Improved accuracy of continuum surface flux models for metal additive manufacturing melt pool simulations
Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and co...
Uložené v:
| Vydané v: | Advanced modeling and simulation in engineering sciences Ročník 11; číslo 1; s. 16 - 40 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
22.08.2024
Springer Nature B.V Springer SpringerOpen |
| Predmet: | |
| ISSN: | 2213-7467, 2213-7467 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change. |
|---|---|
| AbstractList | Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change. Abstract Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change. Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change. |
| ArticleNumber | 16 |
| Author | Kronbichler, Martin Wall, Wolfgang A. Meier, Christoph Much, Nils Schreter-Fleischhacker, Magdalena Munch, Peter |
| Author_xml | – sequence: 1 givenname: Nils surname: Much fullname: Much, Nils email: nils.much@tum.de organization: Institute for Computational Mechanics, Technical University of Munich – sequence: 2 givenname: Magdalena surname: Schreter-Fleischhacker fullname: Schreter-Fleischhacker, Magdalena organization: Institute for Computational Mechanics, Technical University of Munich – sequence: 3 givenname: Peter surname: Munch fullname: Munch, Peter organization: Department of Information Technology, Uppsala University, Institute for High-Performance Scientific Computing, University of Augsburg – sequence: 4 givenname: Martin surname: Kronbichler fullname: Kronbichler, Martin organization: Institute for High-Performance Scientific Computing, University of Augsburg, Faculty of Mathematics, Ruhr University Bochum – sequence: 5 givenname: Wolfgang A. surname: Wall fullname: Wall, Wolfgang A. organization: Institute for Computational Mechanics, Technical University of Munich – sequence: 6 givenname: Christoph surname: Meier fullname: Meier, Christoph organization: Institute for Computational Mechanics, Technical University of Munich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39184936$$D View this record in MEDLINE/PubMed https://hal.science/hal-04748069$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-537870$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp9kk9vFCEYxiemxta1X8CDIfFiE0dhgAGOm1rtJpt4Ua-EZZjKhhlW_mztt5fZ2artoVwgL7_n4c3L87I6Gf1oquo1gh8Q4u3HSCBucA0bUkPYMFi3z6qzpkG4ZqRlJ_-dT6vzGLcQQtRiglj7ojrFAnEicHtW2dWwC35vOqC0zkHpO-B7oP2Y7JjzAGIOvdIG9C7_BoPvjIug9wEMJikHVNfZZPcGDGrMhUs52PGmXLoEdt47EO2QnUrWj_FV9bxXLprz476ovn---nZ5Xa-_flldLte1poKmWiMEGRcCsb6stlNM9HrDGoUQwnqDKOGooch0jGPChaGadwibUiCKEc3wolrNvp1XW7kLdlDhTnpl5aHgw41UIVntjIRtgwhGLWKsIYQygYXqOESUNrwTZX6L6v3sFW_NLm8euH2yP5YHt5wlxYwzWPCLGf-p3AP2ermWUw0SRjhsxX6yfjezZfy_solJDjZq45wajc9RYihYaaTQBX37CN36HMYyxImiHDNBaaHeHKm8GUz39_37vy4AnwEdfIzB9FLbdPibFJR1EkE5JUvOyZIlWfKQLDlJm0fSe_cnRfg4vN2UChP-tf2E6g_eVt1I |
| CitedBy_id | crossref_primary_10_1016_j_mfglet_2025_06_009 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127449 crossref_primary_10_1186_s40323_024_00276_0 |
| Cites_doi | 10.1016/j.cma.2021.113812 10.1016/j.commatsci.2016.10.011 10.1615/AnnualRevHeatTransfer.2018019042 10.1016/j.addma.2020.101236 10.1016/j.cma.2018.03.017 10.1007/s00366-022-01724-4 10.1016/0017-9310(87)90317-6 10.1088/0965-0393/21/8/085011 10.1088/0022-3727/46/5/055501 10.2514/6.1996-859 10.1016/j.addma.2019.100909 10.1016/j.finel.2017.07.002 10.1186/s40323-024-00276-0 10.1016/j.cma.2021.113910 10.1017/S0962492902000077 10.1002/adem.202000169 10.1016/j.cma.2020.113348 10.1016/j.cma.2018.06.033 10.1177/1094342016671790 10.1016/j.addma.2020.101249 10.2351/1.4886835 10.1016/j.jcp.2014.08.034 10.1016/J.ADDMA.2022.103267 10.1016/j.actamat.2016.02.014 10.1016/j.actamat.2020.06.033 10.1016/0021-9991(92)90240-Y 10.1016/j.jcp.2017.04.073 10.1016/j.camwa.2023.03.003 10.1016/j.cma.2014.02.014 10.1016/j.jmatprotec.2014.06.001 10.1016/j.ijheatmasstransfer.2023.124378 10.1016/j.camwa.2013.10.001 10.1007/s40571-019-00296-3 10.1016/j.jcp.2015.11.014 10.1006/jcph.1994.1155 10.1088/0022-3727/44/2/025301 10.2514/3.61164 10.1515/jnma-2023-0089 10.1007/978-1-4939-2113-3 10.1007/s11740-008-0148-7 10.1186/s40323-021-00200-w 10.1016/j.jcp.2006.12.027 10.1016/j.ijrmhm.2017.11.034 10.1146/annurev.fluid.30.1.139 10.1007/PL00021868 10.1002/gamm.202100014 10.1016/j.ijheatmasstransfer.2019.05.003 10.1126/science.aav4687 10.1038/s41467-022-30667-z 10.3390/met10040435 10.1002/fld.2643 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC VOOES ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
| DOI | 10.1186/s40323-024-00270-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2213-7467 |
| EndPage | 40 |
| ExternalDocumentID | oai_doaj_org_article_0621431617724457939ad8015528d921 oai_DiVA_org_uu_537870 oai:HAL:hal-04748069v1 39184936 10_1186_s40323_024_00270_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Technische Universität München (1025) – fundername: Austrian Science Fund grantid: J4577 funderid: http://dx.doi.org/10.13039/501100002428 – fundername: European Research Council grantid: 101117579 |
| GroupedDBID | -A0 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS ASPBG BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S M~E OK1 P62 PIMPY PROAC PTHSS RSV SOJ TUS AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB AHSBF EJD H13 NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7X8 1XC VOOES ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c595t-c110789917ffff6da79fcb72a1113cb15481251ed783489e5c8d13e1ed4a74c73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296577200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-7467 |
| IngestDate | Fri Oct 03 12:43:05 EDT 2025 Tue Nov 04 16:27:00 EST 2025 Tue Oct 14 20:59:11 EDT 2025 Thu Oct 02 11:44:50 EDT 2025 Tue Sep 30 18:42:37 EDT 2025 Mon Jul 21 06:03:06 EDT 2025 Sat Nov 29 03:47:45 EST 2025 Tue Nov 18 22:49:35 EST 2025 Fri Feb 21 02:38:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Finite element method Melt pool thermo-hydrodynamics Continuum surface flux model Multi-phase heat transfer Laser powder bed fusion additive manufacturing |
| Language | English |
| License | The Author(s) 2024. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c595t-c110789917ffff6da79fcb72a1113cb15481251ed783489e5c8d13e1ed4a74c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7419-3384 0000-0001-8406-835X 0000-0002-3501-1696 0000-0003-3888-4086 |
| OpenAccessLink | https://doaj.org/article/0621431617724457939ad8015528d921 |
| PMID | 39184936 |
| PQID | 3095837955 |
| PQPubID | 2034555 |
| PageCount | 40 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0621431617724457939ad8015528d921 swepub_primary_oai_DiVA_org_uu_537870 hal_primary_oai_HAL_hal_04748069v1 proquest_miscellaneous_3097155806 proquest_journals_3095837955 pubmed_primary_39184936 crossref_citationtrail_10_1186_s40323_024_00270_6 crossref_primary_10_1186_s40323_024_00270_6 springer_journals_10_1186_s40323_024_00270_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-22 |
| PublicationDateYYYYMMDD | 2024-08-22 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Netherlands – name: Heidelberg |
| PublicationTitle | Advanced modeling and simulation in engineering sciences |
| PublicationTitleAbbrev | Adv. Model. and Simul. in Eng. Sci |
| PublicationTitleAlternate | Adv Model Simul Eng Sci |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V Springer SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer – name: SpringerOpen |
| References | Schreter-Fleischhacker M, Munch P, Much N, Kronbichler M, Wall WA, Meier C. A consistent diffuse-interface model for two-phase flow problems with rapid evaporation (2024 (submitted)). Meland R, Gran IR, Olsen R, Munkejord ST. Reduction of parasitic currents in level-set calculations with a consistent discretization of the surface-tension force for the CSF model. In: 16th Australasian Fluid Mechanics Conference, pp. 862–865. School of Engineering, The University of Queensland, Crown Plaza, Gold Coast, Australia 2007. BayatMMohantySHattelJHMultiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBFInternational Journal of Heat and Mass Transfer20191399511410.1016/j.ijheatmasstransfer.2019.05.003 YanJYanWLinSWagnerGJA fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidificationComputer Methods in Applied Mechanics and Engineering2018336444470379500810.1016/j.cma.2018.03.017 CoquerelleMGlocknerSA fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forcesJournal of Computational Physics2016305838876342960910.1016/j.jcp.2015.11.014 KnightCJTheoretical Modeling of Rapid Surface Vaporization with Back PressureAIAA Journal197917551952310.2514/3.61164 KörnerCBauereißAAttarEFundamental consolidation mechanisms during selective beam melting of powdersModelling and Simulation in Materials Science and Engineering201321810.1088/0965-0393/21/8/085011 TanWBaileyNSShinYCInvestigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulationJournal of Physics D: Applied Physics201346510.1088/0022-3727/46/5/055501 Kothe D, Rider W, Mosso S, Brock J, Hochstein J. Volume tracking of interfaces having surface tension in two and three dimensions. In: 34th Aerospace Sciences Meeting and Exhibit, p. 859. American Institute of Aeronautics and Astronautics, Reston, Virigina 1996. https://doi.org/10.2514/6.1996-859. ChenHYanWSpattering and denudation in laser powder bed fusion process: Multiphase flow modellingActa Materialia202019615416710.1016/j.actamat.2020.06.033 QuevaAGuillemotGMoriconiCMettonCBelletMNumerical study of the impact of vaporisation on melt pool dynamics in Laser Powder Bed Fusion - Application to IN718 and Ti-6Al-4VAdditive Manufacturing202035February10.1016/j.addma.2020.101249 BrackbillJUKotheDBZemachCA continuum method for modeling surface tensionJournal of Computational Physics19921002335354116774910.1016/0021-9991(92)90240-Y AndersonDMMcFaddenGBWheelerAADiffuse-interface methods in fluid mechanicsAnnual Review of Fluid Mechanics1998301139165160962610.1146/annurev.fluid.30.1.139 MeierCFuchsSLHartAJWallWAA novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modelingComputer Methods in Applied Mechanics and Engineering2021381424700010.1016/j.cma.2021.113812 RussellMASouto-IglesiasAZohdiTINumerical simulation of Laser Fusion Additive Manufacturing processes using the SPH methodComputer Methods in Applied Mechanics and Engineering2018341163187384562110.1016/j.cma.2018.06.033 KhairallahSAAndersonATRubenchikAKingWELaser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zonesActa Materialia2016108364510.1016/j.actamat.2016.02.014 PangSChenLZhouJYinYChenTA three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser weldingJournal of Physics D: Applied Physics201144210.1088/0022-3727/44/2/025301 KronbichlerMDiagneAHolmgrenHA fast massively parallel two-phase flow solver for microfluidic chip simulationThe International Journal of High Performance Computing Applications201832226628710.1177/1094342016671790 PeskinCSThe immersed boundary methodActa Numerica200211479517200937810.1017/S0962492902000077 MeierCPennyRWZouYGibbsJSHartAJThermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentationAnnual Review of Heat Transfer201720124131610.1615/AnnualRevHeatTransfer.2018019042 AnisimovSIKhokhlovVAInstabilities in Laser-Matter Interaction1995Boca Raton, FLCRC Press AndreottaRLadaniLBrindleyWFinite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal propertiesFinite Elements in Analysis and Design2017135July364310.1016/j.finel.2017.07.002 Lee YS, Zhang W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: Solid Free Form Fabrication Symposium, pp. 1154–1165. University of Texas at Austin, Austin, Texas, USA 2015. MeierCFuchsSLMuchNNitzlerJPennyRWPraeglaPMProellSDSunYWeissbachRSchreterMHodgeNEJohn HartAWallWAPhysics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scalesGAMM-Mitteilungen2021443124437533410.1002/gamm.202100014 SchottBWallWAA new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equationsComputer Methods in Applied Mechanics and Engineering2014276233265321233410.1016/j.cma.2014.02.014 YokoiKA density-scaled continuum surface force model within a balanced force formulationJournal of Computational Physics20142781221228326109210.1016/j.jcp.2014.08.034 AmmerRMarklMLjungbladUKörnerCRüdeUSimulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann methodComputers & Mathematics with Applications2014672318330314802810.1016/j.camwa.2013.10.001 LüthiCAfrasiabiMBambachMAn adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturingComputers & Mathematics with Applications2023139727456159810.1016/j.camwa.2023.03.003 Ross AJ, Bitharas I, Perkins KG, Moore AJ. Volumetric heat source calibration for laser powder bed fusion. Additive Manufacturing. 2022;60. https://doi.org/10.1016/J.ADDMA.2022.103267. CourtoisMCarinMLe MassonPGaiedSBalabaneMA complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser weldingJournal of Laser Applications201426410.2351/1.4886835 ZakirovABelousovSBogdanovaMKorneevBStepanovAPerepelkinaALevchenkoVMeshkovAPotapkinBPredictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscaleAdditive Manufacturing20203510.1016/j.addma.2020.101236 LinSGanZYanJWagnerGJA conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2020372413998010.1016/j.cma.2020.113348 FuchsSLPraeglaPMCyronCJWallWAMeierCA versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusionEngineering with Computers20223864853487710.1007/s00366-022-01724-4 FürstenauJ-PWesselsHWeißenfelsCWriggersPGenerating virtual process maps of SLM using powder-scale SPH simulationsComputational Particle Mechanics20207465567710.1007/s40571-019-00296-3 FuchsSLMeierCWallWACyronCJAn SPH framework for fluid-solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitionsAdvanced Modeling and Simulation in Engineering Sciences2021811510.1186/s40323-021-00200-w BitharasIParabNZhaoCSunTRollettADMooreAJThe interplay between vapour, liquid, and solid phases in laser powder bed fusionNature Communications2022131295910.1038/s41467-022-30667-z PanwisawasCQiuCAndersonMJSovaniYTurnerRPAttallahMMBrooksJWBasoaltoHCMesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolutionComputational Materials Science201712647949010.1016/j.commatsci.2016.10.011 ZhangGChenJZhengMYanZLuXLinXHuangWElement Vaporization of Ti-6Al-4V Alloy during Selective Laser MeltingMetals202010443510.3390/met10040435 BoivineauMCagranCDoytierDEyraudVNadalM-HWilthanBPottlacherGThermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) AlloyInternational Journal of Thermophysics200627250752910.1007/PL00021868 VollerVRPrakashCA fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problemsInternational Journal of Heat and Mass Transfer19873081709171910.1016/0017-9310(87)90317-6 KhairallahSAAndersonAMesoscopic simulation model of selective laser melting of stainless steel powderJournal of Materials Processing Technology2014214112627263610.1016/j.jmatprotec.2014.06.001 Mohr M, Wunderlich R, Novakovic R, Ricci E, Fecht H-J. Precise Measurements of Thermophysical Properties of Liquid Ti-6Al-4V (Ti64) Alloy On Board the International Space Station. Advanced Engineering Materials. 2020;22(7). https://doi.org/10.1002/adem.202000169. OlssonEKreissGZahediSA conservative level set method for two phase flow IIJournal of Computational Physics20072251785807234670010.1016/j.jcp.2006.12.027 CookPSMurphyABSimulation of melt pool behaviour during additive manufacturing: Underlying physics and progressAdditive Manufacturing20203110.1016/j.addma.2019.100909 SussmanMSmerekaPOsherSA Level Set Approach for Computing Solutions to Incompressible Two-Phase FlowJournal of Computational Physics1994114114615910.1006/jcph.1994.1155 LeeMSRiazAAuteVDirect numerical simulation of incompressible multiphase flow with phase changeJournal of Computational Physics2017344April381418365674610.1016/j.jcp.2017.04.073 ZhuQYanJA mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2021383426054710.1016/j.cma.2021.113910 ZahediSKronbichlerMKreissGSpurious currents in finite element based level set methods for two-phase flowInternational Journal for Numerical Methods in Fluids201269914331456294465810.1002/fld.2643 M Courtois (270_CR6) 2014; 26 A Queva (270_CR10) 2020; 35 B Schott (270_CR26) 2014; 276 Q Zhu (270_CR11) 2021; 383 J Yan (270_CR39) 2018; 336 C Lüthi (270_CR23) 2023; 139 DM Anderson (270_CR25) 1998; 30 SA Khairallah (270_CR7) 2014; 214 270_CR27 Y Lin (270_CR38) 2023; 214 270_CR29 W Tan (270_CR14) 2013; 46 M Bayat (270_CR15) 2019; 139 SA Khairallah (270_CR2) 2016; 108 CJ Knight (270_CR48) 1979; 17 S Pang (270_CR13) 2011; 44 M Geiger (270_CR17) 2009; 3 M Kronbichler (270_CR32) 2018; 32 E Olsson (270_CR52) 2007; 225 M Boivineau (270_CR35) 2006; 27 I Bitharas (270_CR43) 2022; 13 C Panwisawas (270_CR18) 2017; 126 270_CR12 D Arndt (270_CR31) 2023; 31 I Gibson (270_CR1) 2015 270_CR54 A Zakirov (270_CR20) 2020; 35 H Chen (270_CR16) 2020; 196 SI Anisimov (270_CR49) 1995 S Lin (270_CR9) 2020; 372 G Zhang (270_CR37) 2020; 10 MS Lee (270_CR40) 2017; 344 SL Fuchs (270_CR50) 2021; 8 C Meier (270_CR41) 2017; 20 270_CR8 MA Russell (270_CR24) 2018; 341 270_CR44 C Körner (270_CR3) 2013; 21 R Cunningham (270_CR51) 2019; 363 SL Fuchs (270_CR21) 2022; 38 S Zahedi (270_CR45) 2012; 69 M Sussman (270_CR33) 1994; 114 C Meier (270_CR47) 2021; 381 R Andreotta (270_CR5) 2017; 135 JU Brackbill (270_CR28) 1992; 100 270_CR36 CS Peskin (270_CR34) 2002; 11 PS Cook (270_CR4) 2020; 31 C Meier (270_CR42) 2021; 44 R Ammer (270_CR19) 2014; 67 J-P Fürstenau (270_CR22) 2020; 7 K Yokoi (270_CR30) 2014; 278 M Coquerelle (270_CR46) 2016; 305 VR Voller (270_CR53) 1987; 30 |
| References_xml | – reference: SchottBWallWAA new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equationsComputer Methods in Applied Mechanics and Engineering2014276233265321233410.1016/j.cma.2014.02.014 – reference: BrackbillJUKotheDBZemachCA continuum method for modeling surface tensionJournal of Computational Physics19921002335354116774910.1016/0021-9991(92)90240-Y – reference: SussmanMSmerekaPOsherSA Level Set Approach for Computing Solutions to Incompressible Two-Phase FlowJournal of Computational Physics1994114114615910.1006/jcph.1994.1155 – reference: MeierCFuchsSLMuchNNitzlerJPennyRWPraeglaPMProellSDSunYWeissbachRSchreterMHodgeNEJohn HartAWallWAPhysics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scalesGAMM-Mitteilungen2021443124437533410.1002/gamm.202100014 – reference: CookPSMurphyABSimulation of melt pool behaviour during additive manufacturing: Underlying physics and progressAdditive Manufacturing20203110.1016/j.addma.2019.100909 – reference: OlssonEKreissGZahediSA conservative level set method for two phase flow IIJournal of Computational Physics20072251785807234670010.1016/j.jcp.2006.12.027 – reference: AndersonDMMcFaddenGBWheelerAADiffuse-interface methods in fluid mechanicsAnnual Review of Fluid Mechanics1998301139165160962610.1146/annurev.fluid.30.1.139 – reference: KörnerCBauereißAAttarEFundamental consolidation mechanisms during selective beam melting of powdersModelling and Simulation in Materials Science and Engineering201321810.1088/0965-0393/21/8/085011 – reference: Schreter-Fleischhacker M, Munch P, Much N, Kronbichler M, Wall WA, Meier C. A consistent diffuse-interface model for two-phase flow problems with rapid evaporation (2024 (submitted)). – reference: ZhuQYanJA mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2021383426054710.1016/j.cma.2021.113910 – reference: GibsonIRosenDStuckerBAdditive Manufacturing Technologies20152New York, NYSpringer10.1007/978-1-4939-2113-3 – reference: TanWBaileyNSShinYCInvestigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulationJournal of Physics D: Applied Physics201346510.1088/0022-3727/46/5/055501 – reference: FuchsSLMeierCWallWACyronCJAn SPH framework for fluid-solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitionsAdvanced Modeling and Simulation in Engineering Sciences2021811510.1186/s40323-021-00200-w – reference: BoivineauMCagranCDoytierDEyraudVNadalM-HWilthanBPottlacherGThermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) AlloyInternational Journal of Thermophysics200627250752910.1007/PL00021868 – reference: Leitz K-H, Grohs C, Singer P, Tabernig B, Plankensteiner A, Kestler H, Sigl LS. Fundamental analysis of the influence of powder characteristics in Selective Laser Melting of molybdenum based on a multi-physical simulation model. International Journal of Refractory Metals and Hard Materials 2018;72(November 2017); 1–8. https://doi.org/10.1016/j.ijrmhm.2017.11.034. – reference: CourtoisMCarinMLe MassonPGaiedSBalabaneMA complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser weldingJournal of Laser Applications201426410.2351/1.4886835 – reference: KhairallahSAAndersonAMesoscopic simulation model of selective laser melting of stainless steel powderJournal of Materials Processing Technology2014214112627263610.1016/j.jmatprotec.2014.06.001 – reference: MeierCPennyRWZouYGibbsJSHartAJThermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentationAnnual Review of Heat Transfer201720124131610.1615/AnnualRevHeatTransfer.2018019042 – reference: KronbichlerMDiagneAHolmgrenHA fast massively parallel two-phase flow solver for microfluidic chip simulationThe International Journal of High Performance Computing Applications201832226628710.1177/1094342016671790 – reference: YanJYanWLinSWagnerGJA fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidificationComputer Methods in Applied Mechanics and Engineering2018336444470379500810.1016/j.cma.2018.03.017 – reference: YokoiKA density-scaled continuum surface force model within a balanced force formulationJournal of Computational Physics20142781221228326109210.1016/j.jcp.2014.08.034 – reference: BitharasIParabNZhaoCSunTRollettADMooreAJThe interplay between vapour, liquid, and solid phases in laser powder bed fusionNature Communications2022131295910.1038/s41467-022-30667-z – reference: KnightCJTheoretical Modeling of Rapid Surface Vaporization with Back PressureAIAA Journal197917551952310.2514/3.61164 – reference: FürstenauJ-PWesselsHWeißenfelsCWriggersPGenerating virtual process maps of SLM using powder-scale SPH simulationsComputational Particle Mechanics20207465567710.1007/s40571-019-00296-3 – reference: PeskinCSThe immersed boundary methodActa Numerica200211479517200937810.1017/S0962492902000077 – reference: Ross AJ, Bitharas I, Perkins KG, Moore AJ. Volumetric heat source calibration for laser powder bed fusion. Additive Manufacturing. 2022;60. https://doi.org/10.1016/J.ADDMA.2022.103267. – reference: ZahediSKronbichlerMKreissGSpurious currents in finite element based level set methods for two-phase flowInternational Journal for Numerical Methods in Fluids201269914331456294465810.1002/fld.2643 – reference: AndreottaRLadaniLBrindleyWFinite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal propertiesFinite Elements in Analysis and Design2017135July364310.1016/j.finel.2017.07.002 – reference: Kothe D, Rider W, Mosso S, Brock J, Hochstein J. Volume tracking of interfaces having surface tension in two and three dimensions. In: 34th Aerospace Sciences Meeting and Exhibit, p. 859. American Institute of Aeronautics and Astronautics, Reston, Virigina 1996. https://doi.org/10.2514/6.1996-859. – reference: PangSChenLZhouJYinYChenTA three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser weldingJournal of Physics D: Applied Physics201144210.1088/0022-3727/44/2/025301 – reference: LüthiCAfrasiabiMBambachMAn adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturingComputers & Mathematics with Applications2023139727456159810.1016/j.camwa.2023.03.003 – reference: LeeMSRiazAAuteVDirect numerical simulation of incompressible multiphase flow with phase changeJournal of Computational Physics2017344April381418365674610.1016/j.jcp.2017.04.073 – reference: CunninghamRZhaoCParabNKantzosCPauzaJFezzaaKSunTRollettADKeyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imagingScience2019363642984985210.1126/science.aav4687 – reference: LinSGanZYanJWagnerGJA conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processesComputer Methods in Applied Mechanics and Engineering2020372413998010.1016/j.cma.2020.113348 – reference: AnisimovSIKhokhlovVAInstabilities in Laser-Matter Interaction1995Boca Raton, FLCRC Press – reference: GeigerMLeitzK-HKochHOttoAA 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheetsProduction Engineering20093212713610.1007/s11740-008-0148-7 – reference: ChenHYanWSpattering and denudation in laser powder bed fusion process: Multiphase flow modellingActa Materialia202019615416710.1016/j.actamat.2020.06.033 – reference: CoquerelleMGlocknerSA fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forcesJournal of Computational Physics2016305838876342960910.1016/j.jcp.2015.11.014 – reference: Mohr M, Wunderlich R, Novakovic R, Ricci E, Fecht H-J. Precise Measurements of Thermophysical Properties of Liquid Ti-6Al-4V (Ti64) Alloy On Board the International Space Station. Advanced Engineering Materials. 2020;22(7). https://doi.org/10.1002/adem.202000169. – reference: AmmerRMarklMLjungbladUKörnerCRüdeUSimulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann methodComputers & Mathematics with Applications2014672318330314802810.1016/j.camwa.2013.10.001 – reference: ZhangGChenJZhengMYanZLuXLinXHuangWElement Vaporization of Ti-6Al-4V Alloy during Selective Laser MeltingMetals202010443510.3390/met10040435 – reference: QuevaAGuillemotGMoriconiCMettonCBelletMNumerical study of the impact of vaporisation on melt pool dynamics in Laser Powder Bed Fusion - Application to IN718 and Ti-6Al-4VAdditive Manufacturing202035February10.1016/j.addma.2020.101249 – reference: BayatMMohantySHattelJHMultiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBFInternational Journal of Heat and Mass Transfer20191399511410.1016/j.ijheatmasstransfer.2019.05.003 – reference: Lee YS, Zhang W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: Solid Free Form Fabrication Symposium, pp. 1154–1165. University of Texas at Austin, Austin, Texas, USA 2015. – reference: ArndtDBangerthWBergbauerMFederMFehlingMHeinzJHeisterTHeltaiLKronbichlerMMaierMMunchPPelteretJ-PTurcksinBWellsDZampiniSThe deal.II Library, Version 9.5Journal of Numerical Mathematics2023313231246463750210.1515/jnma-2023-0089 – reference: RussellMASouto-IglesiasAZohdiTINumerical simulation of Laser Fusion Additive Manufacturing processes using the SPH methodComputer Methods in Applied Mechanics and Engineering2018341163187384562110.1016/j.cma.2018.06.033 – reference: KhairallahSAAndersonATRubenchikAKingWELaser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zonesActa Materialia2016108364510.1016/j.actamat.2016.02.014 – reference: ZakirovABelousovSBogdanovaMKorneevBStepanovAPerepelkinaALevchenkoVMeshkovAPotapkinBPredictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscaleAdditive Manufacturing20203510.1016/j.addma.2020.101236 – reference: VollerVRPrakashCA fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problemsInternational Journal of Heat and Mass Transfer19873081709171910.1016/0017-9310(87)90317-6 – reference: Meland R, Gran IR, Olsen R, Munkejord ST. Reduction of parasitic currents in level-set calculations with a consistent discretization of the surface-tension force for the CSF model. In: 16th Australasian Fluid Mechanics Conference, pp. 862–865. School of Engineering, The University of Queensland, Crown Plaza, Gold Coast, Australia 2007. – reference: PanwisawasCQiuCAndersonMJSovaniYTurnerRPAttallahMMBrooksJWBasoaltoHCMesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolutionComputational Materials Science201712647949010.1016/j.commatsci.2016.10.011 – reference: MeierCFuchsSLHartAJWallWAA novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modelingComputer Methods in Applied Mechanics and Engineering2021381424700010.1016/j.cma.2021.113812 – reference: FuchsSLPraeglaPMCyronCJWallWAMeierCA versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusionEngineering with Computers20223864853487710.1007/s00366-022-01724-4 – reference: LinYLüthiCAfrasiabiMBambachMEnhanced heat source modeling in particle-based laser manufacturing simulations with ray tracingInternational Journal of Heat and Mass Transfer202321410.1016/j.ijheatmasstransfer.2023.124378 – volume: 381 year: 2021 ident: 270_CR47 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.113812 – volume: 126 start-page: 479 year: 2017 ident: 270_CR18 publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2016.10.011 – volume: 20 start-page: 241 issue: 1 year: 2017 ident: 270_CR41 publication-title: Annual Review of Heat Transfer doi: 10.1615/AnnualRevHeatTransfer.2018019042 – volume: 35 year: 2020 ident: 270_CR20 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2020.101236 – volume: 336 start-page: 444 year: 2018 ident: 270_CR39 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2018.03.017 – volume: 38 start-page: 4853 issue: 6 year: 2022 ident: 270_CR21 publication-title: Engineering with Computers doi: 10.1007/s00366-022-01724-4 – volume: 30 start-page: 1709 issue: 8 year: 1987 ident: 270_CR53 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/0017-9310(87)90317-6 – volume: 21 issue: 8 year: 2013 ident: 270_CR3 publication-title: Modelling and Simulation in Materials Science and Engineering doi: 10.1088/0965-0393/21/8/085011 – volume: 46 issue: 5 year: 2013 ident: 270_CR14 publication-title: Journal of Physics D: Applied Physics doi: 10.1088/0022-3727/46/5/055501 – ident: 270_CR29 doi: 10.2514/6.1996-859 – volume: 31 year: 2020 ident: 270_CR4 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2019.100909 – volume: 135 start-page: 36 issue: July year: 2017 ident: 270_CR5 publication-title: Finite Elements in Analysis and Design doi: 10.1016/j.finel.2017.07.002 – ident: 270_CR27 doi: 10.1186/s40323-024-00276-0 – ident: 270_CR44 – volume: 383 year: 2021 ident: 270_CR11 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.113910 – volume: 11 start-page: 479 year: 2002 ident: 270_CR34 publication-title: Acta Numerica doi: 10.1017/S0962492902000077 – ident: 270_CR36 doi: 10.1002/adem.202000169 – volume: 372 year: 2020 ident: 270_CR9 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2020.113348 – ident: 270_CR12 – volume: 341 start-page: 163 year: 2018 ident: 270_CR24 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2018.06.033 – volume: 32 start-page: 266 issue: 2 year: 2018 ident: 270_CR32 publication-title: The International Journal of High Performance Computing Applications doi: 10.1177/1094342016671790 – volume: 35 issue: February year: 2020 ident: 270_CR10 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2020.101249 – volume: 26 issue: 4 year: 2014 ident: 270_CR6 publication-title: Journal of Laser Applications doi: 10.2351/1.4886835 – volume: 278 start-page: 221 issue: 1 year: 2014 ident: 270_CR30 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2014.08.034 – ident: 270_CR54 doi: 10.1016/J.ADDMA.2022.103267 – volume: 108 start-page: 36 year: 2016 ident: 270_CR2 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.02.014 – volume: 196 start-page: 154 year: 2020 ident: 270_CR16 publication-title: Acta Materialia doi: 10.1016/j.actamat.2020.06.033 – volume: 100 start-page: 335 issue: 2 year: 1992 ident: 270_CR28 publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(92)90240-Y – volume: 344 start-page: 381 issue: April year: 2017 ident: 270_CR40 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2017.04.073 – volume: 139 start-page: 7 year: 2023 ident: 270_CR23 publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2023.03.003 – volume: 276 start-page: 233 year: 2014 ident: 270_CR26 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2014.02.014 – volume: 214 start-page: 2627 issue: 11 year: 2014 ident: 270_CR7 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2014.06.001 – volume: 214 year: 2023 ident: 270_CR38 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2023.124378 – volume: 67 start-page: 318 issue: 2 year: 2014 ident: 270_CR19 publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2013.10.001 – volume: 7 start-page: 655 issue: 4 year: 2020 ident: 270_CR22 publication-title: Computational Particle Mechanics doi: 10.1007/s40571-019-00296-3 – volume: 305 start-page: 838 year: 2016 ident: 270_CR46 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2015.11.014 – volume: 114 start-page: 146 issue: 1 year: 1994 ident: 270_CR33 publication-title: Journal of Computational Physics doi: 10.1006/jcph.1994.1155 – volume: 44 issue: 2 year: 2011 ident: 270_CR13 publication-title: Journal of Physics D: Applied Physics doi: 10.1088/0022-3727/44/2/025301 – volume-title: Instabilities in Laser-Matter Interaction year: 1995 ident: 270_CR49 – volume: 17 start-page: 519 issue: 5 year: 1979 ident: 270_CR48 publication-title: AIAA Journal doi: 10.2514/3.61164 – volume: 31 start-page: 231 issue: 3 year: 2023 ident: 270_CR31 publication-title: Journal of Numerical Mathematics doi: 10.1515/jnma-2023-0089 – volume-title: Additive Manufacturing Technologies year: 2015 ident: 270_CR1 doi: 10.1007/978-1-4939-2113-3 – volume: 3 start-page: 127 issue: 2 year: 2009 ident: 270_CR17 publication-title: Production Engineering doi: 10.1007/s11740-008-0148-7 – volume: 8 start-page: 15 issue: 1 year: 2021 ident: 270_CR50 publication-title: Advanced Modeling and Simulation in Engineering Sciences doi: 10.1186/s40323-021-00200-w – volume: 225 start-page: 785 issue: 1 year: 2007 ident: 270_CR52 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2006.12.027 – ident: 270_CR8 doi: 10.1016/j.ijrmhm.2017.11.034 – volume: 30 start-page: 139 issue: 1 year: 1998 ident: 270_CR25 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.30.1.139 – volume: 27 start-page: 507 issue: 2 year: 2006 ident: 270_CR35 publication-title: International Journal of Thermophysics doi: 10.1007/PL00021868 – volume: 44 start-page: 1 issue: 3 year: 2021 ident: 270_CR42 publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.202100014 – volume: 139 start-page: 95 year: 2019 ident: 270_CR15 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.05.003 – volume: 363 start-page: 849 issue: 6429 year: 2019 ident: 270_CR51 publication-title: Science doi: 10.1126/science.aav4687 – volume: 13 start-page: 2959 issue: 1 year: 2022 ident: 270_CR43 publication-title: Nature Communications doi: 10.1038/s41467-022-30667-z – volume: 10 start-page: 435 issue: 4 year: 2020 ident: 270_CR37 publication-title: Metals doi: 10.3390/met10040435 – volume: 69 start-page: 1433 issue: 9 year: 2012 ident: 270_CR45 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.2643 |
| SSID | ssj0001634176 |
| Score | 2.3055105 |
| Snippet | Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental... Abstract Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on... |
| SourceID | doaj swepub hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 16 |
| SubjectTerms | Accuracy Additive manufacturing Classical and Continuum Physics Computational Science and Engineering Computing costs Continuum surface flux model Engineering Engineering Sciences Finite element method Fluid dynamics Fluxes Laser applications Laser beam melting Laser powder bed fusion additive manufacturing Manufacturing Material properties Melt pool thermo-hydrodynamics Melt pools Multi-phase heat transfer Parameters Powder beds Research Article Temperature Temperature distribution Theoretical and Applied Mechanics Thickness |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egIIPgBFETx4ntE1oeVQ9V1QOgiovl2A5E2k1Ksqng3zPjZHe7IO2F5BLZjhNrxuP5_JiPkFcVy6tMWEAn8BRzxV1sKlnEnpWl5Jwzn4WDwsfi5ESenanTacKtn7ZVrmxiMNSutThHfpCBLwBgSuX5u_OfMbJG4erqRKFxlVzDKAlI3XCaf9vMsRRgo0WxOisji4OeJxnDhUseIyAD5LQ1HoWw_TDK_MBNkf96nJdWS_-KLBpGo8Pb_9uOO-TW5IfS2ag4d8kV39wjNy9FJ7xP6nHCwTtqrB06Y3_TtqK4t71uhmFB-6GrjPW0mg-_aGDU6Sm4wHThwaGnuFEJTSldmGbA4xPhPCRkzpcUeb1oXy8m6rD-Afly-Onzh6N4YmaIba7yZWwRNQJSS0UFV-GMUJUtBTNIXG9LhEHoOHmHNB5S-dxKl2YeErgR3IrsIdlr2sY_JpSXsqwc3FmRcMdkyQU4lSz3pXEWPP-IpCv5aDuFLUf2jLkO8EUWepSpBpnqIFNdROTN-p3zMWjHztLvUezrkhhwOyS03Xc99V-dFCzFqAEpoBHOc7BqyjgZAthJp1gakZegNFt1HM2ONaYlXHCZFOoCCu2vdEJPpqLXG4WIyIt1NnRyXLkxjW-HUEbAp6CWiDwadXH9qUwBSFcZ5LxdKeem8l2tfj0q8NY_f6y_zkK7h0HnGRrzJ7v_-Sm5wUJvAnvL9sneshv8M3LdXizrvnseuuMfjI45bg priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcIAD70egIIPgBBGJ7fhxXApVD1XFAVBvluM4EGk3i5JNBf-eGSdZuoAqQXKJbMfP8Xg-2zNDyIuaFTVXHtAJfKXCiCp1tZZpYGWphRAs8KgofKxOTvTpqfkwKYX18233-Ugycuo4rbV804uMMzxzFCliKQA9l8mVItcGHTYcTDoOcWdFAmdWctaQ-euvO6tQNNYPa8tXvAr5p5x57oz0N3uicQ06vPl_tb9FbkwyJ12MRHKbXArtHXL9nCXCu6QZNxdCRZ33Q-f8D7quKd5jb9phWNF-6GrnA62Xw3cavef0FMRdugogvFO8lIRsk65cO6CqRNR9hMjlhqIPL9o3q8lNWH-PfDp8__HgKJ28MKS-MMUm9YgQAZXlqoZHVk6Z2peKOXRS70uEPCgkhQpddmgTCq-rnAcIEE4Jr_h9steu2_CQUFHqsq7g5TITFdOlUCBAsiKUrvIg5Sckn0fF-slEOXrKWNoIVbS0Yzda6EYbu9HKhLza_vNtNNBxYeq3ONjblGhcOwasuy92mqs2kyxHCwE5IA8hCuBgxlU6GqvTlWF5Qp4DqezkcbQ4thiWCSV0Js0ZJNqfKclObKG3HARazZUpioQ820bDhMZTGteG9RDTKCgKcknIg5ECt0VxA4DccIh5PVPZr8wvavXLkWx36vyu-byI7R4GW3Bk3I_-LdvH5BqLBA28lu2TvU03hCfkqj_bNH33NE7Kn92qLoU priority: 102 providerName: Springer Nature |
| Title | Improved accuracy of continuum surface flux models for metal additive manufacturing melt pool simulations |
| URI | https://link.springer.com/article/10.1186/s40323-024-00270-6 https://www.ncbi.nlm.nih.gov/pubmed/39184936 https://www.proquest.com/docview/3095837955 https://www.proquest.com/docview/3097155806 https://hal.science/hal-04748069 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-537870 https://doaj.org/article/0621431617724457939ad8015528d921 |
| Volume | 11 |
| WOSCitedRecordID | wos001296577200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: M7S dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: P5Z dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: PIMPY dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nj5QwFG909aAH47es66QaPSlZKIW2x9l1N2uyTohfGb00pZRIMsNshmGj_73vFWac0WS9CAmBthToe23fj74PQl5WLK0SYQGdwFnIFS9DU8ksdKwoJOecucQbCp-LyUROpyrfCvWFOmG9e-C-4Q6jjMVorh2DGMh5CuykTCm95zBZKm9CziKhtsCU_7uSwegssrWVjMwOWx4lDJcseYhQDDDTzkzkHfbD_PId1SH_ljW31kn_8Cnq56HTu-TOIEDScf_i98g119wnt7fcCj4gdf-nwJXUWNstjf1JFxVFpfS66bo5bbtlZayj1az7QX0onJaC7ErnDiRxihpGOAbSuWk6tHvwhoyQOVtRDMhF23o-xPxqH5LPpyefjs_CIaRCaFOVrkKLcA8gViwq2LLSCFXZQjCDEedtgfgFJR5XYvwNqVxqZRknDhK4EdyK5BHZaxaNe0IoL2RRlbAnWcRLJgsuQBpkqStMaUFkD0i8bl5tB3_jGPZipj3ukJnuSaKBJNqTRGcBeb2556L3tnFl6SOk2qYkesr2CcA_euAf_S_-CcgLoPlOHWfjc41pERdcRpm6hEIHa5bQQx9vdQLSKcB7laYBeb7Jht6JSy6mcYvOlxHwKKglII97Vto8KlGArlUCOW_WvPW78qu--lXPfzvv_Lb-Mvbf3XU6TXAU3v8frfOU3GK-y8Bwyg7I3mrZuWfkpr1c1e1yRK6LqRyRG0cnk_wDXB0zPvL9cIQqtB_hmKffID9_9z7_-guK0S7W |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELZGh8R44PegMMAg9gTRGseJnQeEOrap00o1oTHtzTiOA5XadDTNYP8UfyN3TtKuIPVtDzQvle06cfr57j7bd0fIm4yFWSAMsBP45vGYp57OZORZliSSc85s4ByF-2IwkGdn8fEa-d34wuCxykYmOkGdTgyuke8EYAsAmYrD8MP5Dw-zRuHuapNCo4LFkb38CZSteH-4B__vNmMH-ycfe16dVcAzYRzOPIOMB1iGLzL4RKkWcWYSwTQmXTcJmvCo9G2KKShkbEMjUz-wUMC14EYE0O8Nss4DEDEtsr67Pzj-vFjViUAriKjxzpHRTsE7AcOtUu4hBQSutqQBXaIA0Gvf8Rjmvzbulf3Zv2KZOv13cPd_e3P3yJ3a0qbdamrcJ2s2f0BuX4m_-JAMqyUVm1JtTDnV5pJOMoqn94d5WY5pUU4zbSzNRuUv6nIGFRSMfDq2QFkoHsVCZUHHOi_RQcR5fELlaEYxcxkthuM6OVrxiHy5lrFuklY-ye0TQnkikyyFK4g6PGUy4QLMZhbaRKcGuE2b-A0elKkDs2N-kJFyBE1GqsKQAgwphyEVtcnb-W_Oq7AkK1vvIszmLTGkuCuYTL-pWkKpTsR8jIvgA9_iPAS5HetUuhB9Mo2Z3yavAaRLffS6fYVlHS647ETxBTTaajCoamFYqAUA2-TVvBrEGO5N6dxOStdGwK2glzZ5XGF_fqsg9iWPA6h510yGReerRr1dTZilZ94bnnbduMtShQGqq6ern_kludU7-dRX_cPB0TOywdxMBu3CtkhrNi3tc3LTXMyGxfRFLQwo-Xrds-gP-iKW9g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgIAQPfH8UBhgETxCtsZ3Yfiwb1RBVtQdAe7Mc24FIbTo1zQT_PXdOWlpAkxDpS2Q7du3cne9yvt8R8qpkWcmlA-sE7hKhhU9sqfIksKJQQggWeAwUnsjpVJ2e6pOtKP542n3tkuxiGhClqV4dnPmyY3GVHzRiyBn6H0WCdhUYQJfJFfRIIWse9vEO8StLDlJa5utomb8-urMjReB-2Ge-4bHIP3XOLX_pb9iicT8a3_r_mdwmN3tdlI464rlDLoX6LrmxhVB4j1TdR4fgqXWuXVr3gy5KikNUddvOadMuS-sCLWftdxqz6jQU1GA6D6DUUzyshOKUzm3dYghFjImEytmKYm4v2lTzPn1Yc598Hr__dHic9NkZEpfpbJU4tBzBWktlCVfurdSlKySzmLzeFWgKofIUPKbyUDpkTvmUBygQVgon-QOyVy_q8IhQUaii9PDj-VB4pgohQbFkWSisd6D9D0i6fkPG9dDlmEFjZqIJo3LTLaOBZTRxGU0-IG82z5x1wB0Xtn6HL37TEkG3Y8Fi-dX0PGyGOUsROSAFi0SIDCSbtl5FEDvlNUsH5CWQzU4fx6OJwbKhkEINc30OjfbXVGV6cdEYDoqu4lJn2YC82FQDo6P3xtZh0cY2EoaCXgbkYUeNm6G4BkNdc6h5u6a4X51fNOvXHQnv_Oej6ssozrttTcZRoD_-t26fk2snR2Mz-TD9-IRcZ5G2QRyzfbK3WrbhKbnqzldVs3wWefUnIXI6Tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+accuracy+of+continuum+surface+flux+models+for+metal+additive+manufacturing+melt+pool+simulations&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Much%2C+Nils&rft.au=Schreter-Fleischhacker%2C+Magdalena&rft.au=Munch%2C+Peter&rft.au=Kronbichler%2C+Martin&rft.date=2024-08-22&rft.pub=Springer&rft.issn=2213-7467&rft.eissn=2213-7467&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=40&rft_id=info:doi/10.1186%2Fs40323-024-00270-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04748069v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon |