Complex Analysis in Several Variables

The material in this chapter intentionally interrupts our theoretical development about Hilbert spaces. There are at least two reasons for this interruption. One reason is that this material is a prerequisite for understanding the Hilbert space A2(Bn) of square-integrable holomorphic functions on th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Inequalities from Complex Analysis s. 63 - 88
Hlavní autor: John P. D’Angelo
Médium: Kapitola
Jazyk:angličtina
Vydáno: Washington DC The Mathematical Association of America 2002
Mathematical Association of America
Vydání:1
Témata:
ISBN:9780883850336, 0883850338
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The material in this chapter intentionally interrupts our theoretical development about Hilbert spaces. There are at least two reasons for this interruption. One reason is that this material is a prerequisite for understanding the Hilbert space A2(Bn) of square-integrable holomorphic functions on the unit ball; this particular Hilbert space arises in a crucial way in the proof of Theorem VII.1.1, the main result in the book. A second reason is the feeling that abstract material doesn't firmly plant itself in one's mind unless it is augmented by concrete material. Conversely the presentation of concrete material benefits from appropriate abstract interludes. In this chapter we introduce holomorphic functions of several complex variables. This presentation provides only a brief introduction to the subject. Multi-index notation and issues involving calculus of several variables also appear here. Studying them allows us to provide a nice treatment of the gamma and beta functions. We use them to compute the Bergman kernel function for the unit ball, thereby reestablishing contact with Hilbert spaces. Holomorphic functions Our study of A2(Bn) requires us to first develop some basic information about holomorphic functions of several complex variables. As in one variable, holomorphic functions of several variables are locally represented by convergent power series. Although some formal aspects of the theories are the same, geometric considerations change considerably in the higher-dimensional theory. In order to avoid a profusion of indices we first introduce multiindex notation. This notation makes many computations in several variables both easier to perform and simpler to expose. Suppose z = (z1, ..., zn) ∈ Cn, and let (α1, ..., αn) be an n-tuple of nonnegative integers.
AbstractList The material in this chapter intentionally interrupts our theoretical development about Hilbert spaces. There are at least two reasons for this interruption. One reason is that this material is a prerequisite for understanding the Hilbert space${A^2}({B_n})$of square-integrable holomorphic functions on the unit ball; this particular Hilbert space arises in a crucial way in the proof of Theorem VII.1.1, the main result in the book. A second reason is the feeling that abstract material doesn’t firmly plant itself in one’s mind unless it is augmented by concrete material. Conversely the presentation of concrete material benefits from appropriate abstract interludes.
The material in this chapter intentionally interrupts our theoretical development about Hilbert spaces. There are at least two reasons for this interruption. One reason is that this material is a prerequisite for understanding the Hilbert space A2(Bn) of square-integrable holomorphic functions on the unit ball; this particular Hilbert space arises in a crucial way in the proof of Theorem VII.1.1, the main result in the book. A second reason is the feeling that abstract material doesn't firmly plant itself in one's mind unless it is augmented by concrete material. Conversely the presentation of concrete material benefits from appropriate abstract interludes. In this chapter we introduce holomorphic functions of several complex variables. This presentation provides only a brief introduction to the subject. Multi-index notation and issues involving calculus of several variables also appear here. Studying them allows us to provide a nice treatment of the gamma and beta functions. We use them to compute the Bergman kernel function for the unit ball, thereby reestablishing contact with Hilbert spaces. Holomorphic functions Our study of A2(Bn) requires us to first develop some basic information about holomorphic functions of several complex variables. As in one variable, holomorphic functions of several variables are locally represented by convergent power series. Although some formal aspects of the theories are the same, geometric considerations change considerably in the higher-dimensional theory. In order to avoid a profusion of indices we first introduce multiindex notation. This notation makes many computations in several variables both easier to perform and simpler to expose. Suppose z = (z1, ..., zn) ∈ Cn, and let (α1, ..., αn) be an n-tuple of nonnegative integers.
Author John P. D’Angelo
Author_xml – sequence: 1
  fullname: John P. D’Angelo
BookMark eNpV0E9LwzAYBvCICrrZb-ChFw8eOt_kTdLkWIv_YDDBKd5KmqautWtGU0W_vZPJwPfywMOP5_BOyFHve0fIOYWZ0FxdPT8udKpAKVRCp8BnAPyATPbF6yGJ9gAQ5QmJQmhhe1JuPT8lF7lfbzr3FWe96b5DE-Kmj5_cpxtMF7-YoTFl58IZOa5NF1z0l1OyvL1Z5vfJfHH3kGfzxAotk6oElCCRAdYqtVrXYIHXjIEQJZeUcmQakaKobUpTpzmvjaGOmUpZ5BKnJN7NtmH0Q1F6_x6KtrDjKFYrFdLil1zuiDXrcmiqN1d8bHyRX___RAaM4Q_5oVAO
ContentType Book Chapter
Copyright The Mathematical Association of America (Incorporated) 2002
2002 The Mathematical Association of America (Incorporated)
Copyright_xml – notice: The Mathematical Association of America (Incorporated) 2002
– notice: 2002 The Mathematical Association of America (Incorporated)
DOI 10.5948/UPO9780883859704.004
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISBN 088385970X
9780883859704
Edition 1
EndPage 88
ExternalDocumentID 10.4169/j.ctt5hh8s7.6
CBO9780883859704A022
GroupedDBID -G2
089
A4J
AABBV
ABARN
ABCYY
ABIAV
ABQPQ
ACFYN
ADVEM
AERYV
AGLEC
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ANGWU
AZZ
BBABE
BFATZ
BOVJV
FH2
G2
GEOUK
HF4
I6
IVK
IWG
JJU
PLCCB
PQEST
PQQKQ
PQUKI
RW
RW~
SN-
AAWPO
ACLGV
ACVUZ
AEKGI
AFOJC
AHWGJ
AMYDA
BQKUL
CDLIL
CZZ
ID FETCH-LOGICAL-c596-db036063203f87c99f0c04f22055b4611432933135fc717e944faa1e2ad8c3463
ISBN 9780883850336
0883850338
IngestDate Sun Jun 29 13:43:16 EDT 2025
Wed Sep 30 11:45:26 EDT 2020
IsPeerReviewed false
IsScholarly false
Keywords linear functional
holomorphic function
multi-index notation
generating function
automorphism
Hartogs, F
linear fractional transformation
mean-value property
Poisson kernel
complete orthonormal system
beta function
pseudoconvex
Hilbert space
open unit ball
projection
anti-holomorphic
orthonormal system
harmonic
vector-valued
reproducing property
Cauchy-Schwarz inequality
geometric series
gamma function
conjugate holomorphic
finite type
homogeneous
Bergman kernel function
partial sum
domain
region of convergence
uniform convergence
real part
imaginary part
Riesz representation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-db036063203f87c99f0c04f22055b4611432933135fc717e944faa1e2ad8c3463
PageCount 26
ParticipantIDs jstor_books_j_ctt5hh8s7_6
cambridge_upo_CBO9780883859704A022
ProviderPackageCode ANGWU
-G2
RW~
FH2
SN-
PublicationCentury 2000
PublicationDate 2002
20020101
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 2002
PublicationDecade 2000
PublicationPlace Washington DC
PublicationPlace_xml – name: Washington DC
PublicationTitle Inequalities from Complex Analysis
PublicationYear 2002
Publisher The Mathematical Association of America
Mathematical Association of America
Publisher_xml – name: The Mathematical Association of America
– name: Mathematical Association of America
SSID ssj0000667044
Score 1.2566092
Snippet The material in this chapter intentionally interrupts our theoretical development about Hilbert spaces. There are at least two reasons for this interruption....
SourceID jstor
cambridge
SourceType Publisher
StartPage 63
SubjectTerms Abstract spaces
Addition
Algebra
Analytic functions
Applied mathematics
Applied statistics
Arithmetic
Banach space
Complex analysis
Complex variables
Dimensional analysis
Dimensionality
Hilbert spaces
MAA books
Mathematical analysis
Mathematical expressions
Mathematical functions
Mathematical objects
Mathematical series
Mathematical values
Mathematical variables
Mathematics
Metric spaces
Partial sums
Polynomials
Power series
Pure mathematics
Real and complex analysis
Separable spaces
Statistical physics
Statistics
Topological spaces
Title Complex Analysis in Several Variables
URI http://universitypublishingonline.org/maa/chapter.jsf?bid=CBO9780883859704&cid=CBO9780883859704A022
https://www.jstor.org/stable/10.4169/j.ctt5hh8s7.6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEN0oekAvihrxK43REym2dNvuHhFRExVIBMONtNtuMDGF8BV-vjNtWWhjTDx4aUjJkmHeMryZzpsl5MbwGQ0oSrcMKXXqe1LnQEt1apqB77lC2iI-teTVbbVYv8876XF_0_g4ATeK2HLJx_8KNdwDsFE6-we41YfCDXgNoMMVYIdrjhFna69pD2GYyCQhAU6kI_iD_wqXavpIpmWmU608rNodeB37W0ebeyi_Fosj7-ECy1iVD0iyUXaVrRvUcnWDNzUVNrsVYgKcPCzKpJoQjSyGzzw3w10Sm_JRGCfAgJd6nbZax914Sjld_-uoXkBYAKSQx2FbzGb2cMimbtXZJtuuC4Fr56nZ7r2oshn25BqUxpM8U4NYOkdJGZgoJNGKu59s2Jyike1CjTlF94Dso85EQwEIGHpItsKoRPbWDpuWSBFTgWSS9hG5TdHQVmhon5GWoqEpNI5J97HZbTzr6SEXurC5owc-UAigiTXDkswVnEtDGFSi_Nn2qQPZqgWEzDItWwrIvENOqfQ8M6x5ARMWdawTUohGUXhKNGlz05ZA4DwTeZfh-5JD-ixNxjwOPK5MrtX3HszHo0HjPuucOvC5MinHDhngFp5CaqggGThnv7x3TorrTXZBCrPJPLwku2IBXppcpSh-A3HjOdY
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Inequalities+from+Complex+Analysis&rft.au=John+P.+D%E2%80%99Angelo&rft.atitle=Complex+Analysis+in+Several+Variables&rft.date=2002-01-01&rft.pub=Mathematical+Association+of+America&rft.isbn=9780883850336&rft.spage=63&rft_id=info:doi/10.5948%2FUPO9780883859704.004&rft.externalDocID=10.4169%2Fj.ctt5hh8s7.6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780883850336/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780883850336/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780883850336/sc.gif&client=summon&freeimage=true