroimage_2013_08_008
crossref_primary_10_1109_TMI_2014_2347703
crossref_primary_10_1155_2014_182909
crossref_primary_10_1002_hbm_22359
crossref_primary_10_1016_j_mri_2012_02_010
crossref_primary_10_1109_TMI_2012_2202322
crossref_primary_10_1016_j_acra_2010_01_019
crossref_primary_10_1002_jmri_24951
crossref_primary_10_1038_s41598_024_56228_6
crossref_primary_10_3389_fninf_2021_805669
crossref_primary_10_1016_j_media_2015_06_012
crossref_primary_10_1002_ima_22840
crossref_primary_10_1016_j_ijrobp_2024_12_026
crossref_primary_10_1007_s12021_019_09448_5
crossref_primary_10_2340_1651_226X_2024_39041
crossref_primary_10_1007_s10278_025_01570_y
crossref_primary_10_1016_j_media_2009_06_003
crossref_primary_10_1111_j_1552_6569_2005_tb00328_x
crossref_primary_10_1093_brain_awt065
crossref_primary_10_1186_s40708_023_00207_6
crossref_primary_10_1007_s42452_025_07055_5
crossref_primary_10_1118_1_4829511
crossref_primary_10_3389_fnins_2017_00578
crossref_primary_10_3389_fonc_2022_772403
crossref_primary_10_1016_j_jaci_2015_08_045
crossref_primary_10_1016_j_neuroimage_2009_03_068
crossref_primary_10_1109_TMI_2011_2172215
crossref_primary_10_1007_s00066_018_1348_5
crossref_primary_10_1016_j_neuroimage_2014_12_042
crossref_primary_10_1118_1_4927567
crossref_primary_10_1371_journal_pone_0065591
crossref_primary_10_1109_TMI_2016_2636188
crossref_primary_10_1111_jon_12850
crossref_primary_10_1007_s10334_023_01066_2
crossref_primary_10_1016_j_neuroimage_2016_09_068
crossref_primary_10_1016_j_irbm_2019_02_001
crossref_primary_10_1038_s41598_024_57618_6
crossref_primary_10_1016_j_neuroimage_2014_11_031
crossref_primary_10_1007_s00362_019_01138_3
crossref_primary_10_1002_mrm_25737
crossref_primary_10_1016_j_jksuci_2019_02_008
crossref_primary_10_1111_jon_12623
crossref_primary_10_1016_j_media_2018_02_001
crossref_primary_10_1038_s41597_025_04427_9
crossref_primary_10_1007_s00330_023_09697_8
crossref_primary_10_3389_fnins_2023_1176625
crossref_primary_10_1016_j_nicl_2015_01_008
crossref_primary_10_3390_app15148061
crossref_primary_10_1016_j_jvcir_2022_103505
crossref_primary_10_1109_JBHI_2017_2741501
crossref_primary_10_1016_j_neuroimage_2014_11_025
crossref_primary_10_1111_epi_12408
crossref_primary_10_1016_j_media_2014_09_005
crossref_primary_10_1016_j_compbiomed_2024_108140
crossref_primary_10_1080_0284186X_2017_1279750
crossref_primary_10_1109_TMI_2008_2010438
crossref_primary_10_1007_s11060_020_03605_6
crossref_primary_10_1109_TMI_2024_3394045
crossref_primary_10_1088_1361_6560_ac5a93
crossref_primary_10_1016_j_oraloncology_2022_106261
crossref_primary_10_4103_digm_digm_23_17
crossref_primary_10_1186_s12880_022_00946_8
crossref_primary_10_1016_j_radonc_2014_03_019
crossref_primary_10_1109_TMI_2006_877092
crossref_primary_10_1016_j_radonc_2024_110500
crossref_primary_10_1088_1361_6560_ac9449
crossref_primary_10_1016_j_ijdevneu_2013_11_006
crossref_primary_10_1245_s10434_015_4633_x
crossref_primary_10_1038_s41597_025_04467_1
crossref_primary_10_1109_TMI_2008_2010434
crossref_primary_10_1109_TMI_2014_2322280
crossref_primary_10_3390_s21134556
crossref_primary_10_1038_srep32423
crossref_primary_10_1118_1_2826557
crossref_primary_10_7554_eLife_23379
crossref_primary_10_3390_bioengineering10050623
crossref_primary_10_1016_j_ics_2004_03_231
crossref_primary_10_1016_j_knosys_2016_01_033
crossref_primary_10_1109_TMI_2013_2270114
crossref_primary_10_1109_TMI_2019_2905770
crossref_primary_10_1016_j_ijrobp_2011_04_038
crossref_primary_10_1002_hbm_22309
crossref_primary_10_7554_eLife_59780
crossref_primary_10_1155_2012_431095
crossref_primary_10_1016_j_compmedimag_2008_06_003
crossref_primary_10_1002_hbm_20161
crossref_primary_10_1002_hbm_23432
crossref_primary_10_1007_s00330_021_08385_9
crossref_primary_10_1007_s11238_010_9240_5
crossref_primary_10_1088_1742_6596_777_1_012002
crossref_primary_10_1109_JBHI_2024_3489721
crossref_primary_10_3389_fnins_2018_00629
crossref_primary_10_1007_s12021_017_9323_3
crossref_primary_10_1016_j_neuroimage_2009_02_018
crossref_primary_10_1007_s11263_014_0731_7
crossref_primary_10_1177_1559325819897175
crossref_primary_10_1016_j_acra_2004_11_029
crossref_primary_10_1016_j_patcog_2013_02_014
crossref_primary_10_1016_j_media_2018_10_012
crossref_primary_10_1038_srep45501
crossref_primary_10_1016_j_neuroimage_2009_04_068
crossref_primary_10_1111_cns_12658
crossref_primary_10_1111_cns_12415
crossref_primary_10_1109_JSTSP_2008_2011104
crossref_primary_10_1109_TMI_2013_2256922
crossref_primary_10_1002_mrm_28596
crossref_primary_10_1016_j_media_2005_02_002
crossref_primary_10_1109_TBME_2016_2574816
crossref_primary_10_1002_acm2_70152
crossref_primary_10_1016_j_knosys_2025_113381
crossref_primary_10_1109_LSP_2013_2279269
crossref_primary_10_1186_s13014_018_1033_y
crossref_primary_10_1002_jcsm_13310
crossref_primary_10_1016_j_ijrobp_2013_07_006
crossref_primary_10_3390_s21030934
crossref_primary_10_1016_j_prro_2012_11_002
crossref_primary_10_1109_TFUZZ_2013_2246761
crossref_primary_10_1007_s12194_025_00946_7
crossref_primary_10_1016_j_media_2015_08_010
crossref_primary_10_1186_s12968_017_0336_8
crossref_primary_10_1118_1_4941011
crossref_primary_10_1002_mp_17964
crossref_primary_10_1016_j_ijrobp_2016_11_050
crossref_primary_10_1016_j_neuroimage_2005_05_005
crossref_primary_10_1109_TMI_2014_2371823
crossref_primary_10_1016_j_gaitpost_2025_03_007
crossref_primary_10_1088_1361_6560_ad84b2
crossref_primary_10_1016_j_ijrobp_2023_08_051
crossref_primary_10_1016_j_cmpb_2020_105839
crossref_primary_10_1016_j_mri_2012_06_010
crossref_primary_10_1016_j_media_2013_12_002
crossref_primary_10_1002_jmrs_453
crossref_primary_10_1111_j_1600_0684_2008_00288_x
crossref_primary_10_1007_s00198_019_05214_0
crossref_primary_10_1002_mp_16860
crossref_primary_10_1016_j_compmedimag_2008_05_003
crossref_primary_10_1111_jon_12483
crossref_primary_10_3390_cancers14184435
crossref_primary_10_1186_s13244_021_01010_9
crossref_primary_10_1007_s11548_013_0836_4
crossref_primary_10_3390_diagnostics12081822
crossref_primary_10_1002_mp_16615
crossref_primary_10_1002_mp_12025
crossref_primary_10_3390_diagnostics12051159
crossref_primary_10_1016_j_media_2018_10_004
crossref_primary_10_1016_j_radonc_2011_08_043
crossref_primary_10_1016_j_neuroimage_2014_04_054
crossref_primary_10_1088_0031_9155_61_13_4855
crossref_primary_10_1259_bjr_20140299
crossref_primary_10_1088_0031_9155_56_14_021
crossref_primary_10_1016_j_pediatrneurol_2012_10_011
crossref_primary_10_1016_j_neuroimage_2019_03_041
crossref_primary_10_3390_jpm12122049
crossref_primary_10_1016_j_jogoh_2025_103039
crossref_primary_10_1109_JSTARS_2024_3429491
crossref_primary_10_1007_s12021_018_9359_z
crossref_primary_10_1186_s12967_019_2119_5
crossref_primary_10_1007_s11548_020_02254_4
crossref_primary_10_1118_1_4963213
crossref_primary_10_1016_j_radonc_2024_110567
crossref_primary_10_1118_1_2897950
crossref_primary_10_1016_j_meddos_2014_02_003
crossref_primary_10_1002_hbm_20599
crossref_primary_10_1016_j_radonc_2015_10_007
crossref_primary_10_1155_2010_618747
crossref_primary_10_1109_TITB_2007_903514
crossref_primary_10_1002_mp_13375
crossref_primary_10_1016_j_artmed_2015_04_005
crossref_primary_10_1016_j_ejmp_2022_06_015
crossref_primary_10_1038_s41467_023_36960_9
crossref_primary_10_1016_j_compbiomed_2022_106204
crossref_primary_10_1111_1754_9485_12509
crossref_primary_10_1002_hbm_24948
crossref_primary_10_1002_mp_15308
crossref_primary_10_1016_j_pscychresns_2024_111789
crossref_primary_10_1016_j_neuroimage_2009_10_026
crossref_primary_10_1016_j_neuroimage_2014_03_037
crossref_primary_10_1016_j_ijrobp_2014_01_010
crossref_primary_10_1016_j_ijrobp_2023_07_020
crossref_primary_10_1016_j_media_2016_01_004
crossref_primary_10_1016_j_ultrasmedbio_2024_11_020
crossref_primary_10_1109_TMI_2018_2837502
crossref_primary_10_1016_j_neuroimage_2019_03_068
crossref_primary_10_2147_OPTH_S410905
crossref_primary_10_1002_crt2_53
crossref_primary_10_1016_j_neuroimage_2014_01_058
crossref_primary_10_1016_j_mri_2019_05_020
crossref_primary_10_1371_journal_pone_0286485
crossref_primary_10_1118_1_2131093
crossref_primary_10_1016_j_canrad_2010_01_005
crossref_primary_10_1016_j_jbi_2008_11_005
crossref_primary_10_1016_j_neuroimage_2011_02_010
crossref_primary_10_1007_s00256_007_0386_3
crossref_primary_10_1016_j_ijrobp_2010_12_057
crossref_primary_10_1007_s11548_014_1119_4
crossref_primary_10_1109_TMI_2009_2014372
crossref_primary_10_1007_s10334_016_0535_6
crossref_primary_10_1118_1_4963809
crossref_primary_10_1016_j_compmedimag_2018_09_003
crossref_primary_10_1016_j_neurobiolaging_2010_04_011
crossref_primary_10_1016_j_compmedimag_2008_12_002
crossref_primary_10_1016_j_media_2016_11_003
crossref_primary_10_1007_s00138_012_0456_y
crossref_primary_10_1007_s11517_025_03337_7
crossref_primary_10_1002_mp_14644
crossref_primary_10_3389_fmed_2025_1653865
crossref_primary_10_1088_1361_6560_aad316
crossref_primary_10_1016_j_ctro_2023_100722
crossref_primary_10_1016_j_pediatrneurol_2020_01_006
crossref_primary_10_1088_1361_6560_ad3325
crossref_primary_10_1259_dmfr_20180099
crossref_primary_10_1007_s00330_020_07070_7
crossref_primary_10_3109_0284186X_2014_953638
crossref_primary_10_1016_j_cmpb_2009_04_009
crossref_primary_10_1016_j_compbiomed_2025_110459
crossref_primary_10_1371_journal_pone_0228119
crossref_primary_10_1016_j_jneumeth_2014_01_033
crossref_primary_10_1016_j_asoc_2010_11_009
crossref_primary_10_1016_j_phro_2022_03_001
crossref_primary_10_1002_jmri_27776
crossref_primary_10_1002_mp_15521
crossref_primary_10_1109_TMI_2020_2968917
crossref_primary_10_1007_s10278_025_01531_5
crossref_primary_10_1016_j_bspc_2018_12_010
crossref_primary_10_1002_mp_15525
crossref_primary_10_1007_s10439_013_0964_6
crossref_primary_10_1007_s10765_018_2417_9
crossref_primary_10_1109_TMI_2010_2049497
crossref_primary_10_1136_jnis_2023_021283
crossref_primary_10_1542_peds_2005_2675
crossref_primary_10_1016_j_brachy_2019_05_007
crossref_primary_10_1016_j_ijrobp_2013_09_008
crossref_primary_10_1016_j_ijrobp_2010_11_033
crossref_primary_10_1016_j_ejmp_2022_09_002
crossref_primary_10_1016_j_neuroimage_2015_11_073
crossref_primary_10_1016_j_neuroimage_2013_06_006
crossref_primary_10_1002_mp_13331
crossref_primary_10_1016_j_neuroimage_2009_05_029
crossref_primary_10_1002_mp_14422
crossref_primary_10_1016_j_ijrobp_2014_03_041
crossref_primary_10_1002_mp_15506
crossref_primary_10_1016_j_ijrobp_2018_11_025
crossref_primary_10_1016_j_neuroimage_2015_10_042
crossref_primary_10_1117_1_JMI_10_6_065503
crossref_primary_10_1016_j_acra_2007_05_025
crossref_primary_10_1016_j_bone_2012_06_005
crossref_primary_10_1167_tvst_14_7_8
crossref_primary_10_1109_TMI_2013_2255309
crossref_primary_10_1148_radiol_2373041630
crossref_primary_10_1016_j_ejmp_2020_04_011
crossref_primary_10_1007_s00247_021_05270_x
crossref_primary_10_1016_j_neuroimage_2016_05_030
crossref_primary_10_1088_1361_6560_ac9a98
crossref_primary_10_1016_j_media_2017_04_002
crossref_primary_10_1016_j_jid_2018_12_015
crossref_primary_10_1007_s11263_018_1065_7
crossref_primary_10_1016_j_ctro_2022_06_007
crossref_primary_10_1287_isre_2023_0426
crossref_primary_10_1109_MPUL_2011_2181023
crossref_primary_10_1111_1754_9485_13668
crossref_primary_10_1109_TMI_2010_2050897
crossref_primary_10_1088_2057_1976_ab08fc
crossref_primary_10_1016_j_radonc_2022_10_029
crossref_primary_10_1371_journal_pone_0096985
crossref_primary_10_1016_j_bspc_2025_107971
crossref_primary_10_1017_S1460396921000571
crossref_primary_10_1007_s10994_009_5158_y
crossref_primary_10_3390_jcm14124042
crossref_primary_10_1109_ACCESS_2021_3090825
crossref_primary_10_1109_TMI_2014_2325596
crossref_primary_10_1186_s13014_015_0439_z
crossref_primary_10_1109_TMI_2005_856752
crossref_primary_10_1016_j_irbm_2020_10_007
crossref_primary_10_1016_j_media_2020_101759
crossref_primary_10_1016_j_media_2024_103419
crossref_primary_10_1109_TMI_2018_2824243
crossref_primary_10_1007_s11042_024_18127_w
crossref_primary_10_1016_j_neuroimage_2007_07_002
crossref_primary_10_1109_TMI_2015_2418298
crossref_primary_10_3390_app10175948
crossref_primary_10_1148_radiol_2018171756
crossref_primary_10_1177_153303460500400205
crossref_primary_10_1016_j_clon_2016_09_016
crossref_primary_10_3390_app14041339
crossref_primary_10_1016_j_cccb_2025_100393
crossref_primary_10_1155_2013_368514
crossref_primary_10_1038_s41598_019_53387_9
crossref_primary_10_1038_s41597_025_05250_y
crossref_primary_10_1259_bjr_20210350
crossref_primary_10_1016_j_asoc_2024_112081
crossref_primary_10_1016_j_neuroimage_2022_119741
crossref_primary_10_1259_bjr_20210356
crossref_primary_10_1016_j_breast_2016_12_010
crossref_primary_10_1016_j_compmedimag_2019_101660
crossref_primary_10_1186_s13244_022_01287_4
crossref_primary_10_1016_j_radonc_2022_11_017
crossref_primary_10_1109_TMI_2015_2393853
crossref_primary_10_1016_j_ejmp_2022_08_011
crossref_primary_10_1016_j_engappai_2019_02_005
crossref_primary_10_1038_ncomms11879
crossref_primary_10_1016_j_semradonc_2022_01_002
crossref_primary_10_1038_s41597_022_01560_7
crossref_primary_10_3389_fphy_2025_1490650
crossref_primary_10_1371_journal_pone_0273395
crossref_primary_10_1109_TMI_2013_2263388
crossref_primary_10_1002_jmri_25148
crossref_primary_10_1002_mp_13771
crossref_primary_10_1002_mp_13773
crossref_primary_10_1109_TMI_2015_2463078
crossref_primary_10_1016_j_clon_2024_103735
crossref_primary_10_1111_jon_13038
crossref_primary_10_1016_j_acra_2012_09_006
crossref_primary_10_1088_0031_9155_60_11_4429
crossref_primary_10_3390_info8020049
crossref_primary_10_1016_j_cviu_2013_06_009
crossref_primary_10_1109_TMI_2011_2181857
crossref_primary_10_1016_j_cell_2021_11_024
crossref_primary_10_1259_bjr_20200543
crossref_primary_10_1007_s10334_015_0521_4
crossref_primary_10_1016_j_camwa_2019_03_022
crossref_primary_10_1109_TMI_2011_2114671
crossref_primary_10_1016_j_phro_2024_100687
crossref_primary_10_1016_j_jmir_2024_101745
crossref_primary_10_1016_j_phro_2025_100736
crossref_primary_10_1016_j_meddos_2019_06_002
crossref_primary_10_1089_neu_2018_6196
crossref_primary_10_1109_TEVC_2017_2694160
crossref_primary_10_1016_j_crad_2025_106921
crossref_primary_10_1016_j_media_2017_07_004
crossref_primary_10_1016_j_neucom_2020_11_028
crossref_primary_10_1016_j_compmedimag_2016_04_002
crossref_primary_10_1016_j_radonc_2024_110186
crossref_primary_10_3389_fonc_2019_00239
crossref_primary_10_1016_j_inffus_2023_102101
crossref_primary_10_3390_e23020197
crossref_primary_10_1080_01621459_2021_2014854
crossref_primary_10_1038_s41746_025_01624_z
crossref_primary_10_1016_j_clon_2023_01_016
crossref_primary_10_3389_fneur_2018_00679
crossref_primary_10_1002_mp_13703
crossref_primary_10_1007_s10278_017_9964_7
crossref_primary_10_1016_j_nicl_2022_103071
crossref_primary_10_1016_j_ijrobp_2019_03_003
crossref_primary_10_1109_TIP_2005_852462
crossref_primary_10_1186_1471_2342_12_17
crossref_primary_10_1109_TMI_2005_857652
crossref_primary_10_1002_ima_22478
crossref_primary_10_1016_j_compbiomed_2024_108845
crossref_primary_10_1016_j_compeleceng_2024_109613
crossref_primary_10_1007_s10916_017_0874_5
crossref_primary_10_1088_0031_9155_58_12_4071
crossref_primary_10_1016_j_media_2022_102398
crossref_primary_10_1038_nbt_4225
crossref_primary_10_1016_j_ijrobp_2008_08_070
crossref_primary_10_1016_j_ijrobp_2012_01_023
crossref_primary_10_1016_j_radonc_2014_06_006
crossref_primary_10_1007_s00259_022_06001_6
crossref_primary_10_1016_j_media_2012_09_004
crossref_primary_10_1016_j_neuroimage_2008_12_037
crossref_primary_10_1016_j_neuroimage_2018_06_029
crossref_primary_10_1117_1_JMI_11_5_054003
crossref_primary_10_1134_S105466181703004X
crossref_primary_10_1109_TMI_2004_824224
crossref_primary_10_1109_TMI_2016_2578680
crossref_primary_10_1118_1_4947123
crossref_primary_10_1002_cyto_a_22068
crossref_primary_10_1016_j_clon_2021_12_003
crossref_primary_10_1016_j_optcom_2012_10_033
crossref_primary_10_1111_jon_70058
crossref_primary_10_3390_cancers14215312
crossref_primary_10_1177_8756479320908213
crossref_primary_10_1118_1_4794478
crossref_primary_10_1038_s41598_021_95152_x
crossref_primary_10_1002_acm2_12529
crossref_primary_10_1186_1532_429X_15_105
crossref_primary_10_1186_s13244_024_01820_7
crossref_primary_10_3389_fonc_2025_1510568
crossref_primary_10_1016_j_neuroimage_2017_10_060
crossref_primary_10_1097_WAD_0b013e318260a79a
crossref_primary_10_3390_jimaging6110113
crossref_primary_10_1118_1_4966030
crossref_primary_10_1016_j_patcog_2012_03_001
crossref_primary_10_1002_mp_12820
crossref_primary_10_1186_s12968_015_0170_9
crossref_primary_10_1016_j_compmedimag_2022_102039
crossref_primary_10_1016_j_neuroimage_2011_03_029
crossref_primary_10_1118_1_4810971
crossref_primary_10_1118_1_4948679
crossref_primary_10_1109_TRPMS_2019_2926889
crossref_primary_10_1109_RBME_2017_2749527
crossref_primary_10_1016_j_neuroimage_2015_08_002
crossref_primary_10_7554_eLife_49023
crossref_primary_10_1016_j_acra_2015_08_007
crossref_primary_10_1162_imag_a_00218
crossref_primary_10_1002_mp_16188
crossref_primary_10_1016_j_prro_2014_05_005
crossref_primary_10_3389_fgene_2025_1547788
crossref_primary_10_1016_j_acra_2007_03_009
crossref_primary_10_1016_j_cmpb_2023_107912
crossref_primary_10_1016_j_neuroimage_2016_01_024
crossref_primary_10_1016_j_ctro_2022_08_005
crossref_primary_10_1016_j_phro_2024_100633
crossref_primary_10_1016_j_neuroimage_2018_05_044
crossref_primary_10_1016_j_media_2017_08_008
crossref_primary_10_1002_nbm_4880
crossref_primary_10_1016_j_ijrobp_2014_06_005
crossref_primary_10_1002_ima_22207
crossref_primary_10_1016_j_nicl_2016_09_008
crossref_primary_10_1038_s41467_022_28818_3
crossref_primary_10_26634_jip_1_3_2958
crossref_primary_10_1007_s11548_017_1625_2
crossref_primary_10_1016_j_neuroimage_2011_01_006
crossref_primary_10_1177_0962280214537392
crossref_primary_10_1016_j_cmpb_2011_12_007
crossref_primary_10_1016_j_ijrobp_2020_08_061
crossref_primary_10_1088_0031_9155_58_13_R97
crossref_primary_10_1177_0962280214537390
crossref_primary_10_1016_j_media_2023_102863
crossref_primary_10_1016_j_phro_2021_11_005
crossref_primary_10_3390_bioengineering12030258
crossref_primary_10_1186_1687_6180_2011_128
crossref_primary_10_1109_TMI_2011_2147795
crossref_primary_10_1259_bjr_20180252
crossref_primary_10_1016_j_ijrobp_2016_09_014
crossref_primary_10_1016_j_media_2021_102038
crossref_primary_10_1186_s40708_022_00161_9
crossref_primary_10_1016_j_compbiomed_2015_06_003
crossref_primary_10_1016_j_neuroimage_2020_116946
crossref_primary_10_1109_TASLP_2022_3233468
crossref_primary_10_1088_1361_6560_aaea85
crossref_primary_10_1016_j_jdent_2021_103752
crossref_primary_10_1186_s40658_021_00367_6
crossref_primary_10_1073_pnas_2410341121
crossref_primary_10_1109_TMI_2013_2266258
crossref_primary_10_1007_s00330_018_5674_x
crossref_primary_10_1080_0284186X_2021_1967445
crossref_primary_10_1109_TPAMI_2023_3346330
crossref_primary_10_3389_fnins_2019_00011
crossref_primary_10_1111_1754_9485_70016
crossref_primary_10_1186_s41747_024_00520_7
crossref_primary_10_1016_j_neuroimage_2015_09_032
crossref_primary_10_1016_j_phro_2024_100654
crossref_primary_10_1038_s41598_025_15712_3
crossref_primary_10_1371_journal_pone_0122224
crossref_primary_10_3389_fneur_2019_00007
crossref_primary_10_1049_iet_ipr_2019_1212
crossref_primary_10_3389_fnins_2015_00061
crossref_primary_10_1118_1_4867855
crossref_primary_10_1002_mrm_27508
crossref_primary_10_1016_j_neuroimage_2009_08_017
crossref_primary_10_1016_j_ijrobp_2011_06_1961
crossref_primary_10_1016_j_ijrobp_2012_03_009
crossref_primary_10_1016_j_media_2023_102814
crossref_primary_10_1007_s10278_013_9633_4
crossref_primary_10_1016_j_neuroimage_2017_09_007
crossref_primary_10_1111_jon_12313
crossref_primary_10_1016_j_ijrobp_2013_06_2053
crossref_primary_10_1016_j_neuroimage_2009_09_069
crossref_primary_10_1016_j_pan_2023_05_008
crossref_primary_10_1038_s41598_025_07867_w
crossref_primary_10_1118_1_2940188
crossref_primary_10_3109_0284186X_2014_970666
crossref_primary_10_1016_j_media_2022_102532
crossref_primary_10_1136_gutjnl_2019_320466
crossref_primary_10_1007_s00330_024_10584_z
crossref_primary_10_1016_j_media_2016_07_009
crossref_primary_10_1016_j_media_2021_102029
crossref_primary_10_1016_j_mri_2013_05_007
crossref_primary_10_1007_s10278_017_9983_4
crossref_primary_10_1038_s41598_021_87471_w
crossref_primary_10_1148_ryai_230017
crossref_primary_10_3390_s21072264
crossref_primary_10_1016_j_neuroimage_2017_09_011
crossref_primary_10_1016_j_cag_2021_07_012
crossref_primary_10_1016_j_media_2013_09_001
crossref_primary_10_1097_MNM_0b013e32834d736f
crossref_primary_10_1016_j_clon_2021_02_003
crossref_primary_10_1186_s13014_014_0251_1
crossref_primary_10_3390_app13095284
crossref_primary_10_1109_TBME_2017_2752701
crossref_primary_10_3389_fneur_2021_740603
crossref_primary_10_1088_1361_6560_aaa50c
crossref_primary_10_1002_hbm_24243
crossref_primary_10_1016_j_canrad_2011_07_243
crossref_primary_10_1016_j_radonc_2023_109736
crossref_primary_10_1167_tvst_14_6_30
crossref_primary_10_1016_j_tipsro_2019_10_004
crossref_primary_10_1117_1_JMI_11_2_024504
crossref_primary_10_1148_radiol_2020192224
crossref_primary_10_3233_JAD_142280
crossref_primary_10_1016_j_procs_2018_07_029
crossref_primary_10_1088_2057_1976_aad100
crossref_primary_10_1038_s41598_022_25894_9
crossref_primary_10_1016_j_neucom_2013_09_051
crossref_primary_10_1002_mma_5403
crossref_primary_10_1016_j_phro_2020_04_001
crossref_primary_10_1038_s43586_022_00131_9
crossref_primary_10_1016_j_ejmp_2018_12_012
crossref_primary_10_1016_j_neuroimage_2007_04_023
crossref_primary_10_1016_j_media_2024_103166
crossref_primary_10_1016_j_brachy_2018_08_006
crossref_primary_10_1016_j_media_2022_102549
crossref_primary_10_1111_jon_12549
crossref_primary_10_1016_j_ctro_2018_07_006
crossref_primary_10_1016_j_radonc_2021_12_011
crossref_primary_10_3390_biomedicines12040789
crossref_primary_10_1109_JBHI_2015_2428279
crossref_primary_10_1088_0031_9155_57_1_93
crossref_primary_10_1007_s00450_010_0130_4
crossref_primary_10_1371_journal_pone_0086576
crossref_primary_10_1016_j_ijrobp_2008_08_003
crossref_primary_10_1109_TBME_2020_3016602
crossref_primary_10_1007_s10278_017_0037_8
crossref_primary_10_1016_j_displa_2022_102223
crossref_primary_10_1016_j_media_2011_05_001
crossref_primary_10_1016_j_neuroimage_2007_04_031
crossref_primary_10_1016_j_nicl_2015_07_019
crossref_primary_10_1007_s13246_024_01411_2
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_1007_s11548_018_1879_3
crossref_primary_10_1016_j_zemedi_2021_11_004
crossref_primary_10_3109_0284186X_2014_930170
crossref_primary_10_1016_j_cmpb_2020_105566
crossref_primary_10_1016_j_procs_2018_07_084
crossref_primary_10_1111_jon_12997
crossref_primary_10_1016_j_patcog_2016_09_030
crossref_primary_10_1016_j_knosys_2014_07_021
crossref_primary_10_1016_j_media_2019_101629
crossref_primary_10_1016_j_media_2019_04_002
crossref_primary_10_1007_s11760_021_02008_y
crossref_primary_10_3389_fbioe_2024_1446829
crossref_primary_10_3390_math11173771
crossref_primary_10_1016_j_media_2019_04_005
crossref_primary_10_1118_1_3238101
crossref_primary_10_1109_TMI_2021_3064661
crossref_primary_10_1002_hbm_22478
crossref_primary_10_1109_TPAMI_2017_2711020
crossref_primary_10_1002_mp_16582
crossref_primary_10_1016_j_ctro_2019_01_001
crossref_primary_10_1016_j_cmpb_2006_08_003
crossref_primary_10_1093_bjro_tzae006
crossref_primary_10_1109_TGRS_2017_2782005
crossref_primary_10_1109_TMI_2006_880587
crossref_primary_10_3390_app11167396
crossref_primary_10_1016_j_bspc_2022_104243
crossref_primary_10_1007_s10334_015_0518_z
crossref_primary_10_1007_s11265_008_0215_5
crossref_primary_10_3348_kjr_2013_14_4_683
crossref_primary_10_1016_j_patcog_2016_09_028
crossref_primary_10_1109_TMI_2012_2211377
crossref_primary_10_1038_s41598_022_10256_2
crossref_primary_10_1007_s11548_023_02943_w
crossref_primary_10_1016_j_neuroimage_2010_03_018
crossref_primary_10_1016_j_media_2014_10_004
crossref_primary_10_1016_j_neuroimage_2012_08_075
crossref_primary_10_3389_fcvm_2022_822269
crossref_primary_10_3414_ME12_01_0005
crossref_primary_10_1016_j_compbiomed_2018_09_002
crossref_primary_10_1016_j_compbiomed_2025_111059
crossref_primary_10_1016_j_media_2017_11_013
crossref_primary_10_1007_s10334_015_0507_2
crossref_primary_10_1088_1361_6560_acc309
crossref_primary_10_1109_TMI_2012_2193896
crossref_primary_10_1016_j_ijrobp_2022_09_072
crossref_primary_10_1016_j_neuroimage_2011_01_078
crossref_primary_10_1016_j_phro_2025_100790
crossref_primary_10_3389_fonc_2017_00221
crossref_primary_10_1016_j_ijrobp_2020_04_011
crossref_primary_10_1259_bjr_20120398
crossref_primary_10_1016_j_media_2025_103489
crossref_primary_10_1093_cercor_bhs135
crossref_primary_10_1016_j_media_2008_04_003
crossref_primary_10_1097_IOP_0000000000001880
crossref_primary_10_1007_s13246_024_01513_x
crossref_primary_10_1016_j_prro_2024_11_004
crossref_primary_10_1016_j_ins_2022_01_011
crossref_primary_10_1118_1_4789484
crossref_primary_10_1016_j_neuroimage_2015_12_009
crossref_primary_10_1118_1_4884224
crossref_primary_10_1016_j_media_2017_11_001
crossref_primary_10_1038_s41597_023_01943_4
crossref_primary_10_1111_jon_12506
crossref_primary_10_1016_j_media_2021_102206
crossref_primary_10_1016_j_ctro_2024_100796
crossref_primary_10_1038_s41598_025_94977_0
crossref_primary_10_1111_cgf_13397
crossref_primary_10_1016_j_neuroimage_2011_01_062
crossref_primary_10_1016_j_scib_2024_06_037
crossref_primary_10_1186_1748_717X_6_110
crossref_primary_10_1016_j_neuroimage_2010_03_033
crossref_primary_10_1038_s41598_023_38833_z
crossref_primary_10_1137_20M1348303
crossref_primary_10_3389_fnins_2024_1457420
crossref_primary_10_1016_j_ijrobp_2011_08_042
crossref_primary_10_1016_j_compmedimag_2024_102327
crossref_primary_10_1016_j_neuroimage_2012_01_128
crossref_primary_10_1016_j_compmedimag_2010_06_002
crossref_primary_10_1109_JBHI_2015_2391991
crossref_primary_10_1002_cnm_3697
crossref_primary_10_1016_j_meddos_2020_02_004
crossref_primary_10_1080_21681163_2016_1250108
crossref_primary_10_1109_TBME_2011_2122306
crossref_primary_10_1002_jmri_21372
crossref_primary_10_1016_j_compbiomed_2025_110186
crossref_primary_10_1155_2021_8721464
crossref_primary_10_1016_j_radonc_2010_11_017
crossref_primary_10_3389_fneur_2021_616272
crossref_primary_10_1016_j_radonc_2013_01_014
crossref_primary_10_1016_j_neuroimage_2009_07_066
crossref_primary_10_1016_j_bspc_2017_07_008
crossref_primary_10_1109_TMI_2016_2529500
crossref_primary_10_1109_TBME_2009_2017509
crossref_primary_10_1016_j_ins_2011_10_011
crossref_primary_10_1109_TGRS_2025_3555235
crossref_primary_10_3389_fnins_2021_818604
crossref_primary_10_1016_j_neuroimage_2010_10_019
crossref_primary_10_1016_j_jsb_2008_01_017
crossref_primary_10_1016_j_media_2019_07_005
crossref_primary_10_1007_s00330_025_11695_x
crossref_primary_10_1007_s10278_023_00857_2
crossref_primary_10_1016_j_acra_2013_09_010
crossref_primary_10_1109_JBHI_2024_3451210
crossref_primary_10_1016_j_compbiomed_2025_111024
crossref_primary_10_1016_j_neuroimage_2010_06_040
crossref_primary_10_1109_TMI_2014_2377694
crossref_primary_10_1109_TIP_2020_2994445
crossref_primary_10_1371_journal_pone_0155862
crossref_primary_10_3390_cancers13122854
crossref_primary_10_1007_s10278_023_00824_x
crossref_primary_10_3389_fneur_2022_907581
crossref_primary_10_1016_j_ajog_2004_06_067
crossref_primary_10_1016_j_radonc_2024_110610
crossref_primary_10_1016_j_radonc_2021_11_036
crossref_primary_10_1016_j_radonc_2021_11_034
crossref_primary_10_2217_nmt_12_13
crossref_primary_10_1111_j_1754_9485_2012_02442_x
crossref_primary_10_1118_1_4793721
crossref_primary_10_1088_1361_6560_aba166
crossref_primary_10_1109_TMI_2015_2508280
crossref_primary_10_1007_s42486_022_00090_w
crossref_primary_10_1109_TMI_2017_2665165
crossref_primary_10_1002_rcs_2229
crossref_primary_10_1038_s41597_025_04709_2
crossref_primary_10_1136_jnnp_2016_314567
crossref_primary_10_1016_j_neuroimage_2015_05_099
crossref_primary_10_1186_s13014_025_02718_4
crossref_primary_10_1016_j_ijrobp_2015_04_039
crossref_primary_10_1016_j_radonc_2008_01_018
crossref_primary_10_3390_cancers14235893
crossref_primary_10_1016_j_prro_2013_06_004
crossref_primary_10_1016_j_compmedimag_2010_07_008
crossref_primary_10_1016_j_radonc_2015_05_012
crossref_primary_10_1109_JTEHM_2014_2312191
crossref_primary_10_1016_j_radonc_2010_06_009
crossref_primary_10_1016_j_cmpb_2018_02_001
crossref_primary_10_1038_srep23470
crossref_primary_10_1002_jmri_22478
crossref_primary_10_1007_s10334_020_00839_3
crossref_primary_10_1007_s12021_015_9264_7
crossref_primary_10_1016_j_media_2005_09_004
crossref_primary_10_1016_j_radonc_2017_09_013
crossref_primary_10_1186_s40478_021_01130_9
crossref_primary_10_1016_j_radonc_2017_09_015
crossref_primary_10_1016_j_media_2008_11_002
crossref_primary_10_1016_j_media_2017_04_005
crossref_primary_10_1016_j_compmedimag_2011_02_006
crossref_primary_10_1038_s41598_024_72649_9
crossref_primary_10_1016_j_radonc_2016_11_016
crossref_primary_10_3389_fonc_2020_567736
crossref_primary_10_1109_JBHI_2019_2944643
crossref_primary_10_1002_hbm_23536
crossref_primary_10_1016_j_artmed_2019_01_002
crossref_primary_10_1177_0962280217754231
crossref_primary_10_1007_s11682_007_9004_1
crossref_primary_10_1016_j_media_2014_06_005
crossref_primary_10_1038_s41597_023_02062_w
crossref_primary_10_1016_j_neuroimage_2010_12_067
crossref_primary_10_1016_j_neuroimage_2010_05_029
crossref_primary_10_1002_mp_13243
crossref_primary_10_1016_j_radonc_2021_05_003
crossref_primary_10_1016_j_media_2014_06_007
crossref_primary_10_1038_s41598_017_04276_6
crossref_primary_10_1371_journal_pone_0173476
crossref_primary_10_3390_app9081616
crossref_primary_10_1016_j_mednuc_2011_01_004
crossref_primary_10_1109_TIP_2006_884936
crossref_primary_10_1016_j_jmir_2024_03_004
crossref_primary_10_1016_j_media_2023_103028
crossref_primary_10_1016_j_neuroimage_2019_01_014
crossref_primary_10_1016_j_media_2014_12_003
crossref_primary_10_1016_j_irbm_2015_06_001
crossref_primary_10_1109_TMI_2012_2190992
crossref_primary_10_1016_j_radonc_2021_12_033
crossref_primary_10_1016_j_coldregions_2024_104303
crossref_primary_10_1109_TMI_2010_2057442
crossref_primary_10_1002_mp_13475
crossref_primary_10_1109_TMI_2006_882129
crossref_primary_10_1038_s41597_024_03814_y
crossref_primary_10_1007_s12021_012_9159_9
crossref_primary_10_1016_j_jvoice_2025_02_026
crossref_primary_10_1016_j_bspc_2017_08_026
crossref_primary_10_1002_mp_12141
crossref_primary_10_1007_s11548_023_02961_8
crossref_primary_10_1016_j_media_2012_10_002
crossref_primary_10_1007_s10278_015_9844_y
crossref_primary_10_3390_cancers12092424
crossref_primary_10_1002_hbm_23713
crossref_primary_10_1007_s00056_016_0069_6
crossref_primary_10_1038_s41598_020_59042_y
crossref_primary_10_1111_1754_9485_12884
crossref_primary_10_3389_fninf_2017_00002
crossref_primary_10_1177_0962280220920894
crossref_primary_10_1080_21681163_2014_947006
crossref_primary_10_1016_j_jss_2024_01_008
crossref_primary_10_1016_j_bspc_2019_101602
crossref_primary_10_1242_dmm_049721
crossref_primary_10_1002_nbm_5169
crossref_primary_10_1016_j_tipsro_2017_10_002
crossref_primary_10_1016_j_compbiomed_2020_103701
crossref_primary_10_1002_mrm_28042
crossref_primary_10_1016_j_ijrobp_2009_02_006
crossref_primary_10_1109_TPAMI_2019_2922959
crossref_primary_10_1016_j_oraloncology_2018_04_025
crossref_primary_10_1038_s41598_017_00525_w
crossref_primary_10_1038_s41467_022_33407_5
crossref_primary_10_1080_0284186X_2017_1325004
crossref_primary_10_1016_j_ijrobp_2015_03_030
crossref_primary_10_1016_j_wneu_2023_07_009
crossref_primary_10_1016_j_neuroimage_2017_08_021
crossref_primary_10_1088_1361_6560_aaf83c
crossref_primary_10_1109_TPAMI_2012_143
crossref_primary_10_1016_j_media_2021_101980
crossref_primary_10_1016_j_irbm_2011_09_011
crossref_primary_10_1088_1361_6560_ab050f
crossref_primary_10_1148_ryai_220231
crossref_primary_10_1016_j_brachy_2023_08_001
crossref_primary_10_32604_cmc_2022_028632
crossref_primary_10_1002_mp_14341
crossref_primary_10_1016_j_acra_2007_08_004
crossref_primary_10_1038_s41597_024_03000_0
crossref_primary_10_1016_j_ijdevneu_2013_06_004
crossref_primary_10_1038_s41597_022_01719_2
crossref_primary_10_1007_s11042_019_07829_1
crossref_primary_10_1002_mp_15679
crossref_primary_10_1016_j_acra_2018_08_003
crossref_primary_10_1016_j_ijrobp_2015_03_021
crossref_primary_10_1118_1_4967942
crossref_primary_10_1016_j_phro_2020_07_002
crossref_primary_10_1016_j_nicl_2019_101709
crossref_primary_10_1016_j_neuroimage_2013_02_069
crossref_primary_10_1007_s11548_018_1873_9
crossref_primary_10_1016_j_neucom_2016_05_082
crossref_primary_10_1002_acm2_13093
crossref_primary_10_1016_j_cviu_2014_09_004
crossref_primary_10_1371_journal_pone_0242301
crossref_primary_10_1007_s12021_016_9312_y
crossref_primary_10_1002_hbm_20780
crossref_primary_10_1109_TMI_2024_3389776
crossref_primary_10_1016_j_neuroimage_2022_119649
crossref_primary_10_1118_1_2012967
crossref_primary_10_1118_1_2842076
crossref_primary_10_1186_s13014_021_01946_8
crossref_primary_10_1016_j_compbiomed_2015_01_013
crossref_primary_10_1118_1_4948999
crossref_primary_10_1259_bjr_20180948
crossref_primary_10_1016_j_radonc_2019_11_026
crossref_primary_10_1109_TRPMS_2018_2883437
crossref_primary_10_1007_s10115_023_02047_6
crossref_primary_10_1016_j_ijrobp_2018_03_010
crossref_primary_10_1055_a_2562_2163
crossref_primary_10_1016_j_media_2018_07_009
crossref_primary_10_3109_0284186X_2015_1062541
crossref_primary_10_1016_j_jmir_2025_101980
crossref_primary_10_1002_jum_16007
crossref_primary_10_1007_s00034_019_01088_z
crossref_primary_10_1016_j_radonc_2014_01_026
crossref_primary_10_1007_s11548_012_0695_4
crossref_primary_10_1016_j_neuroimage_2011_09_012
crossref_primary_10_1016_j_neuroimage_2014_07_001
crossref_primary_10_7759_cureus_49614
crossref_primary_10_3390_jimaging10010027
crossref_primary_10_1007_s10346_022_01983_8
crossref_primary_10_1016_j_nicl_2018_08_005
crossref_primary_10_1088_0031_9155_61_3_1136
crossref_primary_10_1109_TMI_2009_2038693
crossref_primary_10_1016_j_media_2015_09_005
crossref_primary_10_1016_j_crad_2019_04_002
crossref_primary_10_1016_j_ctro_2025_101051
crossref_primary_10_1120_jacmp_v17i2_5889
crossref_primary_10_1016_j_cmpb_2021_106197
crossref_primary_10_3390_diagnostics11112062
crossref_primary_10_1002_mp_14308
crossref_primary_10_1109_TBME_2016_2633277
crossref_primary_10_1109_TIP_2016_2538468
crossref_primary_10_1016_j_radonc_2019_11_004
crossref_primary_10_1016_j_cmpb_2016_04_017
crossref_primary_10_7785_tcrt_2012_500347
crossref_primary_10_1016_j_engappai_2024_108050
crossref_primary_10_1088_0031_9155_61_17_6502
crossref_primary_10_1109_JBHI_2022_3230060
crossref_primary_10_1007_s11042_019_08606_w
crossref_primary_10_1371_journal_pone_0216487
crossref_primary_10_1016_j_artmed_2016_09_001
crossref_primary_10_1371_journal_pone_0061737
crossref_primary_10_1038_s41598_025_05744_0
crossref_primary_10_1109_TGRS_2016_2593982
crossref_primary_10_1016_j_cmpb_2012_12_006
crossref_primary_10_1109_TMI_2012_2197406
crossref_primary_10_1016_j_neuroimage_2016_11_017
crossref_primary_10_1080_0284186X_2018_1529421
crossref_primary_10_1088_1361_6560_aa5ed9
crossref_primary_10_1016_j_jbiomech_2022_111074
crossref_primary_10_1016_j_ijrobp_2013_01_032
crossref_primary_10_1016_j_patrec_2014_11_005
crossref_primary_10_1118_1_4899182
crossref_primary_10_1002_mp_12124
crossref_primary_10_1016_j_ejrad_2023_110893
crossref_primary_10_3390_jimaging9060123
crossref_primary_10_1016_j_mri_2021_03_014
crossref_primary_10_1117_1_JBO_24_4_046005
crossref_primary_10_3390_cancers13153795
crossref_primary_10_1088_0031_9155_58_5_1605
crossref_primary_10_1111_vru_13262
crossref_primary_10_1016_j_radonc_2016_04_028
crossref_primary_10_1016_j_media_2020_101887
crossref_primary_10_3389_fonc_2022_945053
crossref_primary_10_1016_j_neurobiolaging_2014_05_028
crossref_primary_10_1109_TMI_2009_2014459
crossref_primary_10_1186_s12983_015_0127_8
crossref_primary_10_1016_j_media_2024_103301
crossref_primary_10_1016_j_radonc_2012_12_017
crossref_primary_10_1186_s13244_023_01502_w
crossref_primary_10_1016_j_neuroimage_2016_12_064
crossref_primary_10_1088_1361_6560_ad6743
crossref_primary_10_1016_j_jneumeth_2015_08_006
crossref_primary_10_1088_1361_6560_aacb65
crossref_primary_10_1016_j_semcancer_2020_04_002
crossref_primary_10_1109_TMI_2024_3445999
crossref_primary_10_1007_s00259_024_06616_x
crossref_primary_10_1016_j_neuroimage_2017_06_074
crossref_primary_10_1038_s41598_020_64803_w
crossref_primary_10_1016_j_ijom_2022_10_015
crossref_primary_10_1148_radiol_2018181432
crossref_primary_10_1118_1_4932366
crossref_primary_10_1016_j_media_2017_12_007
crossref_primary_10_1148_radiol_2020191740
crossref_primary_10_1002_mp_12535
crossref_primary_10_1016_j_media_2016_04_005
crossref_primary_10_1186_s13048_022_01089_8
crossref_primary_10_1007_s11548_013_0915_6
crossref_primary_10_1016_j_prro_2013_01_002
crossref_primary_10_1111_j_1754_9485_2012_02440_x
crossref_primary_10_1088_2057_1976_ad0bb3
crossref_primary_10_3389_fnint_2019_00024
crossref_primary_10_1186_s40644_015_0047_z
crossref_primary_10_1007_s10334_015_0520_5
crossref_primary_10_1016_j_prro_2017_07_007
crossref_primary_10_3389_fnins_2016_00325
crossref_primary_10_1016_j_bspc_2024_106479
crossref_primary_10_1186_s12885_022_09584_3
crossref_primary_10_3390_jimaging11050170
crossref_primary_10_1088_0031_9155_57_13_4425
crossref_primary_10_1109_TIP_2016_2544703
crossref_primary_10_1016_j_neuroimage_2021_118216
crossref_primary_10_1016_j_jcms_2023_09_003
crossref_primary_10_1007_s10278_020_00367_5
crossref_primary_10_1016_j_ijrobp_2017_10_020
crossref_primary_10_1109_TCYB_2014_2346394
crossref_primary_10_1200_JGO_18_00055
crossref_primary_10_1016_j_ijrobp_2009_09_023
crossref_primary_10_1360_CSB_2025_0501
crossref_primary_10_1016_j_ijrobp_2017_09_047
crossref_primary_10_3390_sci5010013
crossref_primary_10_1259_bjr_20190564
crossref_primary_10_1007_s11682_015_9474_5
crossref_primary_10_1007_s12021_017_9348_7
crossref_primary_10_1203_PDR_0b013e3181b3aec5
crossref_primary_10_1016_j_compmedimag_2012_05_001
crossref_primary_10_1007_s11548_016_1429_9
crossref_primary_10_1371_journal_pone_0124126
crossref_primary_10_1016_j_artmed_2016_08_004
crossref_primary_10_1016_j_radonc_2018_07_013
crossref_primary_10_1118_1_4812428
crossref_primary_10_1016_j_neucom_2024_128531
crossref_primary_10_1016_j_neuroimage_2011_11_043
crossref_primary_10_1109_TMI_2009_2036011
crossref_primary_10_1007_s11548_016_1493_1
crossref_primary_10_1109_TMI_2014_2329603
crossref_primary_10_1016_j_tipsro_2022_12_007
crossref_primary_10_1016_j_artmed_2019_101769
crossref_primary_10_1002_mp_12748
crossref_primary_10_1016_j_ijrobp_2016_02_043
crossref_primary_10_1016_j_cmpb_2025_108882
crossref_primary_10_1002_mp_12511
crossref_primary_10_1016_j_compmedimag_2010_04_002
crossref_primary_10_1002_mrm_28908
crossref_primary_10_1007_s42452_023_05366_z
crossref_primary_10_1007_s00330_018_5695_5
crossref_primary_10_1016_j_eswa_2024_125862
crossref_primary_10_1016_j_neuroimage_2014_06_046
crossref_primary_10_1007_s11548_009_0401_3
crossref_primary_10_1007_s12021_014_9243_4
crossref_primary_10_1002_jmrs_64
crossref_primary_10_1016_j_neuroimage_2010_02_025
crossref_primary_10_1002_jmrs_65
crossref_primary_10_1016_j_media_2023_102789
crossref_primary_10_1016_j_neuroimage_2006_05_061
crossref_primary_10_1016_j_nicl_2013_05_004
crossref_primary_10_1155_2021_3422484
crossref_primary_10_1016_j_cmpb_2011_07_015
crossref_primary_10_1002_acm2_13702
crossref_primary_10_1016_j_media_2016_06_038
crossref_primary_10_1016_j_brainres_2019_146558
crossref_primary_10_1002_mp_13825
crossref_primary_10_3389_fphys_2022_951368
crossref_primary_10_1109_TBME_2013_2288258
crossref_primary_10_1109_TBME_2014_2322776
crossref_primary_10_1016_j_ejmp_2024_103340
crossref_primary_10_3389_fonc_2016_00178
crossref_primary_10_1016_j_patcog_2023_109400
crossref_primary_10_3389_fnins_2019_01254
crossref_primary_10_1007_s10334_018_0718_4
crossref_primary_10_1038_s41598_018_19993_9
crossref_primary_10_1016_j_neuroimage_2016_09_026
crossref_primary_10_1109_JBHI_2023_3311189
crossref_primary_10_1016_j_semradonc_2019_02_001
crossref_primary_10_1118_1_4817475
crossref_primary_10_1002_mp_13854
crossref_primary_10_1146_annurev_bioeng_070909_105235
crossref_primary_10_1002_mp_12531
crossref_primary_10_1109_TVCG_2013_230
crossref_primary_10_1016_j_neuroimage_2017_04_004
crossref_primary_10_1016_j_radonc_2022_01_004
crossref_primary_10_1371_journal_pone_0070059
crossref_primary_10_1016_j_media_2019_03_009
crossref_primary_10_2478_raon_2024_0043
crossref_primary_10_1016_j_ijrobp_2023_10_033
crossref_primary_10_1186_1748_717X_9_173
crossref_primary_10_1016_j_media_2018_08_003
crossref_primary_10_1371_journal_pone_0285683
crossref_primary_10_1016_j_media_2018_08_004
crossref_primary_10_1016_j_compmedimag_2005_12_001
crossref_primary_10_1016_j_media_2018_08_006
crossref_primary_10_1016_j_media_2004_11_005
crossref_primary_10_1088_0031_9155_60_24_9227
crossref_primary_10_1016_j_neuroimage_2015_02_065
crossref_primary_10_1088_0031_9155_60_24_9473
crossref_primary_10_1177_1536012116687651
crossref_primary_10_1016_j_media_2014_01_003
crossref_primary_10_1016_j_ijrobp_2019_12_010
crossref_primary_10_1109_TIP_2019_2952079
crossref_primary_10_1038_srep25007
crossref_primary_10_1007_s00429_018_1735_9
crossref_primary_10_1016_j_compmedimag_2022_102155
crossref_primary_10_1088_2515_7647_ac050e
crossref_primary_10_1038_nn_2868
crossref_primary_10_1088_1361_6560_ab0ea6
crossref_primary_10_1186_s11689_019_9293_x
crossref_primary_10_3390_diagnostics11040616
crossref_primary_10_1016_j_compbiomed_2014_04_014
crossref_primary_10_1109_TMI_2017_2720119
crossref_primary_10_7554_eLife_63455
crossref_primary_10_1186_2191_219X_3_55
crossref_primary_10_1118_1_4864236
crossref_primary_10_1016_j_prro_2013_03_003
crossref_primary_10_1016_j_media_2023_102972
crossref_primary_10_1007_s11548_007_0125_1
crossref_primary_10_1093_bjr_tqad026
crossref_primary_10_3390_app11093733
crossref_primary_10_1007_s13246_012_0136_2
crossref_primary_10_1002_acm2_13507
crossref_primary_10_1118_1_3654160
crossref_primary_10_1109_JBHI_2022_3149114
crossref_primary_10_1109_TMI_2019_2907072
crossref_primary_10_1007_s00259_015_3239_7
crossref_primary_10_1016_j_bspc_2024_106667
crossref_primary_10_1109_TMI_2012_2201737
crossref_primary_10_1007_s00234_011_0992_6
crossref_primary_10_1016_j_neuroimage_2012_05_042
crossref_primary_10_1016_j_media_2021_102183
crossref_primary_10_1259_bjr_20140732
crossref_primary_10_1109_TMI_2004_830803
crossref_primary_10_1016_j_ijrobp_2022_01_050
crossref_primary_10_1016_j_neuroimage_2025_121189
crossref_primary_10_1097_RCT_0000000000001374
crossref_primary_10_1118_1_4921067
crossref_primary_10_3389_fonc_2023_1204323
crossref_primary_10_1016_j_artmed_2019_06_008
crossref_primary_10_1016_j_ijrobp_2021_08_023
crossref_primary_10_1120_jacmp_v16i2_5324
crossref_primary_10_1007_s00066_016_1028_2
crossref_primary_10_1007_s00138_015_0718_6
crossref_primary_10_3389_fncom_2024_1487877
crossref_primary_10_1007_s11831_020_09497_z
crossref_primary_10_1109_TMI_2012_2230018
crossref_primary_10_1016_j_meddos_2019_12_003
crossref_primary_10_1002_acm2_12431
crossref_primary_10_1109_JBHI_2015_2439242
crossref_primary_10_1515_raon_2017_0014
crossref_primary_10_1002_hbm_22092
crossref_primary_10_1118_1_4945021
crossref_primary_10_1002_mp_12720
crossref_primary_10_1016_j_ijrobp_2015_08_045
crossref_primary_10_1016_j_media_2018_09_005
crossref_primary_10_1120_jacmp_v15i4_4468
crossref_primary_10_1016_j_phro_2025_100825
crossref_primary_10_1088_1361_6560_aa94ba
crossref_primary_10_1515_bmt_2023_0148
crossref_primary_10_1007_s11548_023_02968_1
crossref_primary_10_1146_annurev_bioeng_071812_152335
crossref_primary_10_1200_GO_24_00173
crossref_primary_10_1016_j_ejmp_2019_12_001
crossref_primary_10_1109_ACCESS_2025_3539837
Cites_doi 10.1118/1.1414009
10.1148/radiology.218.2.r01fe44586
10.1109/83.350816
10.1007/BFb0056285
10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C
10.1007/3-540-47979-1_3
10.1109/42.811268
10.1111/j.2517-6161.1989.tb01764.x
10.2307/1932409.JSTOR1932409
10.1002/1531-8249(199911)46:5<755::AID-ANA11>3.0.CO;2-0
10.1136/jamia.1996.96236280
10.1007/978-3-540-39903-2_71
10.1016/0895-4356(94)00099-C
10.1007/978-3-540-39899-8_70
10.1109/34.273716
10.1111/j.2517-6161.1986.tb01412.x
10.1007/BFb0056228
10.1002/uog.122
10.1162/neco.1991.3.1.79
10.1111/j.1469-8137.1912.tb05611.x
10.1007/BFb0056231
10.1007/s100440050029
10.1111/j.2517-6161.1977.tb01600.x
10.1109/42.845174
10.1148/radiology.171.1.2928539
10.1002/9780470191613
10.1148/radiology.216.1.r00jl41291
10.1109/34.667881
10.1002/ana.410430213
10.1007/3-540-45468-3_62
10.1109/TPAMI.2003.1182097
10.1007/BF02980577
10.1002/jmri.1880020603
10.1109/34.134040
10.1002/sim.1723
10.1002/(SICI)1522-2586(200005)11:5<525::AID-JMRI8>3.0.CO;2-2
10.1111/j.2517-6161.1974.tb00999.x
10.1002/hbm.460030303
10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
10.1145/321694.321699
10.1007/3-540-45786-0_37
10.1007/978-3-540-40899-4_43
10.1109/IJCNN.1993.716791
10.1109/42.363096
10.1007/978-3-540-45087-0_18
10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B
10.1109/42.712135
10.1109/42.906424
10.1007/3-540-45468-3_110
10.1542/peds.107.2.217
10.1006/nimg.1997.0274
10.1016/S1361-8415(00)00003-7
10.1109/TPAMI.2003.1233908
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2004.828354
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Engineering Research Database
Engineering Research Database

Materials Research Database
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-254X
EndPage 921
ExternalDocumentID PMC1283110
2427432041
15250643
10_1109_TMI_2004_828354
1309714
Genre orig-research
Validation Study
Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA067165
– fundername: NCRR NIH HHS
  grantid: P41 RR13218
– fundername: NCI NIH HHS
  grantid: R01 CA086879
– fundername: NINDS NIH HHS
  grantid: R01 NS35142
– fundername: NCI NIH HHS
  grantid: R33 CA99015
– fundername: NCRR NIH HHS
  grantid: P41 RR013218
– fundername: NIMH NIH HHS
  grantid: R21 MH67054
– fundername: NIMH NIH HHS
  grantid: R21 MH067054
– fundername: NIA NIH HHS
  grantid: R01 AG19513
– fundername: NINDS NIH HHS
  grantid: R01 NS035142
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c596t-7ddc317f702a4c6872fed94c8a76420fc8abf36a610bd585a0c6e4d093082cb23
IEDL.DBID RIE
ISICitedReferencesCount 1603
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000222428100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
IngestDate Tue Sep 30 16:56:13 EDT 2025
Tue Oct 07 09:24:01 EDT 2025
Wed Oct 01 14:29:13 EDT 2025
Sun Nov 09 14:25:22 EST 2025
Mon Oct 06 18:32:33 EDT 2025
Sun Jun 29 15:47:08 EDT 2025
Thu Apr 03 07:00:01 EDT 2025
Sat Nov 29 08:01:51 EST 2025
Tue Nov 18 22:21:57 EST 2025
Tue Aug 26 16:39:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-7ddc317f702a4c6872fed94c8a76420fc8abf36a610bd585a0c6e4d093082cb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://doi.org/10.1109/TMI.2004.828354
PMID 15250643
PQID 883910096
PQPubID 23462
PageCount 19
ParticipantIDs crossref_primary_10_1109_TMI_2004_828354
pubmed_primary_15250643
proquest_miscellaneous_66704647
ieee_primary_1309714
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1283110
proquest_miscellaneous_28621022
proquest_miscellaneous_17287155
proquest_journals_883910096
proquest_miscellaneous_883044302
crossref_citationtrail_10_1109_TMI_2004_828354
PublicationCentury 2000
PublicationDate 2004-07-01
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: 2004-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2004
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
Kapur (ref47) 1999
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref43
ref49
Collins (ref37) 1994
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref36
ref31
Rexilius (ref35) 2001
ref32
ref2
ref39
ref38
Sv (ref30); 3981
Fennema-Notestine (ref60) 2003. [Online]
Elfadel (ref44) 1993
ref24
ref23
Nicoll (ref1) 2001
ref25
ref20
ref22
ref21
Melville (ref26); AAAI-2002
ref28
ref27
ref29
Warfield (ref33)
ref62
ref61
References_xml – ident: ref52
  doi: 10.1118/1.1414009
– volume-title: From fields to networks
  year: 1993
  ident: ref44
– ident: ref53
  doi: 10.1148/radiology.218.2.r01fe44586
– volume-title: (2003) Bias correction, pulse sequence, and neurodegeneration influence performance of automated skull-stripping methods. Program 863.23. 2003 Abstract Viewer/Itinerary Planner
  year: 2003. [Online]
  ident: ref60
– volume: AAAI-2002
  start-page: 187
  volume-title: Proc. 18th Nat. Conf. Artificial Intelligence
  ident: ref26
  article-title: Content-boosted collaborative filtering for improved recommendations
– ident: ref48
  doi: 10.1109/83.350816
– ident: ref14
  doi: 10.1007/BFb0056285
– ident: ref18
  doi: 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C
– ident: ref10
  doi: 10.1007/3-540-47979-1_3
– ident: ref40
  doi: 10.1109/42.811268
– ident: ref42
  doi: 10.1111/j.2517-6161.1989.tb01764.x
– ident: ref11
  doi: 10.2307/1932409.JSTOR1932409
– ident: ref57
  doi: 10.1002/1531-8249(199911)46:5<755::AID-ANA11>3.0.CO;2-0
– ident: ref4
  doi: 10.1136/jamia.1996.96236280
– volume-title: Physics-Based Nonrigid Registration for Medical Image Analysis
  year: 2001
  ident: ref35
– ident: ref62
  doi: 10.1007/978-3-540-39903-2_71
– ident: ref27
  doi: 10.1016/0895-4356(94)00099-C
– ident: ref59
  doi: 10.1007/978-3-540-39899-8_70
– ident: ref21
  doi: 10.1109/34.273716
– ident: ref45
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– ident: ref55
  doi: 10.1007/BFb0056228
– ident: ref8
  doi: 10.1002/uog.122
– ident: ref24
  doi: 10.1162/neco.1991.3.1.79
– ident: ref12
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: ref39
  doi: 10.1007/BFb0056231
– ident: ref20
  doi: 10.1007/s100440050029
– ident: ref31
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref2
  doi: 10.1109/42.845174
– ident: ref9
  doi: 10.1148/radiology.171.1.2928539
– ident: ref32
  doi: 10.1002/9780470191613
– ident: ref13
  doi: 10.1148/radiology.216.1.r00jl41291
– ident: ref22
  doi: 10.1109/34.667881
– ident: ref56
  doi: 10.1002/ana.410430213
– ident: ref16
  doi: 10.1007/3-540-45468-3_62
– ident: ref23
  doi: 10.1109/TPAMI.2003.1182097
– ident: ref38
  doi: 10.1007/BF02980577
– ident: ref19
  doi: 10.1002/jmri.1880020603
– ident: ref49
  doi: 10.1109/34.134040
– volume-title: Model-based three-dimensional medical image segmentation
  year: 1999
  ident: ref47
– ident: ref15
  doi: 10.1002/sim.1723
– ident: ref7
  doi: 10.1002/(SICI)1522-2586(200005)11:5<525::AID-JMRI8>3.0.CO;2-2
– ident: ref46
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– start-page: 1494:1
  volume-title: Proc. Int. Symp. Biomedical Imaging: Macro to Nano
  ident: ref33
  article-title: Simultaneous validation of image segmentation and assessment of expert quality
– ident: ref36
  doi: 10.1002/hbm.460030303
– ident: ref28
  doi: 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
– ident: ref50
  doi: 10.1145/321694.321699
– ident: ref34
  doi: 10.1007/3-540-45786-0_37
– ident: ref5
  doi: 10.1007/978-3-540-40899-4_43
– ident: ref25
  doi: 10.1109/IJCNN.1993.716791
– ident: ref17
  doi: 10.1109/42.363096
– ident: ref61
  doi: 10.1007/978-3-540-45087-0_18
– volume: 3981
  start-page: 126
  volume-title: Proc. SPIE
  ident: ref30
  article-title: On the problem of ROC analysis without truth: The EM algorithm and the information matrix
– ident: ref29
  doi: 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B
– ident: ref3
  doi: 10.1109/42.712135
– ident: ref41
  doi: 10.1109/42.906424
– ident: ref51
  doi: 10.1007/3-540-45468-3_110
– start-page: 1
  volume-title: Basic Principles of Diagnostic Test Use and Interpretation
  year: 2001
  ident: ref1
– ident: ref58
  doi: 10.1542/peds.107.2.217
– ident: ref6
  doi: 10.1006/nimg.1997.0274
– ident: ref54
  doi: 10.1016/S1361-8415(00)00003-7
– volume-title: 3D Model-based segmentation of individual brain structures from magnetic resonance imaging data
  year: 1994
  ident: ref37
– ident: ref43
  doi: 10.1109/TPAMI.2003.1233908
SSID ssj0014509
Score 2.4249198
Snippet Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation...
The probabilistic estimate of the true segmentation is formed by estimating an optimal combination - - of the segmentations, weighting each segmentation...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 903
SubjectTerms Algorithms
Artificial intelligence
Automation
Biomedical imaging
Brain - anatomy & histology
Computer science
Decision Making, Computer-Assisted
Hospitals
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Imaging phantoms
Infant, Newborn
Magnetic Resonance Imaging - methods
Markov Chains
Models, Statistical
Observer Variation
Pathology
Performance analysis
Phantoms, Imaging
Radiology
Reproducibility of Results
Sensitivity and Specificity
Studies
Title Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
URI https://ieeexplore.ieee.org/document/1309714
https://www.ncbi.nlm.nih.gov/pubmed/15250643
https://www.proquest.com/docview/883910096
https://www.proquest.com/docview/17287155
https://www.proquest.com/docview/28621022
https://www.proquest.com/docview/66704647
https://www.proquest.com/docview/883044302
https://pubmed.ncbi.nlm.nih.gov/PMC1283110
Volume 23
WOSCitedRecordID wos000222428100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbGhBA8MOgYhMHwAw9Dop2TuHbC24Q2gcSmSStS3yLHdtpIXTI1Kb-fu9hNV7Q-8BYp58jJ3SV3ubvvI-RzmBg-1uBpQsliyGMDPpfkyVAxW0Sx5oVWqiObkNfXyXSa3uyRr_0sjLW2az6zIzzsavmm1iv8VXYG79tUImv1EymFm9XqKwZ87No5IkSMZSLyMD4hS88mVz-7RHCUILiYZ-JBoLZ462PUsas8Fmj-2y_54AN0efB_W39FXvpAk547y3hN9mw1IAdrEgfqfXpAXjxAJByQZ1e-1n5ImtsSuw1VZetVQ9vlqp1TVRl6vxk1oAtsOaII1OEmIOnp7eT85tfFl28gStViVi_Ldn5HYQGFSJOCWZeOxInWBYVFM0sbO7vzA1DVG_L78mLy_cfQUzQM9TgV7VAaoyECKSSLFNcikVFhTcp1oiQkNqyAg7yIhYIgLTeQmSimheWGpYiSo_MoPiL7VV3Zd4SO89jAwpxzrnka56ksECxMilCpPDQyIKO1rjLt8cuRRmORdXkMSzPQM7Jq8szpOSCn_YJ7B92xW_QQVbYRc9oKyPHaGDLv2k2WQEgZYuYXkE_9WfBJLLQ4lWTI-SUhUNstEUEiibn2bgkhJFad4bbpDgnYCOM8ZnCRt84-N_v39h0QuWW5vQCCim-fqcp5By4O8UoMj-j940_kmDx3rUvYr_yB7IPx2Y_kqf7Tls3yBPxympx0fvkXzWs1VQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5tAEB5FadXHoWmdPty0zR56SKXi8Fiz0FtUJUpU24oUV8oNLbuLjeRAZHB_f2dgjeMqPvSGxCxamBmYYWa-D-CrF2k-VOhpoRSZwwONPhelkSNdk_mB4pmSsiGbEJNJdHsbX-_B924WxhjTNJ-ZAR02tXxdqhX9KjvF920siLX6CTFn2WmtrmbAh21Dh0-YsW7oWyAfz41Pp-OrJhUcRAQvZrl4CKot2PocNfwqj4Wa_3ZMPvgEXRz83-ZfwysbarKz1jbewJ4penCwpnFg1qt78PIBJmEPno1ttf0Qqpuc-g1lYcpVxerlqp4zWWh2vxk2YAtqOmIE1dHOQLKTm-nZ9ej82w8UZXIxK5d5Pb9juIBhrMnQsPOWxomVGcNFM8MqM7uzI1DFW_h9cT79eelYkgZHDeOwdoTWCmOQTLi-5CqMhJ8ZHXMVSYGpjZvhQZoFocQwLdWYm0hXhYZrNyacHJX6wTvYL8rCfAA2TAONC1POueJxkMYiI7gwEXpSpp4WfRisdZUoi2BORBqLpMlk3DhBPROvJk9aPffhpFtw34J37BY9JJVtxFpt9eFobQyJde4qiTCo9Cj368Nxdxa9kkotrUoSYv0SGKrtlvAxlaRse7dEGAqqO-Ntsx0SuBGX88DFi7xv7XOzf2vffRBbltsJEKz49pkinzfw4hixBPiIPj7-RI7h-eV0PEpGV5NfR_CibWSi7uVPsI-GaD7DU_Wnzqvll8Y7_wK0mDe2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+truth+and+performance+level+estimation+%28STAPLE%29%3A+an+algorithm+for+the+validation+of+image+segmentation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Warfield%2C+S.K.&rft.au=Zou%2C+K.H.&rft.au=Wells%2C+W.M.&rft.date=2004-07-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=23&rft.issue=7&rft.spage=903&rft.epage=921&rft_id=info:doi/10.1109%2FTMI.2004.828354&rft_id=info%3Apmid%2F15250643&rft.externalDocID=1309714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon