Class prediction for high-dimensional class-imbalanced data

Background The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 11; číslo 1; s. 523
Hlavní autoři: Blagus, Rok, Lusa, Lara
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 20.10.2010
Springer Nature B.V
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance. Results Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers. Conclusions Our results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class-imbalanced data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should always use an appropriate method for dealing with the class imbalance problem.
AbstractList Abstract Background: The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance. Results: Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers. Conclusions: Our results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class-imbalanced data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should always use an appropriate method for dealing with the class imbalance problem.
The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance.BACKGROUNDThe goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance.Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers.RESULTSOur results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers.Our results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class-imbalanced data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should always use an appropriate method for dealing with the class imbalance problem.CONCLUSIONSOur results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class-imbalanced data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should always use an appropriate method for dealing with the class imbalance problem.
The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance. Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers. Our results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class-imbalanced data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should always use an appropriate method for dealing with the class imbalance problem.
Background The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance. Results Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers. Conclusions Our results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class-imbalanced data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should always use an appropriate method for dealing with the class imbalance problem.
ArticleNumber 523
Author Blagus, Rok
Lusa, Lara
AuthorAffiliation 1 Institute for Biostatistics and Medical Informatics, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
AuthorAffiliation_xml – name: 1 Institute for Biostatistics and Medical Informatics, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
Author_xml – sequence: 1
  givenname: Rok
  surname: Blagus
  fullname: Blagus, Rok
  organization: Institute for Biostatistics and Medical Informatics, University of Ljubljana
– sequence: 2
  givenname: Lara
  surname: Lusa
  fullname: Lusa, Lara
  email: lara.lusa@mf.uni-lj.si
  organization: Institute for Biostatistics and Medical Informatics, University of Ljubljana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20961420$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhUVJaB7tvqtiuunKjSRLlkyhUIY-AoFu2rW4enhGg21NJU-g_77XnSRNAslK0tV3Dlf36IwcTWkKhLxh9ANjur1gQrGaMyprxmrJmxfk9K50dG9_Qs5K2VLKlKbyJTnhtGuZ4PSUfFwNUEq1y8FHN8c0VX3K1SauN7WPY5gKlmCo3ELVcbQwwOSCrzzM8Ioc9zCU8PpmPSe_vn75ufpeX_34drn6fFU72bVzzYXUohUOmGu90yooYVttrWKy6ZvQCEu5Z33ve9fLRlvtBLW8FSCsk0La5pxcHnx9gq3Z5ThC_mMSRPOvkPLaQJ6jG4JhvreaSQWoF1LZjnInLFigjeg44-j16eC129sxeBemOcPwwPThzRQ3Zp2uTUM7TbVCg_c3Bjn93ocymzEWFwacS0j7YhDC9ypKkXz3iNymfcZpFtNRTK_DPBB6e7-fu0ZuE0KgPQAup1Jy6I2LMyxJYXtxMIya5SuYJWuzZI1Hg18BhfSR8Nb7GQk7SAqi0zrk_x0_qfkL0DXC2g
CitedBy_id crossref_primary_10_1186_s13321_020_00420_z
crossref_primary_10_1016_j_inffus_2024_102874
crossref_primary_10_1016_j_chemolab_2019_103906
crossref_primary_10_1016_j_eswa_2017_06_026
crossref_primary_10_1038_s41598_024_61334_6
crossref_primary_10_1186_1471_2105_14_119
crossref_primary_10_1016_j_compmedimag_2013_12_003
crossref_primary_10_2217_bmm_15_20
crossref_primary_10_3390_info12070266
crossref_primary_10_1007_s42979_020_0085_x
crossref_primary_10_2196_28856
crossref_primary_10_3390_app10238324
crossref_primary_10_3758_s13428_023_02301_3
crossref_primary_10_1016_j_polymdegradstab_2013_12_035
crossref_primary_10_1016_j_rcsop_2023_100307
crossref_primary_10_1186_s12859_020_3411_3
crossref_primary_10_1016_j_eswa_2019_06_014
crossref_primary_10_1186_1471_2105_15_S5_S4
crossref_primary_10_1109_TCYB_2013_2257480
crossref_primary_10_1007_s11548_013_0913_8
crossref_primary_10_3390_metabo10070299
crossref_primary_10_3390_s23187946
crossref_primary_10_1007_s11548_020_02260_6
crossref_primary_10_1007_s12553_019_00375_8
crossref_primary_10_3390_genes11070717
crossref_primary_10_1016_j_patcog_2019_01_047
crossref_primary_10_1007_s00500_014_1484_5
crossref_primary_10_1093_nar_gkaa1161
crossref_primary_10_1049_iet_sen_2018_5193
crossref_primary_10_1016_j_chemolab_2017_11_009
crossref_primary_10_1016_j_rse_2011_05_013
crossref_primary_10_1080_01431161_2018_1433343
crossref_primary_10_3390_rs11121409
crossref_primary_10_1016_j_knosys_2014_01_021
crossref_primary_10_1016_j_asoc_2018_02_051
crossref_primary_10_1088_2057_1976_ad9157
crossref_primary_10_1080_14767058_2023_2254891
crossref_primary_10_1111_1755_0998_12773
crossref_primary_10_1061__ASCE_NH_1527_6996_0000493
crossref_primary_10_3390_metabo13020301
crossref_primary_10_1007_s10791_025_09576_4
crossref_primary_10_1016_j_engstruct_2022_114126
crossref_primary_10_1016_j_ins_2016_09_038
crossref_primary_10_1371_journal_pone_0280399
crossref_primary_10_1152_jn_00521_2017
crossref_primary_10_1007_s12665_021_09536_3
crossref_primary_10_1186_1471_2164_13_630
crossref_primary_10_3390_rs14153666
crossref_primary_10_1016_j_compbiolchem_2019_03_017
crossref_primary_10_1016_j_trc_2018_09_020
crossref_primary_10_1007_s11693_015_9162_1
crossref_primary_10_1016_j_knosys_2015_05_027
crossref_primary_10_1080_2150704X_2017_1362124
crossref_primary_10_1016_j_eswa_2021_116437
crossref_primary_10_1080_14740338_2017_1325463
crossref_primary_10_1155_2013_239628
crossref_primary_10_1016_j_asoc_2018_12_024
crossref_primary_10_20965_jdr_2017_p0646
crossref_primary_10_1080_21681015_2016_1268216
crossref_primary_10_1016_j_ipm_2024_103972
crossref_primary_10_1186_s12874_021_01374_y
crossref_primary_10_3389_fphar_2025_1546878
crossref_primary_10_1016_j_ecolind_2019_106037
crossref_primary_10_1016_j_tplants_2014_08_004
crossref_primary_10_1038_s41540_019_0099_y
crossref_primary_10_1016_j_engappai_2022_104828
crossref_primary_10_1088_1742_6596_1878_1_012054
crossref_primary_10_1042_BSR20203859
crossref_primary_10_1002_ima_22615
crossref_primary_10_1109_TCBB_2014_2306838
crossref_primary_10_1111_ppa_13988
crossref_primary_10_1186_1471_2164_13_170
crossref_primary_10_1109_TCE_2021_3129316
crossref_primary_10_1016_j_csda_2016_07_016
crossref_primary_10_1038_s41598_021_95128_x
crossref_primary_10_1186_s12859_017_1602_3
crossref_primary_10_3390_diagnostics12123138
crossref_primary_10_1186_s12859_015_0723_9
crossref_primary_10_1093_bib_bbs026
crossref_primary_10_1016_j_neucom_2011_03_054
crossref_primary_10_1088_1741_2552_ab9986
crossref_primary_10_1093_bib_bbw107
crossref_primary_10_1016_j_neucom_2012_11_056
crossref_primary_10_7717_peerj_cs_832
crossref_primary_10_1080_03610918_2022_2049820
crossref_primary_10_1186_s12859_024_05677_x
crossref_primary_10_1007_s12038_019_9909_z
crossref_primary_10_1007_s11764_023_01465_3
crossref_primary_10_1016_j_eswa_2016_12_035
crossref_primary_10_1016_j_neucom_2016_05_111
crossref_primary_10_2147_RMHP_S442138
crossref_primary_10_1007_s12652_021_03256_z
crossref_primary_10_1155_2014_957107
crossref_primary_10_1186_s12911_017_0522_5
crossref_primary_10_1016_j_xops_2024_100699
crossref_primary_10_1038_s41398_022_01938_6
crossref_primary_10_1016_j_euroneuro_2024_08_005
crossref_primary_10_1007_s13748_017_0136_2
crossref_primary_10_1093_jat_bkab098
crossref_primary_10_1186_1471_2105_14_106
crossref_primary_10_1016_j_geomorph_2014_04_006
crossref_primary_10_1007_s10844_017_0446_7
crossref_primary_10_1016_j_ecoinf_2019_01_008
crossref_primary_10_3390_info12080286
crossref_primary_10_1007_s42979_020_00210_2
crossref_primary_10_1002_widm_1072
crossref_primary_10_1093_bib_bbs006
crossref_primary_10_3233_JIFS_190821
crossref_primary_10_1007_s00521_024_09713_y
crossref_primary_10_1016_j_ins_2019_07_070
crossref_primary_10_1016_j_compbiomed_2021_104644
crossref_primary_10_1093_bfgp_elad031
crossref_primary_10_1371_journal_pone_0021681
crossref_primary_10_3390_rs15051208
crossref_primary_10_1016_j_ophtha_2021_01_019
crossref_primary_10_3390_rs8020161
crossref_primary_10_1109_TGRS_2025_3574343
crossref_primary_10_1186_1758_2946_4_16
crossref_primary_10_3390_cancers15010140
crossref_primary_10_1186_s12859_017_1578_z
crossref_primary_10_1186_s12864_019_6413_7
crossref_primary_10_1038_s41467_024_45198_y
crossref_primary_10_1016_j_ecoinf_2023_102155
crossref_primary_10_32604_cmc_2023_036025
crossref_primary_10_1080_00071668_2017_1379051
crossref_primary_10_1109_ACCESS_2021_3105000
crossref_primary_10_1186_1752_0509_9_S5_S1
crossref_primary_10_1186_1471_2105_14_64
Cites_doi 10.1109/TSMCB.2008.2007853
10.1056/NEJMe068292
10.1198/016214502753479248
10.1038/ng1307
10.1023/A:1010933404324
10.1186/1471-2105-9-S6-S7
10.1093/biostatistics/kxg046
10.1016/j.csda.2006.12.043
10.2174/1386207013330733
10.1016/S0140-6736(03)12775-4
10.1038/4462
10.1186/1471-2105-7-228
10.1145/1007730.1007735
10.1109/TPAMI.2006.134
10.1200/JCO.2006.06.1879
10.1109/TKDE.2008.239
10.1038/ng1060
10.1093/bioinformatics/16.10.906
10.1093/bioinformatics/btm344
10.1093/jnci/djm216
10.1038/ng1547
10.1093/oso/9780198509844.001.0001
10.1201/9780203011232
10.1016/S0140-6736(05)17866-0
10.1073/pnas.1732912100
10.1093/bioinformatics/btn583
10.1073/pnas.082099299
10.1186/1471-2105-6-68
10.1038/nature03702
10.2165/00822942-200504030-00004
10.1073/pnas.97.1.262
10.1038/nm0102-68
10.1007/978-1-4757-3462-1
10.3233/IDA-2002-6504
ContentType Journal Article
Copyright Blagus and Lusa; licensee BioMed Central Ltd. 2010
2010 Blagus and Lusa; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Blagus and Lusa; licensee BioMed Central Ltd. 2010 Blagus and Lusa; licensee BioMed Central Ltd.
Copyright_xml – notice: Blagus and Lusa; licensee BioMed Central Ltd. 2010
– notice: 2010 Blagus and Lusa; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Blagus and Lusa; licensee BioMed Central Ltd. 2010 Blagus and Lusa; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/1471-2105-11-523
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 523
ExternalDocumentID oai_doaj_org_article_1dfb8157a264457b902c4baba0349212
PMC3098087
2501710671
20961420
10_1186_1471_2105_11_523
Genre Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c596t-2458464ca1c6dc87e74b68bb7153f3e34b02d1ffdfcf538b8c40b264a4bc545b3
IEDL.DBID DOA
ISICitedReferencesCount 181
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284532400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:25:54 EST 2025
Tue Nov 04 02:02:33 EST 2025
Mon Nov 24 07:41:54 EST 2025
Mon Oct 06 18:17:52 EDT 2025
Wed Feb 19 01:47:46 EST 2025
Sat Nov 29 05:39:50 EST 2025
Tue Nov 18 22:25:26 EST 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Classification Rule
Variable Selection
Predictive Accuracy
Minority Class
Class Imbalance
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-2458464ca1c6dc87e74b68bb7153f3e34b02d1ffdfcf538b8c40b264a4bc545b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/1dfb8157a264457b902c4baba0349212
PMID 20961420
PQID 901869001
PQPubID 44065
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1dfb8157a264457b902c4baba0349212
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098087
proquest_miscellaneous_808458700
proquest_journals_901869001
pubmed_primary_20961420
crossref_citationtrail_10_1186_1471_2105_11_523
crossref_primary_10_1186_1471_2105_11_523
springer_journals_10_1186_1471_2105_11_523
PublicationCentury 2000
PublicationDate 2010-10-20
PublicationDateYYYYMMDD 2010-10-20
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References KL Gunderson (4106_CR4) 2005; 37
J Massague (4106_CR5) 2007; 356
L Breiman (4106_CR39) 2001; 45
D Tao (4106_CR24) 2006; 28
S Michiels (4106_CR43) 2005; 365
TP Speed (4106_CR11) 2003
C Sotiriou (4106_CR28) 2003; 100
N Japkowicz (4106_CR18) 2002; 6
HH Meng (4106_CR23) 2008
N Japkowicz (4106_CR31) 2000
E Fix Jr (4106_CR38) 1951
K Yang (4106_CR21) 2006; 7
MS Pepe (4106_CR29) 2003
L Lusa (4106_CR30) 2007; 99
MA Shipp (4106_CR16) 2002; 8
GEAPA Batista (4106_CR45) 2004; 6
J Wu (4106_CR9) 2009; 25
Y Saeys (4106_CR13) 2007; 23
H He (4106_CR19) 2009; 21
J Zhu (4106_CR42) 2004; 5
XY Liu (4106_CR32) 2009; 39
AS Ishkanian (4106_CR3) 2004; 36
R Tibshirani (4106_CR41) 2002; 99
S Ramaswamy (4106_CR15) 2003; 33
C Cortes (4106_CR40) 1995; 20
RM Simon (4106_CR12) 2004
S Dudoit (4106_CR14) 2002; 97
TS Furey (4106_CR20) 2000; 16
H Ahn (4106_CR25) 2007; 51
A Oberthuer (4106_CR7) 2006; 24
A Al-Shahib (4106_CR26) 2005; 4
Y Freund (4106_CR34) 1996
NV Chawla (4106_CR44) 2002; 16
R Development Core Team (4106_CR37) 2008
J Lu (4106_CR2) 2005; 435
L Li (4106_CR6) 2001; 4
T Hastie (4106_CR35) 2003
P Brown (4106_CR1) 1999; 21
MP Brown (4106_CR10) 2000; 97
N Iizuka (4106_CR17) 2003; 361
GZ Li (4106_CR27) 2008; 9
Y Freund (4106_CR33) 1995
I Levner (4106_CR22) 2005; 6
F Harrell (4106_CR36) 2001
PJ Tan (4106_CR8) 2007
16792098 - IEEE Trans Pattern Anal Mach Intell. 2006 Jul;28(7):1088-99
14981516 - Nat Genet. 2004 Mar;36(3):299-303
11120680 - Bioinformatics. 2000 Oct;16(10):906-14
15208204 - Biostatistics. 2004 Jul;5(3):427-43
19095540 - IEEE Trans Syst Man Cybern B Cybern. 2009 Apr;39(2):539-50
12917485 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8
16231961 - Appl Bioinformatics. 2005;4(3):195-203
18000217 - J Natl Cancer Inst. 2007 Nov 21;99(22):1715-23
12469122 - Nat Genet. 2003 Jan;33(1):49-54
11894805 - Comb Chem High Throughput Screen. 2001 Dec;4(8):727-39
12011421 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):6567-72
16643657 - BMC Bioinformatics. 2006;7:228
15944708 - Nature. 2005 Jun 9;435(7043):834-8
17075126 - J Clin Oncol. 2006 Nov 1;24(31):5070-8
15705458 - Lancet. 2005 Feb 5-11;365(9458):488-92
12648972 - Lancet. 2003 Mar 15;361(9361):923-9
17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17
15838508 - Nat Genet. 2005 May;37(5):549-54
11786909 - Nat Med. 2002 Jan;8(1):68-74
9915498 - Nat Genet. 1999 Jan;21(1 Suppl):33-7
15788095 - BMC Bioinformatics. 2005;6:68
19008251 - Bioinformatics. 2009 Jan 1;25(1):30-5
17229957 - N Engl J Med. 2007 Jan 18;356(3):294-7
18541060 - BMC Bioinformatics. 2008;9 Suppl 6:S7
10618406 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):262-7
References_xml – volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 4106_CR32
  publication-title: Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
  doi: 10.1109/TSMCB.2008.2007853
– volume: 356
  start-page: 294
  issue: 3
  year: 2007
  ident: 4106_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMe068292
– volume-title: Design and Analysis of DNA Microarray Investigations
  year: 2004
  ident: 4106_CR12
– volume: 97
  start-page: 77
  issue: 457
  year: 2002
  ident: 4106_CR14
  publication-title: J Amer Statistical Assoc
  doi: 10.1198/016214502753479248
– volume: 36
  start-page: 299
  issue: 3
  year: 2004
  ident: 4106_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng1307
– volume: 45
  start-page: 5
  year: 2001
  ident: 4106_CR39
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: S7
  issue: Suppl 6
  year: 2008
  ident: 4106_CR27
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S6-S7
– volume: 5
  start-page: 427
  issue: 3
  year: 2004
  ident: 4106_CR42
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxg046
– volume: 51
  start-page: 6166
  issue: 12
  year: 2007
  ident: 4106_CR25
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2006.12.043
– volume: 4
  start-page: 727
  year: 2001
  ident: 4106_CR6
  publication-title: Comb Chem High Throughput Screen
  doi: 10.2174/1386207013330733
– volume: 361
  start-page: 923
  issue: 9361
  year: 2003
  ident: 4106_CR17
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(03)12775-4
– volume: 21
  start-page: 33
  issue: Suppl 1
  year: 1999
  ident: 4106_CR1
  publication-title: Nat Genet
  doi: 10.1038/4462
– start-page: 23
  volume-title: A decision-theoretic generalization of on-line learning and an application to boosting
  year: 1995
  ident: 4106_CR33
– start-page: 136
  volume-title: LNOR 9: The Second International Symposium on Optimization and Systems Biology (OSB'08)
  year: 2008
  ident: 4106_CR23
– volume: 7
  start-page: 228
  year: 2006
  ident: 4106_CR21
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-228
– start-page: 589
  volume-title: Proceedings of the 20th Australian joint conference on Advances in artificial intelligence Volume 4830 of Lecture Notes in Computer Science
  year: 2007
  ident: 4106_CR8
– volume: 6
  start-page: 20
  year: 2004
  ident: 4106_CR45
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/1007730.1007735
– volume: 28
  start-page: 1088
  issue: 7
  year: 2006
  ident: 4106_CR24
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.134
– volume: 24
  start-page: 5070
  issue: 31
  year: 2006
  ident: 4106_CR7
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2006.06.1879
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 4106_CR19
  publication-title: IEEE Trans Knowledge and Data Eng
  doi: 10.1109/TKDE.2008.239
– volume: 33
  start-page: 49
  year: 2003
  ident: 4106_CR15
  publication-title: Nat Genet
  doi: 10.1038/ng1060
– volume: 16
  start-page: 906
  issue: 10
  year: 2000
  ident: 4106_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 4106_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 99
  start-page: 1715
  issue: 22
  year: 2007
  ident: 4106_CR30
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djm216
– start-page: 111
  volume-title: Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI)
  year: 2000
  ident: 4106_CR31
– volume: 37
  start-page: 549
  issue: 5
  year: 2005
  ident: 4106_CR4
  publication-title: Nat Genet
  doi: 10.1038/ng1547
– volume-title: The Statistical Evaluation of Medical Tests for Classification and Prediction
  year: 2003
  ident: 4106_CR29
  doi: 10.1093/oso/9780198509844.001.0001
– volume-title: Statistical Analysis of Gene Expression Microarray Data
  year: 2003
  ident: 4106_CR11
  doi: 10.1201/9780203011232
– volume: 365
  start-page: 488
  issue: 9458
  year: 2005
  ident: 4106_CR43
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)17866-0
– volume: 16
  start-page: 341
  issue: 2002
  year: 2002
  ident: 4106_CR44
  publication-title: J Artif Intell Res
– volume: 100
  start-page: 10393
  issue: 18
  year: 2003
  ident: 4106_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1732912100
– volume: 25
  start-page: 30
  year: 2009
  ident: 4106_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn583
– volume: 99
  start-page: 6567
  issue: 10
  year: 2002
  ident: 4106_CR41
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.082099299
– start-page: 148
  volume-title: Proceedings of the Thirteenth International Conference on Machine Learning
  year: 1996
  ident: 4106_CR34
– volume: 6
  start-page: 68
  year: 2005
  ident: 4106_CR22
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-68
– volume: 435
  start-page: 834
  issue: 7043
  year: 2005
  ident: 4106_CR2
  publication-title: Nature
  doi: 10.1038/nature03702
– volume: 4
  start-page: 195
  issue: 3
  year: 2005
  ident: 4106_CR26
  publication-title: Appl Bioinformatics
  doi: 10.2165/00822942-200504030-00004
– volume-title: R: A language and environment for statistical computing
  year: 2008
  ident: 4106_CR37
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 4106_CR40
  publication-title: Mach Learn
– volume-title: The Elements of Statistical Learning. Data Mining, Inference, and Prediction
  year: 2003
  ident: 4106_CR35
– volume: 97
  start-page: 262
  year: 2000
  ident: 4106_CR10
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.97.1.262
– volume: 8
  start-page: 68
  year: 2002
  ident: 4106_CR16
  publication-title: Nat Med
  doi: 10.1038/nm0102-68
– volume-title: Regression Modeling Strategies
  year: 2001
  ident: 4106_CR36
  doi: 10.1007/978-1-4757-3462-1
– volume-title: Tech. Rep. Project 21-49-004, Report Number 4, USAF School of Aviation Medicine, Randolf Field, Texas
  year: 1951
  ident: 4106_CR38
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: 4106_CR18
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2002-6504
– reference: 16643657 - BMC Bioinformatics. 2006;7:228
– reference: 12648972 - Lancet. 2003 Mar 15;361(9361):923-9
– reference: 12917485 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8
– reference: 17229957 - N Engl J Med. 2007 Jan 18;356(3):294-7
– reference: 19008251 - Bioinformatics. 2009 Jan 1;25(1):30-5
– reference: 18000217 - J Natl Cancer Inst. 2007 Nov 21;99(22):1715-23
– reference: 19095540 - IEEE Trans Syst Man Cybern B Cybern. 2009 Apr;39(2):539-50
– reference: 14981516 - Nat Genet. 2004 Mar;36(3):299-303
– reference: 11786909 - Nat Med. 2002 Jan;8(1):68-74
– reference: 17075126 - J Clin Oncol. 2006 Nov 1;24(31):5070-8
– reference: 15208204 - Biostatistics. 2004 Jul;5(3):427-43
– reference: 15944708 - Nature. 2005 Jun 9;435(7043):834-8
– reference: 11894805 - Comb Chem High Throughput Screen. 2001 Dec;4(8):727-39
– reference: 9915498 - Nat Genet. 1999 Jan;21(1 Suppl):33-7
– reference: 17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17
– reference: 16792098 - IEEE Trans Pattern Anal Mach Intell. 2006 Jul;28(7):1088-99
– reference: 10618406 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):262-7
– reference: 15838508 - Nat Genet. 2005 May;37(5):549-54
– reference: 12011421 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):6567-72
– reference: 15788095 - BMC Bioinformatics. 2005;6:68
– reference: 15705458 - Lancet. 2005 Feb 5-11;365(9458):488-92
– reference: 16231961 - Appl Bioinformatics. 2005;4(3):195-203
– reference: 12469122 - Nat Genet. 2003 Jan;33(1):49-54
– reference: 11120680 - Bioinformatics. 2000 Oct;16(10):906-14
– reference: 18541060 - BMC Bioinformatics. 2008;9 Suppl 6:S7
SSID ssj0017805
Score 2.4414792
Snippet Background The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the...
The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of...
Abstract Background: The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived...
Abstract Background The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 523
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Breast cancer
Breast Neoplasms - classification
Breast Neoplasms - genetics
Classification
Classification - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Databases, Factual
Discriminant analysis
Female
Gene Expression Profiling - methods
Humans
Life Sciences
Microarrays
Oligonucleotide Array Sequence Analysis - methods
Research Article
Studies
Transcriptome analysis
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLlHcoRTn0ApK1juPYjjhUgKh6qKoeoOrN8hNWguyyu0Xi3-NxHtXy6AUpl8ROZHs843Fm_H0AB5611NdBkRiMIBzP5RhpOPFSWEeFsyqn_J-fyNNTdXHRng25OeshrXK0idlQ-4XDf-SztG4heRKtDpffCZJGYXB1YNC4CbcQJIHlzL2zKYiAcP1jZFKJWZXsMEk7nAaPkjWs3lqJMmD_37zMP5Mlf4uY5oXo6P5_dmEX7g0eaPm2nzIP4EboHsKdnpPy5yN4k2kyy-UKIzgotTK5tSWiGhOPTAA9ikfpsBaZf7OYGumCLzHV9DF8Ovrw8f0xGRgWiGtasSEMo6SCO1M54Z2SQXIrlLUy2cFYh5pbynwVo48uJstolePUJhfKcOuS62XrJ7DTLbrwDMqkx5GFVjjc47BQKyORyTyGVsbKelXAbBxt7Qb4cWTB-KrzNkQJjfLRKJ90q5N8Cng1vbHsoTeuqfsOBTjVQ9Ds_GCx-qwHHdSVj1ZVjTToBDbStpQ5bo01iNGTlvAC9ka56UGT13oSWgHlVJpUEOMqpguLy7VWVKVxlJQW8LSfK1M7GDLqcJZK5NYs2mrodkk3_5JRvmvapg_LAl6P8-2qUf8ahufX9mAP7ubch3Qx-gJ2NqvLsA-33Y_NfL16mXXnFy9AH28
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iVMgl8Z0xKnPwojCkp6e3uwdPRgweJIiPkFvTT13Q2bC7Efz3qep5yGoUFOYy0zXQVNeTqv4K4GngLQtN1FWKVlaC7uVYZUUVlHSeSe90bvk_fatOTvTZWftuC_h4FyZ3u48lyWyps1preVijGa0wQZnRTTBMn67BdXR2msY1vP9wOlUOCKN_LEde8deG-8ko_VeFlr93SP5SJs3e53jvf_Z9C3aHWLN82QvHbdiK3R242U-f_HEXXuSBmOX5kmo1dD4lBrAl4RdXgTD_e7yO0hNVNf_mqAnSx1BSU-k9-HT8-uOrN9UwS6Hys1auK071UCm8rb0MXquohJPaOYUWLzWxEY7xUKcUkk9oA532gjkMlqxwHoMs19yH7W7RxX0oUWMTj630lM3w2GiraGZ5iq1KtQu6gMORxcYPQOM07-KryQmHloZYYogl-GqQJQU8m_4470E2_kJ7RKc20RE8dv6wWH42g7aZOiSn65myFO7NlGsZ98JZZwmNB511AQfjmZtBZ1cGIyMaz8XqAsppFZWNKii2i4uLldFMIx8VYwU86AVk2gen2TmC44raEJ2NjW6udPMvGc-7ITHWqoDnowD93NSf2PDwX4gPYCc3PeDD2SPYXi8v4mO44b-v56vlk6w_l_h8FB0
  priority: 102
  providerName: Springer Nature
Title Class prediction for high-dimensional class-imbalanced data
URI https://link.springer.com/article/10.1186/1471-2105-11-523
https://www.ncbi.nlm.nih.gov/pubmed/20961420
https://www.proquest.com/docview/901869001
https://www.proquest.com/docview/808458700
https://pubmed.ncbi.nlm.nih.gov/PMC3098087
https://doaj.org/article/1dfb8157a264457b902c4baba0349212
Volume 11
WOSCitedRecordID wos000284532400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7oquDL4nXtrg598EUhTJq2SYpPruyiqENZdRl9CbnigHaXmVnBf29O2qmO1xehBNqkQ-bLSXPCOfk-gIeONdSVXpLgNScVnsvRQlfECW4s5dbIlPJ_-krMZnI-b9ofpL4wJ6ynB-6BmxYuGFnUQuPKXQvTUGYro41GYhWW9IUZFc1mMzXED5CpP50rEgWJm5p6E6CUfDo-wxNlNSu3FqTE2_87Z_PXnMmfAqdpPTq-AbuDI5k_7f_ATbjku1twrZeW_HobniS1y_x8iYEYBD-P3mmO5MTEIaF_T8aRW2xFFp8NZjha73LMGL0D746P3j57TgahBGLrhq8Jw2Anr6wuLHdWCi8qw6UxIn7OQunLylDmihBcsCF-4Iy0FTURT10ZGz0oU96Fne6s8_cgj9MxMN9wi1sV5kupBQqSB9-IUBgnM5hu0FJ2YBFHMYtPKu0mJFeIr0J8462K-GbwaHzjvGfQ-EvbQxyAsR1yX6cH0SLUYBHqXxaRwcFm-NQwIVcquj2ovUWLDPKxNs4kDI_ozp9drJSkMuIoKM1grx_rsR8MhXEqFmvElhVsdXS7plt8TGTdJW3iD4sMHm_s5Xun_gTD_v-A4QCup0yHeDF6H3bWywv_AK7aL-vFajmBy2IuUikncOXwaNaeTNIUiuVLQSaYA9vGsq0_xPr2xev2fbw7eXP6DfZQHAc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70cojxzgAJK1jpO1HSGEeFWtdllxKKg3N37RlUp22d2C-qP4j3icB1oevfWAlEtix5rYn8fjzHg-gMeWldTmThLvKk4KPJdTiaogVnBtKDdaxpD_T2Mxmcj9_fLDBvzozsJgWGWnE6OitjOD_8gHYd1C8iSavZx_JUgahc7VjkGjQcXInXwPO7bli923YXifMLb9bu_NDmlJBYgZlnxFGDoGeWGqzHBrpHCi0FxqLcLU97nLC02Zzby33vigDLQ0BdXBaqgKbYK1ofPQ7jk4X-RS4LQaCdI7LZAeoPOESj7Igt4nYUc1xKNrQ5avrXyRIOBvVu2fwZm_eWjjwrd99T_rsmtwpbWw01fNlLgOG66-ARcbzs2Tm_A80oCm8wV6qBCVaTDbU8zaTCwyHTRZSlKDtcj0i8bQT-NsiqG0t-DjmUh-GzbrWe3uQhr0lGeu5Ab3cMzlshLI1O5dKXymrUxg0I2uMm16dWT5OFJxmyW5QjwoxEO4VQEPCTzt35g3qUVOqfsaAdPXw6Tg8cFs8Vm1OkZl1muZDUWFRu5Q6JIyU-hKV5iDKJgoCWx1OFGtplqqHiQJpH1pUDHoN6pqNzteKkll6EdBaQJ3Gmz2cjBkDCpYKBFrqF0TdL2knh7GLOY5LUPDIoFnHb5_CfWvbrh36hc8gks7e-_Harw7GW3B5RjnES5G78PmanHsHsAF8201XS4exnmbwsFZo_4nvkF88g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZixQxEC50PfDFc9V2PfrBF4Uw6XQmSeOT16C4DAvqsm8hpw5ozzAzK_jvTaUPGV0FEfqlO5UmXalKqroqXwE89qyhvg6KxGAE4Xgux0jDiZfCOiqcVTnl__hQzufq5KQ56n-4bYZs9yEk2Z1pQJSmdjtZ-dipuBKTKi2pJDkrUzwVllyp83CBYxo9euvvj8coAuL1D6HJM3rtbEUZsf8sM_P3bMlfQqZ5J5pd-99vuA5Xexu0fN4JzQ04F9qbcKmrSvn9FjzLhTLL1RpjODhvZTJsS8Q1Jh5rAXQ4HqVDKrL4ajE50gVfYrLpPnycvf7w8g3paywQN23EljCMkwruTOWEd0oGya1Q1sq0EsY61NxS5qsYfXQxrY1WOU5tMqIMty4ZX7a-DXvtsg13oUyaHFlohEMvh4VaGYm1zGNoZKysVwVMBnZr1wOQYx2MLzo7IkpoZIlGlqRbnVhSwJOxx6oD3_gL7QucwZEOYbPzg-X6k-61UFc-WlVNpUEzcCptQ5nj1liDKD1pEy_gYJh_3evyRieLCct20aqAcmxNSoiRFdOG5elGK6oSHyWlBdzphGUcB8OaOpylFrkjRjsD3W1pF58zzndNm_RiWcDTQZh-DupPbLj3L8SP4PLRq5k-fDt_dwBXcl5Euhi9D3vb9Wl4ABfdt-1is36Y1eoHD7Af5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Class+prediction+for+high-dimensional+class-imbalanced+data&rft.jtitle=BMC+bioinformatics&rft.au=Lusa+Lara&rft.au=Blagus+Rok&rft.date=2010-10-20&rft.pub=BMC&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=11&rft.issue=1&rft.spage=523&rft_id=info:doi/10.1186%2F1471-2105-11-523&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1dfb8157a264457b902c4baba0349212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon