A hybrid adversarial autoencoder-graph network model with dynamic fusion for robust scRNA-seq clustering

Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics Jg. 26; H. 1; S. 749 - 13
Hauptverfasser: Tang, Binhua, Feng, Yingying, Gao, Xinyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 18.08.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2164, 1471-2164
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering. Results Here, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN . Conclusion scCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.
AbstractList Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering. Here, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN . scCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.
Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering.BACKGROUNDSingle-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering.Here, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN .RESULTSHere, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN .scCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.CONCLUSIONscCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.
Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering. Results Here, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: Conclusion scCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity. Keywords: ScRNA-seq, Self-supervised clustering, GCN, Adversarial AE, Cross-attention mechanism
Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering. Here, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN. scCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.
Abstract Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering. Results Here, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN . Conclusion scCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.
Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering. Results Here, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN . Conclusion scCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.
BackgroundSingle-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell resolution. Cell clustering serves as a foundation for scRNA-seq data analysis and provides new insights into the heterogeneity of cells within complex tissues. However, the inherent features of scRNA-seq data, such as heterogeneity, sparsity, and high dimensionality, pose significant technical challenges for effective cell clustering.ResultsHere, we present a novel deep clustering method, scCAGN, based on an adversarial autoencoder (AAE) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis. Specifically, to enhance data reconstruction, scCAGN utilizes adversarial autoencoders to augment encoder capabilities. Graph feature representations obtained via a GCN were integrated using a dynamic information fusion mechanism, yielding enhanced feature representations. In addition, scCAGN combines three different loss functions to optimize clustering performance through a joint clustering approach. By leveraging a unique information fusion and joint mechanism, scCAGN extracts deep cell features without labeled information, thus improving cell classification efficiency. Our findings show that scCAGN surpasses the existing methods in clustering performance across eight typical scRNA-seq datasets, achieving a maximum Normalized Mutual Information (NMI) improvement of 11.94%, notably reaching an NMI of 0.9732 in the QS_diaphragm dataset. It showed an average NMI improvement of 13% across the eight benchmark datasets, surpassing the lowest-performing method. Further ablation and hyperparameter analyses validated the robustness of the proposed method. The code is available at: http://github.com/gladex/scCAGN.ConclusionscCAGN integrates AAE and cross-attention GCN with dynamic fusion, achieving state-of-the-art scRNA-seq clustering (0.9732 NMI, 13% average gain) across eight datasets. Validated via ablation and hyperparameter tests, it advances label-free cell discovery and enables further multimodal integration to dissect cellular heterogeneity.
ArticleNumber 749
Audience Academic
Author Tang, Binhua
Gao, Xinyu
Feng, Yingying
Author_xml – sequence: 1
  givenname: Binhua
  surname: Tang
  fullname: Tang, Binhua
  email: bh.tang@hhu.edu.cn
  organization: Key Laboratory of Maritime Intelligent Cyberspace Technology (Ministry of Education of China), Hohai University, Shanghai Key Laboratory of Data Science, Fudan University, BGI Research
– sequence: 2
  givenname: Yingying
  surname: Feng
  fullname: Feng, Yingying
  organization: Key Laboratory of Maritime Intelligent Cyberspace Technology (Ministry of Education of China), Hohai University
– sequence: 3
  givenname: Xinyu
  surname: Gao
  fullname: Gao, Xinyu
  organization: Key Laboratory of Maritime Intelligent Cyberspace Technology (Ministry of Education of China), Hohai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40826008$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1ggS2xgkWI7tpOs0KjiMVIFUoG15djXGZeMPbWTlvn3OJ3SdhBCWSS5-c6x7sk5Lg588FAULwk-JaQR7xKhjWAlprwkpGWk3D4pjgirSUmJYAePng-L45QuMSZ1Q_mz4pDhhgqMm6NitUCrbRedQcpcQ0wqOjUgNY0BvA4GYtlHtVkhD-NNiD_ROs8GdOPGFTJbr9ZOIzslFzyyIaIYuimNKOmLL4sywRXSQ36H6Hz_vHhq1ZDgxd39pPjx8cP3s8_l-ddPy7PFeal5y8dSWNpwWvG6qptOWFJbrW1nhQZbcUOwqHlrqpZzyyiHRlVKM9CdwUBwyzBUJ8Vy52uCupSb6NYqbmVQTt4OQuyliqPTA0iqOCiMNWmanJ7tOiGyR5dPa42oNM5e73dem6lbg9Hgx6iGPdP9L96tZB-uJckbtC2ts8ObO4cYriZIo1y7pGEYlIcwJVlRhltCGK0y-vov9DJM0eesZqomeT8hHqhe5Q2ctyEfrGdTuZiDI5iJ2ev0H1S-DOQ_lltkXZ7vCd7uCTIzwq-xV1NKcvntYp999TiV-zj-lCoDdAfoGFKKYO8RguXcXLlrrszNlbfNldssqnaitJnrAvFh_f-ofgM9Pu-D
Cites_doi 10.1093/bib/bbae486
10.1093/bib/bbae558
10.1093/bioinformatics/btaa042
10.1038/s41467-021-22008-3
10.1016/j.gpb.2022.11.011
10.1093/bioinformatics/btab787
10.1038/s41467-020-14976-9
10.1093/bioinformatics/btad596
10.1093/bib/bbae068
10.1093/bioinformatics/btad075
10.1038/s41598-022-14218-6
10.1609/aaai.v36i4.20392
10.1038/s41573-023-00688-4
10.1093/bioinformatics/btad162
10.1093/bib/bbad222
10.1093/bioinformatics/btae020
10.1093/bib/bbad081
10.1093/bib/bbac018
10.1093/bib/bbad481
10.1093/bib/bbae371
10.1038/s41467-020-15851-3
10.1038/s41467-021-22197-x
10.1093/bib/bbz063
10.1038/s41598-021-99003-7
10.1093/bib/bbac585
10.1038/nri.2017.76
10.1007/978-1-0716-1307-8_19
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-025-11941-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic





Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 13
ExternalDocumentID oai_doaj_org_article_2a5ea00c188941fbb66094bbf69d63c0
PMC12359927
A852310463
40826008
10_1186_s12864_025_11941_y
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Key Laboratory of Maritime Intelligent Cyberspace Technology (Ministry of Education), Hohai University, China
  grantid: B240203012
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c595t-6f2852357378b6f17fccfbf6cef35d106759d3955f425e8a3ac4ecbd0e10940e3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553168400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2164
IngestDate Fri Oct 03 12:52:52 EDT 2025
Tue Nov 04 02:04:04 EST 2025
Fri Sep 05 15:20:14 EDT 2025
Sat Nov 01 15:11:09 EDT 2025
Tue Nov 11 10:46:44 EST 2025
Tue Nov 04 18:10:57 EST 2025
Thu Nov 13 15:55:44 EST 2025
Tue Sep 16 01:45:38 EDT 2025
Sat Nov 29 07:35:25 EST 2025
Sat Sep 06 07:25:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ScRNA-seq
GCN
Self-supervised clustering
Adversarial AE
Cross-attention mechanism
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-6f2852357378b6f17fccfbf6cef35d106759d3955f425e8a3ac4ecbd0e10940e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12864-025-11941-y
PMID 40826008
PQID 3247110966
PQPubID 44682
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2a5ea00c188941fbb66094bbf69d63c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12359927
proquest_miscellaneous_3240911423
proquest_journals_3247110966
gale_infotracmisc_A852310463
gale_infotracacademiconefile_A852310463
gale_incontextgauss_ISR_A852310463
pubmed_primary_40826008
crossref_primary_10_1186_s12864_025_11941_y
springer_journals_10_1186_s12864_025_11941_y
PublicationCentury 2000
PublicationDate 2025-08-18
PublicationDateYYYYMMDD 2025-08-18
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Y Gan (11941_CR9) 2023; 24
M Ciortan (11941_CR8) 2021; 38
T Liu (11941_CR16) 2024; 25
E Papalexi (11941_CR1) 2018; 18
Z Yu (11941_CR26) 2022; 36
X Li (11941_CR13) 2020; 11
H Gao (11941_CR10) 2023; 24
J Wang (11941_CR11) 2021; 12
D Tan (11941_CR20) 2024; 25
Z Fang (11941_CR24) 2024; 40
M Brendel (11941_CR7) 2022; 20
11941_CR14
R Petegrosso (11941_CR5) 2019; 21
X Wang (11941_CR18) 2023; 39
H-Y Wang (11941_CR21) 2023; 24
X Feng (11941_CR23) 2024; 25
B Van de Sande (11941_CR2) 2023; 22
B Tran (11941_CR22) 2022; 12
T Tian (11941_CR17) 2021; 12
11941_CR6
W Yang (11941_CR15) 2023; 39
Y Wang (11941_CR19) 2023; 39
Z Luo (11941_CR12) 2021; 11
Z Zhang (11941_CR27) 2024; 25
Z Liu (11941_CR25) 2024; 25
P Qiu (11941_CR3) 2020; 11
SV Stassen (11941_CR4) 2020; 36
References_xml – volume: 25
  start-page: bbae486
  issue: 6
  year: 2024
  ident: 11941_CR16
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbae486
– volume: 25
  start-page: bbae558
  issue: 6
  year: 2024
  ident: 11941_CR27
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbae558
– volume: 36
  start-page: 2778
  issue: 9
  year: 2020
  ident: 11941_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa042
– volume: 12
  start-page: 1873
  issue: 1
  year: 2021
  ident: 11941_CR17
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22008-3
– volume: 20
  start-page: 814
  issue: 5
  year: 2022
  ident: 11941_CR7
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/j.gpb.2022.11.011
– volume: 38
  start-page: 1037
  issue: 4
  year: 2021
  ident: 11941_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab787
– volume: 11
  start-page: 1169
  issue: 1
  year: 2020
  ident: 11941_CR3
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14976-9
– volume: 39
  start-page: btad596
  issue: 10
  year: 2023
  ident: 11941_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad596
– volume: 25
  start-page: bbae068
  issue: 2
  year: 2024
  ident: 11941_CR20
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbae068
– volume: 39
  start-page: btad075
  issue: 2
  year: 2023
  ident: 11941_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad075
– volume: 12
  start-page: 10267
  issue: 1
  year: 2022
  ident: 11941_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14218-6
– volume: 36
  start-page: 4671
  issue: 4
  year: 2022
  ident: 11941_CR26
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v36i4.20392
– volume: 22
  start-page: 496
  issue: 6
  year: 2023
  ident: 11941_CR2
  publication-title: Nat Rev Drug Discovery
  doi: 10.1038/s41573-023-00688-4
– volume: 39
  start-page: btad162
  issue: 4
  year: 2023
  ident: 11941_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad162
– volume: 24
  start-page: bbad222
  issue: 4
  year: 2023
  ident: 11941_CR9
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad222
– volume: 40
  start-page: btae020
  issue: 1
  year: 2024
  ident: 11941_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae020
– volume: 24
  start-page: bbad081
  issue: 3
  year: 2023
  ident: 11941_CR10
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad081
– ident: 11941_CR14
  doi: 10.1093/bib/bbac018
– volume: 25
  start-page: bbad481
  issue: 1
  year: 2024
  ident: 11941_CR23
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad481
– volume: 25
  start-page: bbae371
  issue: 5
  year: 2024
  ident: 11941_CR25
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbae371
– volume: 11
  start-page: 2338
  issue: 1
  year: 2020
  ident: 11941_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15851-3
– volume: 12
  start-page: 1882
  issue: 1
  year: 2021
  ident: 11941_CR11
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22197-x
– volume: 21
  start-page: 1209
  issue: 4
  year: 2019
  ident: 11941_CR5
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz063
– volume: 11
  start-page: 20028
  issue: 1
  year: 2021
  ident: 11941_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99003-7
– volume: 24
  start-page: bbac585
  issue: 1
  year: 2023
  ident: 11941_CR21
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac585
– volume: 18
  start-page: 35
  issue: 1
  year: 2018
  ident: 11941_CR1
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.76
– ident: 11941_CR6
  doi: 10.1007/978-1-0716-1307-8_19
SSID ssj0017825
Score 2.4670541
Snippet Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell...
Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell...
Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell...
BackgroundSingle-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a single-cell...
Abstract Background Single-cell RNA sequencing (scRNA-seq) allows the exploration of biological heterogeneity among different cell types within tissues at a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 749
SubjectTerms Ablation
Adversarial AE
Algorithms
Animal Genetics and Genomics
Artificial neural networks
Autoencoder
Biomedical and Life Sciences
Cluster Analysis
Clustering
Cross-attention mechanism
Data analysis
Data integration
Datasets
Electronic data processing
GCN
Gene expression
Gene sequencing
Genomics of isolated human populations
Graphical representations
Heterogeneity
Humans
Learning
Life Sciences
Machine learning
Methods
Microarrays
Microbial Genetics and Genomics
Neural networks
Normal distribution
Plant Genetics and Genomics
Proteomics
RNA sequencing
RNA-Seq - methods
ScRNA-seq
Self-supervised clustering
Sensory integration
Single-Cell Gene Expression Analysis - methods
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yKHiR9bvrKlEEDxp2OmnS5DiKi14GWRX2FpI0cRaWVqetMP-976XtuF0RL16bV0jeR_N7zcvvEfISkg5u81CxQviCFY4LBqDes1LLqKLwUkefmk2U67U6P9efrrT6wpqwgR54UNzJ0opgFwufK6WLPDonJWQkzkWpK8l9ytYB9UzJ1Hh-APuemK7IKHnSwldYFgxbt-aQtedsN9uGElv_n9_kK5vS9YLJa6emaTM6PSR3RhRJV8Ps75Ibob5Hbg19JXf3yWZFNzu8ikUt9ltuLXoZtX3XIG1lFbYs8VTTeqgBp6kdDsVfsrQaOtTT2ONvNAqQlm4b17cdbf3ZesXa8IP6yx7pFWBmD8jX0_df3n1gY0sF5oUWHZNxqQQy3PBSORnzMnofQZc-RC4qpJMTuuJaiAixHJTl1hfBu2oRciTaC_whOaibOjwmFKBilAAoAlik0LxSwot0pq-4L5xSGXk9adh8H5gzTMo4lDSDPQzYwyR7mF1G3qIR9pLIep0egC-Y0RfMv3whIy_QhAZ5LWosnPlm-7Y1Hz-fmRUuG8-zeUZejUKxAWN6O95DgFUhFdZM8ngmCYHn58OTp5gx8FsD-LREElcpM_J8P4xvYjFbHZo-yQBKywHIZuTR4Fj7dWP_b8CgoD01c7mZYuYj9cUm0YLjrWetl2VG3kze-Xtef9f80f_Q_BNye4nRhVzB6pgcdNs-PCU3_c_uot0-S7H5C6fGO_8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWggMSlfBYCBRmExAGsbtax45zQgqjgsqoKSL1ZjmN3K6GkjZNK---ZcbJbUgQXrmtH6_GMZ8b2-D1C3sCmg5vUVSwTNmNZyQWDpN6yvJBeeWFl4W0km8iXS3VyUhyNB25hLKvc-MToqKvG4hn5AQT-HNExpfxwfsGQNQpvV0cKjZvkFqIk8Fi6d7S9RYDoJzYPZZQ8COCLZcaQwDWFvXvK1pNgFDH7__TMv4Wm62WT1-5OY0g6vPe_wtwnu2MySheD9TwgN1z9kNwZ6CnXj8hqQVdrfNFFDdI2B4PGSk3fNYh-WbmWRbhrWg-l5DSy6lA82aXVQHRPfY-ncRQyY9o2ZR86GuzxcsGCu6D2Z48oDSDaY_Lj8PP3T1_YyMzArChEx6SfK4FAOTxXpfRp7q31pZfWeS4qRKUTRcULITy4BKcMNzZztqxmLkW8Psf3yE7d1O4poZBxegl5iSulzApeKWFFLA1Q3GalUgl5t1GRPh8AOHTcuCipB4VqUKiOCtXrhHxELW57Inh2_KFpT_W4FvXcCGdmM5sqBR_5Ev4ZRlXC-ItKcjtLyGu0AY3wGDXW35yaPgT99duxXqDYeC3OE_J27OQbsAZrxucMIBUiak167k96wvq10-aNjejRfwR9ZSAJebVtxi-xJq52TR_7QLKXQj6ckCeDZW7lRhpxSGVh9tTEZicTM22pz1YRXRwfTxfFPE_I-415X43r7zP_7N9iPCd357jwEExY7ZOdru3dC3LbXnZnoX0Zl-0vu1hKAw
  priority: 102
  providerName: ProQuest
Title A hybrid adversarial autoencoder-graph network model with dynamic fusion for robust scRNA-seq clustering
URI https://link.springer.com/article/10.1186/s12864-025-11941-y
https://www.ncbi.nlm.nih.gov/pubmed/40826008
https://www.proquest.com/docview/3247110966
https://www.proquest.com/docview/3240911423
https://pubmed.ncbi.nlm.nih.gov/PMC12359927
https://doaj.org/article/2a5ea00c188941fbb66094bbf69d63c0
Volume 26
WOSCitedRecordID wos001553168400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSRe-P4IjMogJB7AWtPEjvPYoU3sgarqAJUnK3HsdRJKoGmQ-t9z5ySFDHiAlz7EZ9U-3_nO9t3vAF7ioSPKQlvwWJiYx3kkODr1hiepdMoJI1NnfLGJZDZTy2U675LC6j7avX-S9Du1V2slj2rcSWXMqfxqiCfvkG_34ADNnSJ1XJx_2r0doM0TfXrMH_sNTJBH6v99P_7FIF0NlrzyYuoN0ent_5vCHbjVOZ5s2krKXbhmy3twoy1Fub0PqylbbSl7i2VUornOSDBZ1mwqQros7Jp7aGtWtmHjzFfQYXSLy4q2qD1zDd28MfSC2brKm3rDarOYTXltvzHzpSFEBhzsA_h4evLh7TveVWHgRqRiw6WbKEGgOFGicunCxBnjcieNdZEoCIFOpEWUCuFQ_a3KoszE1uTF2IaEzWejh7BfVqV9DAy9SyfRB7G5lHEaFUoY4cMAVGTiXKkAXvcLo7-2YBvaH1KU1C3vNPJOe97pbQDHtHY7SgLK9h-q9YXu9E5PMmGz8diESmEnl-M_46hyHH9ayMiMA3hBK68JCqOkWJuLrKlrfXa-0FOaNj2BRwG86ohchTJgsi51AWdF6FkDysMBJeqqGTb3Aqa7vaLW6NImhPsqZQDPd83Uk-LfSls1ngYduxB93wAetfK4mzeVDEe3FbmnBpI6YMywpbxceSRxSpRO00kSwJteYH-O6--cf_Jv5E_h5oRknoCE1SHsb9aNfQbXzffNZb0ewV6yTPyvGsHB8clsvhj5m5ERxeHO8dv87P3888gr-Q9_1Uf_
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCAQB7C6edhxDggtj6pVy6oqrdSbSRy7uxIk7WYDyp_iNzLjJFtSBLceuMaTje395mF7_A0hz2HREaa-yVnEdcSiLOQMgnrN4kRYabkWidWu2EQ8mcjDw2R3hfzs78JgWmVvE52hzkuNe-Tr4PhjZMcU4u3xCcOqUXi62pfQaGGxbZofsGSr3mx9gP_3RRBsfNx_v8m6qgJM84QvmLCB5EjyEsYyE9aPrdY2s0IbG_IcGdV4kocJ5xbgbGQapjoyOstHxkeuORPC714gFyGMCKRLFdxdnlqAt-X9xRwp1iuQEBHDgrG-n0Q-awbOz9UI-NMT_OYKz6ZpnjmrdS5w4_r_Nnk3yLUu2KbjVjtukhVT3CKX2_KbzW0yHdNpgzfWaIplqasUlZGm9aJEds_czJmj86ZFmypPXdUgijvXNG-K9NtMU1vjbiOFyJ_Oy6yuFrTSe5Mxq8wJ1V9rZKGAqbxDDs5lmHfJalEW5j6hEFFbAXGXyYSIkjCXXHOX-iBDHWVSeuRVDwl13BKMKLcwk0K1AFIAIOUApBqPvEPULCWRHNw9KOdHqrM1Kki5SUcj7UsJL9kMvgy9yqD_SS5CPfLIM8ScQvqPAvOLjtK6qtTW5z01xmHjsX_okZedkC0BfTrtrmvAqJAxbCC5NpAE-6SHzT0mVWcfK3UKSI88XTbjm5jzV5iydjIQzPoQ73vkXqsJy3FjmXQI1WH25EBHBhMzbClmU8eejpfDkySIPfK6V6fTfv195h_8exhPyJXN_U87amdrsv2QXA1Q6ZE4Wa6R1cW8No_IJf19Mavmj53JoOTLeavZL2TWp3U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeYgL70eggEFIHMDqZh07znF5VFSgVdUC6s1KHLtbCSVlkyDtv2fGyS5NgQPiGo8Vezy2P9sz3wC8wEOHyGNX8kTahCeFkBxBveVpprz20qrM25BsIp3P9dFRtn8mij94u6-fJPuYBmJpqtqd09L3U1yrnQZXVZVwSsUa4yk85quLcCmhpEF0Xj_8unlHwP1PrkNl_lhvtB0F1v7f1-Yzm9N5x8lzr6dhU9q98f_duQnXB0DKZr0F3YILrroNV_oUlas7sJixxYqiulhOqZubnAyW5V1bEwNm6ZY8UF6zqncnZyGzDqPbXVb2ye6Z7-hGjiE6Zsu66JqWNfZgPuON-87st46YGrDhd-HL7vvPbz_wITsDtzKTLVd-qiWR5YhUF8rHqbfWF15Z54UsiZlOZqXIpPS4LDidi9wmzhblxMXE2efEPdiq6so9AIao0yvEJq5QKslEqaWVwT1AC5sUWkfwaj1I5rQn4TDh8KKV6XVnUHcm6M6sInhD47iRJALt8KFeHpthPpppLl0-mdhYa6zkC_wztqrA9melEnYSwXOyAkMUGRX54BznXdOYvcMDM6Nu09O4iODlIORrtAebDyEN2Cti1RpJbo8kcQ7bcfHa2MywhjQGoW5KfLBKRfBsU0w1yS-ucnUXZBDwxYiJI7jf2-am35RKHOEsak-PrHakmHFJdbIIDOMUQJ1l0zSC12vj_dWuv2v-4b-JP4Wr--92zae9-cdHcG1K5k9cw3obttpl5x7DZfujPWmWT8Kc_gljEUzC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+adversarial+autoencoder-graph+network+model+with+dynamic+fusion+for+robust+scRNA-seq+clustering&rft.jtitle=BMC+genomics&rft.au=Tang%2C+Binhua&rft.au=Feng%2C+Yingying&rft.au=Gao%2C+Xinyu&rft.date=2025-08-18&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-025-11941-y&rft.externalDocID=A852310463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon