Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity
Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhanc...
Uložené v:
| Vydané v: | Stem cell reports Ročník 8; číslo 3; s. 548 - 560 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
14.03.2017
Elsevier |
| Predmet: | |
| ISSN: | 2213-6711, 2213-6711 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.
[Display omitted]
•Notch activation is a barrier for GHMT-induced cardiac cell reprogramming•Notch blockade by DAPT improves GHMT-induced cardiac reprogramming•DAPT increases sarcomere organization, calcium flux, and beating in GHMT reprogramming•DAPT enhances transcriptional activity of MEF2C in GHMT reprogramming
In this article, Olson and colleagues show that Notch signaling activation is a critical barrier for cardiac cell reprogramming. Notch signaling blockade by DAPT, a γ-secretase inhibitor, enhances fibroblast conversion to cardiomyocytes by increasing calcium flux, sarcomere structure, and beating. Mechanistically, Notch inhibition enhances the transcriptional activity of the cardiogenic transcription factor MEF2C, thereby enhancing expression of cardiac genes. |
|---|---|
| AbstractList | Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. • Notch activation is a barrier for GHMT-induced cardiac cell reprogramming • Notch blockade by DAPT improves GHMT-induced cardiac reprogramming • DAPT increases sarcomere organization, calcium flux, and beating in GHMT reprogramming • DAPT enhances transcriptional activity of MEF2C in GHMT reprogramming In this article, Olson and colleagues show that Notch signaling activation is a critical barrier for cardiac cell reprogramming. Notch signaling blockade by DAPT, a γ-secretase inhibitor, enhances fibroblast conversion to cardiomyocytes by increasing calcium flux, sarcomere structure, and beating. Mechanistically, Notch inhibition enhances the transcriptional activity of the cardiogenic transcription factor MEF2C, thereby enhancing expression of cardiac genes. Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. [Display omitted] •Notch activation is a barrier for GHMT-induced cardiac cell reprogramming•Notch blockade by DAPT improves GHMT-induced cardiac reprogramming•DAPT increases sarcomere organization, calcium flux, and beating in GHMT reprogramming•DAPT enhances transcriptional activity of MEF2C in GHMT reprogramming In this article, Olson and colleagues show that Notch signaling activation is a critical barrier for cardiac cell reprogramming. Notch signaling blockade by DAPT, a γ-secretase inhibitor, enhances fibroblast conversion to cardiomyocytes by increasing calcium flux, sarcomere structure, and beating. Mechanistically, Notch inhibition enhances the transcriptional activity of the cardiogenic transcription factor MEF2C, thereby enhancing expression of cardiac genes. |
| Author | Hashimoto, Hisayuki Chen, Beibei Bassel-Duby, Rhonda Olson, Eric N. Abad, Maria Zhou, Huanyu Morales, Maria Gabriela |
| AuthorAffiliation | 4 Cell Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), c/Natzaret, 115-117, Barcelona 08035, Spain 1 Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA 2 Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA 3 Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA |
| AuthorAffiliation_xml | – name: 1 Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – name: 2 Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – name: 3 Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – name: 4 Cell Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), c/Natzaret, 115-117, Barcelona 08035, Spain |
| Author_xml | – sequence: 1 givenname: Maria surname: Abad fullname: Abad, Maria email: mabad@vhio.net organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – sequence: 2 givenname: Hisayuki surname: Hashimoto fullname: Hashimoto, Hisayuki organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – sequence: 3 givenname: Huanyu surname: Zhou fullname: Zhou, Huanyu organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – sequence: 4 givenname: Maria Gabriela surname: Morales fullname: Morales, Maria Gabriela organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – sequence: 5 givenname: Beibei surname: Chen fullname: Chen, Beibei organization: Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – sequence: 6 givenname: Rhonda surname: Bassel-Duby fullname: Bassel-Duby, Rhonda organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA – sequence: 7 givenname: Eric N. surname: Olson fullname: Olson, Eric N. email: eric.olson@utsouthwestern.edu organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28262548$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhleoiJbSf4DQHrkktb3r_eCAVEUpjVRAQuWGZM2OZxNHu3awnUj59zgkRS0H8MVf7_uMNPO-zs6ss5Rlbzmbcsar6_U0RBrRTwXj9ZTxKRPyRXYhBC8mVc352ZPzeXYVwpql1bZclPxVdi4aUQlZNhfZjy8u4ipf2JXpTDTO5nO7AosU8hl4bQDzb7TxbulhHI1d5t0-idEThMPt8_xWzPIHDzagN5sDAIb8BqPZmbh_k73sYQh0ddovs--384fZ3eT-66fF7OZ-grKVccI563StC4ZcaoZQ9RJL0m0vak1t2_VtoxsgSXVHWDV9I4iD1nWre1lVBRWX2eLI1Q7WauPNCH6vHBj1-8H5pQIfDQ6khAQtO1aUGoqSRN9V0GJfo5QVyV5CYn08sjbbbiSNZKOH4Rn0-Y81K7V0OyWLxGhEArw_Abz7uaUQ1WgC0jCAJbcNijd1WTeVlHWSvnta60-Rx_EkwYejAL0LwVOv0EQ4dDmVNoPiTB3ioNbqGAd1iINiXKU4JHP5l_mR_x_bqQGUJrYz5FVAQykR2njCmFpq_g34BUBE06c |
| CitedBy_id | crossref_primary_10_3892_mmr_2018_9092 crossref_primary_10_1007_s43032_020_00343_y crossref_primary_10_1016_j_yjmcc_2020_12_005 crossref_primary_10_3390_jcdd9040111 crossref_primary_10_1038_s41598_018_19539_z crossref_primary_10_1038_s41598_022_15559_y crossref_primary_10_1016_j_semcdb_2021_05_028 crossref_primary_10_3390_ijms19092629 crossref_primary_10_1016_j_stem_2019_03_022 crossref_primary_10_1007_s11033_022_07913_0 crossref_primary_10_1016_j_semcdb_2021_05_019 crossref_primary_10_1038_s41598_019_42945_w crossref_primary_10_1007_s13238_017_0402_x crossref_primary_10_3390_ijms24065665 crossref_primary_10_1007_s11886_023_01868_9 crossref_primary_10_1161_JAHA_121_022659 crossref_primary_10_3390_cells10123297 crossref_primary_10_1186_s40779_023_00452_0 crossref_primary_10_3389_fcell_2019_00082 crossref_primary_10_1016_j_isci_2023_108466 crossref_primary_10_1016_j_yjmcc_2021_06_008 crossref_primary_10_3390_cells9020268 crossref_primary_10_1186_s12933_021_01270_1 crossref_primary_10_1038_s41569_018_0036_6 crossref_primary_10_1016_j_yjmcc_2017_05_005 crossref_primary_10_3389_fcvm_2019_00032 crossref_primary_10_3390_ijms21082819 crossref_primary_10_1016_j_cr_2018_01_001 crossref_primary_10_1016_j_bbrc_2021_07_087 crossref_primary_10_1007_s00018_017_2586_x crossref_primary_10_3389_fcell_2021_639699 crossref_primary_10_1016_j_jbc_2024_107682 crossref_primary_10_3390_ijms21207662 crossref_primary_10_3389_fcell_2024_1343106 crossref_primary_10_1096_fj_201800712R crossref_primary_10_3390_ijms21124354 crossref_primary_10_1038_s44161_023_00377_w crossref_primary_10_3390_ijms22179517 crossref_primary_10_3390_life12081117 crossref_primary_10_1093_cvr_cvaf101 crossref_primary_10_1161_JAHA_119_015686 crossref_primary_10_1038_s41598_020_63992_8 crossref_primary_10_1074_jbc_M117_776153 crossref_primary_10_3390_ijms26073063 crossref_primary_10_1074_jbc_RA118_006000 crossref_primary_10_1242_dev_171983 crossref_primary_10_3390_ijms21217950 crossref_primary_10_1016_j_semcdb_2021_07_010 crossref_primary_10_3389_fbioe_2020_637538 crossref_primary_10_1155_2018_3814747 crossref_primary_10_1371_journal_pgen_1008507 crossref_primary_10_3390_cells12081166 crossref_primary_10_3390_cells8070679 crossref_primary_10_1101_gad_305482_117 crossref_primary_10_1016_j_reprotox_2020_05_010 crossref_primary_10_1016_j_yjmcc_2023_03_013 crossref_primary_10_3390_ijms232012509 crossref_primary_10_1016_j_ymthe_2021_07_014 crossref_primary_10_1016_j_ajhg_2022_09_015 crossref_primary_10_1016_j_cellin_2022_100058 crossref_primary_10_1002_adbi_202101133 crossref_primary_10_1038_s41598_019_51536_8 crossref_primary_10_1002_jcp_28292 crossref_primary_10_1007_s00395_017_0655_9 crossref_primary_10_3390_jcdd8070072 crossref_primary_10_1186_s13619_025_00229_x crossref_primary_10_1007_s13105_025_01099_2 crossref_primary_10_1158_1078_0432_CCR_18_3276 crossref_primary_10_1038_s12276_024_01321_z crossref_primary_10_3389_fcvm_2021_783072 crossref_primary_10_1007_s40610_017_0066_6 crossref_primary_10_1089_cell_2018_0052 crossref_primary_10_2302_kjm_2019_0008_OA crossref_primary_10_1126_scitranslmed_aay7856 crossref_primary_10_3390_cells11060940 crossref_primary_10_1155_2018_1435746 crossref_primary_10_1016_j_yjmcc_2023_03_009 crossref_primary_10_1016_j_yjmcc_2022_08_004 crossref_primary_10_1016_j_gene_2023_147598 crossref_primary_10_1371_journal_pone_0223842 |
| Cites_doi | 10.1016/j.cell.2010.07.002 10.1371/journal.pone.0030619 10.1038/nrg3272 10.1161/CIRCRESAHA.107.151381 10.1161/CIRCRESAHA.112.269035 10.1016/j.canlet.2015.07.048 10.1073/pnas.1219181110 10.1016/j.stem.2009.12.001 10.1038/nchembio.1552 10.1056/NEJM200106073442303 10.1016/j.yjmcc.2013.04.004 10.1016/j.tcb.2012.02.003 10.1084/jem.20050559 10.1016/j.yjmcc.2012.04.010 10.1242/dev.114025 10.1186/gb-2013-14-4-r36 10.1038/nbt.1497 10.1161/CIRCRESAHA.113.300219 10.1161/CIRCRESAHA.116.305374 10.1126/science.aad4076 10.1073/pnas.1304053110 10.1093/eurheartj/ehu244 10.1016/j.yjmcc.2012.03.007 10.1126/science.1164680 10.1016/j.yexcr.2007.04.027 10.1101/gad.1383706 10.1016/j.cub.2009.08.025 10.1038/nature11139 10.1186/s13059-014-0550-8 10.1016/j.stem.2015.12.001 10.1016/S0092-8674(00)81239-8 10.1073/pnas.1301019110 10.1126/science.aaf1502 10.1161/01.RES.0000226497.52052.2a 10.1016/j.devcel.2012.01.014 10.1128/MCB.19.4.2853 10.1002/stem.605 10.1073/pnas.1516237112 10.1038/ng1180 10.1371/journal.pone.0109588 10.1093/cvr/cvt167 10.1016/j.bbrc.2005.12.182 10.1161/CIRCRESAHA.115.303831 10.1093/bioinformatics/btt656 10.1242/dev.063610 10.1038/nature11044 10.1073/pnas.0506580102 10.1002/ejhf.446 10.1634/stemcells.2007-1053 10.1128/MCB.25.16.7069-7077.2005 10.1371/journal.pone.0089678 10.1016/j.ajpath.2012.06.003 10.1016/j.celrep.2016.08.060 10.1016/j.celrep.2014.01.038 10.1371/journal.pone.0152025 10.1371/journal.pone.0063577 10.1038/ncb2835 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. 2017 The Authors 2017 |
| Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2017 The Authors 2017 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.stemcr.2017.01.025 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2213-6711 |
| EndPage | 560 |
| ExternalDocumentID | oai_doaj_org_article_25ad5b034da34e2fb6a9cf7c556e5f5a PMC5355682 28262548 10_1016_j_stemcr_2017_01_025 S2213671117300413 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL130253 – fundername: NIDDK NIH HHS grantid: R01 DK099653 – fundername: NHLBI NIH HHS grantid: R01 HL077439 – fundername: NHLBI NIH HHS grantid: U01 HL100401 – fundername: NHLBI NIH HHS grantid: R01 HL111665 – fundername: NHLBI NIH HHS grantid: R01 HL093039 |
| GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAVLU AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O9- OK1 RCE RIG ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c595t-110bd7d30c15d0ca6f5c4ed9f27de99bf98d8ae5e7bec68f82e1add79df5663e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 97 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397103900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-6711 |
| IngestDate | Fri Oct 03 12:51:06 EDT 2025 Tue Sep 30 16:11:44 EDT 2025 Fri Jul 11 17:00:22 EDT 2025 Mon Jul 21 06:00:05 EDT 2025 Sat Nov 29 04:01:13 EST 2025 Tue Nov 18 22:01:42 EST 2025 Wed May 17 02:21:47 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | cardiomyocytes direct cellular reprogramming heart regeneration Notch signaling regenerative medicine transdifferentiation cell-fate conversion DAPT |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c595t-110bd7d30c15d0ca6f5c4ed9f27de99bf98d8ae5e7bec68f82e1add79df5663e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/25ad5b034da34e2fb6a9cf7c556e5f5a |
| PMID | 28262548 |
| PQID | 1874786557 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_25ad5b034da34e2fb6a9cf7c556e5f5a pubmedcentral_primary_oai_pubmedcentral_nih_gov_5355682 proquest_miscellaneous_1874786557 pubmed_primary_28262548 crossref_citationtrail_10_1016_j_stemcr_2017_01_025 crossref_primary_10_1016_j_stemcr_2017_01_025 elsevier_sciencedirect_doi_10_1016_j_stemcr_2017_01_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-14 |
| PublicationDateYYYYMMDD | 2017-03-14 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Stem cell reports |
| PublicationTitleAlternate | Stem Cell Reports |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Li, Tian, Chen, Sun, Ye, Yang, Lu, Xie, Ho, Tsark (bib30) 2012; 109 Jayawardena, Egemnazarov, Finch, Zhang, Payne, Pandya, Zhang, Rosenberg, Mirotsou, Dzau (bib25) 2012; 110 Andersson, Sandberg, Lendahl (bib3) 2011; 138 Ichida, Tcw, Williams, Carter, Shi, Moura, Ziller, Singh, Amabile, Bock (bib21) 2014; 10 Batty, Lima, Kunadian (bib4) 2016; 18 Ieda, Fu, Delgado-Olguin, Vedantham, Hayashi, Bruneau, Srivastava (bib22) 2010; 142 Bergmann, Bhardwaj, Bernard, Zdunek, Barnabe-Heider, Walsh, Zupicich, Alkass, Buchholz, Druid (bib6) 2009; 324 Patel, Jain (bib41) 2012; 7 Wang, Cao, Spencer, Nie, Ma, Xu, Zhang, Wang, Srivastava, Ding (bib54) 2014; 6 Maherali, Hochedlinger (bib34) 2009; 19 Wilson-Rawls, Molkentin, Black, Olson (bib55) 1999; 19 Yuan, Wu, Xu, Xiong, Chu, Yu, Wu, Wu (bib56) 2015; 369 Hirai, Katoku-Kikyo, Keirstead, Kikyo (bib20) 2013; 100 Sanganalmath, Bolli (bib46) 2013; 113 Fero, Rivkin, Tasch, Porter, Carow, Firpo, Polyak, Tsai, Broudy, Perlmutter (bib16) 1996; 85 Cao, Huang, Zheng, Spencer, Zhang, Fu, Nie, Xie, Zhang, Wang (bib8) 2016; 352 Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander (bib51) 2005; 102 Guruharsha, Kankel, Artavanis-Tsakonas (bib19) 2012; 13 Andersen, Uosaki, Shenje, Kwon (bib2) 2012; 22 Lalit, Salick, Nelson, Squirrell, Shafer, Patel, Saeed, Schmuck, Markandeya, Wong (bib28) 2016; 18 Ifkovits, Addis, Epstein, Gearhart (bib23) 2014; 9 Koyanagi, Bushoven, Iwasaki, Urbich, Zeiher, Dimmeler (bib27) 2007; 101 Shen, McElhinny, Cao, Gao, Liu, Bronson, Griffin, Wu (bib49) 2006; 20 Li, Yu, Zhang, Pan, Xu, Li (bib29) 2006; 341 Ferrari, Rizzo (bib17) 2014; 35 Christoforou, Chellappan, Adler, Kirkton, Wu, Addis, Bursac, Leong (bib10) 2013; 8 Nelson, Makarewich, Anderson, Winders, Troupes, Wu, Reese, McAnally, Chen, Kavalali (bib39) 2016; 351 Nam, Song, Luo, Daniel, Lambeth, West, Hill, DiMaio, Baker, Bassel-Duby (bib37) 2013; 110 Brady, Li, Suthram, Jiang, Wong, Blau (bib7) 2013; 15 Protze, Khattak, Poulet, Lindemann, Tanaka, Ravens (bib42) 2012; 53 Nemir, Croquelois, Pedrazzini, Radtke (bib40) 2006; 98 Dohda, Maljukova, Liu, Heyman, Grander, Brodin, Sangfelt, Lendahl (bib13) 2007; 313 Esteban, Wang, Qin, Yang, Qin, Cai, Li, Weng, Chen, Ni (bib15) 2010; 6 Sundlisaeter, Edelmann, Hol, Sponheim, Kuchler, Weiss, Udalova, Midwood, Kasprzycka, Haraldsen (bib52) 2012; 181 Makarewich, Zhang, Davis, Correll, Trappanese, Hoffman, Troupes, Berretta, Kubo, Madesh (bib35) 2014; 115 Mootha, Lindgren, Eriksson, Subramanian, Sihag, Lehar, Puigserver, Carlsson, Ridderstrale, Laurila (bib36) 2003; 34 Nam, Lubczyk, Bhakta, Zang, Fernandez-Perez, McAnally, Bassel-Duby, Olson, Munshi (bib38) 2014; 141 Gude, Sussman (bib18) 2012; 52 Jang, Ku, Kim, Choi, Kim, Kim, Oh, Lee, Cho, Song (bib24) 2008; 26 Shao, Yao, Khodadadi-Jamayran, Xu, Townes, Crowley, Hu (bib48) 2016; 16 Liao, Smyth, Shi (bib31) 2014; 30 Zhou, Dickson, Kim, Bassel-Duby, Olson (bib57) 2015; 112 Del Debbio, Mir, Parameswaran, Mathews, Xia, Zheng, Neville, Ahmad (bib12) 2016; 11 Love, Huber, Anders (bib33) 2014; 15 Song, Nam, Luo, Qi, Tan, Huang, Acharya, Smith, Tallquist, Neilson (bib50) 2012; 485 Liu, Li, Liu, He, Han, Sun, Li, Shen (bib32) 2014; 9 de la Pompa, Epstein (bib11) 2012; 22 Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (bib26) 2013; 14 Sarmento, Huang, Limon, Gordon, Fernandes, Tavares, Miele, Cardoso, Classon, Carlesso (bib47) 2005; 202 Dutta, Ray, Home, Larson, Wolfe, Paul (bib14) 2011; 29 Wada, Muraoka, Inagawa, Yamakawa, Miyamoto, Sadahiro, Umei, Kaneda, Suzuki, Kamiya (bib53) 2013; 110 Addis, Ifkovits, Pinto, Kellam, Esteso, Rentschler, Christoforou, Epstein, Gearhart (bib1) 2013; 60 Chen, Stull, Joo, Cheng, Keller (bib9) 2008; 26 Beltrami, Urbanek, Kajstura, Yan, Finato, Bussani, Nadal-Ginard, Silvestri, Leri, Beltrami (bib5) 2001; 344 Qian, Huang, Spencer, Foley, Vedantham, Liu, Conway, Fu, Srivastava (bib43) 2012; 485 Rubins, Friedman, Le, Zhang, Brestelli, Kaestner (bib44) 2005; 25 Sadahiro, Yamanaka, Ieda (bib45) 2015; 116 Christoforou (10.1016/j.stemcr.2017.01.025_bib10) 2013; 8 Makarewich (10.1016/j.stemcr.2017.01.025_bib35) 2014; 115 Sadahiro (10.1016/j.stemcr.2017.01.025_bib45) 2015; 116 Batty (10.1016/j.stemcr.2017.01.025_bib4) 2016; 18 Del Debbio (10.1016/j.stemcr.2017.01.025_bib12) 2016; 11 Nelson (10.1016/j.stemcr.2017.01.025_bib39) 2016; 351 Liao (10.1016/j.stemcr.2017.01.025_bib31) 2014; 30 Lalit (10.1016/j.stemcr.2017.01.025_bib28) 2016; 18 Rubins (10.1016/j.stemcr.2017.01.025_bib44) 2005; 25 Mootha (10.1016/j.stemcr.2017.01.025_bib36) 2003; 34 Beltrami (10.1016/j.stemcr.2017.01.025_bib5) 2001; 344 Hirai (10.1016/j.stemcr.2017.01.025_bib20) 2013; 100 Li (10.1016/j.stemcr.2017.01.025_bib29) 2006; 341 Bergmann (10.1016/j.stemcr.2017.01.025_bib6) 2009; 324 Dutta (10.1016/j.stemcr.2017.01.025_bib14) 2011; 29 Shen (10.1016/j.stemcr.2017.01.025_bib49) 2006; 20 Ifkovits (10.1016/j.stemcr.2017.01.025_bib23) 2014; 9 Jayawardena (10.1016/j.stemcr.2017.01.025_bib25) 2012; 110 Ferrari (10.1016/j.stemcr.2017.01.025_bib17) 2014; 35 Esteban (10.1016/j.stemcr.2017.01.025_bib15) 2010; 6 Li (10.1016/j.stemcr.2017.01.025_bib30) 2012; 109 Yuan (10.1016/j.stemcr.2017.01.025_bib56) 2015; 369 Qian (10.1016/j.stemcr.2017.01.025_bib43) 2012; 485 Ichida (10.1016/j.stemcr.2017.01.025_bib21) 2014; 10 Guruharsha (10.1016/j.stemcr.2017.01.025_bib19) 2012; 13 Song (10.1016/j.stemcr.2017.01.025_bib50) 2012; 485 Nam (10.1016/j.stemcr.2017.01.025_bib37) 2013; 110 Dohda (10.1016/j.stemcr.2017.01.025_bib13) 2007; 313 Andersen (10.1016/j.stemcr.2017.01.025_bib2) 2012; 22 Koyanagi (10.1016/j.stemcr.2017.01.025_bib27) 2007; 101 Gude (10.1016/j.stemcr.2017.01.025_bib18) 2012; 52 Nemir (10.1016/j.stemcr.2017.01.025_bib40) 2006; 98 de la Pompa (10.1016/j.stemcr.2017.01.025_bib11) 2012; 22 Ieda (10.1016/j.stemcr.2017.01.025_bib22) 2010; 142 Protze (10.1016/j.stemcr.2017.01.025_bib42) 2012; 53 Jang (10.1016/j.stemcr.2017.01.025_bib24) 2008; 26 Addis (10.1016/j.stemcr.2017.01.025_bib1) 2013; 60 Wilson-Rawls (10.1016/j.stemcr.2017.01.025_bib55) 1999; 19 Andersson (10.1016/j.stemcr.2017.01.025_bib3) 2011; 138 Subramanian (10.1016/j.stemcr.2017.01.025_bib51) 2005; 102 Sundlisaeter (10.1016/j.stemcr.2017.01.025_bib52) 2012; 181 Chen (10.1016/j.stemcr.2017.01.025_bib9) 2008; 26 Maherali (10.1016/j.stemcr.2017.01.025_bib34) 2009; 19 Fero (10.1016/j.stemcr.2017.01.025_bib16) 1996; 85 Wang (10.1016/j.stemcr.2017.01.025_bib54) 2014; 6 Brady (10.1016/j.stemcr.2017.01.025_bib7) 2013; 15 Wada (10.1016/j.stemcr.2017.01.025_bib53) 2013; 110 Liu (10.1016/j.stemcr.2017.01.025_bib32) 2014; 9 Zhou (10.1016/j.stemcr.2017.01.025_bib57) 2015; 112 Kim (10.1016/j.stemcr.2017.01.025_bib26) 2013; 14 Love (10.1016/j.stemcr.2017.01.025_bib33) 2014; 15 Patel (10.1016/j.stemcr.2017.01.025_bib41) 2012; 7 Sarmento (10.1016/j.stemcr.2017.01.025_bib47) 2005; 202 Cao (10.1016/j.stemcr.2017.01.025_bib8) 2016; 352 Nam (10.1016/j.stemcr.2017.01.025_bib38) 2014; 141 Shao (10.1016/j.stemcr.2017.01.025_bib48) 2016; 16 Sanganalmath (10.1016/j.stemcr.2017.01.025_bib46) 2013; 113 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 25047165 - Circ Res. 2014 Aug 29;115(6):567-80 27127239 - Science. 2016 Jun 3;352(6290):1216-20 22660318 - Nature. 2012 May 13;485(7400):599-604 23861494 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72 17967789 - Circ Res. 2007 Nov 26;101(11):1139-45 26816378 - Science. 2016 Jan 15;351(6270):271-5 22868267 - Nat Rev Genet. 2012 Sep;13(9):654-66 20691899 - Cell. 2010 Aug 6;142(3):375-86 25858064 - Circ Res. 2015 Apr 10;116(8):1378-91 21308862 - Stem Cells. 2011 Apr;29(4):618-28 8646781 - Cell. 1996 May 31;85(5):733-44 25344074 - Development. 2014 Nov;141(22):4267-78 23213213 - Proc Natl Acad Sci U S A. 2012 Dec 18;109 (51):20853-8 27653680 - Cell Rep. 2016 Sep 20;16(12):3138-45 22397947 - Trends Cell Biol. 2012 May;22(5):257-65 22809957 - Am J Pathol. 2012 Sep;181(3):1099-111 23487791 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5588-93 26354121 - Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11864-9 24227677 - Bioinformatics. 2014 Apr 1;30(7):923-30 24970336 - Eur Heart J. 2014 Aug 21;35(32):2140-5 21828089 - Development. 2011 Sep;138(17):3593-612 20036631 - Cell Stem Cell. 2010 Jan 8;6(1):71-9 19342590 - Science. 2009 Apr 3;324(5923):98-102 16510869 - Genes Dev. 2006 Mar 15;20(6):675-88 23704920 - PLoS One. 2013 May 21;8(5):e63577 10082551 - Mol Cell Biol. 1999 Apr;19(4):2853-62 27011052 - PLoS One. 2016 Mar 24;11(3):e0152025 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 22575762 - J Mol Cell Cardiol. 2012 Sep;53(3):323-32 23591016 - J Mol Cell Cardiol. 2013 Jul;60:97-106 25313563 - PLoS One. 2014 Oct 14;9(10):e109588 16413496 - Biochem Biophys Res Commun. 2006 Mar 10;341(2):320-5 24586958 - PLoS One. 2014 Feb 26;9(2):e89678 22539765 - Circ Res. 2012 May 25;110(11):1465-73 25516281 - Genome Biol. 2014;15(12):550 24561253 - Cell Rep. 2014 Mar 13;6(5):951-60 16055718 - Mol Cell Biol. 2005 Aug;25(16):7069-77 17560996 - Exp Cell Res. 2007 Aug 15;313(14):3141-52 24952596 - Nat Chem Biol. 2014 Aug;10(8):632-9 18757302 - Stem Cells. 2008 Nov;26(11):2782-90 22522929 - Nature. 2012 May 31;485(7400):593-8 23794713 - Cardiovasc Res. 2013 Oct 1;100(1):105-13 18820686 - Nat Biotechnol. 2008 Oct;26(10):1169-78 22312429 - PLoS One. 2012;7(2):e30619 19765992 - Curr Biol. 2009 Nov 3;19(20):1718-23 22465038 - J Mol Cell Cardiol. 2012 Jun;52(6):1226-32 11396441 - N Engl J Med. 2001 Jun 7;344(23):1750-7 26877223 - Cell Stem Cell. 2016 Mar 3;18(3):354-67 26341688 - Cancer Lett. 2015 Dec 1;369(1):20-7 12808457 - Nat Genet. 2003 Jul;34(3):267-73 23995732 - Nat Cell Biol. 2013 Oct;15(10 ):1244-52 26635186 - Eur J Heart Fail. 2016 Feb;18(2):145-56 23989721 - Circ Res. 2013 Aug 30;113(6):810-34 22340493 - Dev Cell. 2012 Feb 14;22(2):244-54 16690879 - Circ Res. 2006 Jun 23;98(12):1471-8 15998794 - J Exp Med. 2005 Jul 4;202(1):157-68 |
| References_xml | – volume: 13 start-page: 654 year: 2012 end-page: 666 ident: bib19 article-title: The Notch signalling system: recent insights into the complexity of a conserved pathway publication-title: Nat. Rev. Genet. – volume: 324 start-page: 98 year: 2009 end-page: 102 ident: bib6 article-title: Evidence for cardiomyocyte renewal in humans publication-title: Science – volume: 19 start-page: 1718 year: 2009 end-page: 1723 ident: bib34 article-title: Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc publication-title: Curr. Biol. – volume: 25 start-page: 7069 year: 2005 end-page: 7077 ident: bib44 article-title: Transcriptional networks in the liver: hepatocyte nuclear factor 6 function is largely independent of Foxa2 publication-title: Mol. Cell Biol. – volume: 20 start-page: 675 year: 2006 end-page: 688 ident: bib49 article-title: The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis publication-title: Genes Dev. – volume: 8 start-page: e63577 year: 2013 ident: bib10 article-title: Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming publication-title: PLoS One – volume: 485 start-page: 599 year: 2012 end-page: 604 ident: bib50 article-title: Heart repair by reprogramming non-myocytes with cardiac transcription factors publication-title: Nature – volume: 11 start-page: e0152025 year: 2016 ident: bib12 article-title: Notch signaling activates stem cell properties of muller glia through transcriptional regulation and Skp2-mediated degradation of p27Kip1 publication-title: PLoS One – volume: 113 start-page: 810 year: 2013 end-page: 834 ident: bib46 article-title: Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions publication-title: Circ. Res. – volume: 344 start-page: 1750 year: 2001 end-page: 1757 ident: bib5 article-title: Evidence that human cardiac myocytes divide after myocardial infarction publication-title: N. Engl. J. Med. – volume: 142 start-page: 375 year: 2010 end-page: 386 ident: bib22 article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors publication-title: Cell – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: bib31 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 98 start-page: 1471 year: 2006 end-page: 1478 ident: bib40 article-title: Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling publication-title: Circ. Res. – volume: 112 start-page: 11864 year: 2015 end-page: 11869 ident: bib57 article-title: Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: e89678 year: 2014 ident: bib23 article-title: Inhibition of TGFbeta signaling increases direct conversion of fibroblasts to induced cardiomyocytes publication-title: PLoS One – volume: 19 start-page: 2853 year: 1999 end-page: 2862 ident: bib55 article-title: Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C publication-title: Mol. Cell Biol. – volume: 110 start-page: 5588 year: 2013 end-page: 5593 ident: bib37 article-title: Reprogramming of human fibroblasts toward a cardiac fate publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 145 year: 2016 end-page: 156 ident: bib4 article-title: Direct cellular reprogramming for cardiac repair and regeneration publication-title: Eur. J. Heart Fail. – volume: 60 start-page: 97 year: 2013 end-page: 106 ident: bib1 article-title: Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success publication-title: J. Mol. Cell Cardiol. – volume: 313 start-page: 3141 year: 2007 end-page: 3152 ident: bib13 article-title: Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines publication-title: Exp. Cell Res. – volume: 9 start-page: e109588 year: 2014 ident: bib32 article-title: Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells publication-title: PLoS One – volume: 53 start-page: 323 year: 2012 end-page: 332 ident: bib42 article-title: A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells publication-title: J. Mol. Cell Cardiol. – volume: 202 start-page: 157 year: 2005 end-page: 168 ident: bib47 article-title: Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation publication-title: J. Exp. Med. – volume: 181 start-page: 1099 year: 2012 end-page: 1111 ident: bib52 article-title: The alarmin IL-33 is a notch target in quiescent endothelial cells publication-title: Am. J. Pathol. – volume: 52 start-page: 1226 year: 2012 end-page: 1232 ident: bib18 article-title: Notch signaling and cardiac repair publication-title: J. Mol. Cell Cardiol. – volume: 351 start-page: 271 year: 2016 end-page: 275 ident: bib39 article-title: A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle publication-title: Science – volume: 109 start-page: 20853 year: 2012 end-page: 20858 ident: bib30 article-title: Identification of Oct4-activating compounds that enhance reprogramming efficiency publication-title: Proc. Natl. Acad. Sci. USA – volume: 138 start-page: 3593 year: 2011 end-page: 3612 ident: bib3 article-title: Notch signaling: simplicity in design, versatility in function publication-title: Development – volume: 352 start-page: 1216 year: 2016 end-page: 1220 ident: bib8 article-title: Conversion of human fibroblasts into functional cardiomyocytes by small molecules publication-title: Science – volume: 15 start-page: 1244 year: 2013 end-page: 1252 ident: bib7 article-title: Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq publication-title: Nat. Cell Biol. – volume: 116 start-page: 1378 year: 2015 end-page: 1391 ident: bib45 article-title: Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications publication-title: Circ. Res. – volume: 29 start-page: 618 year: 2011 end-page: 628 ident: bib14 article-title: Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance publication-title: Stem Cells – volume: 16 start-page: 3138 year: 2016 end-page: 3145 ident: bib48 article-title: Reprogramming by de-bookmarking the somatic transcriptional program through targeting of BET bromodomains publication-title: Cell Rep. – volume: 22 start-page: 244 year: 2012 end-page: 254 ident: bib11 article-title: Coordinating tissue interactions: Notch signaling in cardiac development and disease publication-title: Dev. Cell – volume: 100 start-page: 105 year: 2013 end-page: 113 ident: bib20 article-title: Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain publication-title: Cardiovasc. Res. – volume: 110 start-page: 12667 year: 2013 end-page: 12672 ident: bib53 article-title: Induction of human cardiomyocyte-like cells from fibroblasts by defined factors publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 71 year: 2010 end-page: 79 ident: bib15 article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 85 start-page: 733 year: 1996 end-page: 744 ident: bib16 article-title: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice publication-title: Cell – volume: 7 start-page: e30619 year: 2012 ident: bib41 article-title: NGS QC Toolkit: a toolkit for quality control of next generation sequencing data publication-title: PLoS One – volume: 14 start-page: R36 year: 2013 ident: bib26 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol. – volume: 6 start-page: 951 year: 2014 end-page: 960 ident: bib54 article-title: Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4 publication-title: Cell Rep. – volume: 26 start-page: 1169 year: 2008 end-page: 1178 ident: bib9 article-title: Notch signaling respecifies the hemangioblast to a cardiac fate publication-title: Nat. Biotechnol. – volume: 35 start-page: 2140 year: 2014 end-page: 2145 ident: bib17 article-title: The Notch pathway: a novel target for myocardial remodelling therapy? publication-title: Eur. Heart J. – volume: 34 start-page: 267 year: 2003 end-page: 273 ident: bib36 article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat. Genet. – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: bib51 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA – volume: 485 start-page: 593 year: 2012 end-page: 598 ident: bib43 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Nature – volume: 110 start-page: 1465 year: 2012 end-page: 1473 ident: bib25 article-title: MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes publication-title: Circ. Res. – volume: 15 start-page: 550 year: 2014 ident: bib33 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 10 start-page: 632 year: 2014 end-page: 639 ident: bib21 article-title: Notch inhibition allows oncogene-independent generation of iPS cells publication-title: Nat. Chem. Biol. – volume: 115 start-page: 567 year: 2014 end-page: 580 ident: bib35 article-title: Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction publication-title: Circ. Res. – volume: 101 start-page: 1139 year: 2007 end-page: 1145 ident: bib27 article-title: Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells publication-title: Circ. Res. – volume: 341 start-page: 320 year: 2006 end-page: 325 ident: bib29 article-title: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes publication-title: Biochem. Biophys. Res. Commun. – volume: 141 start-page: 4267 year: 2014 end-page: 4278 ident: bib38 article-title: Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors publication-title: Development – volume: 22 start-page: 257 year: 2012 end-page: 265 ident: bib2 article-title: Non-canonical Notch signaling: emerging role and mechanism publication-title: Trends Cell Biol. – volume: 369 start-page: 20 year: 2015 end-page: 27 ident: bib56 article-title: Notch signaling: an emerging therapeutic target for cancer treatment publication-title: Cancer Lett. – volume: 26 start-page: 2782 year: 2008 end-page: 2790 ident: bib24 article-title: Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation publication-title: Stem Cells – volume: 18 start-page: 354 year: 2016 end-page: 367 ident: bib28 article-title: Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors publication-title: Cell Stem Cell – volume: 142 start-page: 375 year: 2010 ident: 10.1016/j.stemcr.2017.01.025_bib22 article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors publication-title: Cell doi: 10.1016/j.cell.2010.07.002 – volume: 7 start-page: e30619 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib41 article-title: NGS QC Toolkit: a toolkit for quality control of next generation sequencing data publication-title: PLoS One doi: 10.1371/journal.pone.0030619 – volume: 13 start-page: 654 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib19 article-title: The Notch signalling system: recent insights into the complexity of a conserved pathway publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3272 – volume: 101 start-page: 1139 year: 2007 ident: 10.1016/j.stemcr.2017.01.025_bib27 article-title: Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.107.151381 – volume: 110 start-page: 1465 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib25 article-title: MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.269035 – volume: 369 start-page: 20 year: 2015 ident: 10.1016/j.stemcr.2017.01.025_bib56 article-title: Notch signaling: an emerging therapeutic target for cancer treatment publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.07.048 – volume: 109 start-page: 20853 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib30 article-title: Identification of Oct4-activating compounds that enhance reprogramming efficiency publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1219181110 – volume: 6 start-page: 71 year: 2010 ident: 10.1016/j.stemcr.2017.01.025_bib15 article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.12.001 – volume: 10 start-page: 632 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib21 article-title: Notch inhibition allows oncogene-independent generation of iPS cells publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1552 – volume: 344 start-page: 1750 year: 2001 ident: 10.1016/j.stemcr.2017.01.025_bib5 article-title: Evidence that human cardiac myocytes divide after myocardial infarction publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200106073442303 – volume: 60 start-page: 97 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib1 article-title: Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success publication-title: J. Mol. Cell Cardiol. doi: 10.1016/j.yjmcc.2013.04.004 – volume: 22 start-page: 257 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib2 article-title: Non-canonical Notch signaling: emerging role and mechanism publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.02.003 – volume: 202 start-page: 157 year: 2005 ident: 10.1016/j.stemcr.2017.01.025_bib47 article-title: Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation publication-title: J. Exp. Med. doi: 10.1084/jem.20050559 – volume: 53 start-page: 323 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib42 article-title: A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells publication-title: J. Mol. Cell Cardiol. doi: 10.1016/j.yjmcc.2012.04.010 – volume: 141 start-page: 4267 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib38 article-title: Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors publication-title: Development doi: 10.1242/dev.114025 – volume: 14 start-page: R36 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib26 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol. doi: 10.1186/gb-2013-14-4-r36 – volume: 26 start-page: 1169 year: 2008 ident: 10.1016/j.stemcr.2017.01.025_bib9 article-title: Notch signaling respecifies the hemangioblast to a cardiac fate publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1497 – volume: 113 start-page: 810 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib46 article-title: Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.300219 – volume: 116 start-page: 1378 year: 2015 ident: 10.1016/j.stemcr.2017.01.025_bib45 article-title: Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.305374 – volume: 351 start-page: 271 year: 2016 ident: 10.1016/j.stemcr.2017.01.025_bib39 article-title: A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle publication-title: Science doi: 10.1126/science.aad4076 – volume: 110 start-page: 12667 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib53 article-title: Induction of human cardiomyocyte-like cells from fibroblasts by defined factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1304053110 – volume: 35 start-page: 2140 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib17 article-title: The Notch pathway: a novel target for myocardial remodelling therapy? publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehu244 – volume: 52 start-page: 1226 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib18 article-title: Notch signaling and cardiac repair publication-title: J. Mol. Cell Cardiol. doi: 10.1016/j.yjmcc.2012.03.007 – volume: 324 start-page: 98 year: 2009 ident: 10.1016/j.stemcr.2017.01.025_bib6 article-title: Evidence for cardiomyocyte renewal in humans publication-title: Science doi: 10.1126/science.1164680 – volume: 313 start-page: 3141 year: 2007 ident: 10.1016/j.stemcr.2017.01.025_bib13 article-title: Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2007.04.027 – volume: 20 start-page: 675 year: 2006 ident: 10.1016/j.stemcr.2017.01.025_bib49 article-title: The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis publication-title: Genes Dev. doi: 10.1101/gad.1383706 – volume: 19 start-page: 1718 year: 2009 ident: 10.1016/j.stemcr.2017.01.025_bib34 article-title: Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.08.025 – volume: 485 start-page: 599 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib50 article-title: Heart repair by reprogramming non-myocytes with cardiac transcription factors publication-title: Nature doi: 10.1038/nature11139 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib33 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 18 start-page: 354 year: 2016 ident: 10.1016/j.stemcr.2017.01.025_bib28 article-title: Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.12.001 – volume: 85 start-page: 733 year: 1996 ident: 10.1016/j.stemcr.2017.01.025_bib16 article-title: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice publication-title: Cell doi: 10.1016/S0092-8674(00)81239-8 – volume: 110 start-page: 5588 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib37 article-title: Reprogramming of human fibroblasts toward a cardiac fate publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1301019110 – volume: 352 start-page: 1216 year: 2016 ident: 10.1016/j.stemcr.2017.01.025_bib8 article-title: Conversion of human fibroblasts into functional cardiomyocytes by small molecules publication-title: Science doi: 10.1126/science.aaf1502 – volume: 98 start-page: 1471 year: 2006 ident: 10.1016/j.stemcr.2017.01.025_bib40 article-title: Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling publication-title: Circ. Res. doi: 10.1161/01.RES.0000226497.52052.2a – volume: 22 start-page: 244 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib11 article-title: Coordinating tissue interactions: Notch signaling in cardiac development and disease publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.01.014 – volume: 19 start-page: 2853 year: 1999 ident: 10.1016/j.stemcr.2017.01.025_bib55 article-title: Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C publication-title: Mol. Cell Biol. doi: 10.1128/MCB.19.4.2853 – volume: 29 start-page: 618 year: 2011 ident: 10.1016/j.stemcr.2017.01.025_bib14 article-title: Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance publication-title: Stem Cells doi: 10.1002/stem.605 – volume: 112 start-page: 11864 year: 2015 ident: 10.1016/j.stemcr.2017.01.025_bib57 article-title: Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1516237112 – volume: 34 start-page: 267 year: 2003 ident: 10.1016/j.stemcr.2017.01.025_bib36 article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat. Genet. doi: 10.1038/ng1180 – volume: 9 start-page: e109588 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib32 article-title: Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells publication-title: PLoS One doi: 10.1371/journal.pone.0109588 – volume: 100 start-page: 105 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib20 article-title: Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt167 – volume: 341 start-page: 320 year: 2006 ident: 10.1016/j.stemcr.2017.01.025_bib29 article-title: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.12.182 – volume: 115 start-page: 567 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib35 article-title: Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.303831 – volume: 30 start-page: 923 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib31 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 138 start-page: 3593 year: 2011 ident: 10.1016/j.stemcr.2017.01.025_bib3 article-title: Notch signaling: simplicity in design, versatility in function publication-title: Development doi: 10.1242/dev.063610 – volume: 485 start-page: 593 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib43 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Nature doi: 10.1038/nature11044 – volume: 102 start-page: 15545 year: 2005 ident: 10.1016/j.stemcr.2017.01.025_bib51 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 18 start-page: 145 year: 2016 ident: 10.1016/j.stemcr.2017.01.025_bib4 article-title: Direct cellular reprogramming for cardiac repair and regeneration publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.446 – volume: 26 start-page: 2782 year: 2008 ident: 10.1016/j.stemcr.2017.01.025_bib24 article-title: Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation publication-title: Stem Cells doi: 10.1634/stemcells.2007-1053 – volume: 25 start-page: 7069 year: 2005 ident: 10.1016/j.stemcr.2017.01.025_bib44 article-title: Transcriptional networks in the liver: hepatocyte nuclear factor 6 function is largely independent of Foxa2 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.16.7069-7077.2005 – volume: 9 start-page: e89678 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib23 article-title: Inhibition of TGFbeta signaling increases direct conversion of fibroblasts to induced cardiomyocytes publication-title: PLoS One doi: 10.1371/journal.pone.0089678 – volume: 181 start-page: 1099 year: 2012 ident: 10.1016/j.stemcr.2017.01.025_bib52 article-title: The alarmin IL-33 is a notch target in quiescent endothelial cells publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.06.003 – volume: 16 start-page: 3138 year: 2016 ident: 10.1016/j.stemcr.2017.01.025_bib48 article-title: Reprogramming by de-bookmarking the somatic transcriptional program through targeting of BET bromodomains publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.060 – volume: 6 start-page: 951 year: 2014 ident: 10.1016/j.stemcr.2017.01.025_bib54 article-title: Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.01.038 – volume: 11 start-page: e0152025 year: 2016 ident: 10.1016/j.stemcr.2017.01.025_bib12 article-title: Notch signaling activates stem cell properties of muller glia through transcriptional regulation and Skp2-mediated degradation of p27Kip1 publication-title: PLoS One doi: 10.1371/journal.pone.0152025 – volume: 8 start-page: e63577 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib10 article-title: Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming publication-title: PLoS One doi: 10.1371/journal.pone.0063577 – volume: 15 start-page: 1244 year: 2013 ident: 10.1016/j.stemcr.2017.01.025_bib7 article-title: Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq publication-title: Nat. Cell Biol. doi: 10.1038/ncb2835 – reference: 22575762 - J Mol Cell Cardiol. 2012 Sep;53(3):323-32 – reference: 27011052 - PLoS One. 2016 Mar 24;11(3):e0152025 – reference: 16055718 - Mol Cell Biol. 2005 Aug;25(16):7069-77 – reference: 22868267 - Nat Rev Genet. 2012 Sep;13(9):654-66 – reference: 11396441 - N Engl J Med. 2001 Jun 7;344(23):1750-7 – reference: 22660318 - Nature. 2012 May 13;485(7400):599-604 – reference: 22522929 - Nature. 2012 May 31;485(7400):593-8 – reference: 23861494 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72 – reference: 25313563 - PLoS One. 2014 Oct 14;9(10):e109588 – reference: 23794713 - Cardiovasc Res. 2013 Oct 1;100(1):105-13 – reference: 22397947 - Trends Cell Biol. 2012 May;22(5):257-65 – reference: 23995732 - Nat Cell Biol. 2013 Oct;15(10 ):1244-52 – reference: 18820686 - Nat Biotechnol. 2008 Oct;26(10):1169-78 – reference: 22312429 - PLoS One. 2012;7(2):e30619 – reference: 23591016 - J Mol Cell Cardiol. 2013 Jul;60:97-106 – reference: 16690879 - Circ Res. 2006 Jun 23;98(12):1471-8 – reference: 23989721 - Circ Res. 2013 Aug 30;113(6):810-34 – reference: 22465038 - J Mol Cell Cardiol. 2012 Jun;52(6):1226-32 – reference: 26816378 - Science. 2016 Jan 15;351(6270):271-5 – reference: 21308862 - Stem Cells. 2011 Apr;29(4):618-28 – reference: 20036631 - Cell Stem Cell. 2010 Jan 8;6(1):71-9 – reference: 26635186 - Eur J Heart Fail. 2016 Feb;18(2):145-56 – reference: 20691899 - Cell. 2010 Aug 6;142(3):375-86 – reference: 24227677 - Bioinformatics. 2014 Apr 1;30(7):923-30 – reference: 22340493 - Dev Cell. 2012 Feb 14;22(2):244-54 – reference: 24952596 - Nat Chem Biol. 2014 Aug;10(8):632-9 – reference: 26877223 - Cell Stem Cell. 2016 Mar 3;18(3):354-67 – reference: 23704920 - PLoS One. 2013 May 21;8(5):e63577 – reference: 25047165 - Circ Res. 2014 Aug 29;115(6):567-80 – reference: 25858064 - Circ Res. 2015 Apr 10;116(8):1378-91 – reference: 22539765 - Circ Res. 2012 May 25;110(11):1465-73 – reference: 24561253 - Cell Rep. 2014 Mar 13;6(5):951-60 – reference: 8646781 - Cell. 1996 May 31;85(5):733-44 – reference: 10082551 - Mol Cell Biol. 1999 Apr;19(4):2853-62 – reference: 19765992 - Curr Biol. 2009 Nov 3;19(20):1718-23 – reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73 – reference: 18757302 - Stem Cells. 2008 Nov;26(11):2782-90 – reference: 24586958 - PLoS One. 2014 Feb 26;9(2):e89678 – reference: 27653680 - Cell Rep. 2016 Sep 20;16(12):3138-45 – reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 – reference: 22809957 - Am J Pathol. 2012 Sep;181(3):1099-111 – reference: 27127239 - Science. 2016 Jun 3;352(6290):1216-20 – reference: 17967789 - Circ Res. 2007 Nov 26;101(11):1139-45 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 16510869 - Genes Dev. 2006 Mar 15;20(6):675-88 – reference: 15998794 - J Exp Med. 2005 Jul 4;202(1):157-68 – reference: 23487791 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5588-93 – reference: 19342590 - Science. 2009 Apr 3;324(5923):98-102 – reference: 25344074 - Development. 2014 Nov;141(22):4267-78 – reference: 23213213 - Proc Natl Acad Sci U S A. 2012 Dec 18;109 (51):20853-8 – reference: 26354121 - Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11864-9 – reference: 24970336 - Eur Heart J. 2014 Aug 21;35(32):2140-5 – reference: 21828089 - Development. 2011 Sep;138(17):3593-612 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 16413496 - Biochem Biophys Res Commun. 2006 Mar 10;341(2):320-5 – reference: 17560996 - Exp Cell Res. 2007 Aug 15;313(14):3141-52 – reference: 26341688 - Cancer Lett. 2015 Dec 1;369(1):20-7 |
| SSID | ssj0000991241 |
| Score | 2.4287891 |
| Snippet | Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 548 |
| SubjectTerms | Animals Calcium Signaling - drug effects cardiomyocytes Cell Differentiation cell-fate conversion Cellular Reprogramming - drug effects Cellular Reprogramming - genetics DAPT Diamines - pharmacology direct cellular reprogramming Electrophysiological Phenomena - drug effects Gene Expression Profiling Gene Expression Regulation, Developmental heart regeneration MEF2 Transcription Factors - metabolism Mice Myocytes, Cardiac - cytology Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Notch signaling Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Receptors, Notch - metabolism regenerative medicine Sarcomeres - drug effects Sarcomeres - metabolism Signal Transduction Thiazoles - pharmacology Transcriptional Activation Transcriptome transdifferentiation |
| Title | Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity |
| URI | https://dx.doi.org/10.1016/j.stemcr.2017.01.025 https://www.ncbi.nlm.nih.gov/pubmed/28262548 https://www.proquest.com/docview/1874786557 https://pubmed.ncbi.nlm.nih.gov/PMC5355682 https://doaj.org/article/25ad5b034da34e2fb6a9cf7c556e5f5a |
| Volume | 8 |
| WOSCitedRecordID | wos000397103900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-6711 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0000991241 issn: 2213-6711 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-6711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000991241 issn: 2213-6711 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgBRIXxJvyWBmJq0Uc27F9hKoVSGzFAaQekCzHD7UrNkXbLtJe9rfv2E6qBg69cMkhceKMZ-z5Jhl_g9B7V1HfCMsJuDdBOOOaWG4VURHAtVLcsjbzzH6Vi4VaLvW3g1JfKSes0AOXgftQC-tFWzHuLeOhjm1jtYvSCdEEEUWGRoB6DoKp84J7wHGlaKuuKSONpHTYN5eTuxJJskt0oFQW1k4x8kuZvn_knv6Fn39nUR64pfkj9LDHk_hjkeMxuhO6J-h-qTB5_RT9XGxALfhLt1q3OTkLz7pVUvQWT7NtOAwQvORoXYAXw-01NE5IMn1DwGezeT3F2Z8Nq0vqzJWSE8_Qj_ns-_Qz6QsqECe02BFw9a2XnlWOCl8520ThePA61tIHrduolVc2iCBBs42Kqg4U1j-pfQTUxwJ7jk66TRdeIgyBlVLCUsul5bxVVgrnoxJNC_G2DnKC2DCcxvVs46noxS8zpJWdm6IEk5RgKmpACRNE9nf9LmwbR9p_Sprat01c2fkEWJDpLcgcs6AJkoOeTQ87CpyAR62PdP9uMAsDszL9arFd2FxtTap0KNOeXxiIF8VM9i8JQS4EnVxBvyMDGkkxvtKtV5n5W7BEGFe_-h9iv0YPkigpn47yN-hkd3kV3qJ77s9uvb08RXflUp3mSQXHs5vZLZAGKLk |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Notch+Inhibition+Enhances+Cardiac+Reprogramming+by+Increasing+MEF2C+Transcriptional+Activity&rft.jtitle=Stem+cell+reports&rft.au=Abad%2C+Maria&rft.au=Hashimoto%2C+Hisayuki&rft.au=Zhou%2C+Huanyu&rft.au=Morales%2C+Maria+Gabriela&rft.date=2017-03-14&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=8&rft.issue=3&rft.spage=548&rft.epage=560&rft_id=info:doi/10.1016%2Fj.stemcr.2017.01.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stemcr_2017_01_025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon |