Drug-target interaction prediction based on graph convolutional autoencoder with dynamic weighting residual GCN
Background The exploration of drug-target interactions (DTIs) is a critical step in drug discovery and drug repurposing. Recently, network-based methods have emerged as a prominent research area for predicting DTIs. These methods excel by extracting both topological and feature information from DTIs...
Gespeichert in:
| Veröffentlicht in: | BMC bioinformatics Jg. 26; H. 1; S. 200 - 29 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
29.07.2025
BioMed Central Ltd Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Background
The exploration of drug-target interactions (DTIs) is a critical step in drug discovery and drug repurposing. Recently, network-based methods have emerged as a prominent research area for predicting DTIs. These methods excel by extracting both topological and feature information from DTIs networks, thereby achieving superior DTIs prediction performance. However, the majority of existing GCN-based methods utilize shallow graph neural networks, which are incapable of extracting higher-level semantic information. Additionally, the current training of models lacks an effective guiding mechanism, leading to the insufficient improvement of network’s representation capabilities.
Results
In this paper, we propose a graph convolutional autoencoder model, named DDGAE, for DTIs prediction. We develop a DWR-GCN module, which incorporates dynamic weighting graph convolution with residual connection, to improve the representation capability for DTI heterogeneous networks. Further, to improve the learning efficiency of the model, we devise a dual self-supervised joint training mechanism. Specifically, this mechanism integrates DWR-GCN and a graph convolutional autoencoder into a cohesive system, enhancing both the learning performance and stability of DDGAE.
Conclusion
Experimental results show that DDGAE significantly outperforms several SOTA models in DTIs prediction, achieving optimal performance and the reliability of our method is verified by case study. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1471-2105 1471-2105 |
| DOI: | 10.1186/s12859-025-06198-x |