Improved accuracy of continuum surface flux models for metal additive manufacturing melt pool simulations

Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced modeling and simulation in engineering sciences Ročník 11; číslo 1; s. 16 - 40
Hlavní autori: Much, Nils, Schreter-Fleischhacker, Magdalena, Munch, Peter, Kronbichler, Martin, Wall, Wolfgang A., Meier, Christoph
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 22.08.2024
Springer Nature B.V
Springer
SpringerOpen
Predmet:
ISSN:2213-7467, 2213-7467
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.
AbstractList Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.
Abstract Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.
Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.
ArticleNumber 16
Author Kronbichler, Martin
Wall, Wolfgang A.
Meier, Christoph
Much, Nils
Schreter-Fleischhacker, Magdalena
Munch, Peter
Author_xml – sequence: 1
  givenname: Nils
  surname: Much
  fullname: Much, Nils
  email: nils.much@tum.de
  organization: Institute for Computational Mechanics, Technical University of Munich
– sequence: 2
  givenname: Magdalena
  surname: Schreter-Fleischhacker
  fullname: Schreter-Fleischhacker, Magdalena
  organization: Institute for Computational Mechanics, Technical University of Munich
– sequence: 3
  givenname: Peter
  surname: Munch
  fullname: Munch, Peter
  organization: Department of Information Technology, Uppsala University, Institute for High-Performance Scientific Computing, University of Augsburg
– sequence: 4
  givenname: Martin
  surname: Kronbichler
  fullname: Kronbichler, Martin
  organization: Institute for High-Performance Scientific Computing, University of Augsburg, Faculty of Mathematics, Ruhr University Bochum
– sequence: 5
  givenname: Wolfgang A.
  surname: Wall
  fullname: Wall, Wolfgang A.
  organization: Institute for Computational Mechanics, Technical University of Munich
– sequence: 6
  givenname: Christoph
  surname: Meier
  fullname: Meier, Christoph
  organization: Institute for Computational Mechanics, Technical University of Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39184936$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04748069$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-537870$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kk9vFCEYxiemxta1X8CDIfFiE0dhgAGOm1rtJpt4Ua-EZZjKhhlW_mztt5fZ2artoVwgL7_n4c3L87I6Gf1oquo1gh8Q4u3HSCBucA0bUkPYMFi3z6qzpkG4ZqRlJ_-dT6vzGLcQQtRiglj7ojrFAnEicHtW2dWwC35vOqC0zkHpO-B7oP2Y7JjzAGIOvdIG9C7_BoPvjIug9wEMJikHVNfZZPcGDGrMhUs52PGmXLoEdt47EO2QnUrWj_FV9bxXLprz476ovn---nZ5Xa-_flldLte1poKmWiMEGRcCsb6stlNM9HrDGoUQwnqDKOGooch0jGPChaGadwibUiCKEc3wolrNvp1XW7kLdlDhTnpl5aHgw41UIVntjIRtgwhGLWKsIYQygYXqOESUNrwTZX6L6v3sFW_NLm8euH2yP5YHt5wlxYwzWPCLGf-p3AP2ermWUw0SRjhsxX6yfjezZfy_solJDjZq45wajc9RYihYaaTQBX37CN36HMYyxImiHDNBaaHeHKm8GUz39_37vy4AnwEdfIzB9FLbdPibFJR1EkE5JUvOyZIlWfKQLDlJm0fSe_cnRfg4vN2UChP-tf2E6g_eVt1I
CitedBy_id crossref_primary_10_1016_j_mfglet_2025_06_009
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127449
crossref_primary_10_1186_s40323_024_00276_0
Cites_doi 10.1016/j.cma.2021.113812
10.1016/j.commatsci.2016.10.011
10.1615/AnnualRevHeatTransfer.2018019042
10.1016/j.addma.2020.101236
10.1016/j.cma.2018.03.017
10.1007/s00366-022-01724-4
10.1016/0017-9310(87)90317-6
10.1088/0965-0393/21/8/085011
10.1088/0022-3727/46/5/055501
10.2514/6.1996-859
10.1016/j.addma.2019.100909
10.1016/j.finel.2017.07.002
10.1186/s40323-024-00276-0
10.1016/j.cma.2021.113910
10.1017/S0962492902000077
10.1002/adem.202000169
10.1016/j.cma.2020.113348
10.1016/j.cma.2018.06.033
10.1177/1094342016671790
10.1016/j.addma.2020.101249
10.2351/1.4886835
10.1016/j.jcp.2014.08.034
10.1016/J.ADDMA.2022.103267
10.1016/j.actamat.2016.02.014
10.1016/j.actamat.2020.06.033
10.1016/0021-9991(92)90240-Y
10.1016/j.jcp.2017.04.073
10.1016/j.camwa.2023.03.003
10.1016/j.cma.2014.02.014
10.1016/j.jmatprotec.2014.06.001
10.1016/j.ijheatmasstransfer.2023.124378
10.1016/j.camwa.2013.10.001
10.1007/s40571-019-00296-3
10.1016/j.jcp.2015.11.014
10.1006/jcph.1994.1155
10.1088/0022-3727/44/2/025301
10.2514/3.61164
10.1515/jnma-2023-0089
10.1007/978-1-4939-2113-3
10.1007/s11740-008-0148-7
10.1186/s40323-021-00200-w
10.1016/j.jcp.2006.12.027
10.1016/j.ijrmhm.2017.11.034
10.1146/annurev.fluid.30.1.139
10.1007/PL00021868
10.1002/gamm.202100014
10.1016/j.ijheatmasstransfer.2019.05.003
10.1126/science.aav4687
10.1038/s41467-022-30667-z
10.3390/met10040435
10.1002/fld.2643
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
VOOES
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1186/s40323-024-00270-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList


PubMed
Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-7467
EndPage 40
ExternalDocumentID oai_doaj_org_article_0621431617724457939ad8015528d921
oai_DiVA_org_uu_537870
oai:HAL:hal-04748069v1
39184936
10_1186_s40323_024_00270_6
Genre Journal Article
GrantInformation_xml – fundername: Technische Universität München (1025)
– fundername: Austrian Science Fund
  grantid: J4577
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: European Research Council
  grantid: 101117579
GroupedDBID -A0
0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
ASPBG
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
M~E
OK1
P62
PIMPY
PROAC
PTHSS
RSV
SOJ
TUS
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
AHSBF
EJD
H13
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7X8
1XC
VOOES
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c595t-c110789917ffff6da79fcb72a1113cb15481251ed783489e5c8d13e1ed4a74c73
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296577200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-7467
IngestDate Fri Oct 03 12:43:05 EDT 2025
Tue Nov 04 16:27:00 EST 2025
Tue Oct 14 20:59:11 EDT 2025
Thu Oct 02 11:44:50 EDT 2025
Tue Sep 30 18:42:37 EDT 2025
Mon Jul 21 06:03:06 EDT 2025
Sat Nov 29 03:47:45 EST 2025
Tue Nov 18 22:49:35 EST 2025
Fri Feb 21 02:38:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Finite element method
Melt pool thermo-hydrodynamics
Continuum surface flux model
Multi-phase heat transfer
Laser powder bed fusion additive manufacturing
Language English
License The Author(s) 2024.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-c110789917ffff6da79fcb72a1113cb15481251ed783489e5c8d13e1ed4a74c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7419-3384
0000-0001-8406-835X
0000-0002-3501-1696
0000-0003-3888-4086
OpenAccessLink https://doaj.org/article/0621431617724457939ad8015528d921
PMID 39184936
PQID 3095837955
PQPubID 2034555
PageCount 40
ParticipantIDs doaj_primary_oai_doaj_org_article_0621431617724457939ad8015528d921
swepub_primary_oai_DiVA_org_uu_537870
hal_primary_oai_HAL_hal_04748069v1
proquest_miscellaneous_3097155806
proquest_journals_3095837955
pubmed_primary_39184936
crossref_citationtrail_10_1186_s40323_024_00270_6
crossref_primary_10_1186_s40323_024_00270_6
springer_journals_10_1186_s40323_024_00270_6
PublicationCentury 2000
PublicationDate 2024-08-22
PublicationDateYYYYMMDD 2024-08-22
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-22
  day: 22
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Heidelberg
PublicationTitle Advanced modeling and simulation in engineering sciences
PublicationTitleAbbrev Adv. Model. and Simul. in Eng. Sci
PublicationTitleAlternate Adv Model Simul Eng Sci
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References Schreter-Fleischhacker M, Munch P, Much N, Kronbichler M, Wall WA, Meier C. A consistent diffuse-interface model for two-phase flow problems with rapid evaporation (2024 (submitted)).
Meland R, Gran IR, Olsen R, Munkejord ST. Reduction of parasitic currents in level-set calculations with a consistent discretization of the surface-tension force for the CSF model. In: 16th Australasian Fluid Mechanics Conference, pp. 862–865. School of Engineering, The University of Queensland, Crown Plaza, Gold Coast, Australia 2007.
BayatMMohantySHattelJHMultiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBFInternational Journal of Heat and Mass Transfer20191399511410.1016/j.ijheatmasstransfer.2019.05.003
YanJYanWLinSWagnerGJA fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidificationComputer Methods in Applied Mechanics and Engineering2018336444470379500810.1016/j.cma.2018.03.017
CoquerelleMGlocknerSA fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forcesJournal of Computational Physics2016305838876342960910.1016/j.jcp.2015.11.014
KnightCJTheoretical Modeling of Rapid Surface Vaporization with Back PressureAIAA Journal197917551952310.2514/3.61164
KörnerCBauereißAAttarEFundamental consolidation mechanisms during selective beam melting of powdersModelling and Simulation in Materials Science and Engineering201321810.1088/0965-0393/21/8/085011
TanWBaileyNSShinYCInvestigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulationJournal of Physics D: Applied Physics201346510.1088/0022-3727/46/5/055501
Kothe D, Rider W, Mosso S, Brock J, Hochstein J. Volume tracking of interfaces having surface tension in two and three dimensions. In: 34th Aerospace Sciences Meeting and Exhibit, p. 859. American Institute of Aeronautics and Astronautics, Reston, Virigina 1996. https://doi.org/10.2514/6.1996-859.
ChenHYanWSpattering and denudation in laser powder bed fusion process: Multiphase flow modellingActa Materialia202019615416710.1016/j.actamat.2020.06.033
QuevaAGuillemotGMoriconiCMettonCBelletMNumerical study of the impact of vaporisation on melt pool dynamics in Laser Powder Bed Fusion - Application to IN718 and Ti-6Al-4VAdditive Manufacturing202035February10.1016/j.addma.2020.101249
BrackbillJUKotheDBZemachCA continuum method for modeling surface tensionJournal of Computational Physics19921002335354116774910.1016/0021-9991(92)90240-Y
AndersonDMMcFaddenGBWheelerAADiffuse-interface methods in fluid mechanicsAnnual Review of Fluid Mechanics1998301139165160962610.1146/annurev.fluid.30.1.139
MeierCFuchsSLHartAJWallWAA novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modelingComputer Methods in Applied Mechanics and Engineering2021381424700010.1016/j.cma.2021.113812
RussellMASouto-IglesiasAZohdiTINumerical simulation of Laser Fusion Additive Manufacturing processes using the SPH methodComputer Methods in Applied Mechanics and Engineering2018341163187384562110.1016/j.cma.2018.06.033
KhairallahSAAndersonATRubenchikAKingWELaser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zonesActa Materialia2016108364510.1016/j.actamat.2016.02.014
PangSChenLZhouJYinYChenTA three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser weldingJournal of Physics D: Applied Physics201144210.1088/0022-3727/44/2/025301
KronbichlerMDiagneAHolmgrenHA fast massively parallel two-phase flow solver for microfluidic chip simulationThe International Journal of High Performance Computing Applications201832226628710.1177/1094342016671790
PeskinCSThe immersed boundary methodActa Numerica200211479517200937810.1017/S0962492902000077
MeierCPennyRWZouYGibbsJSHartAJThermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentationAnnual Review of Heat Transfer201720124131610.1615/AnnualRevHeatTransfer.2018019042
AnisimovSIKhokhlovVAInstabilities in Laser-Matter Interaction1995Boca Raton, FLCRC Press
AndreottaRLadaniLBrindleyWFinite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal propertiesFinite Elements in Analysis and Design2017135July364310.1016/j.finel.2017.07.002
Lee YS, Zhang W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: Solid Free Form Fabrication Symposium, pp. 1154–1165. University of Texas at Austin, Austin, Texas, USA 2015.
MeierCFuchsSLMuchNNitzlerJPennyRWPraeglaPMProellSDSunYWeissbachRSchreterMHodgeNEJohn HartAWallWAPhysics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scalesGAMM-Mitteilungen2021443124437533410.1002/gamm.202100014
SchottBWallWAA new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equationsComputer Methods in Applied Mechanics and Engineering2014276233265321233410.1016/j.cma.2014.02.014
YokoiKA density-scaled continuum surface force model within a balanced force formulationJournal of Computational Physics20142781221228326109210.1016/j.jcp.2014.08.034
AmmerRMarklMLjungbladUKörnerCRüdeUSimulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann methodComputers & Mathematics with Applications2014672318330314802810.1016/j.camwa.2013.10.001
LüthiCAfrasiabiMBambachMAn adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturingComputers & Mathematics with Applications2023139727456159810.1016/j.camwa.2023.03.003
Ross AJ, Bitharas I, Perkins KG, Moore AJ. Volumetric heat source calibration for laser powder bed fusion. Additive Manufacturing. 2022;60. https://doi.org/10.1016/J.ADDMA.2022.103267.
CourtoisMCarinMLe MassonPGaiedSBalabaneMA complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser weldingJournal of Laser Applications201426410.2351/1.4886835
ZakirovABelousovSBogdanovaMKorneevBStepanovAPerepelkinaALevchenkoVMeshkovAPotapkinBPredictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscaleAdditive Manufacturing20203510.1016/j.addma.2020.101236
LinSGanZYanJWagnerGJA conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2020372413998010.1016/j.cma.2020.113348
FuchsSLPraeglaPMCyronCJWallWAMeierCA versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusionEngineering with Computers20223864853487710.1007/s00366-022-01724-4
FürstenauJ-PWesselsHWeißenfelsCWriggersPGenerating virtual process maps of SLM using powder-scale SPH simulationsComputational Particle Mechanics20207465567710.1007/s40571-019-00296-3
FuchsSLMeierCWallWACyronCJAn SPH framework for fluid-solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitionsAdvanced Modeling and Simulation in Engineering Sciences2021811510.1186/s40323-021-00200-w
BitharasIParabNZhaoCSunTRollettADMooreAJThe interplay between vapour, liquid, and solid phases in laser powder bed fusionNature Communications2022131295910.1038/s41467-022-30667-z
PanwisawasCQiuCAndersonMJSovaniYTurnerRPAttallahMMBrooksJWBasoaltoHCMesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolutionComputational Materials Science201712647949010.1016/j.commatsci.2016.10.011
ZhangGChenJZhengMYanZLuXLinXHuangWElement Vaporization of Ti-6Al-4V Alloy during Selective Laser MeltingMetals202010443510.3390/met10040435
BoivineauMCagranCDoytierDEyraudVNadalM-HWilthanBPottlacherGThermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) AlloyInternational Journal of Thermophysics200627250752910.1007/PL00021868
VollerVRPrakashCA fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problemsInternational Journal of Heat and Mass Transfer19873081709171910.1016/0017-9310(87)90317-6
KhairallahSAAndersonAMesoscopic simulation model of selective laser melting of stainless steel powderJournal of Materials Processing Technology2014214112627263610.1016/j.jmatprotec.2014.06.001
Mohr M, Wunderlich R, Novakovic R, Ricci E, Fecht H-J. Precise Measurements of Thermophysical Properties of Liquid Ti-6Al-4V (Ti64) Alloy On Board the International Space Station. Advanced Engineering Materials. 2020;22(7). https://doi.org/10.1002/adem.202000169.
OlssonEKreissGZahediSA conservative level set method for two phase flow IIJournal of Computational Physics20072251785807234670010.1016/j.jcp.2006.12.027
CookPSMurphyABSimulation of melt pool behaviour during additive manufacturing: Underlying physics and progressAdditive Manufacturing20203110.1016/j.addma.2019.100909
SussmanMSmerekaPOsherSA Level Set Approach for Computing Solutions to Incompressible Two-Phase FlowJournal of Computational Physics1994114114615910.1006/jcph.1994.1155
LeeMSRiazAAuteVDirect numerical simulation of incompressible multiphase flow with phase changeJournal of Computational Physics2017344April381418365674610.1016/j.jcp.2017.04.073
ZhuQYanJA mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2021383426054710.1016/j.cma.2021.113910
ZahediSKronbichlerMKreissGSpurious currents in finite element based level set methods for two-phase flowInternational Journal for Numerical Methods in Fluids201269914331456294465810.1002/fld.2643
M Courtois (270_CR6) 2014; 26
A Queva (270_CR10) 2020; 35
B Schott (270_CR26) 2014; 276
Q Zhu (270_CR11) 2021; 383
J Yan (270_CR39) 2018; 336
C Lüthi (270_CR23) 2023; 139
DM Anderson (270_CR25) 1998; 30
SA Khairallah (270_CR7) 2014; 214
270_CR27
Y Lin (270_CR38) 2023; 214
270_CR29
W Tan (270_CR14) 2013; 46
M Bayat (270_CR15) 2019; 139
SA Khairallah (270_CR2) 2016; 108
CJ Knight (270_CR48) 1979; 17
S Pang (270_CR13) 2011; 44
M Geiger (270_CR17) 2009; 3
M Kronbichler (270_CR32) 2018; 32
E Olsson (270_CR52) 2007; 225
M Boivineau (270_CR35) 2006; 27
I Bitharas (270_CR43) 2022; 13
C Panwisawas (270_CR18) 2017; 126
270_CR12
D Arndt (270_CR31) 2023; 31
I Gibson (270_CR1) 2015
270_CR54
A Zakirov (270_CR20) 2020; 35
H Chen (270_CR16) 2020; 196
SI Anisimov (270_CR49) 1995
S Lin (270_CR9) 2020; 372
G Zhang (270_CR37) 2020; 10
MS Lee (270_CR40) 2017; 344
SL Fuchs (270_CR50) 2021; 8
C Meier (270_CR41) 2017; 20
270_CR8
MA Russell (270_CR24) 2018; 341
270_CR44
C Körner (270_CR3) 2013; 21
R Cunningham (270_CR51) 2019; 363
SL Fuchs (270_CR21) 2022; 38
S Zahedi (270_CR45) 2012; 69
M Sussman (270_CR33) 1994; 114
C Meier (270_CR47) 2021; 381
R Andreotta (270_CR5) 2017; 135
JU Brackbill (270_CR28) 1992; 100
270_CR36
CS Peskin (270_CR34) 2002; 11
PS Cook (270_CR4) 2020; 31
C Meier (270_CR42) 2021; 44
R Ammer (270_CR19) 2014; 67
J-P Fürstenau (270_CR22) 2020; 7
K Yokoi (270_CR30) 2014; 278
M Coquerelle (270_CR46) 2016; 305
VR Voller (270_CR53) 1987; 30
References_xml – reference: SchottBWallWAA new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equationsComputer Methods in Applied Mechanics and Engineering2014276233265321233410.1016/j.cma.2014.02.014
– reference: BrackbillJUKotheDBZemachCA continuum method for modeling surface tensionJournal of Computational Physics19921002335354116774910.1016/0021-9991(92)90240-Y
– reference: SussmanMSmerekaPOsherSA Level Set Approach for Computing Solutions to Incompressible Two-Phase FlowJournal of Computational Physics1994114114615910.1006/jcph.1994.1155
– reference: MeierCFuchsSLMuchNNitzlerJPennyRWPraeglaPMProellSDSunYWeissbachRSchreterMHodgeNEJohn HartAWallWAPhysics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scalesGAMM-Mitteilungen2021443124437533410.1002/gamm.202100014
– reference: CookPSMurphyABSimulation of melt pool behaviour during additive manufacturing: Underlying physics and progressAdditive Manufacturing20203110.1016/j.addma.2019.100909
– reference: OlssonEKreissGZahediSA conservative level set method for two phase flow IIJournal of Computational Physics20072251785807234670010.1016/j.jcp.2006.12.027
– reference: AndersonDMMcFaddenGBWheelerAADiffuse-interface methods in fluid mechanicsAnnual Review of Fluid Mechanics1998301139165160962610.1146/annurev.fluid.30.1.139
– reference: KörnerCBauereißAAttarEFundamental consolidation mechanisms during selective beam melting of powdersModelling and Simulation in Materials Science and Engineering201321810.1088/0965-0393/21/8/085011
– reference: Schreter-Fleischhacker M, Munch P, Much N, Kronbichler M, Wall WA, Meier C. A consistent diffuse-interface model for two-phase flow problems with rapid evaporation (2024 (submitted)).
– reference: ZhuQYanJA mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2021383426054710.1016/j.cma.2021.113910
– reference: GibsonIRosenDStuckerBAdditive Manufacturing Technologies20152New York, NYSpringer10.1007/978-1-4939-2113-3
– reference: TanWBaileyNSShinYCInvestigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulationJournal of Physics D: Applied Physics201346510.1088/0022-3727/46/5/055501
– reference: FuchsSLMeierCWallWACyronCJAn SPH framework for fluid-solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitionsAdvanced Modeling and Simulation in Engineering Sciences2021811510.1186/s40323-021-00200-w
– reference: BoivineauMCagranCDoytierDEyraudVNadalM-HWilthanBPottlacherGThermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) AlloyInternational Journal of Thermophysics200627250752910.1007/PL00021868
– reference: Leitz K-H, Grohs C, Singer P, Tabernig B, Plankensteiner A, Kestler H, Sigl LS. Fundamental analysis of the influence of powder characteristics in Selective Laser Melting of molybdenum based on a multi-physical simulation model. International Journal of Refractory Metals and Hard Materials 2018;72(November 2017); 1–8. https://doi.org/10.1016/j.ijrmhm.2017.11.034.
– reference: CourtoisMCarinMLe MassonPGaiedSBalabaneMA complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser weldingJournal of Laser Applications201426410.2351/1.4886835
– reference: KhairallahSAAndersonAMesoscopic simulation model of selective laser melting of stainless steel powderJournal of Materials Processing Technology2014214112627263610.1016/j.jmatprotec.2014.06.001
– reference: MeierCPennyRWZouYGibbsJSHartAJThermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentationAnnual Review of Heat Transfer201720124131610.1615/AnnualRevHeatTransfer.2018019042
– reference: KronbichlerMDiagneAHolmgrenHA fast massively parallel two-phase flow solver for microfluidic chip simulationThe International Journal of High Performance Computing Applications201832226628710.1177/1094342016671790
– reference: YanJYanWLinSWagnerGJA fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidificationComputer Methods in Applied Mechanics and Engineering2018336444470379500810.1016/j.cma.2018.03.017
– reference: YokoiKA density-scaled continuum surface force model within a balanced force formulationJournal of Computational Physics20142781221228326109210.1016/j.jcp.2014.08.034
– reference: BitharasIParabNZhaoCSunTRollettADMooreAJThe interplay between vapour, liquid, and solid phases in laser powder bed fusionNature Communications2022131295910.1038/s41467-022-30667-z
– reference: KnightCJTheoretical Modeling of Rapid Surface Vaporization with Back PressureAIAA Journal197917551952310.2514/3.61164
– reference: FürstenauJ-PWesselsHWeißenfelsCWriggersPGenerating virtual process maps of SLM using powder-scale SPH simulationsComputational Particle Mechanics20207465567710.1007/s40571-019-00296-3
– reference: PeskinCSThe immersed boundary methodActa Numerica200211479517200937810.1017/S0962492902000077
– reference: Ross AJ, Bitharas I, Perkins KG, Moore AJ. Volumetric heat source calibration for laser powder bed fusion. Additive Manufacturing. 2022;60. https://doi.org/10.1016/J.ADDMA.2022.103267.
– reference: ZahediSKronbichlerMKreissGSpurious currents in finite element based level set methods for two-phase flowInternational Journal for Numerical Methods in Fluids201269914331456294465810.1002/fld.2643
– reference: AndreottaRLadaniLBrindleyWFinite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal propertiesFinite Elements in Analysis and Design2017135July364310.1016/j.finel.2017.07.002
– reference: Kothe D, Rider W, Mosso S, Brock J, Hochstein J. Volume tracking of interfaces having surface tension in two and three dimensions. In: 34th Aerospace Sciences Meeting and Exhibit, p. 859. American Institute of Aeronautics and Astronautics, Reston, Virigina 1996. https://doi.org/10.2514/6.1996-859.
– reference: PangSChenLZhouJYinYChenTA three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser weldingJournal of Physics D: Applied Physics201144210.1088/0022-3727/44/2/025301
– reference: LüthiCAfrasiabiMBambachMAn adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturingComputers & Mathematics with Applications2023139727456159810.1016/j.camwa.2023.03.003
– reference: LeeMSRiazAAuteVDirect numerical simulation of incompressible multiphase flow with phase changeJournal of Computational Physics2017344April381418365674610.1016/j.jcp.2017.04.073
– reference: CunninghamRZhaoCParabNKantzosCPauzaJFezzaaKSunTRollettADKeyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imagingScience2019363642984985210.1126/science.aav4687
– reference: LinSGanZYanJWagnerGJA conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2020372413998010.1016/j.cma.2020.113348
– reference: AnisimovSIKhokhlovVAInstabilities in Laser-Matter Interaction1995Boca Raton, FLCRC Press
– reference: GeigerMLeitzK-HKochHOttoAA 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheetsProduction Engineering20093212713610.1007/s11740-008-0148-7
– reference: ChenHYanWSpattering and denudation in laser powder bed fusion process: Multiphase flow modellingActa Materialia202019615416710.1016/j.actamat.2020.06.033
– reference: CoquerelleMGlocknerSA fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forcesJournal of Computational Physics2016305838876342960910.1016/j.jcp.2015.11.014
– reference: Mohr M, Wunderlich R, Novakovic R, Ricci E, Fecht H-J. Precise Measurements of Thermophysical Properties of Liquid Ti-6Al-4V (Ti64) Alloy On Board the International Space Station. Advanced Engineering Materials. 2020;22(7). https://doi.org/10.1002/adem.202000169.
– reference: AmmerRMarklMLjungbladUKörnerCRüdeUSimulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann methodComputers & Mathematics with Applications2014672318330314802810.1016/j.camwa.2013.10.001
– reference: ZhangGChenJZhengMYanZLuXLinXHuangWElement Vaporization of Ti-6Al-4V Alloy during Selective Laser MeltingMetals202010443510.3390/met10040435
– reference: QuevaAGuillemotGMoriconiCMettonCBelletMNumerical study of the impact of vaporisation on melt pool dynamics in Laser Powder Bed Fusion - Application to IN718 and Ti-6Al-4VAdditive Manufacturing202035February10.1016/j.addma.2020.101249
– reference: BayatMMohantySHattelJHMultiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBFInternational Journal of Heat and Mass Transfer20191399511410.1016/j.ijheatmasstransfer.2019.05.003
– reference: Lee YS, Zhang W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: Solid Free Form Fabrication Symposium, pp. 1154–1165. University of Texas at Austin, Austin, Texas, USA 2015.
– reference: ArndtDBangerthWBergbauerMFederMFehlingMHeinzJHeisterTHeltaiLKronbichlerMMaierMMunchPPelteretJ-PTurcksinBWellsDZampiniSThe deal.II Library, Version 9.5Journal of Numerical Mathematics2023313231246463750210.1515/jnma-2023-0089
– reference: RussellMASouto-IglesiasAZohdiTINumerical simulation of Laser Fusion Additive Manufacturing processes using the SPH methodComputer Methods in Applied Mechanics and Engineering2018341163187384562110.1016/j.cma.2018.06.033
– reference: KhairallahSAAndersonATRubenchikAKingWELaser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zonesActa Materialia2016108364510.1016/j.actamat.2016.02.014
– reference: ZakirovABelousovSBogdanovaMKorneevBStepanovAPerepelkinaALevchenkoVMeshkovAPotapkinBPredictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscaleAdditive Manufacturing20203510.1016/j.addma.2020.101236
– reference: VollerVRPrakashCA fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problemsInternational Journal of Heat and Mass Transfer19873081709171910.1016/0017-9310(87)90317-6
– reference: Meland R, Gran IR, Olsen R, Munkejord ST. Reduction of parasitic currents in level-set calculations with a consistent discretization of the surface-tension force for the CSF model. In: 16th Australasian Fluid Mechanics Conference, pp. 862–865. School of Engineering, The University of Queensland, Crown Plaza, Gold Coast, Australia 2007.
– reference: PanwisawasCQiuCAndersonMJSovaniYTurnerRPAttallahMMBrooksJWBasoaltoHCMesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolutionComputational Materials Science201712647949010.1016/j.commatsci.2016.10.011
– reference: MeierCFuchsSLHartAJWallWAA novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modelingComputer Methods in Applied Mechanics and Engineering2021381424700010.1016/j.cma.2021.113812
– reference: FuchsSLPraeglaPMCyronCJWallWAMeierCA versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusionEngineering with Computers20223864853487710.1007/s00366-022-01724-4
– reference: LinYLüthiCAfrasiabiMBambachMEnhanced heat source modeling in particle-based laser manufacturing simulations with ray tracingInternational Journal of Heat and Mass Transfer202321410.1016/j.ijheatmasstransfer.2023.124378
– volume: 381
  year: 2021
  ident: 270_CR47
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.113812
– volume: 126
  start-page: 479
  year: 2017
  ident: 270_CR18
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2016.10.011
– volume: 20
  start-page: 241
  issue: 1
  year: 2017
  ident: 270_CR41
  publication-title: Annual Review of Heat Transfer
  doi: 10.1615/AnnualRevHeatTransfer.2018019042
– volume: 35
  year: 2020
  ident: 270_CR20
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2020.101236
– volume: 336
  start-page: 444
  year: 2018
  ident: 270_CR39
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2018.03.017
– volume: 38
  start-page: 4853
  issue: 6
  year: 2022
  ident: 270_CR21
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-022-01724-4
– volume: 30
  start-page: 1709
  issue: 8
  year: 1987
  ident: 270_CR53
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(87)90317-6
– volume: 21
  issue: 8
  year: 2013
  ident: 270_CR3
  publication-title: Modelling and Simulation in Materials Science and Engineering
  doi: 10.1088/0965-0393/21/8/085011
– volume: 46
  issue: 5
  year: 2013
  ident: 270_CR14
  publication-title: Journal of Physics D: Applied Physics
  doi: 10.1088/0022-3727/46/5/055501
– ident: 270_CR29
  doi: 10.2514/6.1996-859
– volume: 31
  year: 2020
  ident: 270_CR4
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2019.100909
– volume: 135
  start-page: 36
  issue: July
  year: 2017
  ident: 270_CR5
  publication-title: Finite Elements in Analysis and Design
  doi: 10.1016/j.finel.2017.07.002
– ident: 270_CR27
  doi: 10.1186/s40323-024-00276-0
– ident: 270_CR44
– volume: 383
  year: 2021
  ident: 270_CR11
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.113910
– volume: 11
  start-page: 479
  year: 2002
  ident: 270_CR34
  publication-title: Acta Numerica
  doi: 10.1017/S0962492902000077
– ident: 270_CR36
  doi: 10.1002/adem.202000169
– volume: 372
  year: 2020
  ident: 270_CR9
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113348
– ident: 270_CR12
– volume: 341
  start-page: 163
  year: 2018
  ident: 270_CR24
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2018.06.033
– volume: 32
  start-page: 266
  issue: 2
  year: 2018
  ident: 270_CR32
  publication-title: The International Journal of High Performance Computing Applications
  doi: 10.1177/1094342016671790
– volume: 35
  issue: February
  year: 2020
  ident: 270_CR10
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2020.101249
– volume: 26
  issue: 4
  year: 2014
  ident: 270_CR6
  publication-title: Journal of Laser Applications
  doi: 10.2351/1.4886835
– volume: 278
  start-page: 221
  issue: 1
  year: 2014
  ident: 270_CR30
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2014.08.034
– ident: 270_CR54
  doi: 10.1016/J.ADDMA.2022.103267
– volume: 108
  start-page: 36
  year: 2016
  ident: 270_CR2
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2016.02.014
– volume: 196
  start-page: 154
  year: 2020
  ident: 270_CR16
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2020.06.033
– volume: 100
  start-page: 335
  issue: 2
  year: 1992
  ident: 270_CR28
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 344
  start-page: 381
  issue: April
  year: 2017
  ident: 270_CR40
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2017.04.073
– volume: 139
  start-page: 7
  year: 2023
  ident: 270_CR23
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2023.03.003
– volume: 276
  start-page: 233
  year: 2014
  ident: 270_CR26
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2014.02.014
– volume: 214
  start-page: 2627
  issue: 11
  year: 2014
  ident: 270_CR7
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2014.06.001
– volume: 214
  year: 2023
  ident: 270_CR38
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2023.124378
– volume: 67
  start-page: 318
  issue: 2
  year: 2014
  ident: 270_CR19
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2013.10.001
– volume: 7
  start-page: 655
  issue: 4
  year: 2020
  ident: 270_CR22
  publication-title: Computational Particle Mechanics
  doi: 10.1007/s40571-019-00296-3
– volume: 305
  start-page: 838
  year: 2016
  ident: 270_CR46
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2015.11.014
– volume: 114
  start-page: 146
  issue: 1
  year: 1994
  ident: 270_CR33
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.1994.1155
– volume: 44
  issue: 2
  year: 2011
  ident: 270_CR13
  publication-title: Journal of Physics D: Applied Physics
  doi: 10.1088/0022-3727/44/2/025301
– volume-title: Instabilities in Laser-Matter Interaction
  year: 1995
  ident: 270_CR49
– volume: 17
  start-page: 519
  issue: 5
  year: 1979
  ident: 270_CR48
  publication-title: AIAA Journal
  doi: 10.2514/3.61164
– volume: 31
  start-page: 231
  issue: 3
  year: 2023
  ident: 270_CR31
  publication-title: Journal of Numerical Mathematics
  doi: 10.1515/jnma-2023-0089
– volume-title: Additive Manufacturing Technologies
  year: 2015
  ident: 270_CR1
  doi: 10.1007/978-1-4939-2113-3
– volume: 3
  start-page: 127
  issue: 2
  year: 2009
  ident: 270_CR17
  publication-title: Production Engineering
  doi: 10.1007/s11740-008-0148-7
– volume: 8
  start-page: 15
  issue: 1
  year: 2021
  ident: 270_CR50
  publication-title: Advanced Modeling and Simulation in Engineering Sciences
  doi: 10.1186/s40323-021-00200-w
– volume: 225
  start-page: 785
  issue: 1
  year: 2007
  ident: 270_CR52
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2006.12.027
– ident: 270_CR8
  doi: 10.1016/j.ijrmhm.2017.11.034
– volume: 30
  start-page: 139
  issue: 1
  year: 1998
  ident: 270_CR25
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.30.1.139
– volume: 27
  start-page: 507
  issue: 2
  year: 2006
  ident: 270_CR35
  publication-title: International Journal of Thermophysics
  doi: 10.1007/PL00021868
– volume: 44
  start-page: 1
  issue: 3
  year: 2021
  ident: 270_CR42
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.202100014
– volume: 139
  start-page: 95
  year: 2019
  ident: 270_CR15
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.05.003
– volume: 363
  start-page: 849
  issue: 6429
  year: 2019
  ident: 270_CR51
  publication-title: Science
  doi: 10.1126/science.aav4687
– volume: 13
  start-page: 2959
  issue: 1
  year: 2022
  ident: 270_CR43
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-30667-z
– volume: 10
  start-page: 435
  issue: 4
  year: 2020
  ident: 270_CR37
  publication-title: Metals
  doi: 10.3390/met10040435
– volume: 69
  start-page: 1433
  issue: 9
  year: 2012
  ident: 270_CR45
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.2643
SSID ssj0001634176
Score 2.3055105
Snippet Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental...
Abstract Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on...
SourceID doaj
swepub
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms Accuracy
Additive manufacturing
Classical and Continuum Physics
Computational Science and Engineering
Computing costs
Continuum surface flux model
Engineering
Engineering Sciences
Finite element method
Fluid dynamics
Fluxes
Laser applications
Laser beam melting
Laser powder bed fusion additive manufacturing
Manufacturing
Material properties
Melt pool thermo-hydrodynamics
Melt pools
Multi-phase heat transfer
Parameters
Powder beds
Research Article
Temperature
Temperature distribution
Theoretical and Applied Mechanics
Thickness
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egIIPgBFETx4ntE1oeVQ9V1QOgiovl2A5E2k1Ksqng3zPjZHe7IO2F5BLZjhNrxuP5_JiPkFcVy6tMWEAn8BRzxV1sKlnEnpWl5Jwzn4WDwsfi5ESenanTacKtn7ZVrmxiMNSutThHfpCBLwBgSuX5u_OfMbJG4erqRKFxlVzDKAlI3XCaf9vMsRRgo0WxOisji4OeJxnDhUseIyAD5LQ1HoWw_TDK_MBNkf96nJdWS_-KLBpGo8Pb_9uOO-TW5IfS2ag4d8kV39wjNy9FJ7xP6nHCwTtqrB06Y3_TtqK4t71uhmFB-6GrjPW0mg-_aGDU6Sm4wHThwaGnuFEJTSldmGbA4xPhPCRkzpcUeb1oXy8m6rD-Afly-Onzh6N4YmaIba7yZWwRNQJSS0UFV-GMUJUtBTNIXG9LhEHoOHmHNB5S-dxKl2YeErgR3IrsIdlr2sY_JpSXsqwc3FmRcMdkyQU4lSz3pXEWPP-IpCv5aDuFLUf2jLkO8EUWepSpBpnqIFNdROTN-p3zMWjHztLvUezrkhhwOyS03Xc99V-dFCzFqAEpoBHOc7BqyjgZAthJp1gakZegNFt1HM2ONaYlXHCZFOoCCu2vdEJPpqLXG4WIyIt1NnRyXLkxjW-HUEbAp6CWiDwadXH9qUwBSFcZ5LxdKeem8l2tfj0q8NY_f6y_zkK7h0HnGRrzJ7v_-Sm5wUJvAnvL9sneshv8M3LdXizrvnseuuMfjI45bg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcIAD70egIIPgBBGJ7fhxXApVD1XFAVBvluM4EGk3i5JNBf-eGSdZuoAqQXKJbMfP8Xg-2zNDyIuaFTVXHtAJfKXCiCp1tZZpYGWphRAs8KgofKxOTvTpqfkwKYX18233-Ugycuo4rbV804uMMzxzFCliKQA9l8mVItcGHTYcTDoOcWdFAmdWctaQ-euvO6tQNNYPa8tXvAr5p5x57oz0N3uicQ06vPl_tb9FbkwyJ12MRHKbXArtHXL9nCXCu6QZNxdCRZ33Q-f8D7quKd5jb9phWNF-6GrnA62Xw3cavef0FMRdugogvFO8lIRsk65cO6CqRNR9hMjlhqIPL9o3q8lNWH-PfDp8__HgKJ28MKS-MMUm9YgQAZXlqoZHVk6Z2peKOXRS70uEPCgkhQpddmgTCq-rnAcIEE4Jr_h9steu2_CQUFHqsq7g5TITFdOlUCBAsiKUrvIg5Sckn0fF-slEOXrKWNoIVbS0Yzda6EYbu9HKhLza_vNtNNBxYeq3ONjblGhcOwasuy92mqs2kyxHCwE5IA8hCuBgxlU6GqvTlWF5Qp4DqezkcbQ4thiWCSV0Js0ZJNqfKclObKG3HARazZUpioQ820bDhMZTGteG9RDTKCgKcknIg5ECt0VxA4DccIh5PVPZr8wvavXLkWx36vyu-byI7R4GW3Bk3I_-LdvH5BqLBA28lu2TvU03hCfkqj_bNH33NE7Kn92qLoU
  priority: 102
  providerName: Springer Nature
Title Improved accuracy of continuum surface flux models for metal additive manufacturing melt pool simulations
URI https://link.springer.com/article/10.1186/s40323-024-00270-6
https://www.ncbi.nlm.nih.gov/pubmed/39184936
https://www.proquest.com/docview/3095837955
https://www.proquest.com/docview/3097155806
https://hal.science/hal-04748069
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-537870
https://doaj.org/article/0621431617724457939ad8015528d921
Volume 11
WOSCitedRecordID wos001296577200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: M7S
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: P5Z
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nj5QwFG909aAH47es66QaPSlZKIW2x9l1N2uyTohfGb00pZRIMsNshmGj_73vFWac0WS9CAmBthToe23fj74PQl5WLK0SYQGdwFnIFS9DU8ksdKwoJOecucQbCp-LyUROpyrfCvWFOmG9e-C-4Q6jjMVorh2DGMh5CuykTCm95zBZKm9CziKhtsCU_7uSwegssrWVjMwOWx4lDJcseYhQDDDTzkzkHfbD_PId1SH_ljW31kn_8Cnq56HTu-TOIEDScf_i98g119wnt7fcCj4gdf-nwJXUWNstjf1JFxVFpfS66bo5bbtlZayj1az7QX0onJaC7ErnDiRxihpGOAbSuWk6tHvwhoyQOVtRDMhF23o-xPxqH5LPpyefjs_CIaRCaFOVrkKLcA8gViwq2LLSCFXZQjCDEedtgfgFJR5XYvwNqVxqZRknDhK4EdyK5BHZaxaNe0IoL2RRlbAnWcRLJgsuQBpkqStMaUFkD0i8bl5tB3_jGPZipj3ukJnuSaKBJNqTRGcBeb2556L3tnFl6SOk2qYkesr2CcA_euAf_S_-CcgLoPlOHWfjc41pERdcRpm6hEIHa5bQQx9vdQLSKcB7laYBeb7Jht6JSy6mcYvOlxHwKKglII97Vto8KlGArlUCOW_WvPW78qu--lXPfzvv_Lb-Mvbf3XU6TXAU3v8frfOU3GK-y8Bwyg7I3mrZuWfkpr1c1e1yRK6LqRyRG0cnk_wDXB0zPvL9cIQqtB_hmKffID9_9z7_-guK0S7W
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELZGh8R44PegMMAg9gTRGseJnQeEOrap00o1oTHtzTiOA5XadDTNYP8UfyN3TtKuIPVtDzQvle06cfr57j7bd0fIm4yFWSAMsBP45vGYp57OZORZliSSc85s4ByF-2IwkGdn8fEa-d34wuCxykYmOkGdTgyuke8EYAsAmYrD8MP5Dw-zRuHuapNCo4LFkb38CZSteH-4B__vNmMH-ycfe16dVcAzYRzOPIOMB1iGLzL4RKkWcWYSwTQmXTcJmvCo9G2KKShkbEMjUz-wUMC14EYE0O8Nss4DEDEtsr67Pzj-vFjViUAriKjxzpHRTsE7AcOtUu4hBQSutqQBXaIA0Gvf8Rjmvzbulf3Zv2KZOv13cPd_e3P3yJ3a0qbdamrcJ2s2f0BuX4m_-JAMqyUVm1JtTDnV5pJOMoqn94d5WY5pUU4zbSzNRuUv6nIGFRSMfDq2QFkoHsVCZUHHOi_RQcR5fELlaEYxcxkthuM6OVrxiHy5lrFuklY-ye0TQnkikyyFK4g6PGUy4QLMZhbaRKcGuE2b-A0elKkDs2N-kJFyBE1GqsKQAgwphyEVtcnb-W_Oq7AkK1vvIszmLTGkuCuYTL-pWkKpTsR8jIvgA9_iPAS5HetUuhB9Mo2Z3yavAaRLffS6fYVlHS647ETxBTTaajCoamFYqAUA2-TVvBrEGO5N6dxOStdGwK2glzZ5XGF_fqsg9iWPA6h510yGReerRr1dTZilZ94bnnbduMtShQGqq6ern_kludU7-dRX_cPB0TOywdxMBu3CtkhrNi3tc3LTXMyGxfRFLQwo-Xrds-gP-iKW9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgIAQPfH8UBhgETxCtsZ3Yfiwb1RBVtQdAe7Mc24FIbTo1zQT_PXdOWlpAkxDpS2Q7du3cne9yvt8R8qpkWcmlA-sE7hKhhU9sqfIksKJQQggWeAwUnsjpVJ2e6pOtKP542n3tkuxiGhClqV4dnPmyY3GVHzRiyBn6H0WCdhUYQJfJFfRIIWse9vEO8StLDlJa5utomb8-urMjReB-2Ge-4bHIP3XOLX_pb9iicT8a3_r_mdwmN3tdlI464rlDLoX6LrmxhVB4j1TdR4fgqXWuXVr3gy5KikNUddvOadMuS-sCLWftdxqz6jQU1GA6D6DUUzyshOKUzm3dYghFjImEytmKYm4v2lTzPn1Yc598Hr__dHic9NkZEpfpbJU4tBzBWktlCVfurdSlKySzmLzeFWgKofIUPKbyUDpkTvmUBygQVgon-QOyVy_q8IhQUaii9PDj-VB4pgohQbFkWSisd6D9D0i6fkPG9dDlmEFjZqIJo3LTLaOBZTRxGU0-IG82z5x1wB0Xtn6HL37TEkG3Y8Fi-dX0PGyGOUsROSAFi0SIDCSbtl5FEDvlNUsH5CWQzU4fx6OJwbKhkEINc30OjfbXVGV6cdEYDoqu4lJn2YC82FQDo6P3xtZh0cY2EoaCXgbkYUeNm6G4BkNdc6h5u6a4X51fNOvXHQnv_Oej6ssozrttTcZRoD_-t26fk2snR2Mz-TD9-IRcZ5G2QRyzfbK3WrbhKbnqzldVs3wWefUnIXI6Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+accuracy+of+continuum+surface+flux+models+for+metal+additive+manufacturing+melt+pool+simulations&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Much%2C+Nils&rft.au=Schreter-Fleischhacker%2C+Magdalena&rft.au=Munch%2C+Peter&rft.au=Kronbichler%2C+Martin&rft.date=2024-08-22&rft.pub=Springer&rft.issn=2213-7467&rft.eissn=2213-7467&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=40&rft_id=info:doi/10.1186%2Fs40323-024-00270-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04748069v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon