Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK
Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients’ hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood....
Saved in:
| Published in: | Cell reports (Cambridge) Vol. 29; no. 6; pp. 1511 - 1523.e5 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
05.11.2019
Elsevier |
| Subjects: | |
| ISSN: | 2211-1247, 2211-1247 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients’ hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5′ AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin’s anti-tumor effects.
[Display omitted]
•Clinically relevant metformin dose improves liver mitochondrial respiration in obesity•Pharmacological metformin increases mitochondrial respiration and fission•Supra-pharmacological metformin inhibits mitochondrial activity by ADP reduction•AMPK is required for metformin suppression of liver glucose production
The mechanism of metformin action still remains controversial, in particular on mitochondrial activity and the involvement of AMPK. Wang et al. show that pharmacological metformin concentration or dose improves mitochondrial respiration by increasing mitochondrial fission through AMPK-Mff signaling; in contrast, supra-pharmacological metformin concentrations reduce mitochondrial respiration through decreasing adenine nucleotide levels. |
|---|---|
| AbstractList | Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients' hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5' AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin's anti-tumor effects.Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients' hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5' AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin's anti-tumor effects. Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients’ hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5′ AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin’s anti-tumor effects. : The mechanism of metformin action still remains controversial, in particular on mitochondrial activity and the involvement of AMPK. Wang et al. show that pharmacological metformin concentration or dose improves mitochondrial respiration by increasing mitochondrial fission through AMPK-Mff signaling; in contrast, supra-pharmacological metformin concentrations reduce mitochondrial respiration through decreasing adenine nucleotide levels. Keywords: metformin, diabetes, insulin resistance, mitochondrial respiration/fission, membrane potential, adenine nucleotides, AMPK, Drp1 Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients’ hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5′ AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin’s anti-tumor effects. The mechanism of metformin action still remains controversial, in particular on mitochondrial activity and the involvement of AMPK. Wang et al. show that pharmacological metformin concentration or dose improves mitochondrial respiration by increasing mitochondrial fission through AMPK-Mff signaling; in contrast, supra-pharmacological metformin concentrations reduce mitochondrial respiration through decreasing adenine nucleotide levels. Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients' hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5' AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin's anti-tumor effects. Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients’ hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5′ AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin’s anti-tumor effects. [Display omitted] •Clinically relevant metformin dose improves liver mitochondrial respiration in obesity•Pharmacological metformin increases mitochondrial respiration and fission•Supra-pharmacological metformin inhibits mitochondrial activity by ADP reduction•AMPK is required for metformin suppression of liver glucose production The mechanism of metformin action still remains controversial, in particular on mitochondrial activity and the involvement of AMPK. Wang et al. show that pharmacological metformin concentration or dose improves mitochondrial respiration by increasing mitochondrial fission through AMPK-Mff signaling; in contrast, supra-pharmacological metformin concentrations reduce mitochondrial respiration through decreasing adenine nucleotide levels. |
| Author | He, Ling Qin, Caolitao Radovick, Sally Hussain, Mehboob Wang, Yu An, Hongying Maheshwari, Akhil Guo, Shaodong O’Rourke, Brian Wondisford, Fredric E. Sesaki, Hiromi Liu, Ting |
| AuthorAffiliation | 4 Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 5 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 3 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 9 These authors contributed equally 6 Department of Nutrition and Food Science, Texas A&M University, TX 77843, USA 2 Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 8 Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA 1 Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 7 Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA 10 Lead Contact |
| AuthorAffiliation_xml | – name: 9 These authors contributed equally – name: 5 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – name: 3 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – name: 8 Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA – name: 4 Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – name: 10 Lead Contact – name: 2 Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – name: 6 Department of Nutrition and Food Science, Texas A&M University, TX 77843, USA – name: 7 Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA – name: 1 Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| Author_xml | – sequence: 1 givenname: Yu surname: Wang fullname: Wang, Yu organization: Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 2 givenname: Hongying surname: An fullname: An, Hongying organization: Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 3 givenname: Ting surname: Liu fullname: Liu, Ting organization: Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 4 givenname: Caolitao surname: Qin fullname: Qin, Caolitao organization: Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 5 givenname: Hiromi surname: Sesaki fullname: Sesaki, Hiromi organization: Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 6 givenname: Shaodong surname: Guo fullname: Guo, Shaodong organization: Department of Nutrition and Food Science, Texas A&M University, TX 77843, USA – sequence: 7 givenname: Sally surname: Radovick fullname: Radovick, Sally organization: Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA – sequence: 8 givenname: Mehboob surname: Hussain fullname: Hussain, Mehboob organization: Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA – sequence: 9 givenname: Akhil surname: Maheshwari fullname: Maheshwari, Akhil organization: Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 10 givenname: Fredric E. surname: Wondisford fullname: Wondisford, Fredric E. organization: Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA – sequence: 11 givenname: Brian surname: O’Rourke fullname: O’Rourke, Brian organization: Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 12 givenname: Ling surname: He fullname: He, Ling email: heling@jhmi.edu organization: Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31693892$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1rGzEQhkVJaT6af1DKHnuxqy9Luz0UTGgbk5iE0J6FVjtry-xKW0k2-N9X8bohyaEVAxKjd56R5j1HJ847QOgDwVOCifi8mRroAgxTikk1xTkkfoPOKCVkQiiXJ8_Op-gyxg3OS2BCKv4OnTIiKlZW9AzdLyG1PvTWFYt-CH4HsVja5M3auyZY3RUPEAcbdPJhX8xNsjub9kVaB79drceETta7wrfFfHl_8x69bXUX4fK4X6Bf37_9vLqe3N79WFzNbydmVs3SpC4F0QbPoKFAucZGUFZzRiltG6w50bLSbSXLysy0MNAKRgyHWgDVYKqasAu0GLmN1xs1BNvrsFdeW3VI-LBSOiRrOlCUU05IizO15rKWpQSdp8go4wJziTPr68gatnUPjQGXgu5eQF_eOLtWK79TohRCSJkBn46A4H9vISbV25gd6rQDv42KMkJLzHlJs_Tj815PTf5akgV8FJjgYwzQPkkIVo_mq40azVeP5iuc4_CHL6_KjE0HZ_KLbfe_4uMAIDu2sxBUNBacgcYGMCmP1P4b8AfWWM0s |
| CitedBy_id | crossref_primary_10_1007_s12079_021_00648_w crossref_primary_10_1016_j_phrs_2024_107367 crossref_primary_10_1186_s12943_023_01825_8 crossref_primary_10_1016_j_canlet_2025_217978 crossref_primary_10_1038_s42003_024_06631_6 crossref_primary_10_3390_antiox9111133 crossref_primary_10_3390_biomedicines10040901 crossref_primary_10_1016_j_molmed_2023_09_005 crossref_primary_10_3389_fcell_2022_841523 crossref_primary_10_1016_j_diabres_2025_112094 crossref_primary_10_1016_j_molmet_2022_101496 crossref_primary_10_1016_j_biopha_2021_112085 crossref_primary_10_1016_j_scitotenv_2025_179458 crossref_primary_10_1007_s12640_025_00734_6 crossref_primary_10_1016_j_bcp_2022_115337 crossref_primary_10_3389_fnagi_2023_1206572 crossref_primary_10_1016_j_dental_2023_07_008 crossref_primary_10_3390_nu17010013 crossref_primary_10_1016_j_jbc_2022_102283 crossref_primary_10_3390_ph15010062 crossref_primary_10_1038_s41419_021_04480_3 crossref_primary_10_1007_s40265_025_02212_x crossref_primary_10_1016_j_chembiol_2023_09_017 crossref_primary_10_1038_s44324_024_00048_9 crossref_primary_10_3390_ijms22126642 crossref_primary_10_1007_s12012_024_09892_z crossref_primary_10_1016_j_intimp_2020_106999 crossref_primary_10_1016_j_trsl_2020_10_002 crossref_primary_10_1016_j_ccr_2024_215926 crossref_primary_10_1016_j_exger_2022_111770 crossref_primary_10_3390_ijms25137498 crossref_primary_10_3389_fphar_2023_1256705 crossref_primary_10_1016_j_ebiom_2025_105924 crossref_primary_10_1007_s12265_020_10069_6 crossref_primary_10_1016_j_placenta_2023_10_003 crossref_primary_10_3390_ijerph17228650 crossref_primary_10_1080_01616412_2025_2486523 crossref_primary_10_1016_j_ejphar_2022_174801 crossref_primary_10_1016_j_apsb_2021_11_003 crossref_primary_10_1016_j_exer_2025_110582 crossref_primary_10_1016_j_apsb_2025_02_008 crossref_primary_10_1002_jcb_30526 crossref_primary_10_1007_s11356_021_14780_y crossref_primary_10_1002_mco2_207 crossref_primary_10_1139_apnm_2021_0194 crossref_primary_10_3389_fimmu_2020_01043 crossref_primary_10_1016_j_clim_2022_109202 crossref_primary_10_3389_fendo_2022_1053882 crossref_primary_10_3390_biomedicines8080270 crossref_primary_10_1161_ATVBAHA_121_317346 crossref_primary_10_1139_cjpp_2019_0677 crossref_primary_10_1134_S2635167624601104 crossref_primary_10_1016_j_cbpc_2024_109976 crossref_primary_10_1098_rstb_2024_0173 crossref_primary_10_1016_j_phrs_2024_107478 crossref_primary_10_1007_s11255_025_04562_7 crossref_primary_10_1016_j_biopha_2020_110604 crossref_primary_10_1016_j_lfs_2024_122453 crossref_primary_10_3390_ijms22010243 crossref_primary_10_3389_fendo_2021_718942 crossref_primary_10_1371_journal_pone_0307598 crossref_primary_10_1210_clinem_dgab725 crossref_primary_10_1002_adhm_202400602 crossref_primary_10_3390_nu13103417 crossref_primary_10_1016_j_cca_2022_12_016 crossref_primary_10_1124_pharmrev_120_000160 crossref_primary_10_1002_ptr_8079 crossref_primary_10_26599_NR_2025_94907675 crossref_primary_10_1016_j_chembiol_2021_08_001 crossref_primary_10_1080_0886022X_2022_2148539 crossref_primary_10_1164_rccm_202012_4510OC crossref_primary_10_3390_ijms242316859 crossref_primary_10_1016_j_molmet_2023_101860 crossref_primary_10_1111_apha_14226 crossref_primary_10_3390_ijms25105190 crossref_primary_10_1038_s41375_023_02041_5 crossref_primary_10_1111_acel_14235 crossref_primary_10_3390_ph15070810 crossref_primary_10_3390_cancers12103017 crossref_primary_10_3390_cancers15030587 crossref_primary_10_3390_molecules29225329 crossref_primary_10_1038_s41598_025_92716_z crossref_primary_10_3390_cells10082131 crossref_primary_10_3390_ijms232214239 crossref_primary_10_1177_20587384211016194 crossref_primary_10_3389_fgene_2022_1022739 crossref_primary_10_1016_j_biopha_2023_114616 crossref_primary_10_1016_j_trsl_2023_08_001 crossref_primary_10_3390_ijms22126297 crossref_primary_10_1016_j_bbalip_2021_158887 crossref_primary_10_1139_cjpp_2022_0307 crossref_primary_10_3390_cells11193129 crossref_primary_10_1016_j_intimp_2021_107771 crossref_primary_10_3389_fcvm_2022_803510 crossref_primary_10_1016_j_ejvs_2024_09_022 crossref_primary_10_1016_j_bbrc_2023_149291 crossref_primary_10_3390_genes12091437 crossref_primary_10_3390_ijms221910275 crossref_primary_10_1136_bmjdrc_2020_002091 crossref_primary_10_1080_01478885_2024_2429855 crossref_primary_10_3390_biom13071085 crossref_primary_10_3390_metabo12121160 crossref_primary_10_1021_acs_jmedchem_4c02904 crossref_primary_10_1007_s11064_020_03170_4 crossref_primary_10_3390_pharmaceutics13122055 crossref_primary_10_1007_s12035_021_02365_2 crossref_primary_10_3389_fendo_2023_1232143 crossref_primary_10_3389_fphys_2021_676265 crossref_primary_10_1002_oby_23410 crossref_primary_10_1016_j_yexcr_2021_112574 crossref_primary_10_1038_s41380_023_02283_w crossref_primary_10_3390_antiox14010015 crossref_primary_10_1016_j_tjnut_2024_07_001 crossref_primary_10_3390_nu16101404 crossref_primary_10_1038_s43856_023_00258_0 crossref_primary_10_1097_HEP_0000000000000314 crossref_primary_10_1016_j_biopha_2024_116981 crossref_primary_10_1016_j_biopha_2025_118563 crossref_primary_10_1038_s42003_022_03605_4 crossref_primary_10_1186_s13098_023_01183_x crossref_primary_10_3390_ijms26010364 crossref_primary_10_1016_j_lfs_2023_121817 crossref_primary_10_1038_s41598_021_03156_4 crossref_primary_10_1074_jbc_RA120_012533 crossref_primary_10_2174_0929867329666220820151959 crossref_primary_10_31083_FBL37006 crossref_primary_10_1016_j_biopha_2023_114958 crossref_primary_10_1002_ptr_8044 crossref_primary_10_1038_s41375_022_01635_9 crossref_primary_10_3390_antiox13010117 crossref_primary_10_1007_s11357_024_01118_y crossref_primary_10_1021_acsami_5c04250 crossref_primary_10_1124_molpharm_120_000148 crossref_primary_10_1002_advs_202307136 crossref_primary_10_1038_s41598_025_10513_0 crossref_primary_10_1155_2021_1806344 crossref_primary_10_1016_j_redox_2025_103714 crossref_primary_10_3389_fcell_2020_609493 crossref_primary_10_1016_j_bbrc_2025_151498 crossref_primary_10_7554_eLife_85714 crossref_primary_10_1016_j_lfs_2023_121943 crossref_primary_10_1165_rcmb_2021_0374PS crossref_primary_10_1016_j_aquaculture_2023_739731 crossref_primary_10_1007_s11095_025_03834_2 crossref_primary_10_1038_s41368_022_00204_1 crossref_primary_10_1016_j_semcancer_2022_02_002 crossref_primary_10_1016_j_freeradbiomed_2024_10_259 crossref_primary_10_1038_s41598_025_16279_9 crossref_primary_10_7759_cureus_10412 crossref_primary_10_3390_metabo14040186 crossref_primary_10_1038_s41467_022_30477_3 crossref_primary_10_3390_ijms22020541 crossref_primary_10_1172_jci_insight_188562 crossref_primary_10_3389_fmolb_2020_00076 crossref_primary_10_1089_ars_2022_0013 crossref_primary_10_1111_jwas_12892 crossref_primary_10_3390_antiox13030303 crossref_primary_10_3389_fnut_2022_1043009 crossref_primary_10_3390_ijms23010398 crossref_primary_10_3746_pnf_2025_30_4_312 crossref_primary_10_1016_j_tips_2020_09_001 crossref_primary_10_1038_s41598_020_67030_5 crossref_primary_10_1172_jci_insight_182578 crossref_primary_10_3389_fcell_2021_636295 crossref_primary_10_3390_biomedicines12071569 crossref_primary_10_1038_s41419_021_04184_8 crossref_primary_10_1111_cpr_13612 crossref_primary_10_1186_s13098_024_01299_8 crossref_primary_10_15252_emmm_202216082 crossref_primary_10_3389_fmed_2022_970423 crossref_primary_10_1007_s10555_023_10156_5 crossref_primary_10_1073_pnas_2122287119 crossref_primary_10_3389_fphar_2025_1563865 crossref_primary_10_1080_00015385_2025_2538399 crossref_primary_10_3389_fcell_2021_737304 crossref_primary_10_2337_db23_0089 crossref_primary_10_31083_j_fbl2804077 crossref_primary_10_1016_j_bbagen_2022_130302 crossref_primary_10_3389_fphar_2022_930308 crossref_primary_10_1016_j_freeradbiomed_2024_09_022 crossref_primary_10_14814_phy2_15852 crossref_primary_10_3390_ijms21217840 crossref_primary_10_1097_MD_0000000000036478 crossref_primary_10_1002_med_21715 crossref_primary_10_1007_s12015_023_10627_w crossref_primary_10_1016_j_tips_2023_04_004 crossref_primary_10_1016_j_biopha_2025_118123 crossref_primary_10_1016_j_molcel_2021_08_015 crossref_primary_10_3892_etm_2021_10453 crossref_primary_10_3390_genes13081310 crossref_primary_10_1038_s42003_022_03789_9 crossref_primary_10_1016_j_omtn_2022_07_009 crossref_primary_10_1016_j_intimp_2022_108683 crossref_primary_10_3389_fendo_2021_728593 crossref_primary_10_33483_jfpau_1487011 crossref_primary_10_1002_smsc_202300192 crossref_primary_10_1016_j_lfs_2025_123564 crossref_primary_10_1016_j_mito_2021_05_001 crossref_primary_10_1016_j_bcp_2022_115140 crossref_primary_10_4239_wjd_v15_i3_361 crossref_primary_10_1007_s43032_025_01894_8 crossref_primary_10_1073_pnas_2221653120 crossref_primary_10_3390_ijms26167723 crossref_primary_10_1016_j_prmedi_2025_100051 crossref_primary_10_1111_wrr_12985 crossref_primary_10_1016_j_tem_2020_02_003 crossref_primary_10_3390_antiox12061163 crossref_primary_10_3390_ijms23052901 crossref_primary_10_1093_femsyr_foad018 crossref_primary_10_1038_s41392_023_01608_z crossref_primary_10_1038_s41598_023_27689_y crossref_primary_10_1016_j_phymed_2022_153950 crossref_primary_10_1080_14789450_2020_1723419 crossref_primary_10_3390_cells10030497 crossref_primary_10_1186_s43088_024_00548_z crossref_primary_10_1016_j_biopha_2022_113377 crossref_primary_10_1155_2023_1429642 crossref_primary_10_1186_s43556_022_00108_w crossref_primary_10_1096_fj_202200121R crossref_primary_10_1016_j_biomaterials_2022_121711 crossref_primary_10_1016_j_jff_2021_104837 crossref_primary_10_1096_fj_202400070R crossref_primary_10_1007_s10072_025_08370_w crossref_primary_10_5812_jjnpp_158548 crossref_primary_10_12677_acm_2025_1572142 crossref_primary_10_1007_s13679_022_00473_1 crossref_primary_10_1016_j_bcp_2021_114687 crossref_primary_10_1016_j_phrs_2022_106114 crossref_primary_10_3389_fphar_2021_807548 crossref_primary_10_3390_cancers15184538 crossref_primary_10_3390_genes16080922 crossref_primary_10_1016_j_metabol_2022_155223 crossref_primary_10_3390_cells10010079 crossref_primary_10_1002_rco2_55 crossref_primary_10_1038_s41401_022_00943_1 crossref_primary_10_1016_j_neuint_2021_105120 crossref_primary_10_1002_lim2_25 crossref_primary_10_1124_jpet_122_001208 crossref_primary_10_1016_j_taap_2024_117039 crossref_primary_10_1080_15569543_2020_1833037 crossref_primary_10_1177_00368504241262116 crossref_primary_10_1186_s13195_025_01772_0 crossref_primary_10_3390_cells12081111 crossref_primary_10_2174_1381612826666200716161610 crossref_primary_10_3390_ijms252212281 crossref_primary_10_1016_j_ijcard_2024_132338 crossref_primary_10_1016_j_lfs_2024_123115 crossref_primary_10_1038_s41581_022_00648_y crossref_primary_10_1016_j_mad_2022_111708 crossref_primary_10_3390_genes16040365 crossref_primary_10_1002_j_2040_4603_2020_tb00136_x crossref_primary_10_1016_j_bcp_2022_115197 crossref_primary_10_3390_ph14060545 crossref_primary_10_1186_s40001_025_02443_4 crossref_primary_10_3390_cancers14133220 crossref_primary_10_1038_s41574_021_00626_7 crossref_primary_10_14814_phy2_16093 crossref_primary_10_3390_ijms26062394 crossref_primary_10_1038_s41541_023_00682_2 crossref_primary_10_1186_s12934_024_02593_w crossref_primary_10_1016_j_eururo_2023_07_016 crossref_primary_10_1186_s13018_025_06067_6 crossref_primary_10_3390_cancers14051343 crossref_primary_10_3390_pharmaceutics16030393 crossref_primary_10_3389_fphar_2022_947387 crossref_primary_10_4103_1673_5374_385286 crossref_primary_10_3889_oamjms_2021_6213 crossref_primary_10_3390_ijms21093240 crossref_primary_10_1016_j_cell_2022_09_031 crossref_primary_10_1016_j_euroneuro_2022_09_002 crossref_primary_10_1111_jdi_14129 crossref_primary_10_1016_j_ebiom_2022_104080 crossref_primary_10_4103_jcrt_jcrt_2670_22 crossref_primary_10_3389_fneur_2023_1275266 crossref_primary_10_1007_s11270_022_05929_7 crossref_primary_10_3892_etm_2022_11456 crossref_primary_10_3389_fendo_2023_1079626 |
| Cites_doi | 10.1074/jbc.M114.604421 10.1038/sj.emboj.7601963 10.1074/mcp.M113.027441 10.2337/db09-1679 10.1530/EJE-15-0572 10.1111/dom.12426 10.1038/nature13270 10.1007/s00125-011-2340-0 10.1111/j.2042-7158.1991.tb03507.x 10.1016/j.tem.2010.06.005 10.1053/j.gastro.2009.04.013 10.1074/jbc.275.1.223 10.1172/JCI13505 10.1038/s41586-019-1005-x 10.1126/science.1219855 10.1172/JCI40671 10.1038/sj.emboj.7601184 10.1074/jbc.M408149200 10.1530/JOE-14-0084 10.1038/nm.2049 10.1038/nature11808 10.2337/diabetes.54.1.8 10.1016/j.cmet.2018.06.014 10.2337/diabetes.49.12.2063 10.1016/j.taap.2008.08.013 10.1126/science.aab4138 10.1016/j.cmet.2015.01.003 10.1073/pnas.0808249105 10.1074/jbc.M116.719666 10.1074/jbc.M114.567271 10.1136/bmj.38415.708634.F7 10.1111/j.1365-2125.2009.03372.x 10.3109/00498259409043220 10.1038/nrm3311 10.1172/JCI25151 10.1016/j.cell.2012.02.017 10.14310/horm.2002.1111025 10.1016/j.cmet.2013.03.002 10.2337/diabetes.51.8.2420 10.1126/science.1120781 10.1128/MCB.00897-12 10.1038/nm.3372 10.1038/s41467-017-00163-w 10.1042/bj3480607 10.1093/abbs/gmx106 10.1074/jbc.M113.533299 10.7554/eLife.02242 10.1083/jcb.201007013 10.1056/NEJMoa031314 10.2337/diabetes.51.10.2944 10.1016/j.cell.2009.03.016 10.1056/NEJMoa012512 10.1042/BJ20140620 10.2337/dc09-1380 |
| ContentType | Journal Article |
| Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.celrep.2019.09.070 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 1523.e5 |
| ExternalDocumentID | oai_doaj_org_article_242411f041ab47b787ea101323460470 PMC6866677 31693892 10_1016_j_celrep_2019_09_070 S2211124719312677 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK107641 – fundername: NIDDK NIH HHS grantid: P30 DK020572 – fundername: NIDDK NIH HHS grantid: R01 DK120309 – fundername: NIH HHS grantid: S10 OD023548 – fundername: NIGMS NIH HHS grantid: R01 GM130695 – fundername: NHLBI NIH HHS grantid: R01 HL134821 – fundername: NIGMS NIH HHS grantid: R01 GM123266 – fundername: NHLBI NIH HHS grantid: R01 HL137259 – fundername: NIDDK NIH HHS grantid: R01 DK101591 |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c595t-b861ac05ed2e24a0c623b43222fd0a41a79af9789c5a6cef631c4eb6e2aec9b13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 313 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495045400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:27:57 EDT 2025 Tue Sep 30 16:56:59 EDT 2025 Fri Sep 05 10:31:42 EDT 2025 Thu Apr 03 07:03:06 EDT 2025 Wed Nov 05 20:42:45 EST 2025 Tue Nov 18 21:59:16 EST 2025 Wed May 17 00:05:53 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | membrane potential metformin AMPK mitochondrial respiration/fission adenine nucleotides diabetes insulin resistance Drp1 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c595t-b861ac05ed2e24a0c623b43222fd0a41a79af9789c5a6cef631c4eb6e2aec9b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 L.H. designed the experiments, managed the project, and coordinated activities from all authors. Y.W., H.A., T.L., C.Q., and L.H. conducted experiments. T.L. and B.O. guided the Seahorse assays. H.S. generated and provided Drp1 KO mice. S.G. determined metabolic parameters in the blood samples. A.M. supported the analysis of the confocal images. S.R., M.H., F.E.W., and L.H. analyzed the data and wrote the manuscript. AUTHOR CONTRIBUTIONS |
| OpenAccessLink | https://doaj.org/article/242411f041ab47b787ea101323460470 |
| PMID | 31693892 |
| PQID | 2312804482 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_242411f041ab47b787ea101323460470 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866677 proquest_miscellaneous_2312804482 pubmed_primary_31693892 crossref_primary_10_1016_j_celrep_2019_09_070 crossref_citationtrail_10_1016_j_celrep_2019_09_070 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_09_070 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-05 |
| PublicationDateYYYYMMDD | 2019-11-05 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Cao, Meng, Chang, Beckwith-Fickas, Xiong, Cole, Radovick, Wondisford, He (bib3) 2014; 289 Twig, Elorza, Molina, Mohamed, Wikstrom, Walzer, Stiles, Haigh, Katz, Las (bib46) 2008; 27 Hawley, Gadalla, Olsen, Hardie (bib16) 2002; 51 He, Chang, Peng, An, McMilin, Radovick, Stratakis, Wondisford (bib18) 2016; 291 Miller, Chu, Xie, Foretz, Viollet, Birnbaum (bib34) 2013; 494 Evans, Donnelly, Emslie-Smith, Alessi, Morris (bib11) 2005; 330 Shaw, Lamia, Vasquez, Koo, Bardeesy, Depinho, Montminy, Cantley (bib41) 2005; 310 Li, Yeung, Hassan, Konopleva, Abbruzzese (bib30) 2009; 137 Dykens, Jamieson, Marroquin, Nadanaciva, Billis, Will (bib9) 2008; 233 Zang, Zuccollo, Hou, Nagata, Walsh, Herscovitz, Brecher, Ruderman, Cohen (bib54) 2004; 279 Guo, Darshi, Ma, Perkins, Shen, Haushalter, Saito, Chen, Lee, Patel (bib14) 2013; 12 Lee, Yesilkanal, Wynne, Frankenberger, Liu, Yan, Elbaz, Rabe, Rustandy, Tiwari (bib29) 2019; 568 Takashima, Ogawa, Hayashi, Inoue, Kinoshita, Okamoto, Sakaue, Wataoka, Emi, Senga (bib43) 2010; 59 Victor, Rovira-Llopis, Bañuls, Diaz-Morales, Castelló, Falcón, Gómez, Rocha, Hernández-Mijares (bib47) 2015; 173 Hardie, Ross, Hawley (bib15) 2012; 13 Cheng, Tseng, White (bib7) 2010; 21 Hundal, Krssak, Dufour, Laurent, Lebon, Chandramouli, Inzucchi, Schumann, Petersen, Landau, Shulman (bib21) 2000; 49 Youle, van der Bliek (bib53) 2012; 337 Knowler, Barrett-Connor, Fowler, Hamman, Lachin, Walker, Nathan (bib24) 2002; 346 Adeyemo, McDuffie, Kozlosky, Krakoff, Calis, Brady, Yanovski (bib1) 2015; 17 Kelley, He, Menshikova, Ritov (bib23) 2002; 51 Samuel, Shulman (bib40) 2012; 148 Saini, Yang (bib39) 2018; 50 Cereghetti, Stangherlin, Martins de Brito, Chang, Blackstone, Bernardi, Scorrano (bib5) 2008; 105 Cheng, Guo, Copps, Dong, Kollipara, Rodgers, Depinho, Puigserver, White (bib6) 2009; 15 Landman, Kleefstra, van Hateren, Groenier, Gans, Bilo (bib25) 2010; 33 He, Meng, Germain-Lee, Radovick, Wondisford (bib20) 2014; 221 Lee, Jeschke, Roelants, Thorner, Turk (bib28) 2012; 32 Zhou, Myers, Li, Chen, Shen, Fenyk-Melody, Wu, Ventre, Doebber, Fujii (bib55) 2001; 108 Meng, Cao, He, Xiong, Chang, Radovick, Wondisford, He (bib33) 2015; 290 Liesa, Shirihai (bib31) 2013; 17 Wilcock, Bailey (bib49) 1994; 24 Cao, Peng, An, He, Boronina, Guo, White, Cole, He (bib4) 2017; 8 Stylianou, Galli-Tsinopoulou, Farmakiotis, Rousso, Karamouzis, Koliakos, Nousia-Arvanitakis (bib42) 2007; 6 Ishihara, Fujita, Oka, Mihara (bib22) 2006; 25 Doogue, Begg, Moore, Lunt, Pemberton, Zhang (bib8) 2009; 68 Tanaka, Cleland, Xu, Narendra, Suen, Karbowski, Youle (bib44) 2010; 191 He, Wondisford (bib17) 2015; 21 Yamada, Ida, Yamaoka, Ozawa, Takasan, Honjo (bib51) 1975; 86 Morino, Petersen, Dufour, Befroy, Frattini, Shatzkes, Neschen, White, Bilz, Sono (bib35) 2005; 115 Owen, Doran, Halestrap (bib36) 2000; 348 Lee, Yoon (bib27) 2014; 289 Foretz, Hébrard, Leclerc, Zarrinpashneh, Soty, Mithieux, Sakamoto, Andreelli, Viollet (bib12) 2010; 120 Yamada, Murata, Adachi, Itoh, Kameoka, Igarashi, Kato, Araki, Huganir, Dawson (bib52) 2018; 28 El-Mir, Nogueira, Fontaine, Avéret, Rigoulet, Leverve (bib10) 2000; 275 Fullerton, Galic, Marcinko, Sikkema, Pulinilkunnil, Chen, O’Neill, Ford, Palanivel, O’Brien (bib13) 2013; 19 Petersen, Dufour, Befroy, Garcia, Shulman (bib37) 2004; 350 Ritov, Menshikova, He, Ferrell, Goodpaster, Kelley (bib38) 2005; 54 Toyama, Herzig, Courchet, Lewis, Losón, Hellberg, Young, Chen, Polleux, Chan, Shaw (bib45) 2016; 351 Madiraju, Erion, Rahimi, Zhang, Braddock, Albright, Prigaro, Wood, Bhanot, MacDonald (bib32) 2014; 510 Wilcock, Wyre, Bailey (bib50) 1991; 43 He, Sabet, Djedjos, Miller, Sun, Hussain, Radovick, Wondisford (bib19) 2009; 137 Larsen, Rabøl, Hansen, Madsbad, Helge, Dela (bib26) 2012; 55 Wheaton, Weinberg, Hamanaka, Soberanes, Sullivan, Anso, Glasauer, Dufour, Mutlu, Budigner, Chandel (bib48) 2014; 3 Bridges, Jones, Pollak, Hirst (bib2) 2014; 462 Cao (10.1016/j.celrep.2019.09.070_bib4) 2017; 8 Twig (10.1016/j.celrep.2019.09.070_bib46) 2008; 27 Saini (10.1016/j.celrep.2019.09.070_bib39) 2018; 50 Cheng (10.1016/j.celrep.2019.09.070_bib6) 2009; 15 Li (10.1016/j.celrep.2019.09.070_bib30) 2009; 137 Yamada (10.1016/j.celrep.2019.09.070_bib52) 2018; 28 Cao (10.1016/j.celrep.2019.09.070_bib3) 2014; 289 Zang (10.1016/j.celrep.2019.09.070_bib54) 2004; 279 Larsen (10.1016/j.celrep.2019.09.070_bib26) 2012; 55 Guo (10.1016/j.celrep.2019.09.070_bib14) 2013; 12 Lee (10.1016/j.celrep.2019.09.070_bib27) 2014; 289 Dykens (10.1016/j.celrep.2019.09.070_bib9) 2008; 233 Wilcock (10.1016/j.celrep.2019.09.070_bib50) 1991; 43 Adeyemo (10.1016/j.celrep.2019.09.070_bib1) 2015; 17 Foretz (10.1016/j.celrep.2019.09.070_bib12) 2010; 120 Liesa (10.1016/j.celrep.2019.09.070_bib31) 2013; 17 Zhou (10.1016/j.celrep.2019.09.070_bib55) 2001; 108 Cheng (10.1016/j.celrep.2019.09.070_bib7) 2010; 21 Lee (10.1016/j.celrep.2019.09.070_bib29) 2019; 568 Tanaka (10.1016/j.celrep.2019.09.070_bib44) 2010; 191 El-Mir (10.1016/j.celrep.2019.09.070_bib10) 2000; 275 Cereghetti (10.1016/j.celrep.2019.09.070_bib5) 2008; 105 Madiraju (10.1016/j.celrep.2019.09.070_bib32) 2014; 510 Meng (10.1016/j.celrep.2019.09.070_bib33) 2015; 290 Kelley (10.1016/j.celrep.2019.09.070_bib23) 2002; 51 Stylianou (10.1016/j.celrep.2019.09.070_bib42) 2007; 6 Yamada (10.1016/j.celrep.2019.09.070_bib51) 1975; 86 He (10.1016/j.celrep.2019.09.070_bib19) 2009; 137 Wheaton (10.1016/j.celrep.2019.09.070_bib48) 2014; 3 Takashima (10.1016/j.celrep.2019.09.070_bib43) 2010; 59 Fullerton (10.1016/j.celrep.2019.09.070_bib13) 2013; 19 Petersen (10.1016/j.celrep.2019.09.070_bib37) 2004; 350 Ritov (10.1016/j.celrep.2019.09.070_bib38) 2005; 54 Lee (10.1016/j.celrep.2019.09.070_bib28) 2012; 32 Doogue (10.1016/j.celrep.2019.09.070_bib8) 2009; 68 Owen (10.1016/j.celrep.2019.09.070_bib36) 2000; 348 Wilcock (10.1016/j.celrep.2019.09.070_bib49) 1994; 24 Hardie (10.1016/j.celrep.2019.09.070_bib15) 2012; 13 Shaw (10.1016/j.celrep.2019.09.070_bib41) 2005; 310 He (10.1016/j.celrep.2019.09.070_bib17) 2015; 21 Toyama (10.1016/j.celrep.2019.09.070_bib45) 2016; 351 He (10.1016/j.celrep.2019.09.070_bib20) 2014; 221 Landman (10.1016/j.celrep.2019.09.070_bib25) 2010; 33 He (10.1016/j.celrep.2019.09.070_bib18) 2016; 291 Bridges (10.1016/j.celrep.2019.09.070_bib2) 2014; 462 Samuel (10.1016/j.celrep.2019.09.070_bib40) 2012; 148 Youle (10.1016/j.celrep.2019.09.070_bib53) 2012; 337 Evans (10.1016/j.celrep.2019.09.070_bib11) 2005; 330 Knowler (10.1016/j.celrep.2019.09.070_bib24) 2002; 346 Hawley (10.1016/j.celrep.2019.09.070_bib16) 2002; 51 Ishihara (10.1016/j.celrep.2019.09.070_bib22) 2006; 25 Morino (10.1016/j.celrep.2019.09.070_bib35) 2005; 115 Victor (10.1016/j.celrep.2019.09.070_bib47) 2015; 173 Miller (10.1016/j.celrep.2019.09.070_bib34) 2013; 494 Hundal (10.1016/j.celrep.2019.09.070_bib21) 2000; 49 32187522 - Trends Endocrinol Metab. 2020 Apr;31(4):269-271 |
| References_xml | – volume: 348 start-page: 607 year: 2000 end-page: 614 ident: bib36 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J. – volume: 24 start-page: 49 year: 1994 end-page: 57 ident: bib49 article-title: Accumulation of metformin by tissues of the normal and diabetic mouse publication-title: Xenobiotica – volume: 12 start-page: 3744 year: 2013 end-page: 3758 ident: bib14 article-title: Quantitative proteomic and functional analysis of liver mitochondria from high fat diet (HFD) diabetic mice publication-title: Mol. Cell. Proteomics – volume: 17 start-page: 491 year: 2013 end-page: 506 ident: bib31 article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure publication-title: Cell Metab. – volume: 68 start-page: 875 year: 2009 end-page: 882 ident: bib8 article-title: Metformin increases plasma ghrelin in Type 2 diabetes publication-title: Br. J. Clin. Pharmacol. – volume: 8 start-page: 131 year: 2017 ident: bib4 article-title: Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity publication-title: Nat. Commun. – volume: 351 start-page: 275 year: 2016 end-page: 281 ident: bib45 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science – volume: 310 start-page: 1642 year: 2005 end-page: 1646 ident: bib41 article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin publication-title: Science – volume: 25 start-page: 2966 year: 2006 end-page: 2977 ident: bib22 article-title: Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 publication-title: EMBO J. – volume: 59 start-page: 1608 year: 2010 end-page: 1615 ident: bib43 article-title: Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action publication-title: Diabetes – volume: 17 start-page: 363 year: 2015 end-page: 370 ident: bib1 article-title: Effects of metformin on energy intake and satiety in obese children publication-title: Diabetes Obes. Metab. – volume: 137 start-page: 635 year: 2009 end-page: 646 ident: bib19 article-title: Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein publication-title: Cell – volume: 289 start-page: 20435 year: 2014 end-page: 20446 ident: bib3 article-title: Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK) publication-title: J. Biol. Chem. – volume: 289 start-page: 11862 year: 2014 end-page: 11872 ident: bib27 article-title: Transient contraction of mitochondria induces depolarization through the inner membrane dynamin OPA1 protein publication-title: J. Biol. Chem. – volume: 221 start-page: 363 year: 2014 end-page: 369 ident: bib20 article-title: Potential biomarker of metformin action publication-title: J. Endocrinol. – volume: 33 start-page: 322 year: 2010 end-page: 326 ident: bib25 article-title: Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16 publication-title: Diabetes Care – volume: 337 start-page: 1062 year: 2012 end-page: 1065 ident: bib53 article-title: Mitochondrial fission, fusion, and stress publication-title: Science – volume: 54 start-page: 8 year: 2005 end-page: 14 ident: bib38 article-title: Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes publication-title: Diabetes – volume: 43 start-page: 442 year: 1991 end-page: 444 ident: bib50 article-title: Subcellular distribution of metformin in rat liver publication-title: J. Pharm. Pharmacol. – volume: 115 start-page: 3587 year: 2005 end-page: 3593 ident: bib35 article-title: Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents publication-title: J. Clin. Invest. – volume: 346 start-page: 393 year: 2002 end-page: 403 ident: bib24 article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin publication-title: N. Engl. J. Med. – volume: 105 start-page: 15803 year: 2008 end-page: 15808 ident: bib5 article-title: Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria publication-title: Proc. Natl. Acad. Sci. USA – volume: 55 start-page: 443 year: 2012 end-page: 449 ident: bib26 article-title: Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration publication-title: Diabetologia – volume: 350 start-page: 664 year: 2004 end-page: 671 ident: bib37 article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes publication-title: N. Engl. J. Med. – volume: 21 start-page: 159 year: 2015 end-page: 162 ident: bib17 article-title: Metformin action: concentrations matter publication-title: Cell Metab. – volume: 330 start-page: 1304 year: 2005 end-page: 1305 ident: bib11 article-title: Metformin and reduced risk of cancer in diabetic patients publication-title: BMJ – volume: 290 start-page: 3793 year: 2015 end-page: 3802 ident: bib33 article-title: Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex publication-title: J. Biol. Chem. – volume: 233 start-page: 203 year: 2008 end-page: 210 ident: bib9 article-title: Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro publication-title: Toxicol. Appl. Pharmacol. – volume: 275 start-page: 223 year: 2000 end-page: 228 ident: bib10 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem. – volume: 27 start-page: 433 year: 2008 end-page: 446 ident: bib46 article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy publication-title: EMBO J. – volume: 19 start-page: 1649 year: 2013 end-page: 1654 ident: bib13 article-title: Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin publication-title: Nat. Med. – volume: 15 start-page: 1307 year: 2009 end-page: 1311 ident: bib6 article-title: Foxo1 integrates insulin signaling with mitochondrial function in the liver publication-title: Nat. Med. – volume: 51 start-page: 2944 year: 2002 end-page: 2950 ident: bib23 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes – volume: 510 start-page: 542 year: 2014 end-page: 546 ident: bib32 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature – volume: 86 start-page: 38 year: 1975 end-page: 45 ident: bib51 article-title: Two distinct patterns of glucose intolerance in icteric rats and rabbits. Relationship to impaired liver mitochondria function publication-title: J. Lab. Clin. Med. – volume: 49 start-page: 2063 year: 2000 end-page: 2069 ident: bib21 article-title: Mechanism by which metformin reduces glucose production in type 2 diabetes publication-title: Diabetes – volume: 3 start-page: e02242 year: 2014 ident: bib48 article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis publication-title: eLife – volume: 32 start-page: 4705 year: 2012 end-page: 4717 ident: bib28 article-title: Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress publication-title: Mol. Cell. Biol. – volume: 568 start-page: 254 year: 2019 end-page: 258 ident: bib29 article-title: Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism publication-title: Nature – volume: 108 start-page: 1167 year: 2001 end-page: 1174 ident: bib55 article-title: Role of AMP-activated protein kinase in mechanism of metformin action publication-title: J. Clin. Invest. – volume: 137 start-page: 482 year: 2009 end-page: 488 ident: bib30 article-title: Antidiabetic therapies affect risk of pancreatic cancer publication-title: Gastroenterology – volume: 13 start-page: 251 year: 2012 end-page: 262 ident: bib15 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 28 start-page: 588 year: 2018 end-page: 604.e585 ident: bib52 article-title: Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease publication-title: Cell Metab – volume: 494 start-page: 256 year: 2013 end-page: 260 ident: bib34 article-title: Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP publication-title: Nature – volume: 279 start-page: 47898 year: 2004 end-page: 47905 ident: bib54 article-title: AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells publication-title: J. Biol. Chem. – volume: 6 start-page: 295 year: 2007 end-page: 303 ident: bib42 article-title: Ghrelin and leptin levels in obese adolescents. Relationship with body fat and insulin resistance publication-title: Hormones (Athens) – volume: 148 start-page: 852 year: 2012 end-page: 871 ident: bib40 article-title: Mechanisms for insulin resistance: common threads and missing links publication-title: Cell – volume: 191 start-page: 1367 year: 2010 end-page: 1380 ident: bib44 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. – volume: 21 start-page: 589 year: 2010 end-page: 598 ident: bib7 article-title: Insulin signaling meets mitochondria in metabolism publication-title: Trends Endocrinol. Metab. – volume: 291 start-page: 10562 year: 2016 end-page: 10570 ident: bib18 article-title: Activation of the cAMP-PKA pathway antagonizes metformin suppression of hepatic glucose production publication-title: J. Biol. Chem – volume: 50 start-page: 133 year: 2018 end-page: 143 ident: bib39 article-title: Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells publication-title: Acta Biochim. Biophys. Sin. (Shanghai) – volume: 462 start-page: 475 year: 2014 end-page: 487 ident: bib2 article-title: Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria publication-title: Biochem. J. – volume: 120 start-page: 2355 year: 2010 end-page: 2369 ident: bib12 article-title: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state publication-title: J. Clin. Invest. – volume: 51 start-page: 2420 year: 2002 end-page: 2425 ident: bib16 article-title: The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism publication-title: Diabetes – volume: 173 start-page: 683 year: 2015 end-page: 691 ident: bib47 article-title: Effects of metformin on mitochondrial function of leukocytes from polycystic ovary syndrome patients with insulin resistance publication-title: Eur. J. Endocrinol. – volume: 290 start-page: 3793 year: 2015 ident: 10.1016/j.celrep.2019.09.070_bib33 article-title: Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.604421 – volume: 27 start-page: 433 year: 2008 ident: 10.1016/j.celrep.2019.09.070_bib46 article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy publication-title: EMBO J. doi: 10.1038/sj.emboj.7601963 – volume: 12 start-page: 3744 year: 2013 ident: 10.1016/j.celrep.2019.09.070_bib14 article-title: Quantitative proteomic and functional analysis of liver mitochondria from high fat diet (HFD) diabetic mice publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.027441 – volume: 59 start-page: 1608 year: 2010 ident: 10.1016/j.celrep.2019.09.070_bib43 article-title: Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action publication-title: Diabetes doi: 10.2337/db09-1679 – volume: 173 start-page: 683 year: 2015 ident: 10.1016/j.celrep.2019.09.070_bib47 article-title: Effects of metformin on mitochondrial function of leukocytes from polycystic ovary syndrome patients with insulin resistance publication-title: Eur. J. Endocrinol. doi: 10.1530/EJE-15-0572 – volume: 17 start-page: 363 year: 2015 ident: 10.1016/j.celrep.2019.09.070_bib1 article-title: Effects of metformin on energy intake and satiety in obese children publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12426 – volume: 510 start-page: 542 year: 2014 ident: 10.1016/j.celrep.2019.09.070_bib32 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature doi: 10.1038/nature13270 – volume: 55 start-page: 443 year: 2012 ident: 10.1016/j.celrep.2019.09.070_bib26 article-title: Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration publication-title: Diabetologia doi: 10.1007/s00125-011-2340-0 – volume: 43 start-page: 442 year: 1991 ident: 10.1016/j.celrep.2019.09.070_bib50 article-title: Subcellular distribution of metformin in rat liver publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.1991.tb03507.x – volume: 21 start-page: 589 year: 2010 ident: 10.1016/j.celrep.2019.09.070_bib7 article-title: Insulin signaling meets mitochondria in metabolism publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2010.06.005 – volume: 137 start-page: 482 year: 2009 ident: 10.1016/j.celrep.2019.09.070_bib30 article-title: Antidiabetic therapies affect risk of pancreatic cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.04.013 – volume: 275 start-page: 223 year: 2000 ident: 10.1016/j.celrep.2019.09.070_bib10 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.1.223 – volume: 108 start-page: 1167 year: 2001 ident: 10.1016/j.celrep.2019.09.070_bib55 article-title: Role of AMP-activated protein kinase in mechanism of metformin action publication-title: J. Clin. Invest. doi: 10.1172/JCI13505 – volume: 568 start-page: 254 year: 2019 ident: 10.1016/j.celrep.2019.09.070_bib29 article-title: Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism publication-title: Nature doi: 10.1038/s41586-019-1005-x – volume: 337 start-page: 1062 year: 2012 ident: 10.1016/j.celrep.2019.09.070_bib53 article-title: Mitochondrial fission, fusion, and stress publication-title: Science doi: 10.1126/science.1219855 – volume: 120 start-page: 2355 year: 2010 ident: 10.1016/j.celrep.2019.09.070_bib12 article-title: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state publication-title: J. Clin. Invest. doi: 10.1172/JCI40671 – volume: 25 start-page: 2966 year: 2006 ident: 10.1016/j.celrep.2019.09.070_bib22 article-title: Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601184 – volume: 86 start-page: 38 year: 1975 ident: 10.1016/j.celrep.2019.09.070_bib51 article-title: Two distinct patterns of glucose intolerance in icteric rats and rabbits. Relationship to impaired liver mitochondria function publication-title: J. Lab. Clin. Med. – volume: 279 start-page: 47898 year: 2004 ident: 10.1016/j.celrep.2019.09.070_bib54 article-title: AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408149200 – volume: 221 start-page: 363 year: 2014 ident: 10.1016/j.celrep.2019.09.070_bib20 article-title: Potential biomarker of metformin action publication-title: J. Endocrinol. doi: 10.1530/JOE-14-0084 – volume: 15 start-page: 1307 year: 2009 ident: 10.1016/j.celrep.2019.09.070_bib6 article-title: Foxo1 integrates insulin signaling with mitochondrial function in the liver publication-title: Nat. Med. doi: 10.1038/nm.2049 – volume: 494 start-page: 256 year: 2013 ident: 10.1016/j.celrep.2019.09.070_bib34 article-title: Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP publication-title: Nature doi: 10.1038/nature11808 – volume: 54 start-page: 8 year: 2005 ident: 10.1016/j.celrep.2019.09.070_bib38 article-title: Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.54.1.8 – volume: 28 start-page: 588 year: 2018 ident: 10.1016/j.celrep.2019.09.070_bib52 article-title: Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease publication-title: Cell Metab doi: 10.1016/j.cmet.2018.06.014 – volume: 49 start-page: 2063 year: 2000 ident: 10.1016/j.celrep.2019.09.070_bib21 article-title: Mechanism by which metformin reduces glucose production in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.49.12.2063 – volume: 233 start-page: 203 year: 2008 ident: 10.1016/j.celrep.2019.09.070_bib9 article-title: Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.08.013 – volume: 351 start-page: 275 year: 2016 ident: 10.1016/j.celrep.2019.09.070_bib45 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science doi: 10.1126/science.aab4138 – volume: 21 start-page: 159 year: 2015 ident: 10.1016/j.celrep.2019.09.070_bib17 article-title: Metformin action: concentrations matter publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.01.003 – volume: 105 start-page: 15803 year: 2008 ident: 10.1016/j.celrep.2019.09.070_bib5 article-title: Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808249105 – volume: 291 start-page: 10562 year: 2016 ident: 10.1016/j.celrep.2019.09.070_bib18 article-title: Activation of the cAMP-PKA pathway antagonizes metformin suppression of hepatic glucose production publication-title: J. Biol. Chem doi: 10.1074/jbc.M116.719666 – volume: 289 start-page: 20435 year: 2014 ident: 10.1016/j.celrep.2019.09.070_bib3 article-title: Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.567271 – volume: 330 start-page: 1304 year: 2005 ident: 10.1016/j.celrep.2019.09.070_bib11 article-title: Metformin and reduced risk of cancer in diabetic patients publication-title: BMJ doi: 10.1136/bmj.38415.708634.F7 – volume: 68 start-page: 875 year: 2009 ident: 10.1016/j.celrep.2019.09.070_bib8 article-title: Metformin increases plasma ghrelin in Type 2 diabetes publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2009.03372.x – volume: 24 start-page: 49 year: 1994 ident: 10.1016/j.celrep.2019.09.070_bib49 article-title: Accumulation of metformin by tissues of the normal and diabetic mouse publication-title: Xenobiotica doi: 10.3109/00498259409043220 – volume: 13 start-page: 251 year: 2012 ident: 10.1016/j.celrep.2019.09.070_bib15 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3311 – volume: 115 start-page: 3587 year: 2005 ident: 10.1016/j.celrep.2019.09.070_bib35 article-title: Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents publication-title: J. Clin. Invest. doi: 10.1172/JCI25151 – volume: 148 start-page: 852 year: 2012 ident: 10.1016/j.celrep.2019.09.070_bib40 article-title: Mechanisms for insulin resistance: common threads and missing links publication-title: Cell doi: 10.1016/j.cell.2012.02.017 – volume: 6 start-page: 295 year: 2007 ident: 10.1016/j.celrep.2019.09.070_bib42 article-title: Ghrelin and leptin levels in obese adolescents. Relationship with body fat and insulin resistance publication-title: Hormones (Athens) doi: 10.14310/horm.2002.1111025 – volume: 17 start-page: 491 year: 2013 ident: 10.1016/j.celrep.2019.09.070_bib31 article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.002 – volume: 51 start-page: 2420 year: 2002 ident: 10.1016/j.celrep.2019.09.070_bib16 article-title: The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism publication-title: Diabetes doi: 10.2337/diabetes.51.8.2420 – volume: 310 start-page: 1642 year: 2005 ident: 10.1016/j.celrep.2019.09.070_bib41 article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin publication-title: Science doi: 10.1126/science.1120781 – volume: 32 start-page: 4705 year: 2012 ident: 10.1016/j.celrep.2019.09.070_bib28 article-title: Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00897-12 – volume: 19 start-page: 1649 year: 2013 ident: 10.1016/j.celrep.2019.09.070_bib13 article-title: Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin publication-title: Nat. Med. doi: 10.1038/nm.3372 – volume: 8 start-page: 131 year: 2017 ident: 10.1016/j.celrep.2019.09.070_bib4 article-title: Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity publication-title: Nat. Commun. doi: 10.1038/s41467-017-00163-w – volume: 348 start-page: 607 year: 2000 ident: 10.1016/j.celrep.2019.09.070_bib36 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J. doi: 10.1042/bj3480607 – volume: 50 start-page: 133 year: 2018 ident: 10.1016/j.celrep.2019.09.070_bib39 article-title: Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells publication-title: Acta Biochim. Biophys. Sin. (Shanghai) doi: 10.1093/abbs/gmx106 – volume: 289 start-page: 11862 year: 2014 ident: 10.1016/j.celrep.2019.09.070_bib27 article-title: Transient contraction of mitochondria induces depolarization through the inner membrane dynamin OPA1 protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.533299 – volume: 3 start-page: e02242 year: 2014 ident: 10.1016/j.celrep.2019.09.070_bib48 article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis publication-title: eLife doi: 10.7554/eLife.02242 – volume: 191 start-page: 1367 year: 2010 ident: 10.1016/j.celrep.2019.09.070_bib44 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201007013 – volume: 350 start-page: 664 year: 2004 ident: 10.1016/j.celrep.2019.09.070_bib37 article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa031314 – volume: 51 start-page: 2944 year: 2002 ident: 10.1016/j.celrep.2019.09.070_bib23 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.10.2944 – volume: 137 start-page: 635 year: 2009 ident: 10.1016/j.celrep.2019.09.070_bib19 article-title: Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein publication-title: Cell doi: 10.1016/j.cell.2009.03.016 – volume: 346 start-page: 393 year: 2002 ident: 10.1016/j.celrep.2019.09.070_bib24 article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012512 – volume: 462 start-page: 475 year: 2014 ident: 10.1016/j.celrep.2019.09.070_bib2 article-title: Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria publication-title: Biochem. J. doi: 10.1042/BJ20140620 – volume: 33 start-page: 322 year: 2010 ident: 10.1016/j.celrep.2019.09.070_bib25 article-title: Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16 publication-title: Diabetes Care doi: 10.2337/dc09-1380 – reference: 32187522 - Trends Endocrinol Metab. 2020 Apr;31(4):269-271 |
| SSID | ssj0000601194 |
| Score | 2.6571906 |
| Snippet | Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1511 |
| SubjectTerms | adenine nucleotides Adenine Nucleotides - metabolism AMP-Activated Protein Kinase Kinases AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism AMPK Animals Blood Glucose - metabolism Cell Respiration - drug effects Cell Respiration - genetics diabetes Diet, High-Fat Drp1 Electron Transport Complex I - drug effects Electron Transport Complex I - metabolism Gene Knockout Techniques Hepatocytes - drug effects Hepatocytes - metabolism Hepatocytes - ultrastructure Hyperglycemia - drug therapy Hyperglycemia - genetics Hyperglycemia - metabolism Hypoglycemic Agents - pharmacology Insulin Resistance Liver - drug effects Liver - metabolism Liver - physiopathology Liver - ultrastructure membrane potential metformin Metformin - analysis Metformin - pharmacology Mice Mice, Inbred C57BL Mitochondria, Liver - drug effects Mitochondria, Liver - genetics Mitochondria, Liver - metabolism Mitochondria, Liver - ultrastructure Mitochondrial Dynamics - drug effects mitochondrial respiration/fission Protein Kinases - genetics Protein Kinases - metabolism |
| Title | Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK |
| URI | https://dx.doi.org/10.1016/j.celrep.2019.09.070 https://www.ncbi.nlm.nih.gov/pubmed/31693892 https://www.proquest.com/docview/2312804482 https://pubmed.ncbi.nlm.nih.gov/PMC6866677 https://doaj.org/article/242411f041ab47b787ea101323460470 |
| Volume | 29 |
| WOSCitedRecordID | wos000495045400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA96KPgifttTjwi-LibZ7CZ5rOIhaI8iKn0LSXaClWN7tD3B__4yyW5t9aEvwj5lsx_zkWQmM_kNIW9qLUITRKiijKySDroq9RRVZ3gMTaNcnTf0v39WFxd6sTDzvVJfmBNW4IEL497i8QXOI5Pceal80i9wHAMEtWyZVNlbT1bPnjNV5mDEMsOQshCYsyWkGs_N5eSuAJdrQLhKbjLMKdYq3luXMnz_wfL0r_n5dxbl3rJ0_oDcH-xJOi10PCS3oH9E7pYKk78fk_kMtmiWLntatg9gQ2dpEKdJr-9Q9-iXP7F2Og2llgQdqveUhiw7uop0Opt_ekK-nX_4-v5jNRRRqEJjmm3ldctdYA10AoR0LCR7x0uMr8SOucRVZVxMrqQJjWsDxLbmQYJvQTgIxvP6KTnpVz08J1T70BktQAeNko0ecQXAszYa1jktJ6QeWWjDgDCOhS4u7ZhK9tMWxltkvGXpUmxCqt1TVwVh40j_dyidXV_Ex84NSWvsoDX2mNZMiBplawdTo5gQ6VXLI59_PaqCTSMRwyuuh9X1xiZLWWiW3F0xIc-Kaux-skbMG23SHXWgNAdUHN7plz8y2nerk4ep1On_IPsFuYek5LOUzUtysl1fwytyJ_zaLjfrM3JbLfRZHkg3hzIf9Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+Improves+Mitochondrial+Respiratory+Activity+through+Activation+of+AMPK&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Yu&rft.au=An%2C+Hongying&rft.au=Liu%2C+Ting&rft.au=Qin%2C+Caolitao&rft.date=2019-11-05&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=29&rft.issue=6&rft.spage=1511&rft.epage=1523.e5&rft_id=info:doi/10.1016%2Fj.celrep.2019.09.070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2019_09_070 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |