Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging

The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of ad...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cell reports (Cambridge) Ročník 4; číslo 1; s. 189 - 204
Hlavní autori: Liu, Ling, Cheung, Tom H., Charville, Gregory W., Hurgo, Bernadette Marie Ceniza, Leavitt, Tripp, Shih, Johnathan, Brunet, Anne, Rando, Thomas A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 11.07.2013
Elsevier
Predmet:
ISSN:2211-1247, 2211-1247
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may lead to a functional decline in quiescent stem cells. These findings highlight the importance of chromatin mapping in understanding unique features of stem cell identity and stem cell aging. [Display omitted] •Chromatin modification pattern on myogenic regulatory factor genes in QSCs•Chromatin modification pattern on myogenic regulatory factor genes in QSCs•Increase in H3K27me3 across the genome in adult QSCs with age•Decrease of histone expression in adult QSCs with age The comprehensive transcriptional and chromatin modification profile of an adult quiescent stem cell population, skeletal muscle satellite cells, is now examined by Rando and colleagues. The authors characterize changes associated with satellite cell activation and aging, providing direct evidence for global changes in histone modifications in adult stem cells with age.
AbstractList The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may lead to a functional decline in quiescent stem cells. These findings highlight the importance of chromatin mapping in understanding unique features of stem cell identity and stem cell aging.
The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may lead to a functional decline in quiescent stem cells. These findings highlight the importance of chromatin mapping in understanding unique features of stem cell identity and stem cell aging. [Display omitted] •Chromatin modification pattern on myogenic regulatory factor genes in QSCs•Chromatin modification pattern on myogenic regulatory factor genes in QSCs•Increase in H3K27me3 across the genome in adult QSCs with age•Decrease of histone expression in adult QSCs with age The comprehensive transcriptional and chromatin modification profile of an adult quiescent stem cell population, skeletal muscle satellite cells, is now examined by Rando and colleagues. The authors characterize changes associated with satellite cell activation and aging, providing direct evidence for global changes in histone modifications in adult stem cells with age.
The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may lead to a functional decline in quiescent stem cells. These findings highlight the importance of chromatin mapping in understanding unique features of stem cell identity and stem cell aging.
The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may lead to a functional decline in quiescent stem cells. These findings highlight the importance of chromatin mapping in understanding unique features of stem cell identity and stem cell aging.The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may lead to a functional decline in quiescent stem cells. These findings highlight the importance of chromatin mapping in understanding unique features of stem cell identity and stem cell aging.
Author Rando, Thomas A.
Liu, Ling
Leavitt, Tripp
Charville, Gregory W.
Shih, Johnathan
Hurgo, Bernadette Marie Ceniza
Cheung, Tom H.
Brunet, Anne
AuthorAffiliation 2 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
3 Neurology Service and RR&D Center of Excellence, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
1 The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
AuthorAffiliation_xml – name: 1 The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– name: 3 Neurology Service and RR&D Center of Excellence, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
– name: 2 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
Author_xml – sequence: 1
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 2
  givenname: Tom H.
  surname: Cheung
  fullname: Cheung, Tom H.
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 3
  givenname: Gregory W.
  surname: Charville
  fullname: Charville, Gregory W.
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 4
  givenname: Bernadette Marie Ceniza
  surname: Hurgo
  fullname: Hurgo, Bernadette Marie Ceniza
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 5
  givenname: Tripp
  surname: Leavitt
  fullname: Leavitt, Tripp
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 6
  givenname: Johnathan
  surname: Shih
  fullname: Shih, Johnathan
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 7
  givenname: Anne
  surname: Brunet
  fullname: Brunet, Anne
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 8
  givenname: Thomas A.
  surname: Rando
  fullname: Rando, Thomas A.
  email: rando@stanford.edu
  organization: The Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23810552$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9rFDEQx4NUbHv2PxDJoy-35sdmN-uDUK5aCy0i6qshl8xuc2STM9kt-N-b652l9UFDIEMy85nJfOcUHYUYAKFXlFSU0ObtpjLgE2wrRiiviKhIzZ-hE8YoXVJWt0eP7GN0lvOGlNUQSrv6BTpmXFIiBDtBP1a3KY56cgHfROt6Z4odQ8Y64wuYII0u6DBlHHt8M2fjAX-dYMQr8B5_mR1kA8EA1sHiHSpEH4cC8fh8cGF4iZ732mc4O5wL9P3jh2-rT8vrz5dXq_PrpRGdmJay57w3XHdrqRkwIAKgadaay64mfdt0LVhbM9IxS1vTdASEZW1HJdiG2dbwBbrac23UG7VNbtTpl4raqfuLmAal0-RK-cqwmkraSmGYrDkYaSnpOGjTmX7dSFZY7_es7bwewZb_TUn7J9CnL8HdqiHeqZoSTpgogDcHQIo_Z8iTGl1pk_c6QJyzojUhZbOi2QK9fpzrIckfgYpDvXcwKeacoH9woUTtRkFt1H4U1G4UFBGqYEvYu7_CjJvulS0VO_-_4EMDoCh25yCpbNxOZesSmKm01P0b8BtR8NG9
CitedBy_id crossref_primary_10_1016_j_devcel_2023_05_012
crossref_primary_10_1038_nm_3990
crossref_primary_10_1073_pnas_1708725114
crossref_primary_10_1016_j_tma_2020_08_002
crossref_primary_10_1002_jcp_31472
crossref_primary_10_1038_s41419_022_05284_9
crossref_primary_10_3389_fcell_2021_739321
crossref_primary_10_3389_fcell_2021_609984
crossref_primary_10_4161_epi_28967
crossref_primary_10_1113_JP288947
crossref_primary_10_1242_dev_165084
crossref_primary_10_5966_sctm_2015_0266
crossref_primary_10_1111_acel_12745
crossref_primary_10_1016_j_exger_2019_110658
crossref_primary_10_1002_stem_1908
crossref_primary_10_1242_dev_201026
crossref_primary_10_1038_nature20485
crossref_primary_10_1083_jcb_201708099
crossref_primary_10_1002_jcsm_12653
crossref_primary_10_1016_j_yfrne_2023_101101
crossref_primary_10_3389_fcell_2023_1128534
crossref_primary_10_1155_2019_7548160
crossref_primary_10_1182_blood_2019001044
crossref_primary_10_1242_dev_183855
crossref_primary_10_1038_s41392_023_01528_y
crossref_primary_10_1038_s41467_024_45618_z
crossref_primary_10_1073_pnas_2212306119
crossref_primary_10_1093_jb_mvae059
crossref_primary_10_1093_nar_gkz101
crossref_primary_10_1007_s11427_022_2161_3
crossref_primary_10_1016_j_mad_2020_111246
crossref_primary_10_1016_j_molcel_2018_06_008
crossref_primary_10_1038_s42255_020_0190_0
crossref_primary_10_1172_JCI161638
crossref_primary_10_1016_j_matbio_2016_06_001
crossref_primary_10_1016_j_arr_2014_05_004
crossref_primary_10_4161_cc_25918
crossref_primary_10_1111_acel_12996
crossref_primary_10_1016_j_stem_2015_05_002
crossref_primary_10_1016_j_fct_2015_11_002
crossref_primary_10_1038_s41580_019_0143_1
crossref_primary_10_1186_s13287_022_02706_5
crossref_primary_10_1016_j_stem_2015_05_007
crossref_primary_10_1016_j_cmet_2015_07_025
crossref_primary_10_1016_j_stem_2015_05_009
crossref_primary_10_1083_jcb_202211073
crossref_primary_10_1016_j_ceb_2021_08_001
crossref_primary_10_1101_gr_239848_118
crossref_primary_10_1038_ncb3471
crossref_primary_10_1111_acel_14108
crossref_primary_10_3390_cells10123475
crossref_primary_10_1016_j_stem_2014_12_004
crossref_primary_10_1038_nature13013
crossref_primary_10_1038_nature13255
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_3389_fcell_2019_00254
crossref_primary_10_1038_s41580_018_0020_3
crossref_primary_10_1111_febs_16352
crossref_primary_10_1038_ncomms11278
crossref_primary_10_1002_bies_202200249
crossref_primary_10_1016_j_cca_2018_10_011
crossref_primary_10_3389_fendo_2022_952471
crossref_primary_10_1016_j_stem_2019_01_001
crossref_primary_10_3390_cells9071659
crossref_primary_10_1186_s11658_025_00771_1
crossref_primary_10_1002_mco2_70369
crossref_primary_10_1101_gr_253880_119
crossref_primary_10_1016_j_stem_2014_04_013
crossref_primary_10_1016_j_tcb_2019_05_002
crossref_primary_10_3390_cells12202451
crossref_primary_10_1177_20417314231175364
crossref_primary_10_3390_proteomes9020030
crossref_primary_10_1002_pmic_202000071
crossref_primary_10_1371_journal_pone_0090398
crossref_primary_10_3389_fcell_2024_1378548
crossref_primary_10_1172_JCI83239
crossref_primary_10_1016_j_jgg_2019_03_011
crossref_primary_10_1007_s00018_016_2273_3
crossref_primary_10_1242_dev_187344
crossref_primary_10_3390_ijms23137273
crossref_primary_10_1371_journal_pgen_1009022
crossref_primary_10_1016_j_arr_2021_101528
crossref_primary_10_1038_nature20603
crossref_primary_10_1177_2155179018773756
crossref_primary_10_1007_s12035_016_0357_6
crossref_primary_10_3389_fcell_2020_00480
crossref_primary_10_1111_iep_12504
crossref_primary_10_1096_fj_202400947R
crossref_primary_10_1002_jcsm_12970
crossref_primary_10_1038_s41418_020_0562_8
crossref_primary_10_1007_s12015_021_10317_5
crossref_primary_10_1016_j_devcel_2023_04_005
crossref_primary_10_1038_s41598_018_21835_7
crossref_primary_10_3389_fcell_2022_839519
crossref_primary_10_3389_fmolb_2023_1270285
crossref_primary_10_15252_embj_201798239
crossref_primary_10_1016_j_jmb_2015_02_009
crossref_primary_10_12688_f1000research_9846_1
crossref_primary_10_7554_eLife_21552
crossref_primary_10_1038_s43587_023_00449_3
crossref_primary_10_1089_omi_2020_0211
crossref_primary_10_1101_gr_240093_118
crossref_primary_10_1172_JCI69735
crossref_primary_10_1016_j_scib_2024_02_036
crossref_primary_10_1016_j_scr_2016_09_006
crossref_primary_10_1242_dev_143420
crossref_primary_10_1038_s42255_019_0110_3
crossref_primary_10_1186_s13395_021_00270_9
crossref_primary_10_1093_jb_mvab030
crossref_primary_10_1016_j_stem_2022_04_016
crossref_primary_10_3390_ijms23052529
crossref_primary_10_1016_j_domaniend_2019_106394
crossref_primary_10_1016_j_stem_2018_08_019
crossref_primary_10_1186_s13148_021_01001_z
crossref_primary_10_1002_j_2040_4603_2015_tb00646_x
crossref_primary_10_1016_j_mad_2020_111283
crossref_primary_10_1155_2016_5725927
crossref_primary_10_1007_s00018_014_1819_5
crossref_primary_10_15252_embj_201490386
crossref_primary_10_1007_s00439_019_02100_x
crossref_primary_10_1016_j_tcb_2021_02_006
crossref_primary_10_1165_rcmb_2021_0351OC
crossref_primary_10_3390_ijms23031748
crossref_primary_10_1007_s10616_019_00365_8
crossref_primary_10_1517_17425255_2015_1041919
crossref_primary_10_1186_s13287_015_0018_0
crossref_primary_10_1101_gad_293266_116
crossref_primary_10_1007_s00401_016_1612_7
crossref_primary_10_1038_nature13058
crossref_primary_10_1080_15592294_2021_1917812
crossref_primary_10_1073_pnas_2021093118
crossref_primary_10_1111_febs_15182
crossref_primary_10_7554_eLife_35368
crossref_primary_10_1016_j_freeradbiomed_2024_11_041
crossref_primary_10_1016_j_mam_2016_02_002
crossref_primary_10_1371_journal_pone_0222946
crossref_primary_10_1038_s41467_017_00522_7
crossref_primary_10_3103_S0095452722030033
crossref_primary_10_1128_MCB_00453_16
crossref_primary_10_1242_jcs_259789
crossref_primary_10_3390_ijms26041738
crossref_primary_10_3390_ijms25031833
crossref_primary_10_1093_nar_gkv567
crossref_primary_10_1016_j_ceb_2016_12_009
crossref_primary_10_1038_nm_3918
crossref_primary_10_1016_j_mad_2017_12_002
crossref_primary_10_1016_j_arr_2021_101312
crossref_primary_10_1016_j_devcel_2017_04_012
crossref_primary_10_1016_j_isci_2024_110908
crossref_primary_10_1016_j_stem_2017_01_008
crossref_primary_10_1016_j_stem_2021_03_018
crossref_primary_10_3390_cells7120237
crossref_primary_10_1007_s40266_023_01093_7
crossref_primary_10_1016_j_cmet_2023_02_001
crossref_primary_10_1002_jor_24292
crossref_primary_10_3390_genes9040201
crossref_primary_10_3390_ijms18112350
crossref_primary_10_3390_cells11111754
crossref_primary_10_1016_j_isci_2024_109947
crossref_primary_10_1007_s12185_014_1647_2
crossref_primary_10_1016_j_stem_2022_07_010
crossref_primary_10_3390_cells9061435
crossref_primary_10_7554_eLife_17355
crossref_primary_10_3389_fcell_2019_00312
crossref_primary_10_1126_science_aab3388
crossref_primary_10_1016_j_molcel_2023_04_024
crossref_primary_10_1186_s13287_024_04008_4
crossref_primary_10_3389_fphys_2020_610983
crossref_primary_10_1055_s_0043_1777072
crossref_primary_10_1038_s41580_022_00518_2
crossref_primary_10_3389_fnagi_2015_00161
crossref_primary_10_1038_s41580_022_00510_w
crossref_primary_10_3390_cells11152293
crossref_primary_10_1016_j_isci_2024_110241
crossref_primary_10_3389_fcell_2020_620409
crossref_primary_10_15252_embj_201488278
crossref_primary_10_1186_s13059_017_1185_3
crossref_primary_10_15283_ijsc25037
crossref_primary_10_1016_j_stem_2018_09_017
crossref_primary_10_1016_j_bbagrm_2014_05_008
crossref_primary_10_1016_j_smim_2018_10_009
crossref_primary_10_1042_BCJ20190169
crossref_primary_10_1038_s41536_018_0062_3
crossref_primary_10_1007_s10585_023_10248_0
crossref_primary_10_1371_journal_pone_0191033
crossref_primary_10_1016_j_tcb_2021_05_004
crossref_primary_10_1007_s00439_019_02047_z
crossref_primary_10_3389_fphys_2022_892749
crossref_primary_10_3390_genes10030231
crossref_primary_10_1134_S2079057024600241
crossref_primary_10_1038_s43587_023_00549_0
crossref_primary_10_1038_s41392_023_01451_2
crossref_primary_10_1158_0008_5472_CAN_19_1084
crossref_primary_10_1186_s13395_020_00259_w
crossref_primary_10_1002_term_2330
crossref_primary_10_1101_gad_241182_114
crossref_primary_10_1016_j_molcel_2018_04_025
crossref_primary_10_7554_eLife_57356
crossref_primary_10_1242_dev_114223
crossref_primary_10_3389_fgene_2015_00059
crossref_primary_10_1007_s12192_019_01001_2
crossref_primary_10_1016_j_tig_2022_01_001
crossref_primary_10_1371_journal_pone_0230930
crossref_primary_10_3389_fcell_2016_00058
crossref_primary_10_1038_cr_2016_4
crossref_primary_10_1074_jbc_M114_625350
crossref_primary_10_1080_10409238_2021_1908950
crossref_primary_10_1093_nar_gkv473
crossref_primary_10_1242_dev_194027
crossref_primary_10_1007_s00335_016_9645_8
crossref_primary_10_1038_s41580_021_00421_2
crossref_primary_10_3389_fcell_2021_759237
crossref_primary_10_3390_ijms221910283
crossref_primary_10_1242_dev_174177
crossref_primary_10_1016_j_stem_2015_12_006
crossref_primary_10_1126_science_aaa2361
crossref_primary_10_1016_j_molcel_2023_04_005
crossref_primary_10_1016_j_yexcr_2022_113299
crossref_primary_10_3390_genes8020049
crossref_primary_10_1002_JLB_1RI0418_160R
crossref_primary_10_3390_ani11010061
crossref_primary_10_1016_j_tem_2015_03_006
crossref_primary_10_3390_ijms22010401
crossref_primary_10_1186_1471_213X_14_2
crossref_primary_10_1042_BCJ20230223
crossref_primary_10_1016_j_mce_2016_08_021
crossref_primary_10_1042_BST20140045
crossref_primary_10_3390_cells13040320
crossref_primary_10_3233_JND_150097
crossref_primary_10_3389_fdmed_2020_596706
crossref_primary_10_3390_biomedicines10112894
crossref_primary_10_1038_nrm4048
crossref_primary_10_7554_eLife_81717
crossref_primary_10_1007_s12272_021_01349_z
crossref_primary_10_1096_fj_15_277053
crossref_primary_10_1172_JCI86798
crossref_primary_10_1242_jcs_212977
crossref_primary_10_1111_acel_13789
crossref_primary_10_3390_ijms21051830
crossref_primary_10_7554_eLife_62250
crossref_primary_10_2174_0929867330666230607124803
crossref_primary_10_1089_rej_2022_0059
crossref_primary_10_3390_cancers13061239
crossref_primary_10_1101_gad_352277_124
crossref_primary_10_1186_s13395_017_0144_8
crossref_primary_10_1002_dvdy_24416
crossref_primary_10_1038_ncb3401
crossref_primary_10_1093_neuros_nyy012
crossref_primary_10_1016_j_stem_2015_11_012
crossref_primary_10_1016_j_tibtech_2019_01_005
crossref_primary_10_1371_journal_pone_0176190
crossref_primary_10_1038_s41467_021_23775_9
crossref_primary_10_1186_s12964_023_01117_0
crossref_primary_10_1038_s41598_018_21991_w
crossref_primary_10_1111_exd_13872
crossref_primary_10_1016_j_cell_2016_11_052
crossref_primary_10_1038_s41598_021_91105_6
crossref_primary_10_1073_pnas_2005868117
crossref_primary_10_1016_j_ccell_2018_05_002
crossref_primary_10_3390_biom10060882
crossref_primary_10_1038_nature16187
crossref_primary_10_1007_s00418_016_1473_0
crossref_primary_10_2217_epi_14_36
crossref_primary_10_1089_rej_2017_2024
crossref_primary_10_1002_stem_1822
crossref_primary_10_1016_j_mad_2017_08_013
crossref_primary_10_1111_febs_13065
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1016_j_cmet_2017_07_019
crossref_primary_10_1016_j_omtm_2025_101451
crossref_primary_10_1016_j_stem_2015_11_002
crossref_primary_10_1016_j_bmc_2020_115824
crossref_primary_10_1038_s41421_024_00696_7
crossref_primary_10_3390_genes13101836
crossref_primary_10_1016_j_stem_2014_03_002
crossref_primary_10_1038_nrm_2016_7
crossref_primary_10_15252_embj_201899297
crossref_primary_10_1093_stcltm_szac068
crossref_primary_10_1080_10409238_2019_1570075
crossref_primary_10_3389_fnagi_2018_00337
crossref_primary_10_1038_nprot_2015_110
crossref_primary_10_1038_s41467_019_12086_9
crossref_primary_10_1111_febs_13170
crossref_primary_10_1111_nan_12198
crossref_primary_10_1186_s13072_025_00619_0
crossref_primary_10_7554_eLife_03390
crossref_primary_10_7554_eLife_12534
crossref_primary_10_1002_stem_3319
crossref_primary_10_1016_j_molcel_2016_05_013
crossref_primary_10_3389_fcell_2020_00773
crossref_primary_10_1002_stem_3312
crossref_primary_10_1038_s41467_025_59638_w
crossref_primary_10_1016_j_bbadis_2018_08_039
crossref_primary_10_1089_scd_2023_0172
crossref_primary_10_1111_acel_13061
crossref_primary_10_1016_j_scr_2021_102496
crossref_primary_10_7554_eLife_51576
crossref_primary_10_1172_JCI143632
crossref_primary_10_1080_00207454_2018_1430694
crossref_primary_10_3389_fcell_2021_739780
crossref_primary_10_3389_fgene_2019_00220
crossref_primary_10_1242_bio_053918
crossref_primary_10_1126_science_aaf2693
crossref_primary_10_1186_s13395_020_0222_1
crossref_primary_10_1016_j_bbagrm_2015_01_002
crossref_primary_10_1016_j_bbrep_2025_102138
crossref_primary_10_1016_j_gde_2023_102127
crossref_primary_10_1172_JCI128161
crossref_primary_10_3390_ijms21218241
crossref_primary_10_3390_jpm11111050
crossref_primary_10_1242_dev_130633
crossref_primary_10_1016_j_gde_2022_101999
crossref_primary_10_1002_stem_1967
crossref_primary_10_1016_j_arr_2021_101264
crossref_primary_10_3389_fcell_2016_00091
crossref_primary_10_1016_j_cell_2016_04_031
crossref_primary_10_1002_stem_1720
crossref_primary_10_1038_s41467_018_03539_8
crossref_primary_10_1038_s42255_023_00955_z
crossref_primary_10_1073_pnas_2201328119
crossref_primary_10_1073_pnas_2025281118
crossref_primary_10_1111_febs_13165
crossref_primary_10_1186_s12943_023_01793_z
crossref_primary_10_1371_journal_pone_0268760
crossref_primary_10_3390_ijms20092158
crossref_primary_10_1186_s13395_016_0072_z
crossref_primary_10_1016_j_molcel_2015_08_004
crossref_primary_10_1002_bies_202200208
crossref_primary_10_1016_j_tma_2019_12_003
crossref_primary_10_1002_adbi_202400091
crossref_primary_10_1038_s43587_023_00527_6
crossref_primary_10_1097_MCO_0000000000000472
crossref_primary_10_3389_fmed_2018_00104
crossref_primary_10_3389_fcell_2020_00793
crossref_primary_10_3390_ijms241814279
crossref_primary_10_1038_s41467_019_12293_4
crossref_primary_10_1089_ars_2017_7294
crossref_primary_10_1038_s41580_022_00568_6
crossref_primary_10_3390_molecules29235755
crossref_primary_10_1016_j_arr_2021_101271
crossref_primary_10_26599_OSHM_2025_9610013
Cites_doi 10.1038/nature10834
10.1016/j.cell.2007.05.042
10.1038/ncb2015
10.1101/gad.1588507
10.1126/science.1134053
10.1371/journal.pgen.1000155
10.1006/dbio.1997.8721
10.1016/j.molcel.2010.08.015
10.1038/nbt.1667
10.1016/j.cell.2008.01.036
10.1101/gad.1742609
10.1093/nar/gkn923
10.1016/j.tibs.2012.08.001
10.1016/j.cell.2011.07.013
10.1016/j.cell.2008.03.028
10.1016/j.cell.2008.10.025
10.1096/fj.06-7690com
10.1016/j.devcel.2010.02.014
10.1073/pnas.0907739107
10.1634/stemcells.2007-0019
10.1016/j.cell.2011.08.008
10.1016/j.cell.2011.10.040
10.1038/nature01262
10.1038/nprot.2008.211
10.1002/jez.1402060314
10.1038/nrg2046
10.1038/ni.1776
10.1016/j.molcel.2010.05.004
10.1038/nrm3383
10.1101/gr.6.8.688
10.1016/j.stem.2012.03.011
10.1038/ncb1671
10.1038/nature11272
10.1016/j.cell.2006.07.024
10.1101/gad.1435706
10.1038/nsmb.1897
10.1126/science.1144090
10.1016/j.stem.2011.07.015
10.1038/nature04733
10.1111/j.1474-9726.2011.00738.x
10.1371/journal.pbio.1001086
10.1016/j.cell.2012.03.026
10.1016/j.scr.2009.10.003
10.1242/jcs.114843
10.1101/gad.2027911
10.1038/ncb1434
10.1101/gr.6.8.702
10.1038/nbt.1630
10.1038/nature10357
10.1038/ng.428
10.1093/bioinformatics/btq033
10.1038/nature03260
10.1073/pnas.1012946107
10.1182/blood-2005-09-3585
10.1016/j.cell.2007.02.005
10.1083/jcb.9.2.493
10.1038/nature06008
10.1186/gb-2009-10-3-r25
10.1186/1471-2105-12-277
10.1186/gb-2008-9-9-r137
10.1016/S0092-8674(00)80219-6
10.1038/jid.2012.206
10.1002/stem.773
10.1016/j.ydbio.2007.08.059
10.1038/nature05862
10.1038/nrg2438
10.1101/gad.1234304
10.1016/j.molcel.2007.01.019
10.1371/journal.pone.0026406
10.1101/cshperspect.a008342
10.1016/j.cell.2012.01.003
10.1073/pnas.95.25.14863
10.1038/47412
10.1083/jcb.201010131
10.1016/j.cell.2006.02.041
10.1038/38444
ContentType Journal Article
Copyright 2013 The Authors
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
2013 The Authors 2013
Copyright_xml – notice: 2013 The Authors
– notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2013 The Authors 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2013.05.043
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 204
ExternalDocumentID oai_doaj_org_article_c24181785c2843ec8d1093eac9cfb682
PMC4103025
23810552
10_1016_j_celrep_2013_05_043
S2211124713002763
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P01 AG036695
– fundername: NIA NIH HHS
  grantid: R01 AG23806
– fundername: NIA NIH HHS
  grantid: F30 AG035521
– fundername: NIA NIH HHS
  grantid: R01 AG023806
– fundername: NIA NIH HHS
  grantid: R01 AG047820
– fundername: NIA NIH HHS
  grantid: R37 AG023806
– fundername: NIAMS NIH HHS
  grantid: R01 AR062185
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-8f33fc3a9b8a2e2e05ee66ba38940f7697edd42092d17c690e5d27918ed62d7c3
IEDL.DBID DOA
ISICitedReferencesCount 406
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321901900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:33:34 EDT 2025
Thu Aug 21 14:12:15 EDT 2025
Fri Jul 11 16:46:47 EDT 2025
Thu Apr 03 07:03:17 EDT 2025
Tue Nov 18 22:18:56 EST 2025
Wed Nov 05 20:50:02 EST 2025
Wed May 17 01:06:25 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-8f33fc3a9b8a2e2e05ee66ba38940f7697edd42092d17c690e5d27918ed62d7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/c24181785c2843ec8d1093eac9cfb682
PMID 23810552
PQID 1400400204
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_c24181785c2843ec8d1093eac9cfb682
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4103025
proquest_miscellaneous_1400400204
pubmed_primary_23810552
crossref_primary_10_1016_j_celrep_2013_05_043
crossref_citationtrail_10_1016_j_celrep_2013_05_043
elsevier_sciencedirect_doi_10_1016_j_celrep_2013_05_043
PublicationCentury 2000
PublicationDate 2013-07-11
PublicationDateYYYYMMDD 2013-07-11
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Juan, Derfoul, Feng, Ryall, Dell’Orso, Pasut, Zare, Simone, Rudnicki, Sartorelli (bib25) 2011; 25
Pallafacchina, François, Regnault, Czarny, Dive, Cumano, Montarras, Buckingham (bib47) 2010; 4
Mansour, Gafni, Weinberger, Zviran, Ayyash, Rais, Krupalnik, Zerbib, Amann-Zalcenstein, Maza (bib33) 2012; 488
Hanna, Markoulaki, Schorderet, Carey, Beard, Wernig, Creyghton, Steine, Cassady, Foreman (bib22) 2008; 133
Chou, Adamson, Dephoure, Tan, Nottke, Hurov, Gygi, Colaiácovo, Elledge (bib10) 2010; 107
Bjornson, Cheung, Liu, Tripathi, Steeper, Rando (bib4) 2012; 30
Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos, Alvarez, Brockman, Kim, Koche (bib40) 2007; 448
Moazed (bib41) 2011; 146
Penn, Bergstrom, Dilworth, Bengal, Tapscott (bib49) 2004; 18
Mauro (bib38) 1961; 9
Wang, Krasikov, Frey, Wang, Matera, Marzluff (bib63) 1996; 6
Crist, Montarras, Buckingham (bib13) 2012; 11
McKinnell, Ishibashi, Le Grand, Punch, Addicks, Greenblatt, Dilworth, Rudnicki (bib39) 2008; 10
Spivakov, Fisher (bib56) 2007; 8
Bentzinger, Wang, Rudnicki (bib2) 2012; 4
Matthews, Oettinger (bib36) 2009; 10
Marzluff, Wagner, Duronio (bib35) 2008; 9
Pelosi, Giacinti, Nardis, Borsellino, Rizzuto, Nicoletti, Wannenes, Battistini, Rosenthal, Molinaro, Musarò (bib48) 2007; 21
Adler, Sinha, Kawahara, Zhang, Segal, Chang (bib1) 2007; 21
Marks, Kalkan, Menafra, Denissov, Jones, Hofemeister, Nichols, Kranz, Stewart, Smith, Stunnenberg (bib34) 2012; 149
Rossi, Bryder, Seita, Nussenzweig, Hoeijmakers, Weissman (bib52) 2007; 447
Woodhouse, Pugazhendhi, Brien, Pell (bib66) 2013; 126
Feser, Truong, Das, Carson, Kieft, Harkness, Tyler (bib17) 2010; 39
Kamminga, Bystrykh, de Boer, Houwer, Douma, Weersing, Dontje, de Haan (bib26) 2006; 107
Waterston, Lindblad-Toh, Birney, Rogers, Abril, Agarwal, Agarwala, Ainscough, Alexandersson, An (bib65) 2002; 420
Kennedy, Gotta, Sinclair, Mills, McNabb, Murthy, Pak, Laroche, Gasser, Guarente (bib27) 1997; 89
Bernstein, Mikkelsen, Xie, Kamal, Huebert, Cuff, Fry, Meissner, Wernig, Plath (bib3) 2006; 125
Fukada, Uezumi, Ikemoto, Masuda, Segawa, Tanimura, Yamamoto, Miyagoe-Suzuki, Takeda (bib18) 2007; 25
Lien, Guo, Polak, Lawton, Young, Zheng, Fuchs (bib30) 2011; 9
O’Sullivan, Karlseder (bib45) 2012; 37
Rando, Chang (bib51) 2012; 148
Jamai, Imoberdorf, Strubin (bib23) 2007; 25
Villeda, Luo, Mosher, Zou, Britschgi, Bieri, Stan, Fainberg, Ding, Eggel (bib62) 2011; 477
Conboy, Conboy, Wagers, Girma, Weissman, Rando (bib11) 2005; 433
Polo, Liu, Figueroa, Kulalert, Eminli, Tan, Apostolou, Stadtfeld, Li, Shioda (bib50) 2010; 28
Cornelison, Wold (bib12) 1997; 191
Boyer, Plath, Zeitlinger, Brambrink, Medeiros, Lee, Levine, Wernig, Tajonar, Ray (bib5) 2006; 441
O’Sullivan, Kubicek, Schreiber, Karlseder (bib46) 2010; 17
Tan, Luo, Lee, Jin, Yang, Montellier, Buchou, Cheng, Rousseaux, Rajagopal (bib61) 2011; 146
Strahl, Allis (bib57) 2000; 403
Rossi, Jamieson, Weissman (bib53) 2008; 132
Li, Jiang, Hughes, Wu, Yu, Widelitz, Fan, Chuong (bib29) 2012; 132
Kouzarides (bib28) 2007; 128
Tan, Eminli, Hettmer, Hochedlinger, Wagers (bib60) 2011; 6
Cao, Yao, Sarkar, Lawrence, Sanchez, Parker, MacQuarrie, Davison, Morgan, Ruzzo (bib7) 2010; 18
Oberdoerffer, Michan, McVay, Mostoslavsky, Vann, Park, Hartlerode, Stegmuller, Hafner, Loerch (bib43) 2008; 135
Guccione, Martinato, Finocchiaro, Luzi, Tizzoni, Dall’ Olio, Zardo, Nervi, Bernard, Amati (bib20) 2006; 8
Cheung, Quach, Charville, Liu, Park, Edalati, Yoo, Hoang, Rando (bib9) 2012; 482
Taberlay, Kelly, Liu, You, De Carvalho, Miranda, Zhou, Liang, Jones (bib58) 2011; 147
Celona, Weiner, Di Felice, Mancuso, Cesarini, Rossi, Gregory, Baban, Rossetti, Grianti (bib8) 2011; 9
Brack, Conboy, Roy, Lee, Kuo, Keller, Rando (bib6) 2007; 317
Luger, Mäder, Richmond, Sargent, Richmond (bib32) 1997; 389
O’Hagan, Mohammad, Baylin (bib44) 2008; 4
Gayraud-Morel, Chrétien, Flamant, Gomès, Zammit, Tajbakhsh (bib19) 2007; 312
Wang, Tisovec, Debry, Frey, Matera, Marzluff (bib64) 1996; 6
Maures, Greer, Hauswirth, Brunet (bib37) 2011; 10
Takahashi, Yamanaka (bib59) 2006; 126
Guenther, Levine, Boyer, Jaenisch, Young (bib21) 2007; 130
Eminli, Foudi, Stadtfeld, Maherali, Ahfeldt, Mostoslavsky, Hock, Hochedlinger (bib16) 2009; 41
Schultz, Gibson, Champion (bib54) 1978; 206
Siebold, Banerjee, Tie, Kiss, Moskowitz, Harte (bib55) 2010; 107
Dhawan, Tschen, Bhushan (bib14) 2009; 23
Joe, Yi, Natarajan, Le Grand, So, Wang, Rudnicki, Rossi (bib24) 2010; 12
Moremen, Tiemeyer, Nairn (bib42) 2012; 13
Dion, Kaplan, Kim, Buratowski, Friedman, Rando (bib15) 2007; 315
Workman (bib67) 2006; 20
Liu, Rando (bib31) 2011; 193
Oberdoerffer (10.1016/j.celrep.2013.05.043_bib43) 2008; 135
Bentzinger (10.1016/j.celrep.2013.05.043_bib2) 2012; 4
Lien (10.1016/j.celrep.2013.05.043_bib30) 2011; 9
Jamai (10.1016/j.celrep.2013.05.043_bib23) 2007; 25
Bernstein (10.1016/j.celrep.2013.05.043_bib3) 2006; 125
Maures (10.1016/j.celrep.2013.05.043_bib37) 2011; 10
Villeda (10.1016/j.celrep.2013.05.043_bib62) 2011; 477
Gayraud-Morel (10.1016/j.celrep.2013.05.043_bib19) 2007; 312
Schultz (10.1016/j.celrep.2013.05.043_bib54) 1978; 206
Brack (10.1016/j.celrep.2013.05.043_bib6) 2007; 317
Dion (10.1016/j.celrep.2013.05.043_bib15) 2007; 315
Quinlan (10.1016/j.celrep.2013.05.043_bib75) 2010; 26
O’Sullivan (10.1016/j.celrep.2013.05.043_bib46) 2010; 17
Rossi (10.1016/j.celrep.2013.05.043_bib53) 2008; 132
Heinz (10.1016/j.celrep.2013.05.043_bib70) 2010; 38
Moazed (10.1016/j.celrep.2013.05.043_bib41) 2011; 146
Waterston (10.1016/j.celrep.2013.05.043_bib65) 2002; 420
Guenther (10.1016/j.celrep.2013.05.043_bib21) 2007; 130
Taberlay (10.1016/j.celrep.2013.05.043_bib58) 2011; 147
Hanna (10.1016/j.celrep.2013.05.043_bib22) 2008; 133
O’Hagan (10.1016/j.celrep.2013.05.043_bib44) 2008; 4
Wang (10.1016/j.celrep.2013.05.043_bib64) 1996; 6
Huang da (10.1016/j.celrep.2013.05.043_bib71) 2009; 37
Bjornson (10.1016/j.celrep.2013.05.043_bib4) 2012; 30
Matthews (10.1016/j.celrep.2013.05.043_bib36) 2009; 10
Chou (10.1016/j.celrep.2013.05.043_bib10) 2010; 107
Strahl (10.1016/j.celrep.2013.05.043_bib57) 2000; 403
Marks (10.1016/j.celrep.2013.05.043_bib34) 2012; 149
Dhawan (10.1016/j.celrep.2013.05.043_bib14) 2009; 23
Adler (10.1016/j.celrep.2013.05.043_bib1) 2007; 21
Pallafacchina (10.1016/j.celrep.2013.05.043_bib47) 2010; 4
Spivakov (10.1016/j.celrep.2013.05.043_bib56) 2007; 8
Woodhouse (10.1016/j.celrep.2013.05.043_bib66) 2013; 126
Crist (10.1016/j.celrep.2013.05.043_bib13) 2012; 11
Marzluff (10.1016/j.celrep.2013.05.043_bib35) 2008; 9
Feser (10.1016/j.celrep.2013.05.043_bib17) 2010; 39
Mansour (10.1016/j.celrep.2013.05.043_bib33) 2012; 488
Cornelison (10.1016/j.celrep.2013.05.043_bib12) 1997; 191
O’Sullivan (10.1016/j.celrep.2013.05.043_bib45) 2012; 37
McLean (10.1016/j.celrep.2013.05.043_bib74) 2010; 28
Liu (10.1016/j.celrep.2013.05.043_bib31) 2011; 193
Wang (10.1016/j.celrep.2013.05.043_bib63) 1996; 6
Celona (10.1016/j.celrep.2013.05.043_bib8) 2011; 9
Polo (10.1016/j.celrep.2013.05.043_bib50) 2010; 28
Zhang (10.1016/j.celrep.2013.05.043_bib76) 2008; 9
Conboy (10.1016/j.celrep.2013.05.043_bib11) 2005; 433
Kennedy (10.1016/j.celrep.2013.05.043_bib27) 1997; 89
Pelosi (10.1016/j.celrep.2013.05.043_bib48) 2007; 21
Eisen (10.1016/j.celrep.2013.05.043_bib68) 1998; 95
Cheung (10.1016/j.celrep.2013.05.043_bib9) 2012; 482
Workman (10.1016/j.celrep.2013.05.043_bib67) 2006; 20
Guccione (10.1016/j.celrep.2013.05.043_bib20) 2006; 8
Rossi (10.1016/j.celrep.2013.05.043_bib52) 2007; 447
Siebold (10.1016/j.celrep.2013.05.043_bib55) 2010; 107
Luger (10.1016/j.celrep.2013.05.043_bib32) 1997; 389
Penn (10.1016/j.celrep.2013.05.043_bib49) 2004; 18
Tan (10.1016/j.celrep.2013.05.043_bib60) 2011; 6
Joe (10.1016/j.celrep.2013.05.043_bib24) 2010; 12
McKinnell (10.1016/j.celrep.2013.05.043_bib39) 2008; 10
Mauro (10.1016/j.celrep.2013.05.043_bib38) 1961; 9
Huang da (10.1016/j.celrep.2013.05.043_bib72) 2009; 4
Fukada (10.1016/j.celrep.2013.05.043_bib18) 2007; 25
Kamminga (10.1016/j.celrep.2013.05.043_bib26) 2006; 107
Rando (10.1016/j.celrep.2013.05.043_bib51) 2012; 148
Kouzarides (10.1016/j.celrep.2013.05.043_bib28) 2007; 128
Moremen (10.1016/j.celrep.2013.05.043_bib42) 2012; 13
Li (10.1016/j.celrep.2013.05.043_bib29) 2012; 132
Tan (10.1016/j.celrep.2013.05.043_bib61) 2011; 146
Takahashi (10.1016/j.celrep.2013.05.043_bib59) 2006; 126
Boyer (10.1016/j.celrep.2013.05.043_bib5) 2006; 441
Juan (10.1016/j.celrep.2013.05.043_bib25) 2011; 25
Giannopoulou (10.1016/j.celrep.2013.05.043_bib69) 2011; 12
Mikkelsen (10.1016/j.celrep.2013.05.043_bib40) 2007; 448
Cao (10.1016/j.celrep.2013.05.043_bib7) 2010; 18
Eminli (10.1016/j.celrep.2013.05.043_bib16) 2009; 41
Langmead (10.1016/j.celrep.2013.05.043_bib73) 2009; 10
20018689 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):169-74
18927579 - Nat Rev Genet. 2008 Nov;9(11):843-54
22722607 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):448-62
22153073 - Cell. 2011 Dec 9;147(6):1283-94
21834846 - Aging Cell. 2011 Dec;10(6):980-90
20081841 - Nat Cell Biol. 2010 Feb;12(2):153-63
9398440 - Dev Biol. 1997 Nov 15;191(2):270-83
15466486 - Genes Dev. 2004 Oct 1;18(19):2348-53
16767079 - Nat Cell Biol. 2006 Jul;8(7):764-70
8858345 - Genome Res. 1996 Aug;6(8):702-14
17320507 - Cell. 2007 Feb 23;128(4):693-705
9150138 - Cell. 1997 May 2;89(3):381-91
17603471 - Nature. 2007 Aug 2;448(7153):553-60
19668214 - Nat Genet. 2009 Sep;41(9):968-76
17347438 - Science. 2007 Mar 9;315(5817):1405-8
16293602 - Blood. 2006 Mar 1;107(5):2170-9
16904174 - Cell. 2006 Aug 25;126(4):663-76
20644536 - Nat Biotechnol. 2010 Aug;28(8):848-55
16882978 - Genes Dev. 2006 Aug 1;20(15):2009-17
17363975 - Nat Rev Genet. 2007 Apr;8(4):263-71
22358842 - Nature. 2012 Feb 23;482(7386):524-8
20832724 - Mol Cell. 2010 Sep 10;39(5):724-35
23203812 - J Cell Sci. 2013 Jan 15;126(Pt 2):565-79
17632057 - Cell. 2007 Jul 13;130(1):77-88
17600112 - Stem Cells. 2007 Oct;25(10):2448-59
19041753 - Cell. 2008 Nov 28;135(5):907-18
19962952 - Stem Cell Res. 2010 Mar;4(2):77-91
18055696 - Genes Dev. 2007 Dec 15;21(24):3244-57
19621044 - Nat Immunol. 2009 Aug;10(8):817-21
20890289 - Nat Struct Mol Biol. 2010 Oct;17(10):1218-25
21502357 - J Cell Biol. 2011 Apr 18;193(2):257-66
22959736 - Trends Biochem Sci. 2012 Nov;37(11):466-76
18295583 - Cell. 2008 Feb 22;132(4):681-96
712350 - J Exp Zool. 1978 Dec;206(3):451-6
22770245 - Cell Stem Cell. 2012 Jul 6;11(1):118-26
22801502 - Nature. 2012 Aug 16;488(7411):409-13
17289583 - Mol Cell. 2007 Feb 9;25(3):345-55
16625203 - Nature. 2006 May 18;441(7091):349-53
17264161 - FASEB J. 2007 May;21(7):1393-402
20412780 - Dev Cell. 2010 Apr 20;18(4):662-74
22045613 - Stem Cells. 2012 Feb;30(2):232-42
13768451 - J Biophys Biochem Cytol. 1961 Feb;9:493-5
22265401 - Cell. 2012 Jan 20;148(1-2):46-57
22300977 - Cold Spring Harb Perspect Biol. 2012 Feb;4(2). pii: a008342. doi: 10.1101/cshperspect.a008342
21854979 - Cell. 2011 Aug 19;146(4):510-8
20937877 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18475-80
21886162 - Nature. 2011 Sep 1;477(7362):90-4
12466850 - Nature. 2002 Dec 5;420(6915):520-62
19390085 - Genes Dev. 2009 Apr 15;23(8):906-11
21498568 - Genes Dev. 2011 Apr 15;25(8):789-94
22763785 - J Invest Dermatol. 2012 Dec;132(12):2681-90
21925322 - Cell. 2011 Sep 16;146(6):1016-28
10638745 - Nature. 2000 Jan 6;403(6765):41-5
18423197 - Cell. 2008 Apr 18;133(2):250-64
22541430 - Cell. 2012 Apr 27;149(3):590-604
16630819 - Cell. 2006 Apr 21;125(2):315-26
17961534 - Dev Biol. 2007 Dec 1;312(1):13-28
15716955 - Nature. 2005 Feb 17;433(7027):760-4
18704159 - PLoS Genet. 2008;4(8):e1000155
21738444 - PLoS Biol. 2011 Jun;9(6):e1001086
22028872 - PLoS One. 2011;6(10):e26406
18066051 - Nat Cell Biol. 2008 Jan;10(1):77-84
21885018 - Cell Stem Cell. 2011 Sep 2;9(3):219-32
8858344 - Genome Res. 1996 Aug;6(8):688-701
17690295 - Science. 2007 Aug 10;317(5839):807-10
9305837 - Nature. 1997 Sep 18;389(6648):251-60
17554309 - Nature. 2007 Jun 7;447(7145):725-9
References_xml – volume: 193
  start-page: 257
  year: 2011
  end-page: 266
  ident: bib31
  article-title: Manifestations and mechanisms of stem cell aging
  publication-title: J. Cell Biol.
– volume: 191
  start-page: 270
  year: 1997
  end-page: 283
  ident: bib12
  article-title: Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells
  publication-title: Dev. Biol.
– volume: 441
  start-page: 349
  year: 2006
  end-page: 353
  ident: bib5
  article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells
  publication-title: Nature
– volume: 9
  start-page: e1001086
  year: 2011
  ident: bib8
  article-title: Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output
  publication-title: PLoS Biol.
– volume: 39
  start-page: 724
  year: 2010
  end-page: 735
  ident: bib17
  article-title: Elevated histone expression promotes life span extension
  publication-title: Mol. Cell
– volume: 9
  start-page: 493
  year: 1961
  end-page: 495
  ident: bib38
  article-title: Satellite cell of skeletal muscle fibers
  publication-title: J. Biophys. Biochem. Cytol.
– volume: 482
  start-page: 524
  year: 2012
  end-page: 528
  ident: bib9
  article-title: Maintenance of muscle stem-cell quiescence by microRNA-489
  publication-title: Nature
– volume: 420
  start-page: 520
  year: 2002
  end-page: 562
  ident: bib65
  article-title: Initial sequencing and comparative analysis of the mouse genome
  publication-title: Nature
– volume: 10
  start-page: 77
  year: 2008
  end-page: 84
  ident: bib39
  article-title: Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex
  publication-title: Nat. Cell Biol.
– volume: 21
  start-page: 1393
  year: 2007
  end-page: 1402
  ident: bib48
  article-title: Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines
  publication-title: FASEB J.
– volume: 447
  start-page: 725
  year: 2007
  end-page: 729
  ident: bib52
  article-title: Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
  publication-title: Nature
– volume: 4
  start-page: a008342
  year: 2012
  ident: bib2
  article-title: Building muscle: molecular regulation of myogenesis
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 107
  start-page: 169
  year: 2010
  end-page: 174
  ident: bib55
  article-title: Polycomb Repressive Complex 2 and Trithorax modulate
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 132
  start-page: 2681
  year: 2012
  end-page: 2690
  ident: bib29
  article-title: Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1
  publication-title: J. Invest. Dermatol.
– volume: 133
  start-page: 250
  year: 2008
  end-page: 264
  ident: bib22
  article-title: Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency
  publication-title: Cell
– volume: 23
  start-page: 906
  year: 2009
  end-page: 911
  ident: bib14
  article-title: Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation
  publication-title: Genes Dev.
– volume: 130
  start-page: 77
  year: 2007
  end-page: 88
  ident: bib21
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells
  publication-title: Cell
– volume: 25
  start-page: 345
  year: 2007
  end-page: 355
  ident: bib23
  article-title: Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication
  publication-title: Mol. Cell
– volume: 107
  start-page: 18475
  year: 2010
  end-page: 18480
  ident: bib10
  article-title: A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 980
  year: 2011
  end-page: 990
  ident: bib37
  article-title: The H3K27 demethylase UTX-1 regulates
  publication-title: Aging Cell
– volume: 30
  start-page: 232
  year: 2012
  end-page: 242
  ident: bib4
  article-title: Notch signaling is necessary to maintain quiescence in adult muscle stem cells
  publication-title: Stem Cells
– volume: 126
  start-page: 565
  year: 2013
  end-page: 579
  ident: bib66
  article-title: Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation
  publication-title: J. Cell Sci.
– volume: 146
  start-page: 1016
  year: 2011
  end-page: 1028
  ident: bib61
  article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
  publication-title: Cell
– volume: 18
  start-page: 2348
  year: 2004
  end-page: 2353
  ident: bib49
  article-title: A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation
  publication-title: Genes Dev.
– volume: 477
  start-page: 90
  year: 2011
  end-page: 94
  ident: bib62
  article-title: The ageing systemic milieu negatively regulates neurogenesis and cognitive function
  publication-title: Nature
– volume: 9
  start-page: 219
  year: 2011
  end-page: 232
  ident: bib30
  article-title: Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage
  publication-title: Cell Stem Cell
– volume: 147
  start-page: 1283
  year: 2011
  end-page: 1294
  ident: bib58
  article-title: Polycomb-repressed genes have permissive enhancers that initiate reprogramming
  publication-title: Cell
– volume: 206
  start-page: 451
  year: 1978
  end-page: 456
  ident: bib54
  article-title: Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study
  publication-title: J. Exp. Zool.
– volume: 128
  start-page: 693
  year: 2007
  end-page: 705
  ident: bib28
  article-title: Chromatin modifications and their function
  publication-title: Cell
– volume: 13
  start-page: 448
  year: 2012
  end-page: 462
  ident: bib42
  article-title: Vertebrate protein glycosylation: diversity, synthesis and function
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  ident: bib40
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
– volume: 21
  start-page: 3244
  year: 2007
  end-page: 3257
  ident: bib1
  article-title: Motif module map reveals enforcement of aging by continual NF-kappaB activity
  publication-title: Genes Dev.
– volume: 4
  start-page: 77
  year: 2010
  end-page: 91
  ident: bib47
  article-title: An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells
  publication-title: Stem Cell Res. (Amst.)
– volume: 132
  start-page: 681
  year: 2008
  end-page: 696
  ident: bib53
  article-title: Stems cells and the pathways to aging and cancer
  publication-title: Cell
– volume: 6
  start-page: 688
  year: 1996
  end-page: 701
  ident: bib63
  article-title: Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb
  publication-title: Genome Res.
– volume: 107
  start-page: 2170
  year: 2006
  end-page: 2179
  ident: bib26
  article-title: The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion
  publication-title: Blood
– volume: 146
  start-page: 510
  year: 2011
  end-page: 518
  ident: bib41
  article-title: Mechanisms for the inheritance of chromatin states
  publication-title: Cell
– volume: 6
  start-page: e26406
  year: 2011
  ident: bib60
  article-title: Efficient generation of iPS cells from skeletal muscle stem cells
  publication-title: PLoS One
– volume: 18
  start-page: 662
  year: 2010
  end-page: 674
  ident: bib7
  article-title: Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming
  publication-title: Dev. Cell
– volume: 135
  start-page: 907
  year: 2008
  end-page: 918
  ident: bib43
  article-title: SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging
  publication-title: Cell
– volume: 8
  start-page: 764
  year: 2006
  end-page: 770
  ident: bib20
  article-title: Myc-binding-site recognition in the human genome is determined by chromatin context
  publication-title: Nat. Cell Biol.
– volume: 10
  start-page: 817
  year: 2009
  end-page: 821
  ident: bib36
  article-title: RAG: a recombinase diversified
  publication-title: Nat. Immunol.
– volume: 312
  start-page: 13
  year: 2007
  end-page: 28
  ident: bib19
  article-title: A role for the myogenic determination gene Myf5 in adult regenerative myogenesis
  publication-title: Dev. Biol.
– volume: 11
  start-page: 118
  year: 2012
  end-page: 126
  ident: bib13
  article-title: Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules
  publication-title: Cell Stem Cell
– volume: 149
  start-page: 590
  year: 2012
  end-page: 604
  ident: bib34
  article-title: The transcriptional and epigenomic foundations of ground state pluripotency
  publication-title: Cell
– volume: 28
  start-page: 848
  year: 2010
  end-page: 855
  ident: bib50
  article-title: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 702
  year: 1996
  end-page: 714
  ident: bib64
  article-title: Characterization of the 55-kb mouse histone gene cluster on chromosome 3
  publication-title: Genome Res.
– volume: 317
  start-page: 807
  year: 2007
  end-page: 810
  ident: bib6
  article-title: Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis
  publication-title: Science
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: bib32
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
– volume: 488
  start-page: 409
  year: 2012
  end-page: 413
  ident: bib33
  article-title: The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
  publication-title: Nature
– volume: 17
  start-page: 1218
  year: 2010
  end-page: 1225
  ident: bib46
  article-title: Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres
  publication-title: Nat. Struct. Mol. Biol.
– volume: 25
  start-page: 2448
  year: 2007
  end-page: 2459
  ident: bib18
  article-title: Molecular signature of quiescent satellite cells in adult skeletal muscle
  publication-title: Stem Cells
– volume: 12
  start-page: 153
  year: 2010
  end-page: 163
  ident: bib24
  article-title: Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis
  publication-title: Nat. Cell Biol.
– volume: 4
  start-page: e1000155
  year: 2008
  ident: bib44
  article-title: Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island
  publication-title: PLoS Genet.
– volume: 403
  start-page: 41
  year: 2000
  end-page: 45
  ident: bib57
  article-title: The language of covalent histone modifications
  publication-title: Nature
– volume: 89
  start-page: 381
  year: 1997
  end-page: 391
  ident: bib27
  article-title: Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in
  publication-title: Cell
– volume: 25
  start-page: 789
  year: 2011
  end-page: 794
  ident: bib25
  article-title: Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells
  publication-title: Genes Dev.
– volume: 41
  start-page: 968
  year: 2009
  end-page: 976
  ident: bib16
  article-title: Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells
  publication-title: Nat. Genet.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib59
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 125
  start-page: 315
  year: 2006
  end-page: 326
  ident: bib3
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
– volume: 37
  start-page: 466
  year: 2012
  end-page: 476
  ident: bib45
  article-title: The great unravelling: chromatin as a modulator of the aging process
  publication-title: Trends Biochem. Sci.
– volume: 8
  start-page: 263
  year: 2007
  end-page: 271
  ident: bib56
  article-title: Epigenetic signatures of stem-cell identity
  publication-title: Nat. Rev. Genet.
– volume: 433
  start-page: 760
  year: 2005
  end-page: 764
  ident: bib11
  article-title: Rejuvenation of aged progenitor cells by exposure to a young systemic environment
  publication-title: Nature
– volume: 9
  start-page: 843
  year: 2008
  end-page: 854
  ident: bib35
  article-title: Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
  publication-title: Nat. Rev. Genet.
– volume: 315
  start-page: 1405
  year: 2007
  end-page: 1408
  ident: bib15
  article-title: Dynamics of replication-independent histone turnover in budding yeast
  publication-title: Science
– volume: 148
  start-page: 46
  year: 2012
  end-page: 57
  ident: bib51
  article-title: Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock
  publication-title: Cell
– volume: 20
  start-page: 2009
  year: 2006
  end-page: 2017
  ident: bib67
  article-title: Nucleosome displacement in transcription
  publication-title: Genes Dev.
– volume: 482
  start-page: 524
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib9
  article-title: Maintenance of muscle stem-cell quiescence by microRNA-489
  publication-title: Nature
  doi: 10.1038/nature10834
– volume: 130
  start-page: 77
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib21
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.042
– volume: 12
  start-page: 153
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib24
  article-title: Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2015
– volume: 21
  start-page: 3244
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib1
  article-title: Motif module map reveals enforcement of aging by continual NF-kappaB activity
  publication-title: Genes Dev.
  doi: 10.1101/gad.1588507
– volume: 315
  start-page: 1405
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib15
  article-title: Dynamics of replication-independent histone turnover in budding yeast
  publication-title: Science
  doi: 10.1126/science.1134053
– volume: 4
  start-page: e1000155
  year: 2008
  ident: 10.1016/j.celrep.2013.05.043_bib44
  article-title: Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000155
– volume: 191
  start-page: 270
  year: 1997
  ident: 10.1016/j.celrep.2013.05.043_bib12
  article-title: Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1997.8721
– volume: 39
  start-page: 724
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib17
  article-title: Elevated histone expression promotes life span extension
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.08.015
– volume: 28
  start-page: 848
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib50
  article-title: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1667
– volume: 132
  start-page: 681
  year: 2008
  ident: 10.1016/j.celrep.2013.05.043_bib53
  article-title: Stems cells and the pathways to aging and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.036
– volume: 23
  start-page: 906
  year: 2009
  ident: 10.1016/j.celrep.2013.05.043_bib14
  article-title: Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1742609
– volume: 37
  start-page: 1
  year: 2009
  ident: 10.1016/j.celrep.2013.05.043_bib71
  article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn923
– volume: 37
  start-page: 466
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib45
  article-title: The great unravelling: chromatin as a modulator of the aging process
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2012.08.001
– volume: 146
  start-page: 510
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib41
  article-title: Mechanisms for the inheritance of chromatin states
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.013
– volume: 133
  start-page: 250
  year: 2008
  ident: 10.1016/j.celrep.2013.05.043_bib22
  article-title: Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.028
– volume: 135
  start-page: 907
  year: 2008
  ident: 10.1016/j.celrep.2013.05.043_bib43
  article-title: SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging
  publication-title: Cell
  doi: 10.1016/j.cell.2008.10.025
– volume: 21
  start-page: 1393
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib48
  article-title: Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines
  publication-title: FASEB J.
  doi: 10.1096/fj.06-7690com
– volume: 18
  start-page: 662
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib7
  article-title: Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.02.014
– volume: 107
  start-page: 169
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib55
  article-title: Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0907739107
– volume: 25
  start-page: 2448
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib18
  article-title: Molecular signature of quiescent satellite cells in adult skeletal muscle
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0019
– volume: 146
  start-page: 1016
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib61
  article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.008
– volume: 147
  start-page: 1283
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib58
  article-title: Polycomb-repressed genes have permissive enhancers that initiate reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.040
– volume: 420
  start-page: 520
  year: 2002
  ident: 10.1016/j.celrep.2013.05.043_bib65
  article-title: Initial sequencing and comparative analysis of the mouse genome
  publication-title: Nature
  doi: 10.1038/nature01262
– volume: 4
  start-page: 44
  year: 2009
  ident: 10.1016/j.celrep.2013.05.043_bib72
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 206
  start-page: 451
  year: 1978
  ident: 10.1016/j.celrep.2013.05.043_bib54
  article-title: Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study
  publication-title: J. Exp. Zool.
  doi: 10.1002/jez.1402060314
– volume: 8
  start-page: 263
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib56
  article-title: Epigenetic signatures of stem-cell identity
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2046
– volume: 10
  start-page: 817
  year: 2009
  ident: 10.1016/j.celrep.2013.05.043_bib36
  article-title: RAG: a recombinase diversified
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1776
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib70
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 13
  start-page: 448
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib42
  article-title: Vertebrate protein glycosylation: diversity, synthesis and function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3383
– volume: 6
  start-page: 688
  year: 1996
  ident: 10.1016/j.celrep.2013.05.043_bib63
  article-title: Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb
  publication-title: Genome Res.
  doi: 10.1101/gr.6.8.688
– volume: 11
  start-page: 118
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib13
  article-title: Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.03.011
– volume: 10
  start-page: 77
  year: 2008
  ident: 10.1016/j.celrep.2013.05.043_bib39
  article-title: Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1671
– volume: 488
  start-page: 409
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib33
  article-title: The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
  publication-title: Nature
  doi: 10.1038/nature11272
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.celrep.2013.05.043_bib59
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 20
  start-page: 2009
  year: 2006
  ident: 10.1016/j.celrep.2013.05.043_bib67
  article-title: Nucleosome displacement in transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.1435706
– volume: 17
  start-page: 1218
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib46
  article-title: Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1897
– volume: 317
  start-page: 807
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib6
  article-title: Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis
  publication-title: Science
  doi: 10.1126/science.1144090
– volume: 9
  start-page: 219
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib30
  article-title: Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.07.015
– volume: 441
  start-page: 349
  year: 2006
  ident: 10.1016/j.celrep.2013.05.043_bib5
  article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature04733
– volume: 10
  start-page: 980
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib37
  article-title: The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2011.00738.x
– volume: 9
  start-page: e1001086
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib8
  article-title: Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001086
– volume: 149
  start-page: 590
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib34
  article-title: The transcriptional and epigenomic foundations of ground state pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.026
– volume: 4
  start-page: 77
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib47
  article-title: An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells
  publication-title: Stem Cell Res. (Amst.)
  doi: 10.1016/j.scr.2009.10.003
– volume: 126
  start-page: 565
  year: 2013
  ident: 10.1016/j.celrep.2013.05.043_bib66
  article-title: Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114843
– volume: 25
  start-page: 789
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib25
  article-title: Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.2027911
– volume: 8
  start-page: 764
  year: 2006
  ident: 10.1016/j.celrep.2013.05.043_bib20
  article-title: Myc-binding-site recognition in the human genome is determined by chromatin context
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1434
– volume: 6
  start-page: 702
  year: 1996
  ident: 10.1016/j.celrep.2013.05.043_bib64
  article-title: Characterization of the 55-kb mouse histone gene cluster on chromosome 3
  publication-title: Genome Res.
  doi: 10.1101/gr.6.8.702
– volume: 28
  start-page: 495
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib74
  article-title: GREAT improves functional interpretation of cis-regulatory regions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1630
– volume: 477
  start-page: 90
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib62
  article-title: The ageing systemic milieu negatively regulates neurogenesis and cognitive function
  publication-title: Nature
  doi: 10.1038/nature10357
– volume: 41
  start-page: 968
  year: 2009
  ident: 10.1016/j.celrep.2013.05.043_bib16
  article-title: Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng.428
– volume: 26
  start-page: 841
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib75
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 433
  start-page: 760
  year: 2005
  ident: 10.1016/j.celrep.2013.05.043_bib11
  article-title: Rejuvenation of aged progenitor cells by exposure to a young systemic environment
  publication-title: Nature
  doi: 10.1038/nature03260
– volume: 107
  start-page: 18475
  year: 2010
  ident: 10.1016/j.celrep.2013.05.043_bib10
  article-title: A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1012946107
– volume: 107
  start-page: 2170
  year: 2006
  ident: 10.1016/j.celrep.2013.05.043_bib26
  article-title: The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion
  publication-title: Blood
  doi: 10.1182/blood-2005-09-3585
– volume: 128
  start-page: 693
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib28
  article-title: Chromatin modifications and their function
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 9
  start-page: 493
  year: 1961
  ident: 10.1016/j.celrep.2013.05.043_bib38
  article-title: Satellite cell of skeletal muscle fibers
  publication-title: J. Biophys. Biochem. Cytol.
  doi: 10.1083/jcb.9.2.493
– volume: 448
  start-page: 553
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib40
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 10
  start-page: R25
  year: 2009
  ident: 10.1016/j.celrep.2013.05.043_bib73
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 12
  start-page: 277
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib69
  article-title: An integrated ChIP-seq analysis platform with customizable workflows
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-277
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1016/j.celrep.2013.05.043_bib76
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 89
  start-page: 381
  year: 1997
  ident: 10.1016/j.celrep.2013.05.043_bib27
  article-title: Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80219-6
– volume: 132
  start-page: 2681
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib29
  article-title: Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2012.206
– volume: 30
  start-page: 232
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib4
  article-title: Notch signaling is necessary to maintain quiescence in adult muscle stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.773
– volume: 312
  start-page: 13
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib19
  article-title: A role for the myogenic determination gene Myf5 in adult regenerative myogenesis
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.08.059
– volume: 447
  start-page: 725
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib52
  article-title: Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
  publication-title: Nature
  doi: 10.1038/nature05862
– volume: 9
  start-page: 843
  year: 2008
  ident: 10.1016/j.celrep.2013.05.043_bib35
  article-title: Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2438
– volume: 18
  start-page: 2348
  year: 2004
  ident: 10.1016/j.celrep.2013.05.043_bib49
  article-title: A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1234304
– volume: 25
  start-page: 345
  year: 2007
  ident: 10.1016/j.celrep.2013.05.043_bib23
  article-title: Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.01.019
– volume: 6
  start-page: e26406
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib60
  article-title: Efficient generation of iPS cells from skeletal muscle stem cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026406
– volume: 4
  start-page: a008342
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib2
  article-title: Building muscle: molecular regulation of myogenesis
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a008342
– volume: 148
  start-page: 46
  year: 2012
  ident: 10.1016/j.celrep.2013.05.043_bib51
  article-title: Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.003
– volume: 95
  start-page: 14863
  year: 1998
  ident: 10.1016/j.celrep.2013.05.043_bib68
  article-title: Cluster analysis and display of genome-wide expression patterns
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.25.14863
– volume: 403
  start-page: 41
  year: 2000
  ident: 10.1016/j.celrep.2013.05.043_bib57
  article-title: The language of covalent histone modifications
  publication-title: Nature
  doi: 10.1038/47412
– volume: 193
  start-page: 257
  year: 2011
  ident: 10.1016/j.celrep.2013.05.043_bib31
  article-title: Manifestations and mechanisms of stem cell aging
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201010131
– volume: 125
  start-page: 315
  year: 2006
  ident: 10.1016/j.celrep.2013.05.043_bib3
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.041
– volume: 389
  start-page: 251
  year: 1997
  ident: 10.1016/j.celrep.2013.05.043_bib32
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– reference: 17320507 - Cell. 2007 Feb 23;128(4):693-705
– reference: 16882978 - Genes Dev. 2006 Aug 1;20(15):2009-17
– reference: 15716955 - Nature. 2005 Feb 17;433(7027):760-4
– reference: 17600112 - Stem Cells. 2007 Oct;25(10):2448-59
– reference: 18927579 - Nat Rev Genet. 2008 Nov;9(11):843-54
– reference: 20018689 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):169-74
– reference: 21834846 - Aging Cell. 2011 Dec;10(6):980-90
– reference: 22153073 - Cell. 2011 Dec 9;147(6):1283-94
– reference: 8858345 - Genome Res. 1996 Aug;6(8):702-14
– reference: 20832724 - Mol Cell. 2010 Sep 10;39(5):724-35
– reference: 17289583 - Mol Cell. 2007 Feb 9;25(3):345-55
– reference: 22770245 - Cell Stem Cell. 2012 Jul 6;11(1):118-26
– reference: 8858344 - Genome Res. 1996 Aug;6(8):688-701
– reference: 21854979 - Cell. 2011 Aug 19;146(4):510-8
– reference: 21886162 - Nature. 2011 Sep 1;477(7362):90-4
– reference: 19621044 - Nat Immunol. 2009 Aug;10(8):817-21
– reference: 17632057 - Cell. 2007 Jul 13;130(1):77-88
– reference: 22265401 - Cell. 2012 Jan 20;148(1-2):46-57
– reference: 17603471 - Nature. 2007 Aug 2;448(7153):553-60
– reference: 18055696 - Genes Dev. 2007 Dec 15;21(24):3244-57
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 18704159 - PLoS Genet. 2008;4(8):e1000155
– reference: 18066051 - Nat Cell Biol. 2008 Jan;10(1):77-84
– reference: 16767079 - Nat Cell Biol. 2006 Jul;8(7):764-70
– reference: 22763785 - J Invest Dermatol. 2012 Dec;132(12):2681-90
– reference: 21925322 - Cell. 2011 Sep 16;146(6):1016-28
– reference: 21738444 - PLoS Biol. 2011 Jun;9(6):e1001086
– reference: 712350 - J Exp Zool. 1978 Dec;206(3):451-6
– reference: 22541430 - Cell. 2012 Apr 27;149(3):590-604
– reference: 10638745 - Nature. 2000 Jan 6;403(6765):41-5
– reference: 9305837 - Nature. 1997 Sep 18;389(6648):251-60
– reference: 20412780 - Dev Cell. 2010 Apr 20;18(4):662-74
– reference: 21885018 - Cell Stem Cell. 2011 Sep 2;9(3):219-32
– reference: 22045613 - Stem Cells. 2012 Feb;30(2):232-42
– reference: 19962952 - Stem Cell Res. 2010 Mar;4(2):77-91
– reference: 12466850 - Nature. 2002 Dec 5;420(6915):520-62
– reference: 19668214 - Nat Genet. 2009 Sep;41(9):968-76
– reference: 13768451 - J Biophys Biochem Cytol. 1961 Feb;9:493-5
– reference: 17690295 - Science. 2007 Aug 10;317(5839):807-10
– reference: 17961534 - Dev Biol. 2007 Dec 1;312(1):13-28
– reference: 22959736 - Trends Biochem Sci. 2012 Nov;37(11):466-76
– reference: 22722607 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):448-62
– reference: 23203812 - J Cell Sci. 2013 Jan 15;126(Pt 2):565-79
– reference: 16630819 - Cell. 2006 Apr 21;125(2):315-26
– reference: 16293602 - Blood. 2006 Mar 1;107(5):2170-9
– reference: 17363975 - Nat Rev Genet. 2007 Apr;8(4):263-71
– reference: 22028872 - PLoS One. 2011;6(10):e26406
– reference: 16625203 - Nature. 2006 May 18;441(7091):349-53
– reference: 17347438 - Science. 2007 Mar 9;315(5817):1405-8
– reference: 17554309 - Nature. 2007 Jun 7;447(7145):725-9
– reference: 22801502 - Nature. 2012 Aug 16;488(7411):409-13
– reference: 22300977 - Cold Spring Harb Perspect Biol. 2012 Feb;4(2). pii: a008342. doi: 10.1101/cshperspect.a008342
– reference: 20890289 - Nat Struct Mol Biol. 2010 Oct;17(10):1218-25
– reference: 19041753 - Cell. 2008 Nov 28;135(5):907-18
– reference: 15466486 - Genes Dev. 2004 Oct 1;18(19):2348-53
– reference: 19390085 - Genes Dev. 2009 Apr 15;23(8):906-11
– reference: 20081841 - Nat Cell Biol. 2010 Feb;12(2):153-63
– reference: 9150138 - Cell. 1997 May 2;89(3):381-91
– reference: 20644536 - Nat Biotechnol. 2010 Aug;28(8):848-55
– reference: 17264161 - FASEB J. 2007 May;21(7):1393-402
– reference: 20937877 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18475-80
– reference: 21502357 - J Cell Biol. 2011 Apr 18;193(2):257-66
– reference: 18295583 - Cell. 2008 Feb 22;132(4):681-96
– reference: 22358842 - Nature. 2012 Feb 23;482(7386):524-8
– reference: 9398440 - Dev Biol. 1997 Nov 15;191(2):270-83
– reference: 21498568 - Genes Dev. 2011 Apr 15;25(8):789-94
– reference: 18423197 - Cell. 2008 Apr 18;133(2):250-64
SSID ssj0000601194
Score 2.5493872
Snippet The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 189
SubjectTerms Adult Stem Cells - cytology
Adult Stem Cells - metabolism
Animals
Cellular Senescence
Chromatin - metabolism
Epigenesis, Genetic
Gene Expression Regulation, Developmental
Histones - genetics
Histones - metabolism
Methylation
Mice
Muscle Development
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - metabolism
Polycomb-Group Proteins - chemistry
Polycomb-Group Proteins - genetics
Polycomb-Group Proteins - metabolism
Protein Processing, Post-Translational
Protein Structure, Tertiary
Transcription Initiation Site
Transcription, Genetic
Title Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging
URI https://dx.doi.org/10.1016/j.celrep.2013.05.043
https://www.ncbi.nlm.nih.gov/pubmed/23810552
https://www.proquest.com/docview/1400400204
https://pubmed.ncbi.nlm.nih.gov/PMC4103025
https://doaj.org/article/c24181785c2843ec8d1093eac9cfb682
Volume 4
WOSCitedRecordID wos000321901900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI5gBRIXxJvhsQoS14o0bZrkuCysOLArECDNiShNXDFo6KB5IPHvsZN2NIXDXLi2TdLEjv25cT8z9tKUwURhu6JBbFDUWuGeU1YUIjYR44nWmpDY9d_rqyszn9sPB6W-KCcs0wPnhXsV0MUYKiEf0JBWgD0TARKaCxu6tjHJ-iLqOQimsg0mLjM6UpaScrZkrcf_5lJyV4DlGoiusqwScWddTfxSou-fuKd_4effWZQHbuniDrs94El-ludxl12D_h67mStM_r7PvhL5LYHSnl-uIqUF5S903G_4m4NMGL7q-OVug13wT1v4wc9hueQfd4tE9hSA-z7yxKM72kp-RtWNHrAvF28_n78rhpIKRVBWbQvTVVUXKm9b4yVIEAqgaVqPsKUWnW6shhhrKayMpQ4YOYOKUtvSQGxk1KF6yE76VQ-PGceWKJtYW_CqDtDaBpFmFUrhtdWq9DNWjQvqwsA3TmUvlm5MLPvushgcicEJ5VAMM1bsW_3MfBtHnn9Nsto_S2zZ6QLqkBt0yB3ToRnTo6TdADwyoMCuFkeGfzEqhsN9SYctvofVboMhVbKPUtQz9igryv4lCSYJpWjciQpNZjG90y--Je7vmsrCSfXkf0z7KbslEaLlHPRn7GS73sFzdiP82i4261N2Xc_NadpWfwBb_iRf
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromatin+Modifications+as+Determinants+of+Muscle+Stem+Cell+Quiescence+and+Chronological+Aging&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Liu%2C+Ling&rft.au=Cheung%2C+Tom%C2%A0H.&rft.au=Charville%2C+Gregory%C2%A0W.&rft.au=Hurgo%2C+Bernadette%C2%A0Marie%C2%A0Ceniza&rft.date=2013-07-11&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=4&rft.issue=1&rft.spage=189&rft.epage=204&rft_id=info:doi/10.1016%2Fj.celrep.2013.05.043&rft.externalDocID=S2211124713002763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon