Dense Trajectories and Motion Boundary Descriptors for Action Recognition

This paper introduces a video representation based on dense trajectories and motion boundary descriptors. Trajectories capture the local motion information of the video. A dense representation guarantees a good coverage of foreground motion as well as of the surrounding context. A state-of-the-art o...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision Vol. 103; no. 1; pp. 60 - 79
Main Authors: Wang, Heng, Kläser, Alexander, Schmid, Cordelia, Liu, Cheng-Lin
Format: Journal Article
Language:English
Published: Boston Springer US 01.05.2013
Springer
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:0920-5691, 1573-1405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces a video representation based on dense trajectories and motion boundary descriptors. Trajectories capture the local motion information of the video. A dense representation guarantees a good coverage of foreground motion as well as of the surrounding context. A state-of-the-art optical flow algorithm enables a robust and efficient extraction of dense trajectories. As descriptors we extract features aligned with the trajectories to characterize shape (point coordinates), appearance (histograms of oriented gradients) and motion (histograms of optical flow). Additionally, we introduce a descriptor based on motion boundary histograms (MBH) which rely on differential optical flow. The MBH descriptor shows to consistently outperform other state-of-the-art descriptors, in particular on real-world videos that contain a significant amount of camera motion. We evaluate our video representation in the context of action classification on nine datasets, namely KTH, YouTube, Hollywood2, UCF sports, IXMAS, UIUC, Olympic Sports, UCF50 and HMDB51. On all datasets our approach outperforms current state-of-the-art results.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-012-0594-8