Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity

Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhanc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Stem cell reports Ročník 8; číslo 3; s. 548 - 560
Hlavní autori: Abad, Maria, Hashimoto, Hisayuki, Zhou, Huanyu, Morales, Maria Gabriela, Chen, Beibei, Bassel-Duby, Rhonda, Olson, Eric N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 14.03.2017
Elsevier
Predmet:
ISSN:2213-6711, 2213-6711
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. [Display omitted] •Notch activation is a barrier for GHMT-induced cardiac cell reprogramming•Notch blockade by DAPT improves GHMT-induced cardiac reprogramming•DAPT increases sarcomere organization, calcium flux, and beating in GHMT reprogramming•DAPT enhances transcriptional activity of MEF2C in GHMT reprogramming In this article, Olson and colleagues show that Notch signaling activation is a critical barrier for cardiac cell reprogramming. Notch signaling blockade by DAPT, a γ-secretase inhibitor, enhances fibroblast conversion to cardiomyocytes by increasing calcium flux, sarcomere structure, and beating. Mechanistically, Notch inhibition enhances the transcriptional activity of the cardiogenic transcription factor MEF2C, thereby enhancing expression of cardiac genes.
AbstractList Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.
Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. • Notch activation is a barrier for GHMT-induced cardiac cell reprogramming • Notch blockade by DAPT improves GHMT-induced cardiac reprogramming • DAPT increases sarcomere organization, calcium flux, and beating in GHMT reprogramming • DAPT enhances transcriptional activity of MEF2C in GHMT reprogramming In this article, Olson and colleagues show that Notch signaling activation is a critical barrier for cardiac cell reprogramming. Notch signaling blockade by DAPT, a γ-secretase inhibitor, enhances fibroblast conversion to cardiomyocytes by increasing calcium flux, sarcomere structure, and beating. Mechanistically, Notch inhibition enhances the transcriptional activity of the cardiogenic transcription factor MEF2C, thereby enhancing expression of cardiac genes.
Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.
Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. [Display omitted] •Notch activation is a barrier for GHMT-induced cardiac cell reprogramming•Notch blockade by DAPT improves GHMT-induced cardiac reprogramming•DAPT increases sarcomere organization, calcium flux, and beating in GHMT reprogramming•DAPT enhances transcriptional activity of MEF2C in GHMT reprogramming In this article, Olson and colleagues show that Notch signaling activation is a critical barrier for cardiac cell reprogramming. Notch signaling blockade by DAPT, a γ-secretase inhibitor, enhances fibroblast conversion to cardiomyocytes by increasing calcium flux, sarcomere structure, and beating. Mechanistically, Notch inhibition enhances the transcriptional activity of the cardiogenic transcription factor MEF2C, thereby enhancing expression of cardiac genes.
Author Hashimoto, Hisayuki
Chen, Beibei
Bassel-Duby, Rhonda
Olson, Eric N.
Abad, Maria
Zhou, Huanyu
Morales, Maria Gabriela
AuthorAffiliation 4 Cell Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), c/Natzaret, 115-117, Barcelona 08035, Spain
1 Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
2 Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
3 Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– name: 2 Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– name: 3 Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– name: 4 Cell Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), c/Natzaret, 115-117, Barcelona 08035, Spain
Author_xml – sequence: 1
  givenname: Maria
  surname: Abad
  fullname: Abad, Maria
  email: mabad@vhio.net
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– sequence: 2
  givenname: Hisayuki
  surname: Hashimoto
  fullname: Hashimoto, Hisayuki
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– sequence: 3
  givenname: Huanyu
  surname: Zhou
  fullname: Zhou, Huanyu
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– sequence: 4
  givenname: Maria Gabriela
  surname: Morales
  fullname: Morales, Maria Gabriela
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– sequence: 5
  givenname: Beibei
  surname: Chen
  fullname: Chen, Beibei
  organization: Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– sequence: 6
  givenname: Rhonda
  surname: Bassel-Duby
  fullname: Bassel-Duby, Rhonda
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
– sequence: 7
  givenname: Eric N.
  surname: Olson
  fullname: Olson, Eric N.
  email: eric.olson@utsouthwestern.edu
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28262548$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbSf4DQHrkktb3r_eCAVEUpjVRAQuWGZM2OZxNHu3awnUj59zgkRS0H8MVf7_uMNPO-zs6ss5Rlbzmbcsar6_U0RBrRTwXj9ZTxKRPyRXYhBC8mVc352ZPzeXYVwpql1bZclPxVdi4aUQlZNhfZjy8u4ipf2JXpTDTO5nO7AosU8hl4bQDzb7TxbulhHI1d5t0-idEThMPt8_xWzPIHDzagN5sDAIb8BqPZmbh_k73sYQh0ddovs--384fZ3eT-66fF7OZ-grKVccI563StC4ZcaoZQ9RJL0m0vak1t2_VtoxsgSXVHWDV9I4iD1nWre1lVBRWX2eLI1Q7WauPNCH6vHBj1-8H5pQIfDQ6khAQtO1aUGoqSRN9V0GJfo5QVyV5CYn08sjbbbiSNZKOH4Rn0-Y81K7V0OyWLxGhEArw_Abz7uaUQ1WgC0jCAJbcNijd1WTeVlHWSvnta60-Rx_EkwYejAL0LwVOv0EQ4dDmVNoPiTB3ioNbqGAd1iINiXKU4JHP5l_mR_x_bqQGUJrYz5FVAQykR2njCmFpq_g34BUBE06c
CitedBy_id crossref_primary_10_3892_mmr_2018_9092
crossref_primary_10_1007_s43032_020_00343_y
crossref_primary_10_1016_j_yjmcc_2020_12_005
crossref_primary_10_3390_jcdd9040111
crossref_primary_10_1038_s41598_018_19539_z
crossref_primary_10_1038_s41598_022_15559_y
crossref_primary_10_1016_j_semcdb_2021_05_028
crossref_primary_10_3390_ijms19092629
crossref_primary_10_1016_j_stem_2019_03_022
crossref_primary_10_1007_s11033_022_07913_0
crossref_primary_10_1016_j_semcdb_2021_05_019
crossref_primary_10_1038_s41598_019_42945_w
crossref_primary_10_1007_s13238_017_0402_x
crossref_primary_10_3390_ijms24065665
crossref_primary_10_1007_s11886_023_01868_9
crossref_primary_10_1161_JAHA_121_022659
crossref_primary_10_3390_cells10123297
crossref_primary_10_1186_s40779_023_00452_0
crossref_primary_10_3389_fcell_2019_00082
crossref_primary_10_1016_j_isci_2023_108466
crossref_primary_10_1016_j_yjmcc_2021_06_008
crossref_primary_10_3390_cells9020268
crossref_primary_10_1186_s12933_021_01270_1
crossref_primary_10_1038_s41569_018_0036_6
crossref_primary_10_1016_j_yjmcc_2017_05_005
crossref_primary_10_3389_fcvm_2019_00032
crossref_primary_10_3390_ijms21082819
crossref_primary_10_1016_j_cr_2018_01_001
crossref_primary_10_1016_j_bbrc_2021_07_087
crossref_primary_10_1007_s00018_017_2586_x
crossref_primary_10_3389_fcell_2021_639699
crossref_primary_10_1016_j_jbc_2024_107682
crossref_primary_10_3390_ijms21207662
crossref_primary_10_3389_fcell_2024_1343106
crossref_primary_10_1096_fj_201800712R
crossref_primary_10_3390_ijms21124354
crossref_primary_10_1038_s44161_023_00377_w
crossref_primary_10_3390_ijms22179517
crossref_primary_10_3390_life12081117
crossref_primary_10_1093_cvr_cvaf101
crossref_primary_10_1161_JAHA_119_015686
crossref_primary_10_1038_s41598_020_63992_8
crossref_primary_10_1074_jbc_M117_776153
crossref_primary_10_3390_ijms26073063
crossref_primary_10_1074_jbc_RA118_006000
crossref_primary_10_1242_dev_171983
crossref_primary_10_3390_ijms21217950
crossref_primary_10_1016_j_semcdb_2021_07_010
crossref_primary_10_3389_fbioe_2020_637538
crossref_primary_10_1155_2018_3814747
crossref_primary_10_1371_journal_pgen_1008507
crossref_primary_10_3390_cells12081166
crossref_primary_10_3390_cells8070679
crossref_primary_10_1101_gad_305482_117
crossref_primary_10_1016_j_reprotox_2020_05_010
crossref_primary_10_1016_j_yjmcc_2023_03_013
crossref_primary_10_3390_ijms232012509
crossref_primary_10_1016_j_ymthe_2021_07_014
crossref_primary_10_1016_j_ajhg_2022_09_015
crossref_primary_10_1016_j_cellin_2022_100058
crossref_primary_10_1002_adbi_202101133
crossref_primary_10_1038_s41598_019_51536_8
crossref_primary_10_1002_jcp_28292
crossref_primary_10_1007_s00395_017_0655_9
crossref_primary_10_3390_jcdd8070072
crossref_primary_10_1186_s13619_025_00229_x
crossref_primary_10_1007_s13105_025_01099_2
crossref_primary_10_1158_1078_0432_CCR_18_3276
crossref_primary_10_1038_s12276_024_01321_z
crossref_primary_10_3389_fcvm_2021_783072
crossref_primary_10_1007_s40610_017_0066_6
crossref_primary_10_1089_cell_2018_0052
crossref_primary_10_2302_kjm_2019_0008_OA
crossref_primary_10_1126_scitranslmed_aay7856
crossref_primary_10_3390_cells11060940
crossref_primary_10_1155_2018_1435746
crossref_primary_10_1016_j_yjmcc_2023_03_009
crossref_primary_10_1016_j_yjmcc_2022_08_004
crossref_primary_10_1016_j_gene_2023_147598
crossref_primary_10_1371_journal_pone_0223842
Cites_doi 10.1016/j.cell.2010.07.002
10.1371/journal.pone.0030619
10.1038/nrg3272
10.1161/CIRCRESAHA.107.151381
10.1161/CIRCRESAHA.112.269035
10.1016/j.canlet.2015.07.048
10.1073/pnas.1219181110
10.1016/j.stem.2009.12.001
10.1038/nchembio.1552
10.1056/NEJM200106073442303
10.1016/j.yjmcc.2013.04.004
10.1016/j.tcb.2012.02.003
10.1084/jem.20050559
10.1016/j.yjmcc.2012.04.010
10.1242/dev.114025
10.1186/gb-2013-14-4-r36
10.1038/nbt.1497
10.1161/CIRCRESAHA.113.300219
10.1161/CIRCRESAHA.116.305374
10.1126/science.aad4076
10.1073/pnas.1304053110
10.1093/eurheartj/ehu244
10.1016/j.yjmcc.2012.03.007
10.1126/science.1164680
10.1016/j.yexcr.2007.04.027
10.1101/gad.1383706
10.1016/j.cub.2009.08.025
10.1038/nature11139
10.1186/s13059-014-0550-8
10.1016/j.stem.2015.12.001
10.1016/S0092-8674(00)81239-8
10.1073/pnas.1301019110
10.1126/science.aaf1502
10.1161/01.RES.0000226497.52052.2a
10.1016/j.devcel.2012.01.014
10.1128/MCB.19.4.2853
10.1002/stem.605
10.1073/pnas.1516237112
10.1038/ng1180
10.1371/journal.pone.0109588
10.1093/cvr/cvt167
10.1016/j.bbrc.2005.12.182
10.1161/CIRCRESAHA.115.303831
10.1093/bioinformatics/btt656
10.1242/dev.063610
10.1038/nature11044
10.1073/pnas.0506580102
10.1002/ejhf.446
10.1634/stemcells.2007-1053
10.1128/MCB.25.16.7069-7077.2005
10.1371/journal.pone.0089678
10.1016/j.ajpath.2012.06.003
10.1016/j.celrep.2016.08.060
10.1016/j.celrep.2014.01.038
10.1371/journal.pone.0152025
10.1371/journal.pone.0063577
10.1038/ncb2835
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2017 The Authors 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.stemcr.2017.01.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-6711
EndPage 560
ExternalDocumentID oai_doaj_org_article_25ad5b034da34e2fb6a9cf7c556e5f5a
PMC5355682
28262548
10_1016_j_stemcr_2017_01_025
S2213671117300413
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL130253
– fundername: NIDDK NIH HHS
  grantid: R01 DK099653
– fundername: NHLBI NIH HHS
  grantid: R01 HL077439
– fundername: NHLBI NIH HHS
  grantid: U01 HL100401
– fundername: NHLBI NIH HHS
  grantid: R01 HL111665
– fundername: NHLBI NIH HHS
  grantid: R01 HL093039
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAVLU
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RCE
RIG
ROL
RPM
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-110bd7d30c15d0ca6f5c4ed9f27de99bf98d8ae5e7bec68f82e1add79df5663e3
IEDL.DBID DOA
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397103900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-6711
IngestDate Fri Oct 03 12:51:06 EDT 2025
Tue Sep 30 16:11:44 EDT 2025
Fri Jul 11 17:00:22 EDT 2025
Mon Jul 21 06:00:05 EDT 2025
Sat Nov 29 04:01:13 EST 2025
Tue Nov 18 22:01:42 EST 2025
Wed May 17 02:21:47 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cardiomyocytes
direct cellular reprogramming
heart regeneration
Notch signaling
regenerative medicine
transdifferentiation
cell-fate conversion
DAPT
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-110bd7d30c15d0ca6f5c4ed9f27de99bf98d8ae5e7bec68f82e1add79df5663e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/25ad5b034da34e2fb6a9cf7c556e5f5a
PMID 28262548
PQID 1874786557
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_25ad5b034da34e2fb6a9cf7c556e5f5a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5355682
proquest_miscellaneous_1874786557
pubmed_primary_28262548
crossref_citationtrail_10_1016_j_stemcr_2017_01_025
crossref_primary_10_1016_j_stemcr_2017_01_025
elsevier_sciencedirect_doi_10_1016_j_stemcr_2017_01_025
PublicationCentury 2000
PublicationDate 2017-03-14
PublicationDateYYYYMMDD 2017-03-14
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cell reports
PublicationTitleAlternate Stem Cell Reports
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Li, Tian, Chen, Sun, Ye, Yang, Lu, Xie, Ho, Tsark (bib30) 2012; 109
Jayawardena, Egemnazarov, Finch, Zhang, Payne, Pandya, Zhang, Rosenberg, Mirotsou, Dzau (bib25) 2012; 110
Andersson, Sandberg, Lendahl (bib3) 2011; 138
Ichida, Tcw, Williams, Carter, Shi, Moura, Ziller, Singh, Amabile, Bock (bib21) 2014; 10
Batty, Lima, Kunadian (bib4) 2016; 18
Ieda, Fu, Delgado-Olguin, Vedantham, Hayashi, Bruneau, Srivastava (bib22) 2010; 142
Bergmann, Bhardwaj, Bernard, Zdunek, Barnabe-Heider, Walsh, Zupicich, Alkass, Buchholz, Druid (bib6) 2009; 324
Patel, Jain (bib41) 2012; 7
Wang, Cao, Spencer, Nie, Ma, Xu, Zhang, Wang, Srivastava, Ding (bib54) 2014; 6
Maherali, Hochedlinger (bib34) 2009; 19
Wilson-Rawls, Molkentin, Black, Olson (bib55) 1999; 19
Yuan, Wu, Xu, Xiong, Chu, Yu, Wu, Wu (bib56) 2015; 369
Hirai, Katoku-Kikyo, Keirstead, Kikyo (bib20) 2013; 100
Sanganalmath, Bolli (bib46) 2013; 113
Fero, Rivkin, Tasch, Porter, Carow, Firpo, Polyak, Tsai, Broudy, Perlmutter (bib16) 1996; 85
Cao, Huang, Zheng, Spencer, Zhang, Fu, Nie, Xie, Zhang, Wang (bib8) 2016; 352
Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander (bib51) 2005; 102
Guruharsha, Kankel, Artavanis-Tsakonas (bib19) 2012; 13
Andersen, Uosaki, Shenje, Kwon (bib2) 2012; 22
Lalit, Salick, Nelson, Squirrell, Shafer, Patel, Saeed, Schmuck, Markandeya, Wong (bib28) 2016; 18
Ifkovits, Addis, Epstein, Gearhart (bib23) 2014; 9
Koyanagi, Bushoven, Iwasaki, Urbich, Zeiher, Dimmeler (bib27) 2007; 101
Shen, McElhinny, Cao, Gao, Liu, Bronson, Griffin, Wu (bib49) 2006; 20
Li, Yu, Zhang, Pan, Xu, Li (bib29) 2006; 341
Ferrari, Rizzo (bib17) 2014; 35
Christoforou, Chellappan, Adler, Kirkton, Wu, Addis, Bursac, Leong (bib10) 2013; 8
Nelson, Makarewich, Anderson, Winders, Troupes, Wu, Reese, McAnally, Chen, Kavalali (bib39) 2016; 351
Nam, Song, Luo, Daniel, Lambeth, West, Hill, DiMaio, Baker, Bassel-Duby (bib37) 2013; 110
Brady, Li, Suthram, Jiang, Wong, Blau (bib7) 2013; 15
Protze, Khattak, Poulet, Lindemann, Tanaka, Ravens (bib42) 2012; 53
Nemir, Croquelois, Pedrazzini, Radtke (bib40) 2006; 98
Dohda, Maljukova, Liu, Heyman, Grander, Brodin, Sangfelt, Lendahl (bib13) 2007; 313
Esteban, Wang, Qin, Yang, Qin, Cai, Li, Weng, Chen, Ni (bib15) 2010; 6
Sundlisaeter, Edelmann, Hol, Sponheim, Kuchler, Weiss, Udalova, Midwood, Kasprzycka, Haraldsen (bib52) 2012; 181
Makarewich, Zhang, Davis, Correll, Trappanese, Hoffman, Troupes, Berretta, Kubo, Madesh (bib35) 2014; 115
Mootha, Lindgren, Eriksson, Subramanian, Sihag, Lehar, Puigserver, Carlsson, Ridderstrale, Laurila (bib36) 2003; 34
Nam, Lubczyk, Bhakta, Zang, Fernandez-Perez, McAnally, Bassel-Duby, Olson, Munshi (bib38) 2014; 141
Gude, Sussman (bib18) 2012; 52
Jang, Ku, Kim, Choi, Kim, Kim, Oh, Lee, Cho, Song (bib24) 2008; 26
Shao, Yao, Khodadadi-Jamayran, Xu, Townes, Crowley, Hu (bib48) 2016; 16
Liao, Smyth, Shi (bib31) 2014; 30
Zhou, Dickson, Kim, Bassel-Duby, Olson (bib57) 2015; 112
Del Debbio, Mir, Parameswaran, Mathews, Xia, Zheng, Neville, Ahmad (bib12) 2016; 11
Love, Huber, Anders (bib33) 2014; 15
Song, Nam, Luo, Qi, Tan, Huang, Acharya, Smith, Tallquist, Neilson (bib50) 2012; 485
Liu, Li, Liu, He, Han, Sun, Li, Shen (bib32) 2014; 9
de la Pompa, Epstein (bib11) 2012; 22
Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (bib26) 2013; 14
Sarmento, Huang, Limon, Gordon, Fernandes, Tavares, Miele, Cardoso, Classon, Carlesso (bib47) 2005; 202
Dutta, Ray, Home, Larson, Wolfe, Paul (bib14) 2011; 29
Wada, Muraoka, Inagawa, Yamakawa, Miyamoto, Sadahiro, Umei, Kaneda, Suzuki, Kamiya (bib53) 2013; 110
Addis, Ifkovits, Pinto, Kellam, Esteso, Rentschler, Christoforou, Epstein, Gearhart (bib1) 2013; 60
Chen, Stull, Joo, Cheng, Keller (bib9) 2008; 26
Beltrami, Urbanek, Kajstura, Yan, Finato, Bussani, Nadal-Ginard, Silvestri, Leri, Beltrami (bib5) 2001; 344
Qian, Huang, Spencer, Foley, Vedantham, Liu, Conway, Fu, Srivastava (bib43) 2012; 485
Rubins, Friedman, Le, Zhang, Brestelli, Kaestner (bib44) 2005; 25
Sadahiro, Yamanaka, Ieda (bib45) 2015; 116
Christoforou (10.1016/j.stemcr.2017.01.025_bib10) 2013; 8
Makarewich (10.1016/j.stemcr.2017.01.025_bib35) 2014; 115
Sadahiro (10.1016/j.stemcr.2017.01.025_bib45) 2015; 116
Batty (10.1016/j.stemcr.2017.01.025_bib4) 2016; 18
Del Debbio (10.1016/j.stemcr.2017.01.025_bib12) 2016; 11
Nelson (10.1016/j.stemcr.2017.01.025_bib39) 2016; 351
Liao (10.1016/j.stemcr.2017.01.025_bib31) 2014; 30
Lalit (10.1016/j.stemcr.2017.01.025_bib28) 2016; 18
Rubins (10.1016/j.stemcr.2017.01.025_bib44) 2005; 25
Mootha (10.1016/j.stemcr.2017.01.025_bib36) 2003; 34
Beltrami (10.1016/j.stemcr.2017.01.025_bib5) 2001; 344
Hirai (10.1016/j.stemcr.2017.01.025_bib20) 2013; 100
Li (10.1016/j.stemcr.2017.01.025_bib29) 2006; 341
Bergmann (10.1016/j.stemcr.2017.01.025_bib6) 2009; 324
Dutta (10.1016/j.stemcr.2017.01.025_bib14) 2011; 29
Shen (10.1016/j.stemcr.2017.01.025_bib49) 2006; 20
Ifkovits (10.1016/j.stemcr.2017.01.025_bib23) 2014; 9
Jayawardena (10.1016/j.stemcr.2017.01.025_bib25) 2012; 110
Ferrari (10.1016/j.stemcr.2017.01.025_bib17) 2014; 35
Esteban (10.1016/j.stemcr.2017.01.025_bib15) 2010; 6
Li (10.1016/j.stemcr.2017.01.025_bib30) 2012; 109
Yuan (10.1016/j.stemcr.2017.01.025_bib56) 2015; 369
Qian (10.1016/j.stemcr.2017.01.025_bib43) 2012; 485
Ichida (10.1016/j.stemcr.2017.01.025_bib21) 2014; 10
Guruharsha (10.1016/j.stemcr.2017.01.025_bib19) 2012; 13
Song (10.1016/j.stemcr.2017.01.025_bib50) 2012; 485
Nam (10.1016/j.stemcr.2017.01.025_bib37) 2013; 110
Dohda (10.1016/j.stemcr.2017.01.025_bib13) 2007; 313
Andersen (10.1016/j.stemcr.2017.01.025_bib2) 2012; 22
Koyanagi (10.1016/j.stemcr.2017.01.025_bib27) 2007; 101
Gude (10.1016/j.stemcr.2017.01.025_bib18) 2012; 52
Nemir (10.1016/j.stemcr.2017.01.025_bib40) 2006; 98
de la Pompa (10.1016/j.stemcr.2017.01.025_bib11) 2012; 22
Ieda (10.1016/j.stemcr.2017.01.025_bib22) 2010; 142
Protze (10.1016/j.stemcr.2017.01.025_bib42) 2012; 53
Jang (10.1016/j.stemcr.2017.01.025_bib24) 2008; 26
Addis (10.1016/j.stemcr.2017.01.025_bib1) 2013; 60
Wilson-Rawls (10.1016/j.stemcr.2017.01.025_bib55) 1999; 19
Andersson (10.1016/j.stemcr.2017.01.025_bib3) 2011; 138
Subramanian (10.1016/j.stemcr.2017.01.025_bib51) 2005; 102
Sundlisaeter (10.1016/j.stemcr.2017.01.025_bib52) 2012; 181
Chen (10.1016/j.stemcr.2017.01.025_bib9) 2008; 26
Maherali (10.1016/j.stemcr.2017.01.025_bib34) 2009; 19
Fero (10.1016/j.stemcr.2017.01.025_bib16) 1996; 85
Wang (10.1016/j.stemcr.2017.01.025_bib54) 2014; 6
Brady (10.1016/j.stemcr.2017.01.025_bib7) 2013; 15
Wada (10.1016/j.stemcr.2017.01.025_bib53) 2013; 110
Liu (10.1016/j.stemcr.2017.01.025_bib32) 2014; 9
Zhou (10.1016/j.stemcr.2017.01.025_bib57) 2015; 112
Kim (10.1016/j.stemcr.2017.01.025_bib26) 2013; 14
Love (10.1016/j.stemcr.2017.01.025_bib33) 2014; 15
Patel (10.1016/j.stemcr.2017.01.025_bib41) 2012; 7
Sarmento (10.1016/j.stemcr.2017.01.025_bib47) 2005; 202
Cao (10.1016/j.stemcr.2017.01.025_bib8) 2016; 352
Nam (10.1016/j.stemcr.2017.01.025_bib38) 2014; 141
Shao (10.1016/j.stemcr.2017.01.025_bib48) 2016; 16
Sanganalmath (10.1016/j.stemcr.2017.01.025_bib46) 2013; 113
23618408 - Genome Biol. 2013 Apr 25;14(4):R36
25047165 - Circ Res. 2014 Aug 29;115(6):567-80
27127239 - Science. 2016 Jun 3;352(6290):1216-20
22660318 - Nature. 2012 May 13;485(7400):599-604
23861494 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72
17967789 - Circ Res. 2007 Nov 26;101(11):1139-45
26816378 - Science. 2016 Jan 15;351(6270):271-5
22868267 - Nat Rev Genet. 2012 Sep;13(9):654-66
20691899 - Cell. 2010 Aug 6;142(3):375-86
25858064 - Circ Res. 2015 Apr 10;116(8):1378-91
21308862 - Stem Cells. 2011 Apr;29(4):618-28
8646781 - Cell. 1996 May 31;85(5):733-44
25344074 - Development. 2014 Nov;141(22):4267-78
23213213 - Proc Natl Acad Sci U S A. 2012 Dec 18;109 (51):20853-8
27653680 - Cell Rep. 2016 Sep 20;16(12):3138-45
22397947 - Trends Cell Biol. 2012 May;22(5):257-65
22809957 - Am J Pathol. 2012 Sep;181(3):1099-111
23487791 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5588-93
26354121 - Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11864-9
24227677 - Bioinformatics. 2014 Apr 1;30(7):923-30
24970336 - Eur Heart J. 2014 Aug 21;35(32):2140-5
21828089 - Development. 2011 Sep;138(17):3593-612
20036631 - Cell Stem Cell. 2010 Jan 8;6(1):71-9
19342590 - Science. 2009 Apr 3;324(5923):98-102
16510869 - Genes Dev. 2006 Mar 15;20(6):675-88
23704920 - PLoS One. 2013 May 21;8(5):e63577
10082551 - Mol Cell Biol. 1999 Apr;19(4):2853-62
27011052 - PLoS One. 2016 Mar 24;11(3):e0152025
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
22575762 - J Mol Cell Cardiol. 2012 Sep;53(3):323-32
23591016 - J Mol Cell Cardiol. 2013 Jul;60:97-106
25313563 - PLoS One. 2014 Oct 14;9(10):e109588
16413496 - Biochem Biophys Res Commun. 2006 Mar 10;341(2):320-5
24586958 - PLoS One. 2014 Feb 26;9(2):e89678
22539765 - Circ Res. 2012 May 25;110(11):1465-73
25516281 - Genome Biol. 2014;15(12):550
24561253 - Cell Rep. 2014 Mar 13;6(5):951-60
16055718 - Mol Cell Biol. 2005 Aug;25(16):7069-77
17560996 - Exp Cell Res. 2007 Aug 15;313(14):3141-52
24952596 - Nat Chem Biol. 2014 Aug;10(8):632-9
18757302 - Stem Cells. 2008 Nov;26(11):2782-90
22522929 - Nature. 2012 May 31;485(7400):593-8
23794713 - Cardiovasc Res. 2013 Oct 1;100(1):105-13
18820686 - Nat Biotechnol. 2008 Oct;26(10):1169-78
22312429 - PLoS One. 2012;7(2):e30619
19765992 - Curr Biol. 2009 Nov 3;19(20):1718-23
22465038 - J Mol Cell Cardiol. 2012 Jun;52(6):1226-32
11396441 - N Engl J Med. 2001 Jun 7;344(23):1750-7
26877223 - Cell Stem Cell. 2016 Mar 3;18(3):354-67
26341688 - Cancer Lett. 2015 Dec 1;369(1):20-7
12808457 - Nat Genet. 2003 Jul;34(3):267-73
23995732 - Nat Cell Biol. 2013 Oct;15(10 ):1244-52
26635186 - Eur J Heart Fail. 2016 Feb;18(2):145-56
23989721 - Circ Res. 2013 Aug 30;113(6):810-34
22340493 - Dev Cell. 2012 Feb 14;22(2):244-54
16690879 - Circ Res. 2006 Jun 23;98(12):1471-8
15998794 - J Exp Med. 2005 Jul 4;202(1):157-68
References_xml – volume: 13
  start-page: 654
  year: 2012
  end-page: 666
  ident: bib19
  article-title: The Notch signalling system: recent insights into the complexity of a conserved pathway
  publication-title: Nat. Rev. Genet.
– volume: 324
  start-page: 98
  year: 2009
  end-page: 102
  ident: bib6
  article-title: Evidence for cardiomyocyte renewal in humans
  publication-title: Science
– volume: 19
  start-page: 1718
  year: 2009
  end-page: 1723
  ident: bib34
  article-title: Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc
  publication-title: Curr. Biol.
– volume: 25
  start-page: 7069
  year: 2005
  end-page: 7077
  ident: bib44
  article-title: Transcriptional networks in the liver: hepatocyte nuclear factor 6 function is largely independent of Foxa2
  publication-title: Mol. Cell Biol.
– volume: 20
  start-page: 675
  year: 2006
  end-page: 688
  ident: bib49
  article-title: The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis
  publication-title: Genes Dev.
– volume: 8
  start-page: e63577
  year: 2013
  ident: bib10
  article-title: Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming
  publication-title: PLoS One
– volume: 485
  start-page: 599
  year: 2012
  end-page: 604
  ident: bib50
  article-title: Heart repair by reprogramming non-myocytes with cardiac transcription factors
  publication-title: Nature
– volume: 11
  start-page: e0152025
  year: 2016
  ident: bib12
  article-title: Notch signaling activates stem cell properties of muller glia through transcriptional regulation and Skp2-mediated degradation of p27Kip1
  publication-title: PLoS One
– volume: 113
  start-page: 810
  year: 2013
  end-page: 834
  ident: bib46
  article-title: Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions
  publication-title: Circ. Res.
– volume: 344
  start-page: 1750
  year: 2001
  end-page: 1757
  ident: bib5
  article-title: Evidence that human cardiac myocytes divide after myocardial infarction
  publication-title: N. Engl. J. Med.
– volume: 142
  start-page: 375
  year: 2010
  end-page: 386
  ident: bib22
  article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
  publication-title: Cell
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: bib31
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 98
  start-page: 1471
  year: 2006
  end-page: 1478
  ident: bib40
  article-title: Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling
  publication-title: Circ. Res.
– volume: 112
  start-page: 11864
  year: 2015
  end-page: 11869
  ident: bib57
  article-title: Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: e89678
  year: 2014
  ident: bib23
  article-title: Inhibition of TGFbeta signaling increases direct conversion of fibroblasts to induced cardiomyocytes
  publication-title: PLoS One
– volume: 19
  start-page: 2853
  year: 1999
  end-page: 2862
  ident: bib55
  article-title: Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C
  publication-title: Mol. Cell Biol.
– volume: 110
  start-page: 5588
  year: 2013
  end-page: 5593
  ident: bib37
  article-title: Reprogramming of human fibroblasts toward a cardiac fate
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 145
  year: 2016
  end-page: 156
  ident: bib4
  article-title: Direct cellular reprogramming for cardiac repair and regeneration
  publication-title: Eur. J. Heart Fail.
– volume: 60
  start-page: 97
  year: 2013
  end-page: 106
  ident: bib1
  article-title: Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success
  publication-title: J. Mol. Cell Cardiol.
– volume: 313
  start-page: 3141
  year: 2007
  end-page: 3152
  ident: bib13
  article-title: Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines
  publication-title: Exp. Cell Res.
– volume: 9
  start-page: e109588
  year: 2014
  ident: bib32
  article-title: Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells
  publication-title: PLoS One
– volume: 53
  start-page: 323
  year: 2012
  end-page: 332
  ident: bib42
  article-title: A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells
  publication-title: J. Mol. Cell Cardiol.
– volume: 202
  start-page: 157
  year: 2005
  end-page: 168
  ident: bib47
  article-title: Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation
  publication-title: J. Exp. Med.
– volume: 181
  start-page: 1099
  year: 2012
  end-page: 1111
  ident: bib52
  article-title: The alarmin IL-33 is a notch target in quiescent endothelial cells
  publication-title: Am. J. Pathol.
– volume: 52
  start-page: 1226
  year: 2012
  end-page: 1232
  ident: bib18
  article-title: Notch signaling and cardiac repair
  publication-title: J. Mol. Cell Cardiol.
– volume: 351
  start-page: 271
  year: 2016
  end-page: 275
  ident: bib39
  article-title: A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle
  publication-title: Science
– volume: 109
  start-page: 20853
  year: 2012
  end-page: 20858
  ident: bib30
  article-title: Identification of Oct4-activating compounds that enhance reprogramming efficiency
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 138
  start-page: 3593
  year: 2011
  end-page: 3612
  ident: bib3
  article-title: Notch signaling: simplicity in design, versatility in function
  publication-title: Development
– volume: 352
  start-page: 1216
  year: 2016
  end-page: 1220
  ident: bib8
  article-title: Conversion of human fibroblasts into functional cardiomyocytes by small molecules
  publication-title: Science
– volume: 15
  start-page: 1244
  year: 2013
  end-page: 1252
  ident: bib7
  article-title: Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq
  publication-title: Nat. Cell Biol.
– volume: 116
  start-page: 1378
  year: 2015
  end-page: 1391
  ident: bib45
  article-title: Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications
  publication-title: Circ. Res.
– volume: 29
  start-page: 618
  year: 2011
  end-page: 628
  ident: bib14
  article-title: Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance
  publication-title: Stem Cells
– volume: 16
  start-page: 3138
  year: 2016
  end-page: 3145
  ident: bib48
  article-title: Reprogramming by de-bookmarking the somatic transcriptional program through targeting of BET bromodomains
  publication-title: Cell Rep.
– volume: 22
  start-page: 244
  year: 2012
  end-page: 254
  ident: bib11
  article-title: Coordinating tissue interactions: Notch signaling in cardiac development and disease
  publication-title: Dev. Cell
– volume: 100
  start-page: 105
  year: 2013
  end-page: 113
  ident: bib20
  article-title: Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain
  publication-title: Cardiovasc. Res.
– volume: 110
  start-page: 12667
  year: 2013
  end-page: 12672
  ident: bib53
  article-title: Induction of human cardiomyocyte-like cells from fibroblasts by defined factors
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 71
  year: 2010
  end-page: 79
  ident: bib15
  article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 85
  start-page: 733
  year: 1996
  end-page: 744
  ident: bib16
  article-title: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice
  publication-title: Cell
– volume: 7
  start-page: e30619
  year: 2012
  ident: bib41
  article-title: NGS QC Toolkit: a toolkit for quality control of next generation sequencing data
  publication-title: PLoS One
– volume: 14
  start-page: R36
  year: 2013
  ident: bib26
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
– volume: 6
  start-page: 951
  year: 2014
  end-page: 960
  ident: bib54
  article-title: Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4
  publication-title: Cell Rep.
– volume: 26
  start-page: 1169
  year: 2008
  end-page: 1178
  ident: bib9
  article-title: Notch signaling respecifies the hemangioblast to a cardiac fate
  publication-title: Nat. Biotechnol.
– volume: 35
  start-page: 2140
  year: 2014
  end-page: 2145
  ident: bib17
  article-title: The Notch pathway: a novel target for myocardial remodelling therapy?
  publication-title: Eur. Heart J.
– volume: 34
  start-page: 267
  year: 2003
  end-page: 273
  ident: bib36
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet.
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: bib51
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 485
  start-page: 593
  year: 2012
  end-page: 598
  ident: bib43
  article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
  publication-title: Nature
– volume: 110
  start-page: 1465
  year: 2012
  end-page: 1473
  ident: bib25
  article-title: MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes
  publication-title: Circ. Res.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib33
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 10
  start-page: 632
  year: 2014
  end-page: 639
  ident: bib21
  article-title: Notch inhibition allows oncogene-independent generation of iPS cells
  publication-title: Nat. Chem. Biol.
– volume: 115
  start-page: 567
  year: 2014
  end-page: 580
  ident: bib35
  article-title: Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction
  publication-title: Circ. Res.
– volume: 101
  start-page: 1139
  year: 2007
  end-page: 1145
  ident: bib27
  article-title: Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells
  publication-title: Circ. Res.
– volume: 341
  start-page: 320
  year: 2006
  end-page: 325
  ident: bib29
  article-title: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 141
  start-page: 4267
  year: 2014
  end-page: 4278
  ident: bib38
  article-title: Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors
  publication-title: Development
– volume: 22
  start-page: 257
  year: 2012
  end-page: 265
  ident: bib2
  article-title: Non-canonical Notch signaling: emerging role and mechanism
  publication-title: Trends Cell Biol.
– volume: 369
  start-page: 20
  year: 2015
  end-page: 27
  ident: bib56
  article-title: Notch signaling: an emerging therapeutic target for cancer treatment
  publication-title: Cancer Lett.
– volume: 26
  start-page: 2782
  year: 2008
  end-page: 2790
  ident: bib24
  article-title: Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation
  publication-title: Stem Cells
– volume: 18
  start-page: 354
  year: 2016
  end-page: 367
  ident: bib28
  article-title: Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors
  publication-title: Cell Stem Cell
– volume: 142
  start-page: 375
  year: 2010
  ident: 10.1016/j.stemcr.2017.01.025_bib22
  article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.002
– volume: 7
  start-page: e30619
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib41
  article-title: NGS QC Toolkit: a toolkit for quality control of next generation sequencing data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030619
– volume: 13
  start-page: 654
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib19
  article-title: The Notch signalling system: recent insights into the complexity of a conserved pathway
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3272
– volume: 101
  start-page: 1139
  year: 2007
  ident: 10.1016/j.stemcr.2017.01.025_bib27
  article-title: Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.107.151381
– volume: 110
  start-page: 1465
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib25
  article-title: MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.112.269035
– volume: 369
  start-page: 20
  year: 2015
  ident: 10.1016/j.stemcr.2017.01.025_bib56
  article-title: Notch signaling: an emerging therapeutic target for cancer treatment
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.07.048
– volume: 109
  start-page: 20853
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib30
  article-title: Identification of Oct4-activating compounds that enhance reprogramming efficiency
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1219181110
– volume: 6
  start-page: 71
  year: 2010
  ident: 10.1016/j.stemcr.2017.01.025_bib15
  article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.12.001
– volume: 10
  start-page: 632
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib21
  article-title: Notch inhibition allows oncogene-independent generation of iPS cells
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1552
– volume: 344
  start-page: 1750
  year: 2001
  ident: 10.1016/j.stemcr.2017.01.025_bib5
  article-title: Evidence that human cardiac myocytes divide after myocardial infarction
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200106073442303
– volume: 60
  start-page: 97
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib1
  article-title: Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2013.04.004
– volume: 22
  start-page: 257
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib2
  article-title: Non-canonical Notch signaling: emerging role and mechanism
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.02.003
– volume: 202
  start-page: 157
  year: 2005
  ident: 10.1016/j.stemcr.2017.01.025_bib47
  article-title: Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050559
– volume: 53
  start-page: 323
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib42
  article-title: A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2012.04.010
– volume: 141
  start-page: 4267
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib38
  article-title: Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors
  publication-title: Development
  doi: 10.1242/dev.114025
– volume: 14
  start-page: R36
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib26
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-4-r36
– volume: 26
  start-page: 1169
  year: 2008
  ident: 10.1016/j.stemcr.2017.01.025_bib9
  article-title: Notch signaling respecifies the hemangioblast to a cardiac fate
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1497
– volume: 113
  start-page: 810
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib46
  article-title: Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.300219
– volume: 116
  start-page: 1378
  year: 2015
  ident: 10.1016/j.stemcr.2017.01.025_bib45
  article-title: Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.305374
– volume: 351
  start-page: 271
  year: 2016
  ident: 10.1016/j.stemcr.2017.01.025_bib39
  article-title: A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle
  publication-title: Science
  doi: 10.1126/science.aad4076
– volume: 110
  start-page: 12667
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib53
  article-title: Induction of human cardiomyocyte-like cells from fibroblasts by defined factors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1304053110
– volume: 35
  start-page: 2140
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib17
  article-title: The Notch pathway: a novel target for myocardial remodelling therapy?
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehu244
– volume: 52
  start-page: 1226
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib18
  article-title: Notch signaling and cardiac repair
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2012.03.007
– volume: 324
  start-page: 98
  year: 2009
  ident: 10.1016/j.stemcr.2017.01.025_bib6
  article-title: Evidence for cardiomyocyte renewal in humans
  publication-title: Science
  doi: 10.1126/science.1164680
– volume: 313
  start-page: 3141
  year: 2007
  ident: 10.1016/j.stemcr.2017.01.025_bib13
  article-title: Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2007.04.027
– volume: 20
  start-page: 675
  year: 2006
  ident: 10.1016/j.stemcr.2017.01.025_bib49
  article-title: The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1383706
– volume: 19
  start-page: 1718
  year: 2009
  ident: 10.1016/j.stemcr.2017.01.025_bib34
  article-title: Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.08.025
– volume: 485
  start-page: 599
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib50
  article-title: Heart repair by reprogramming non-myocytes with cardiac transcription factors
  publication-title: Nature
  doi: 10.1038/nature11139
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib33
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 18
  start-page: 354
  year: 2016
  ident: 10.1016/j.stemcr.2017.01.025_bib28
  article-title: Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.12.001
– volume: 85
  start-page: 733
  year: 1996
  ident: 10.1016/j.stemcr.2017.01.025_bib16
  article-title: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81239-8
– volume: 110
  start-page: 5588
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib37
  article-title: Reprogramming of human fibroblasts toward a cardiac fate
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1301019110
– volume: 352
  start-page: 1216
  year: 2016
  ident: 10.1016/j.stemcr.2017.01.025_bib8
  article-title: Conversion of human fibroblasts into functional cardiomyocytes by small molecules
  publication-title: Science
  doi: 10.1126/science.aaf1502
– volume: 98
  start-page: 1471
  year: 2006
  ident: 10.1016/j.stemcr.2017.01.025_bib40
  article-title: Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000226497.52052.2a
– volume: 22
  start-page: 244
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib11
  article-title: Coordinating tissue interactions: Notch signaling in cardiac development and disease
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.01.014
– volume: 19
  start-page: 2853
  year: 1999
  ident: 10.1016/j.stemcr.2017.01.025_bib55
  article-title: Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.19.4.2853
– volume: 29
  start-page: 618
  year: 2011
  ident: 10.1016/j.stemcr.2017.01.025_bib14
  article-title: Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance
  publication-title: Stem Cells
  doi: 10.1002/stem.605
– volume: 112
  start-page: 11864
  year: 2015
  ident: 10.1016/j.stemcr.2017.01.025_bib57
  article-title: Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1516237112
– volume: 34
  start-page: 267
  year: 2003
  ident: 10.1016/j.stemcr.2017.01.025_bib36
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet.
  doi: 10.1038/ng1180
– volume: 9
  start-page: e109588
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib32
  article-title: Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0109588
– volume: 100
  start-page: 105
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib20
  article-title: Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvt167
– volume: 341
  start-page: 320
  year: 2006
  ident: 10.1016/j.stemcr.2017.01.025_bib29
  article-title: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.12.182
– volume: 115
  start-page: 567
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib35
  article-title: Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.303831
– volume: 30
  start-page: 923
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib31
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 138
  start-page: 3593
  year: 2011
  ident: 10.1016/j.stemcr.2017.01.025_bib3
  article-title: Notch signaling: simplicity in design, versatility in function
  publication-title: Development
  doi: 10.1242/dev.063610
– volume: 485
  start-page: 593
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib43
  article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
  publication-title: Nature
  doi: 10.1038/nature11044
– volume: 102
  start-page: 15545
  year: 2005
  ident: 10.1016/j.stemcr.2017.01.025_bib51
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 18
  start-page: 145
  year: 2016
  ident: 10.1016/j.stemcr.2017.01.025_bib4
  article-title: Direct cellular reprogramming for cardiac repair and regeneration
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.446
– volume: 26
  start-page: 2782
  year: 2008
  ident: 10.1016/j.stemcr.2017.01.025_bib24
  article-title: Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-1053
– volume: 25
  start-page: 7069
  year: 2005
  ident: 10.1016/j.stemcr.2017.01.025_bib44
  article-title: Transcriptional networks in the liver: hepatocyte nuclear factor 6 function is largely independent of Foxa2
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.16.7069-7077.2005
– volume: 9
  start-page: e89678
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib23
  article-title: Inhibition of TGFbeta signaling increases direct conversion of fibroblasts to induced cardiomyocytes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0089678
– volume: 181
  start-page: 1099
  year: 2012
  ident: 10.1016/j.stemcr.2017.01.025_bib52
  article-title: The alarmin IL-33 is a notch target in quiescent endothelial cells
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.06.003
– volume: 16
  start-page: 3138
  year: 2016
  ident: 10.1016/j.stemcr.2017.01.025_bib48
  article-title: Reprogramming by de-bookmarking the somatic transcriptional program through targeting of BET bromodomains
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.08.060
– volume: 6
  start-page: 951
  year: 2014
  ident: 10.1016/j.stemcr.2017.01.025_bib54
  article-title: Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.01.038
– volume: 11
  start-page: e0152025
  year: 2016
  ident: 10.1016/j.stemcr.2017.01.025_bib12
  article-title: Notch signaling activates stem cell properties of muller glia through transcriptional regulation and Skp2-mediated degradation of p27Kip1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152025
– volume: 8
  start-page: e63577
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib10
  article-title: Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0063577
– volume: 15
  start-page: 1244
  year: 2013
  ident: 10.1016/j.stemcr.2017.01.025_bib7
  article-title: Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2835
– reference: 22575762 - J Mol Cell Cardiol. 2012 Sep;53(3):323-32
– reference: 27011052 - PLoS One. 2016 Mar 24;11(3):e0152025
– reference: 16055718 - Mol Cell Biol. 2005 Aug;25(16):7069-77
– reference: 22868267 - Nat Rev Genet. 2012 Sep;13(9):654-66
– reference: 11396441 - N Engl J Med. 2001 Jun 7;344(23):1750-7
– reference: 22660318 - Nature. 2012 May 13;485(7400):599-604
– reference: 22522929 - Nature. 2012 May 31;485(7400):593-8
– reference: 23861494 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72
– reference: 25313563 - PLoS One. 2014 Oct 14;9(10):e109588
– reference: 23794713 - Cardiovasc Res. 2013 Oct 1;100(1):105-13
– reference: 22397947 - Trends Cell Biol. 2012 May;22(5):257-65
– reference: 23995732 - Nat Cell Biol. 2013 Oct;15(10 ):1244-52
– reference: 18820686 - Nat Biotechnol. 2008 Oct;26(10):1169-78
– reference: 22312429 - PLoS One. 2012;7(2):e30619
– reference: 23591016 - J Mol Cell Cardiol. 2013 Jul;60:97-106
– reference: 16690879 - Circ Res. 2006 Jun 23;98(12):1471-8
– reference: 23989721 - Circ Res. 2013 Aug 30;113(6):810-34
– reference: 22465038 - J Mol Cell Cardiol. 2012 Jun;52(6):1226-32
– reference: 26816378 - Science. 2016 Jan 15;351(6270):271-5
– reference: 21308862 - Stem Cells. 2011 Apr;29(4):618-28
– reference: 20036631 - Cell Stem Cell. 2010 Jan 8;6(1):71-9
– reference: 26635186 - Eur J Heart Fail. 2016 Feb;18(2):145-56
– reference: 20691899 - Cell. 2010 Aug 6;142(3):375-86
– reference: 24227677 - Bioinformatics. 2014 Apr 1;30(7):923-30
– reference: 22340493 - Dev Cell. 2012 Feb 14;22(2):244-54
– reference: 24952596 - Nat Chem Biol. 2014 Aug;10(8):632-9
– reference: 26877223 - Cell Stem Cell. 2016 Mar 3;18(3):354-67
– reference: 23704920 - PLoS One. 2013 May 21;8(5):e63577
– reference: 25047165 - Circ Res. 2014 Aug 29;115(6):567-80
– reference: 25858064 - Circ Res. 2015 Apr 10;116(8):1378-91
– reference: 22539765 - Circ Res. 2012 May 25;110(11):1465-73
– reference: 24561253 - Cell Rep. 2014 Mar 13;6(5):951-60
– reference: 8646781 - Cell. 1996 May 31;85(5):733-44
– reference: 10082551 - Mol Cell Biol. 1999 Apr;19(4):2853-62
– reference: 19765992 - Curr Biol. 2009 Nov 3;19(20):1718-23
– reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73
– reference: 18757302 - Stem Cells. 2008 Nov;26(11):2782-90
– reference: 24586958 - PLoS One. 2014 Feb 26;9(2):e89678
– reference: 27653680 - Cell Rep. 2016 Sep 20;16(12):3138-45
– reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36
– reference: 22809957 - Am J Pathol. 2012 Sep;181(3):1099-111
– reference: 27127239 - Science. 2016 Jun 3;352(6290):1216-20
– reference: 17967789 - Circ Res. 2007 Nov 26;101(11):1139-45
– reference: 25516281 - Genome Biol. 2014;15(12):550
– reference: 16510869 - Genes Dev. 2006 Mar 15;20(6):675-88
– reference: 15998794 - J Exp Med. 2005 Jul 4;202(1):157-68
– reference: 23487791 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5588-93
– reference: 19342590 - Science. 2009 Apr 3;324(5923):98-102
– reference: 25344074 - Development. 2014 Nov;141(22):4267-78
– reference: 23213213 - Proc Natl Acad Sci U S A. 2012 Dec 18;109 (51):20853-8
– reference: 26354121 - Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11864-9
– reference: 24970336 - Eur Heart J. 2014 Aug 21;35(32):2140-5
– reference: 21828089 - Development. 2011 Sep;138(17):3593-612
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 16413496 - Biochem Biophys Res Commun. 2006 Mar 10;341(2):320-5
– reference: 17560996 - Exp Cell Res. 2007 Aug 15;313(14):3141-52
– reference: 26341688 - Cancer Lett. 2015 Dec 1;369(1):20-7
SSID ssj0000991241
Score 2.4287891
Snippet Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 548
SubjectTerms Animals
Calcium Signaling - drug effects
cardiomyocytes
Cell Differentiation
cell-fate conversion
Cellular Reprogramming - drug effects
Cellular Reprogramming - genetics
DAPT
Diamines - pharmacology
direct cellular reprogramming
Electrophysiological Phenomena - drug effects
Gene Expression Profiling
Gene Expression Regulation, Developmental
heart regeneration
MEF2 Transcription Factors - metabolism
Mice
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Notch signaling
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Receptors, Notch - metabolism
regenerative medicine
Sarcomeres - drug effects
Sarcomeres - metabolism
Signal Transduction
Thiazoles - pharmacology
Transcriptional Activation
Transcriptome
transdifferentiation
Title Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity
URI https://dx.doi.org/10.1016/j.stemcr.2017.01.025
https://www.ncbi.nlm.nih.gov/pubmed/28262548
https://www.proquest.com/docview/1874786557
https://pubmed.ncbi.nlm.nih.gov/PMC5355682
https://doaj.org/article/25ad5b034da34e2fb6a9cf7c556e5f5a
Volume 8
WOSCitedRecordID wos000397103900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-6711
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0000991241
  issn: 2213-6711
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-6711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000991241
  issn: 2213-6711
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgBRIXxJvyWBmJq0Uc27F9hKoVSGzFAaQekCzHD7UrNkXbLtJe9rfv2E6qBg69cMkhceKMZ-z5Jhl_g9B7V1HfCMsJuDdBOOOaWG4VURHAtVLcsjbzzH6Vi4VaLvW3g1JfKSes0AOXgftQC-tFWzHuLeOhjm1jtYvSCdEEEUWGRoB6DoKp84J7wHGlaKuuKSONpHTYN5eTuxJJskt0oFQW1k4x8kuZvn_knv6Fn39nUR64pfkj9LDHk_hjkeMxuhO6J-h-qTB5_RT9XGxALfhLt1q3OTkLz7pVUvQWT7NtOAwQvORoXYAXw-01NE5IMn1DwGezeT3F2Z8Nq0vqzJWSE8_Qj_ns-_Qz6QsqECe02BFw9a2XnlWOCl8520ThePA61tIHrduolVc2iCBBs42Kqg4U1j-pfQTUxwJ7jk66TRdeIgyBlVLCUsul5bxVVgrnoxJNC_G2DnKC2DCcxvVs46noxS8zpJWdm6IEk5RgKmpACRNE9nf9LmwbR9p_Sprat01c2fkEWJDpLcgcs6AJkoOeTQ87CpyAR62PdP9uMAsDszL9arFd2FxtTap0KNOeXxiIF8VM9i8JQS4EnVxBvyMDGkkxvtKtV5n5W7BEGFe_-h9iv0YPkigpn47yN-hkd3kV3qJ77s9uvb08RXflUp3mSQXHs5vZLZAGKLk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Notch+Inhibition+Enhances+Cardiac+Reprogramming+by+Increasing+MEF2C+Transcriptional+Activity&rft.jtitle=Stem+cell+reports&rft.au=Abad%2C+Maria&rft.au=Hashimoto%2C+Hisayuki&rft.au=Zhou%2C+Huanyu&rft.au=Morales%2C+Maria+Gabriela&rft.date=2017-03-14&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=8&rft.issue=3&rft.spage=548&rft.epage=560&rft_id=info:doi/10.1016%2Fj.stemcr.2017.01.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stemcr_2017_01_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon