Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing
Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good...
Uloženo v:
| Vydáno v: | Advanced science Ročník 8; číslo 8; s. 2003627 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
John Wiley & Sons, Inc
01.04.2021
John Wiley and Sons Inc Wiley |
| Témata: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21–51 kPa), large tensile strain (899–1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long‐lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long‐lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing.
A new class of highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressing is designed and prepared by synergizing biocompatible polyacrylamide hydrogel scaffold, biological adhesive polydopamine, and antibacterial polymer brush grafted from bacterial cellulose nanofibers. |
|---|---|
| AbstractList | Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21–51 kPa), large tensile strain (899–1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long‐lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long‐lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing.
A new class of highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressing is designed and prepared by synergizing biocompatible polyacrylamide hydrogel scaffold, biological adhesive polydopamine, and antibacterial polymer brush grafted from bacterial cellulose nanofibers. Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21–51 kPa), large tensile strain (899–1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long‐lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long‐lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing. A new class of highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressing is designed and prepared by synergizing biocompatible polyacrylamide hydrogel scaffold, biological adhesive polydopamine, and antibacterial polymer brush grafted from bacterial cellulose nanofibers. Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21-51 kPa), large tensile strain (899-1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long-lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long-lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing. Abstract Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21–51 kPa), large tensile strain (899–1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long‐lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long‐lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing. Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21–51 kPa), large tensile strain (899–1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long‐lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long‐lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing. Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21-51 kPa), large tensile strain (899-1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long-lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long-lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing.Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21-51 kPa), large tensile strain (899-1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long-lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long-lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing. |
| Author | Huang, Rongkang He, Wenyi Yang, Zifeng Zheng, Bingna Wang, Hui Wang, Huaiming Li, Chuangkun Wei, Yingqi Du, Yang Wu, Dingcai Guo, Wentai |
| AuthorAffiliation | 2 PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat‐sen University Guangzhou 510275 P. R. China 1 Department of Colorectal Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University, Guangdong Institute of Gastroenterology Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases Guangzhou 510655 P. R. China |
| AuthorAffiliation_xml | – name: 2 PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat‐sen University Guangzhou 510275 P. R. China – name: 1 Department of Colorectal Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University, Guangdong Institute of Gastroenterology Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases Guangzhou 510655 P. R. China |
| Author_xml | – sequence: 1 givenname: Zifeng surname: Yang fullname: Yang, Zifeng organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases – sequence: 2 givenname: Rongkang surname: Huang fullname: Huang, Rongkang organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases – sequence: 3 givenname: Bingna surname: Zheng fullname: Zheng, Bingna email: zhengbn3@mail.sysu.edu.cn organization: Sun Yat‐sen University – sequence: 4 givenname: Wentai surname: Guo fullname: Guo, Wentai organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases – sequence: 5 givenname: Chuangkun surname: Li fullname: Li, Chuangkun organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases – sequence: 6 givenname: Wenyi surname: He fullname: He, Wenyi organization: Sun Yat‐sen University – sequence: 7 givenname: Yingqi surname: Wei fullname: Wei, Yingqi organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases – sequence: 8 givenname: Yang surname: Du fullname: Du, Yang organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases – sequence: 9 givenname: Huaiming surname: Wang fullname: Wang, Huaiming organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases – sequence: 10 givenname: Dingcai orcidid: 0000-0003-1396-0097 surname: Wu fullname: Wu, Dingcai email: wudc@mail.sysu.edu.cn organization: Sun Yat‐sen University – sequence: 11 givenname: Hui surname: Wang fullname: Wang, Hui email: wang89@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33898178$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vGyEQhldVquajufZYrdRLD7ULLMvCpZKbtHWkSD2kH0cE7LDGwosDu67874Pj1EpyyYlh5pmXGWZOi6M-9FAU7zCaYoTIZ9Vu0pQgglDFSPOqOCFY8EnFKT16ZB8X5yktEUK4rhqK-ZviuKq44LjhJ4WZu27ht-XNEGEwC6U9fCpn7QKS22TrqwsmrNZqcPcB1bflrM8XZQaITvlyvm1j6MCXlxFScn2XShti-TeMGZ2D8tn1tnhtlU9w_nCeFb-_f_t1MZ9c__xxdTG7npha1GJiEBMMOFLCCkyRwDVGmlGCKAcMllENWuRmmSatIZZjRYSxjeW1tS1tUHVWXO1126CWch3dSsWtDMrJe0eInVRxcMaDbLVCTOma27amjaYKhMVcY0ox1gSTrPVlr7Ue9QpaA_0QlX8i-jTSu4XswkZyxHDFWRb4-CAQw-0IaZArlwx4r3oIY5KkxrypGsZFRj88Q5dhjH3-qh3FCMKc40y9f1zRoZT_s8zAdA-YGFKKYA8IRnK3L3K3L_KwLzmBPkswbsijDruOnH8x7Z_zsH3hETm7_HNDKiSqOwyv04M |
| CitedBy_id | crossref_primary_10_1016_j_carbpol_2025_123257 crossref_primary_10_1002_marc_202200182 crossref_primary_10_1016_j_jinorgbio_2024_112739 crossref_primary_10_1186_s12951_022_01614_3 crossref_primary_10_1002_adfm_202105718 crossref_primary_10_3389_fbioe_2022_813805 crossref_primary_10_1002_adfm_202414294 crossref_primary_10_1016_j_ijbiomac_2024_136293 crossref_primary_10_1021_acs_langmuir_5c02382 crossref_primary_10_3389_fbioe_2023_1117944 crossref_primary_10_1002_adhm_202301733 crossref_primary_10_4142_jvs_21208 crossref_primary_10_1016_j_carbpol_2024_122209 crossref_primary_10_1016_j_foodhyd_2025_111430 crossref_primary_10_1080_10408398_2023_2168619 crossref_primary_10_1002_smll_202105988 crossref_primary_10_1016_j_jddst_2025_107308 crossref_primary_10_3390_jfb14090473 crossref_primary_10_1093_rb_rbad081 crossref_primary_10_1016_j_compscitech_2022_109793 crossref_primary_10_1002_advs_202401301 crossref_primary_10_1002_admi_202200779 crossref_primary_10_1016_j_ijbiomac_2024_129988 crossref_primary_10_1016_j_carbpol_2023_120791 crossref_primary_10_3390_ma17174199 crossref_primary_10_1016_j_bioadv_2025_214176 crossref_primary_10_1002_adhm_202400707 crossref_primary_10_1016_j_eurpolymj_2022_111548 crossref_primary_10_1002_adbi_202300056 crossref_primary_10_1016_j_procbio_2022_10_015 crossref_primary_10_1038_s41392_024_01852_x crossref_primary_10_1093_rb_rbaf031 crossref_primary_10_1002_adhm_202301865 crossref_primary_10_1016_j_ijbiomac_2024_135194 crossref_primary_10_1002_adfm_202501708 crossref_primary_10_1007_s12274_022_5356_2 crossref_primary_10_1016_j_ijbiomac_2025_140712 crossref_primary_10_1016_j_matdes_2022_111284 crossref_primary_10_1002_adhm_202500403 crossref_primary_10_1016_j_jconrel_2024_03_002 crossref_primary_10_1002_adhm_202303802 crossref_primary_10_1016_j_eurpolymj_2024_113280 crossref_primary_10_1002_adfm_202300707 crossref_primary_10_1016_j_ijbiomac_2023_128962 crossref_primary_10_3390_gels8080476 crossref_primary_10_1016_j_ijbiomac_2024_133558 crossref_primary_10_1038_s41467_024_55245_3 crossref_primary_10_1002_advs_202207407 crossref_primary_10_3390_ijms221910563 crossref_primary_10_1002_adhm_202303342 crossref_primary_10_1016_j_matdes_2023_111915 crossref_primary_10_1039_D1MH00878A crossref_primary_10_1002_adfm_202302793 crossref_primary_10_1002_SMMD_20220033 crossref_primary_10_1016_j_ijbiomac_2024_130172 crossref_primary_10_1021_acs_jafc_4c05903 crossref_primary_10_1016_j_actbio_2021_11_043 crossref_primary_10_1016_j_compositesb_2022_110098 crossref_primary_10_1016_j_cej_2022_140553 crossref_primary_10_1016_j_ijbiomac_2025_144844 crossref_primary_10_1016_j_ijbiomac_2025_140125 crossref_primary_10_4142_jvs_2022_23_e1 crossref_primary_10_1016_j_actbio_2025_07_065 crossref_primary_10_1016_j_ijbiomac_2023_126793 crossref_primary_10_1039_D2BM00602B crossref_primary_10_1002_adhm_202400841 crossref_primary_10_1016_j_jconrel_2025_02_056 crossref_primary_10_1016_j_ijbiomac_2023_125469 crossref_primary_10_1016_j_ijbiomac_2024_135602 crossref_primary_10_1016_j_cej_2025_159545 crossref_primary_10_1016_j_mtadv_2025_100611 crossref_primary_10_3390_molecules28031339 crossref_primary_10_3390_ijms23179987 crossref_primary_10_1016_j_biomaterials_2023_122240 crossref_primary_10_1016_j_ijbiomac_2024_131243 crossref_primary_10_1186_s12951_025_03603_8 crossref_primary_10_1002_adtp_202100075 crossref_primary_10_1002_adhm_202304676 crossref_primary_10_1016_j_ijbiomac_2021_09_019 crossref_primary_10_1016_j_ijbiomac_2023_129033 crossref_primary_10_1016_j_ijbiomac_2025_147209 crossref_primary_10_1016_j_cej_2023_148064 crossref_primary_10_1002_marc_202400173 crossref_primary_10_1039_D2BM00183G crossref_primary_10_1002_smll_202201620 crossref_primary_10_1016_j_matdes_2023_112624 crossref_primary_10_1016_j_bioactmat_2023_06_007 crossref_primary_10_1016_j_foodhyd_2025_111505 crossref_primary_10_1016_j_talanta_2025_127637 crossref_primary_10_1016_j_eurpolymj_2022_111617 crossref_primary_10_1186_s12951_024_02621_2 crossref_primary_10_1002_smsc_202300138 crossref_primary_10_1016_j_carbpol_2022_119868 crossref_primary_10_26599_NBE_2024_9290055 crossref_primary_10_1016_j_ijbiomac_2024_137458 crossref_primary_10_1016_j_burns_2025_107562 crossref_primary_10_1016_j_clay_2024_107508 crossref_primary_10_1186_s12893_025_03058_6 crossref_primary_10_1002_adhm_202303157 crossref_primary_10_1002_adfm_202106572 crossref_primary_10_1016_j_eurpolymj_2024_113196 crossref_primary_10_1002_app_54499 crossref_primary_10_3390_nano12101629 crossref_primary_10_1002_slct_202402073 crossref_primary_10_1039_D4BM01467G crossref_primary_10_1080_10667857_2025_2459602 crossref_primary_10_1016_j_progpolymsci_2023_101740 crossref_primary_10_1016_j_cej_2023_142066 crossref_primary_10_1016_j_ijbiomac_2023_128636 crossref_primary_10_1016_j_matdes_2024_112854 crossref_primary_10_3390_ijms24087193 crossref_primary_10_1016_j_carbpol_2023_121687 crossref_primary_10_1016_j_colsurfb_2024_114095 crossref_primary_10_1088_1361_6463_ac3c73 crossref_primary_10_1021_acsapm_5c00005 crossref_primary_10_3389_fbioe_2022_845735 crossref_primary_10_1016_j_cej_2024_156871 crossref_primary_10_1021_acsapm_5c00124 crossref_primary_10_1002_admt_202400719 crossref_primary_10_3390_coatings13111907 crossref_primary_10_1007_s44174_024_00265_2 crossref_primary_10_3390_gels10080495 crossref_primary_10_1016_j_bioadv_2023_213395 crossref_primary_10_1016_j_colsurfa_2025_136679 crossref_primary_10_1039_D2RA07622E crossref_primary_10_1039_D5MH00381D crossref_primary_10_1002_nano_70029 crossref_primary_10_1002_bmm2_12055 crossref_primary_10_1016_j_bioactmat_2022_01_038 crossref_primary_10_1016_j_matdes_2025_114655 crossref_primary_10_1016_j_eurpolymj_2023_112372 crossref_primary_10_1177_19373341251375073 crossref_primary_10_1016_j_cej_2023_142062 crossref_primary_10_1021_acs_biomac_5c00374 crossref_primary_10_1002_advs_202104128 crossref_primary_10_1002_adfm_202510312 crossref_primary_10_1016_j_colsurfa_2022_130368 crossref_primary_10_1002_adbi_202400358 crossref_primary_10_1016_j_colsurfa_2023_131656 crossref_primary_10_1016_j_carbpol_2022_120042 crossref_primary_10_1016_j_eurpolymj_2023_112003 crossref_primary_10_1021_acsapm_5c01344 crossref_primary_10_1016_j_ijbiomac_2022_12_215 crossref_primary_10_1016_j_cej_2022_139368 crossref_primary_10_1002_mabi_202200370 crossref_primary_10_1080_00914037_2023_2243365 crossref_primary_10_1021_acsami_5c14731 crossref_primary_10_1016_j_ijbiomac_2024_135263 crossref_primary_10_1016_j_carbpol_2023_121537 crossref_primary_10_1016_j_polymer_2025_128899 crossref_primary_10_1002_adhm_202300669 crossref_primary_10_1016_j_polymer_2021_124319 crossref_primary_10_1002_adma_202309952 crossref_primary_10_1007_s12221_024_00635_z crossref_primary_10_1016_j_ijbiomac_2025_144367 crossref_primary_10_1007_s13233_025_00449_9 crossref_primary_10_1007_s40843_024_3262_y crossref_primary_10_1093_burnst_tkae084 crossref_primary_10_1016_j_compositesb_2022_109921 crossref_primary_10_1002_advs_202206981 crossref_primary_10_1016_j_cej_2022_139491 crossref_primary_10_1039_D2BM01337A crossref_primary_10_3390_ijms242216286 crossref_primary_10_1002_adfm_202315382 crossref_primary_10_1002_mabi_202300333 crossref_primary_10_1002_advs_202506466 crossref_primary_10_1002_ddr_70102 crossref_primary_10_1016_j_carbpol_2024_122014 crossref_primary_10_1016_j_ijbiomac_2024_133075 crossref_primary_10_1016_j_ijbiomac_2024_133194 crossref_primary_10_1002_adfm_202203988 crossref_primary_10_1016_j_colsurfb_2023_113274 crossref_primary_10_1021_acsami_5c08728 crossref_primary_10_1016_j_ijbiomac_2025_145900 crossref_primary_10_1016_j_jddst_2023_104961 crossref_primary_10_1039_D3NR01624B crossref_primary_10_1002_chem_202101472 crossref_primary_10_1002_smmd_70016 crossref_primary_10_1016_j_ijbiomac_2025_141782 crossref_primary_10_1088_1361_665X_ad8f7e crossref_primary_10_7124_bc_000A91 crossref_primary_10_1002_adhm_202201053 crossref_primary_10_1177_00405175241300344 crossref_primary_10_3389_fbioe_2023_1173247 crossref_primary_10_1002_adfm_202506431 crossref_primary_10_1016_j_carpta_2025_100796 crossref_primary_10_3389_fchem_2021_839055 crossref_primary_10_1007_s40843_022_2145_3 crossref_primary_10_1016_j_matlet_2023_135414 crossref_primary_10_1016_j_bioactmat_2022_04_032 crossref_primary_10_3389_fphar_2025_1506499 crossref_primary_10_1021_acsbiomaterials_5c00244 crossref_primary_10_1002_adtp_202300035 crossref_primary_10_3390_antibiotics13090889 crossref_primary_10_3390_gels11060380 crossref_primary_10_1088_2053_1591_ac25b8 crossref_primary_10_1016_j_colsurfb_2025_114616 crossref_primary_10_3390_gels11030179 crossref_primary_10_1002_adma_202506113 crossref_primary_10_1002_bmm2_12026 crossref_primary_10_1039_D1MH01871J crossref_primary_10_1016_j_indcrop_2022_114945 crossref_primary_10_1080_09205063_2025_2534688 crossref_primary_10_1002_sus2_70026 crossref_primary_10_1016_j_compositesb_2022_110471 crossref_primary_10_1002_slct_202403121 crossref_primary_10_1002_advs_202306784 crossref_primary_10_1016_j_cej_2023_143362 crossref_primary_10_1016_j_ijbiomac_2022_05_165 crossref_primary_10_1016_j_mtbio_2025_101477 crossref_primary_10_1021_acsami_5c07422 crossref_primary_10_1002_adhm_202203241 crossref_primary_10_1002_adma_202309508 crossref_primary_10_1186_s40580_024_00447_0 crossref_primary_10_1016_j_matdes_2022_110598 crossref_primary_10_1002_marc_202400345 crossref_primary_10_1039_D5MH01562F crossref_primary_10_1039_D2BM00433J crossref_primary_10_1002_mabi_202300396 crossref_primary_10_1016_j_polymer_2024_127207 crossref_primary_10_1016_j_cej_2023_141732 crossref_primary_10_1002_adhm_202401750 crossref_primary_10_1016_j_ijbiomac_2024_133843 crossref_primary_10_1016_j_compositesb_2022_110119 crossref_primary_10_1038_s41528_025_00421_8 crossref_primary_10_1002_adfm_202211182 crossref_primary_10_1002_mame_202400150 crossref_primary_10_1002_pat_5927 crossref_primary_10_1016_j_colsurfb_2022_113119 crossref_primary_10_1002_adfm_202103391 crossref_primary_10_1002_smll_202306553 crossref_primary_10_1007_s13233_022_0001_4 crossref_primary_10_1016_j_mtcomm_2023_107870 crossref_primary_10_1002_app_55955 crossref_primary_10_1016_j_jcis_2022_03_040 crossref_primary_10_3390_pharmaceutics16080990 crossref_primary_10_1002_smll_202101518 crossref_primary_10_1007_s10570_022_04981_0 crossref_primary_10_1007_s12274_022_5129_1 crossref_primary_10_1016_j_ijbiomac_2023_126386 crossref_primary_10_1038_s41928_023_01091_y crossref_primary_10_1016_j_ijbiomac_2023_123195 crossref_primary_10_1021_acsapm_5c01383 crossref_primary_10_1631_bdm_2400375 crossref_primary_10_1016_j_eurpolymj_2025_114025 crossref_primary_10_1016_j_cej_2024_155295 crossref_primary_10_1016_j_jmps_2024_105996 crossref_primary_10_1016_j_ijbiomac_2024_137752 crossref_primary_10_1002_admi_202102369 crossref_primary_10_3389_fbioe_2023_1222088 crossref_primary_10_1016_j_carbpol_2024_122748 crossref_primary_10_1016_j_carbpol_2021_118718 crossref_primary_10_1016_j_compositesb_2022_110010 crossref_primary_10_1039_D2SC04242H crossref_primary_10_1080_09205063_2025_2526292 crossref_primary_10_1007_s10600_024_04412_5 crossref_primary_10_1016_j_ijpx_2025_100330 crossref_primary_10_1016_j_actbio_2022_11_002 crossref_primary_10_1016_j_apmt_2025_102704 crossref_primary_10_3390_coatings12040479 crossref_primary_10_1002_pi_70022 crossref_primary_10_1007_s10570_024_06166_3 crossref_primary_10_1016_j_ijbiomac_2023_127248 crossref_primary_10_1016_j_ijbiomac_2022_04_026 crossref_primary_10_1002_advs_202207352 crossref_primary_10_1016_j_ijbiomac_2023_125504 crossref_primary_10_3390_bioengineering10121378 crossref_primary_10_1002_mabi_202200442 crossref_primary_10_1016_j_compositesb_2023_110951 crossref_primary_10_1016_j_mtcomm_2025_113560 crossref_primary_10_1021_acsapm_5c01710 crossref_primary_10_1002_smll_202304119 crossref_primary_10_2147_IJN_S448282 crossref_primary_10_1016_j_cej_2024_154994 crossref_primary_10_1080_10717544_2021_1979126 crossref_primary_10_1039_D1BM01185E crossref_primary_10_3389_fbioe_2025_1602259 crossref_primary_10_1016_j_actbio_2023_05_025 crossref_primary_10_1007_s10853_021_06705_4 crossref_primary_10_1016_j_ijbiomac_2024_136536 crossref_primary_10_1002_adhm_202502205 crossref_primary_10_3390_gels8080524 crossref_primary_10_1002_admt_202201527 crossref_primary_10_1002_adma_202300394 crossref_primary_10_1002_mabi_202200514 crossref_primary_10_1016_j_matdes_2022_110687 crossref_primary_10_1016_j_ijbiomac_2024_131637 crossref_primary_10_1002_mabi_202300520 crossref_primary_10_1016_j_ijbiomac_2022_12_035 crossref_primary_10_1016_j_jtv_2024_12_014 crossref_primary_10_1002_adfm_202416398 crossref_primary_10_1088_2752_5724_ac446b crossref_primary_10_3390_polym17152123 crossref_primary_10_1016_j_jcis_2021_10_147 crossref_primary_10_1016_j_colsurfa_2025_138230 crossref_primary_10_1002_adhm_202300045 crossref_primary_10_1016_j_mtbio_2025_102247 crossref_primary_10_1021_acsami_5c07229 crossref_primary_10_1038_s41467_021_27529_5 crossref_primary_10_1039_D4BM00394B crossref_primary_10_1007_s10853_024_10240_3 crossref_primary_10_1002_admi_202101131 crossref_primary_10_1002_adhm_202500698 crossref_primary_10_1002_smtd_202201132 crossref_primary_10_1002_adfm_202209438 crossref_primary_10_70401_bmeh_2025_0003 crossref_primary_10_1038_s41467_023_41610_1 crossref_primary_10_1002_smll_202303414 crossref_primary_10_3390_pharmaceutics17030279 crossref_primary_10_1016_j_biopha_2025_118498 crossref_primary_10_1016_j_matdes_2023_111705 crossref_primary_10_1002_advs_202404456 crossref_primary_10_1016_j_compositesb_2021_109569 crossref_primary_10_3390_gels9050380 crossref_primary_10_1002_adfm_202109687 crossref_primary_10_1016_j_cej_2025_164834 crossref_primary_10_1016_j_ijbiomac_2024_132157 crossref_primary_10_1016_j_cej_2023_144649 crossref_primary_10_3390_gels10020088 crossref_primary_10_3390_ijms25126610 crossref_primary_10_1016_j_ijbiomac_2024_139356 crossref_primary_10_1002_adhm_202303688 crossref_primary_10_1016_j_bioactmat_2025_02_001 crossref_primary_10_3389_fbioe_2024_1429771 crossref_primary_10_1016_j_actbio_2024_02_032 crossref_primary_10_1016_j_actbio_2022_07_016 crossref_primary_10_1002_adhm_202500445 crossref_primary_10_1016_j_ijbiomac_2022_01_057 crossref_primary_10_1016_j_cej_2022_134625 crossref_primary_10_1016_j_apmt_2024_102457 crossref_primary_10_1016_j_colsurfb_2022_112982 crossref_primary_10_1021_acsami_4c22647 crossref_primary_10_1039_D1BM02010B crossref_primary_10_1038_s41467_023_43421_w crossref_primary_10_1039_D4NR02343A crossref_primary_10_1016_j_jcis_2024_05_064 crossref_primary_10_1093_burnst_tkad040 crossref_primary_10_3389_fbioe_2024_1431949 crossref_primary_10_1039_D3MH00174A crossref_primary_10_1016_j_eurpolymj_2022_111119 crossref_primary_10_1007_s42765_022_00180_5 crossref_primary_10_1021_acssuschemeng_5c02888 crossref_primary_10_1016_j_pmatsci_2024_101249 crossref_primary_10_1039_D2NR02051C crossref_primary_10_1016_j_bioadv_2024_213765 crossref_primary_10_1002_adhm_202303537 crossref_primary_10_1016_j_carbpol_2023_120723 crossref_primary_10_1002_marc_202300325 crossref_primary_10_1016_j_ijbiomac_2025_145618 crossref_primary_10_1016_j_bioactmat_2022_07_030 crossref_primary_10_1016_j_ijbiomac_2025_145615 crossref_primary_10_1002_marc_202401078 crossref_primary_10_1016_j_ijbiomac_2022_01_046 crossref_primary_10_1016_j_desal_2025_118639 crossref_primary_10_1016_j_matdes_2025_113930 crossref_primary_10_1002_pi_6507 crossref_primary_10_1016_j_ijbiomac_2025_140961 crossref_primary_10_1016_j_mtbio_2025_101810 crossref_primary_10_1039_D1BM00911G crossref_primary_10_1016_j_ijbiomac_2023_128499 crossref_primary_10_1016_j_eurpolymj_2022_111241 crossref_primary_10_1016_j_mtcomm_2024_111165 crossref_primary_10_1371_journal_pone_0326574 crossref_primary_10_1016_j_compositesb_2021_109465 crossref_primary_10_1002_mame_202200101 crossref_primary_10_1016_j_compositesb_2022_109762 crossref_primary_10_1002_advs_202206585 crossref_primary_10_1002_adhm_202502097 crossref_primary_10_1016_j_matdes_2023_111604 crossref_primary_10_3389_fcell_2024_1499766 crossref_primary_10_1093_rb_rbaf007 crossref_primary_10_1016_j_cej_2022_138201 crossref_primary_10_1002_marc_202300683 crossref_primary_10_1016_j_cej_2023_141905 crossref_primary_10_1002_smll_202407996 crossref_primary_10_1016_j_eurpolymj_2024_112809 crossref_primary_10_2147_IJN_S407044 crossref_primary_10_1016_j_bioactmat_2025_03_026 crossref_primary_10_1016_j_jconrel_2021_11_027 crossref_primary_10_3390_biomimetics10040206 crossref_primary_10_1016_j_cej_2023_145394 |
| Cites_doi | 10.1021/bm400432b 10.1146/annurev-matsci-062910-100429 10.1039/C9NR03095F 10.1007/s10570-018-2052-4 10.32607/20758251-2012-4-1-78-81 10.1002/anie.201604827 10.1021/acs.langmuir.6b00796 10.1002/smll.201601916 10.1021/nn800596w 10.1016/j.biomaterials.2017.01.011 10.1039/C9NR09780E 10.1021/acsami.8b05314 10.1021/acsami.8b10064 10.1002/adfm.201801386 10.1038/s41467-019-09351-2 10.1002/adfm.201901474 10.1007/s10924-018-1213-8 10.1038/s41467-018-04998-9 10.1007/s10856-018-6113-x 10.1021/acsami.9b08799 10.1039/C9RA03903A 10.1002/adfm.201805964 10.1177/2280800018757337 10.1021/acs.nanolett.7b04183 10.1039/C9TB02863C 10.1016/j.carbpol.2012.03.093 10.1016/j.carbpol.2019.05.080 10.1002/adhm.201901502 10.1073/pnas.1804262115 10.1016/j.memsci.2012.06.013 10.1016/j.mehy.2013.11.038 10.1016/j.biomaterials.2003.09.084 10.1016/j.ijbiomac.2017.05.171 10.1002/adma.201804187 10.1016/0021-9797(85)90010-4 10.1021/bm9006503 10.2174/1381612825666191011103851 10.1016/j.msec.2019.03.073 10.1021/acsami.8b20380 10.1021/acsnano.6b05318 10.1038/ncomms9663 10.1016/j.ijbiomac.2017.02.017 10.1016/j.biomaterials.2018.08.044 10.1021/acsnano.9b04436 10.1021/acsami.6b05778 10.1038/am.2017.33 10.1016/j.biomaterials.2009.04.018 10.1021/bm4017308 10.1021/ma5015148 10.1038/s41467-017-00365-2 10.1002/adma.201704235 10.1056/NEJMc1002218 10.1038/s41586-019-1710-5 10.1002/smll.201801236 10.1021/acsami.8b06475 10.1016/j.jtice.2018.05.028 10.1021/es802732z 10.1016/j.biomaterials.2014.02.021 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202003627 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_dba06ab58fd547b4ae9f18b14411b212 PMC8061386 33898178 10_1002_advs_202003627 ADVS2309 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Animal Ethics Committee of South China Agricultural University – fundername: Laboratory Animal Care and Use Guidelines – fundername: National Natural Science Foundation of China funderid: 51925308; U1601206; 51872336; 51703254 – fundername: Science and Technology Program of Guangzhou funderid: 202002020041 – fundername: Science and Technology Program of Guangzhou grantid: 202002020041 – fundername: ; grantid: 51925308; U1601206; 51872336; 51703254 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS ITC PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5959-c0696e80a9f914091510b642048e1ef64beb90206b2dc2f81a29cf7f85ffd4703 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 528 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625411600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:53:18 EDT 2025 Tue Nov 04 01:57:28 EST 2025 Thu Oct 02 10:54:49 EDT 2025 Sun Nov 09 07:20:18 EST 2025 Thu Apr 03 07:02:17 EDT 2025 Tue Nov 18 20:57:43 EST 2025 Sat Nov 29 07:19:13 EST 2025 Wed Jan 22 16:30:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | stretchable materials wound healing adhesive antibacterial dressings hydrogel dressings |
| Language | English |
| License | Attribution 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5959-c0696e80a9f914091510b642048e1ef64beb90206b2dc2f81a29cf7f85ffd4703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1396-0097 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202003627 |
| PMID | 33898178 |
| PQID | 2516201881 |
| PQPubID | 4365299 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dba06ab58fd547b4ae9f18b14411b212 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061386 proquest_miscellaneous_2518737689 proquest_journals_2516201881 pubmed_primary_33898178 crossref_primary_10_1002_advs_202003627 crossref_citationtrail_10_1002_advs_202003627 wiley_primary_10_1002_advs_202003627_ADVS2309 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2019 2018 2017; 29 30 11 2018; 29 2018; 183 2019; 11 2019; 10 2004 2010; 7 362 2004 2009 2012 2016; 25 30 4 8 2014; 47 2019 2018; 11 28 2014; 82 2019; 221 2018; 26 2016; 55 2018; 9 2009; 10 2013 2018 2018; 14 16 25 2018; 115 2011 2020; 41 8 2019; 25 2014; 15 2019; 575 2019; 29 2012; 417–418 2017 2019 1985 2019; 98 101 104 9 2015 2020; 6 12 2019 2020; 31 9 2009 2014; 3 35 2017; 122 2017 2012; 104 89 2018; 10 2018 2017 2016 2019 2017; 10 13 32 13 9 2018; 14 2018 2017; 18 8 2018 2009; 91 43 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 Sleet D. A. (e_1_2_7_2_1) 2004; 7 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_28_1 e_1_2_7_26_4 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_28_4 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_22_5 e_1_2_7_24_3 e_1_2_7_30_1 e_1_2_7_22_4 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 |
| References_xml | – volume: 115 start-page: 6816 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 8 start-page: 99 2148 year: 2011 2020 publication-title: Annu. Rev. Mater. Res. J. Mater. Chem. B – volume: 104 89 start-page: 97 1189 year: 2017 2012 publication-title: Int. J. Biol. Macromol. Carbohydr. Polym. – volume: 417–418 start-page: 52 year: 2012 publication-title: J. Membr. Sci. – volume: 55 start-page: 9984 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 122 start-page: 34 year: 2017 publication-title: Biomaterials – volume: 14 year: 2018 publication-title: Small – volume: 11 28 year: 2019 2018 publication-title: Nanoscale Adv. Funct. Mater. – volume: 11 start-page: 7755 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 2784 year: 2018 publication-title: Nat. Commun. – volume: 18 8 start-page: 314 333 year: 2018 2017 publication-title: Nano Lett. Nat. Commun. – volume: 10 start-page: 2809 year: 2009 publication-title: Biomacromolecules – volume: 25 30 4 8 start-page: 3023 3874 78 year: 2004 2009 2012 2016 publication-title: Biomaterials Biomaterials Acta Nat. ACS Appl. Mater. Interfaces – volume: 31 9 year: 2019 2020 publication-title: Adv. Mater. Adv. Healthcare Mater. – volume: 82 start-page: 199 year: 2014 publication-title: Med. Hypotheses – volume: 575 start-page: 169 year: 2019 publication-title: Nature – volume: 221 start-page: 146 year: 2019 publication-title: Carbohydr. Polym. – volume: 10 13 32 13 9 start-page: 5365 8537 year: 2018 2017 2016 2019 2017 publication-title: ACS Appl. Mater. Interfaces Small Langmuir ACS Nano NPG Asia Mater. – volume: 7 362 start-page: S6 1540 year: 2004 2010 publication-title: Am. J. Health. Behav. N. Engl. J. Med. – volume: 91 43 start-page: 499 1360 year: 2018 2009 publication-title: J. Taiwan Inst. Chem. E Environ. Sci. Technol. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 14 16 25 start-page: 2063 163 7261 year: 2013 2018 2018 publication-title: Biomacromolecules J. Appl. Biomater. Funct. Mater. Cellulose – volume: 183 start-page: 185 year: 2018 publication-title: Biomaterials – volume: 29 start-page: 105 year: 2018 publication-title: J. Mater. Sci. Mater. Med. – volume: 29 30 11 start-page: 2561 year: 2019 2018 2017 publication-title: Adv. Funct. Mater. Adv. Mater. ACS Nano – volume: 26 start-page: 3272 year: 2018 publication-title: J. Polym. Environ. – volume: 47 start-page: 6740 year: 2014 publication-title: Macromolecules – volume: 10 start-page: 1487 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 1579 year: 2014 publication-title: Biomacromolecules – volume: 25 start-page: 3692 year: 2019 publication-title: Curr. Pharm. Des. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 6 12 start-page: 8663 1307 year: 2015 2020 publication-title: Nat. Commun. Nanoscale – volume: 3 35 start-page: 279 4706 year: 2009 2014 publication-title: ACS Nano Biomaterials – volume: 98 101 104 9 start-page: 329 190 72 year: 2017 2019 1985 2019 publication-title: Int. J. Biol. Macromol. Mater. Sci. Eng., C J. Colloid Interface Sci. RSC Adv. – ident: e_1_2_7_17_1 doi: 10.1021/bm400432b – ident: e_1_2_7_14_1 doi: 10.1146/annurev-matsci-062910-100429 – ident: e_1_2_7_30_1 doi: 10.1039/C9NR03095F – ident: e_1_2_7_17_3 doi: 10.1007/s10570-018-2052-4 – ident: e_1_2_7_26_3 doi: 10.32607/20758251-2012-4-1-78-81 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201604827 – ident: e_1_2_7_22_3 doi: 10.1021/acs.langmuir.6b00796 – ident: e_1_2_7_22_2 doi: 10.1002/smll.201601916 – ident: e_1_2_7_13_1 doi: 10.1021/nn800596w – ident: e_1_2_7_9_1 doi: 10.1016/j.biomaterials.2017.01.011 – ident: e_1_2_7_31_2 doi: 10.1039/C9NR09780E – ident: e_1_2_7_22_1 doi: 10.1021/acsami.8b05314 – ident: e_1_2_7_3_1 doi: 10.1021/acsami.8b10064 – ident: e_1_2_7_30_2 doi: 10.1002/adfm.201801386 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-019-09351-2 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201901474 – ident: e_1_2_7_34_1 doi: 10.1007/s10924-018-1213-8 – ident: e_1_2_7_4_1 doi: 10.1038/s41467-018-04998-9 – ident: e_1_2_7_27_1 doi: 10.1007/s10856-018-6113-x – ident: e_1_2_7_33_1 doi: 10.1021/acsami.9b08799 – ident: e_1_2_7_28_4 doi: 10.1039/C9RA03903A – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201805964 – ident: e_1_2_7_17_2 doi: 10.1177/2280800018757337 – ident: e_1_2_7_20_1 doi: 10.1021/acs.nanolett.7b04183 – ident: e_1_2_7_14_2 doi: 10.1039/C9TB02863C – ident: e_1_2_7_16_2 doi: 10.1016/j.carbpol.2012.03.093 – ident: e_1_2_7_25_1 doi: 10.1016/j.carbpol.2019.05.080 – ident: e_1_2_7_1_2 doi: 10.1002/adhm.201901502 – ident: e_1_2_7_7_1 doi: 10.1073/pnas.1804262115 – ident: e_1_2_7_18_1 doi: 10.1016/j.memsci.2012.06.013 – ident: e_1_2_7_15_1 doi: 10.1016/j.mehy.2013.11.038 – ident: e_1_2_7_26_1 doi: 10.1016/j.biomaterials.2003.09.084 – ident: e_1_2_7_16_1 doi: 10.1016/j.ijbiomac.2017.05.171 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201804187 – ident: e_1_2_7_28_3 doi: 10.1016/0021-9797(85)90010-4 – ident: e_1_2_7_19_1 doi: 10.1021/bm9006503 – ident: e_1_2_7_35_1 doi: 10.2174/1381612825666191011103851 – ident: e_1_2_7_28_2 doi: 10.1016/j.msec.2019.03.073 – ident: e_1_2_7_12_1 doi: 10.1021/acsami.8b20380 – ident: e_1_2_7_24_3 doi: 10.1021/acsnano.6b05318 – ident: e_1_2_7_31_1 doi: 10.1038/ncomms9663 – ident: e_1_2_7_28_1 doi: 10.1016/j.ijbiomac.2017.02.017 – ident: e_1_2_7_5_1 doi: 10.1016/j.biomaterials.2018.08.044 – ident: e_1_2_7_22_4 doi: 10.1021/acsnano.9b04436 – ident: e_1_2_7_26_4 doi: 10.1021/acsami.6b05778 – volume: 7 start-page: S6 year: 2004 ident: e_1_2_7_2_1 publication-title: Am. J. Health. Behav. – ident: e_1_2_7_22_5 doi: 10.1038/am.2017.33 – ident: e_1_2_7_26_2 doi: 10.1016/j.biomaterials.2009.04.018 – ident: e_1_2_7_32_1 doi: 10.1021/bm4017308 – ident: e_1_2_7_36_1 doi: 10.1021/ma5015148 – ident: e_1_2_7_20_2 doi: 10.1038/s41467-017-00365-2 – ident: e_1_2_7_24_2 doi: 10.1002/adma.201704235 – ident: e_1_2_7_2_2 doi: 10.1056/NEJMc1002218 – ident: e_1_2_7_8_1 doi: 10.1038/s41586-019-1710-5 – ident: e_1_2_7_23_1 doi: 10.1002/smll.201801236 – ident: e_1_2_7_29_1 doi: 10.1021/acsami.8b06475 – ident: e_1_2_7_21_1 doi: 10.1016/j.jtice.2018.05.028 – ident: e_1_2_7_21_2 doi: 10.1021/es802732z – ident: e_1_2_7_13_2 doi: 10.1016/j.biomaterials.2014.02.021 |
| SSID | ssj0001537418 |
| Score | 2.6508665 |
| Snippet | Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint... Abstract Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2003627 |
| SubjectTerms | Adhesion adhesive Adhesives antibacterial dressings Biocompatibility Biomedical materials Cotton Dopamine Fourier transforms hydrogel dressings Hydrogels Polymerization Skin Spectrum analysis stretchable materials Wound healing |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KyKGX0vTpNg0qFNpCTCxFsqTjpm3IoYRCX7kZSZaShcVbdjeB_PvOyF6zS1ty6dGSQGIe0oz16RuAN6L1VvMoS6JKL6WOqTTJhTIpHaPkQrt8Y_rjsz4_NxcX9stGqS_ChPX0wL3gjlrvqtp5ZVKrpPbSRZu48ZQHcC9yfWGBUc9GMtW_Dz4mWpY1S2Mljlx7Q-zcIhOw6K1TKJP1_y3C_BMouRnA5hPo9CE8GEJHNumXvAf3YvcI9gbnXLJ3A4P0-8cQCL0xu2V05YxaoddRh2zSXkXCqh-yk-k8Q89X09zhupZNOvzoiZtxirPbdjG_jDP2MaNku8slw9iW_aQSTIweLmHTE_h--unbh7NyqKZQBkX_-kJV2zqaytlkieUKj_rKY_aBLhx5TLX00VuUT-1FG0Qy3Akbkk5GpdRK3Biewk437-JzYFSoTAWerJFRalVjToJbhZQqikz3XkC5lm4TBqpxqngxa3qSZNGQNppRGwW8Hcf_6kk2_jnyhJQ1jiJy7NyAJtMMJtPcZTIF7K9V3Qwei1MoXmMwZAwv4PXYjb5GFyiui_PrPMZo3JGNLeBZbxnjSjDVt4ZrU4DespmtpW73dNOrzOdtKKYyNUotW9cdImgwXvmKiaN98T9k8RLuC0LpZCzSPuysFtfxFeyGm9V0uTjITvUb778j4w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYg5cCFUp5bCjISEiB11V3Xu7ZPKIFWPaCo4tnbys80UrRbkrRS_z0zjrMQ8TpwXHskez1P2-NvCHnBnFGi9DxHqPScCx9yGbTNQyW85yUTOt6YfnkvxmN5dqZO04HbIqVVrm1iNNSus3hGfgB-uAZnJWX55uJbjlWj8HY1ldC4SbYQqYwPyNboaHz64ccpS3WI8CxrtMaCHWh3hSjdLAKxiA1vFEH7fxdp_pow-XMgGz3R8fb__sNdcifFoHS4EpodcsO398hO0vIFfZWgqF_fJxbTQGbXFO-ugb34zGqfDt25x6T3fTqadjGHfTmNHbp1dNjCxwoBGoY4uXbzbuJn9F1Mt20nCwpBMv2KtZwovoCCpgfk8_HRp7cneSrLkNsKDw1tUavay0KroBAuC2KGwsA2BmyBL32oufFGwQLXhjnLgiw1UzaIIKsQHAcL85AM2q71jwnFimeVLYOS3HNR1bC5AZvDeeVZxI3PSL5mT2MTZjmWzpg1K7Rl1iA7m56dGXnZ01-s0Dr-SDlCbvdUiLIdG7r5pElK2ziji1qbSgZXcWG49iqU0uAetDTg8zOyt-Zzk1QfhuiZnJHnfTcoLd7E6NZ3l5FGCjDtUmXk0Uq0-pkcQggpSyEzIjaEbmOqmz3t9DwCg0sMzmQNqxbF8x9L0EDg8xF2oGr377_xhNxmmMgT05X2yGA5v_RPyS17tZwu5s-Sxn0HrOMy4Q priority: 102 providerName: ProQuest |
| Title | Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202003627 https://www.ncbi.nlm.nih.gov/pubmed/33898178 https://www.proquest.com/docview/2516201881 https://www.proquest.com/docview/2518737689 https://pubmed.ncbi.nlm.nih.gov/PMC8061386 https://doaj.org/article/dba06ab58fd547b4ae9f18b14411b212 |
| Volume | 8 |
| WOSCitedRecordID | wos000625411600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdg5YEXYHyMjFEZCQmQFi12ndh-bGHTJrFS8bXyFNmJ3VWq0qntJu2_585Js1WAEOLFUuJT4ti-y-_s8-8Iec1LqyVzIkaq9FhI52PlTRH7VDonGJcm7Jh-_yiHQzUe69GtU_w1P0S74IaaEew1Krixy4Mb0lBTXiHdNg-MKvIu6TDWU5i8gYvRzSpL2kN6FswwB9513FNCrJkbE36w-YiNP1Mg8P8d6vw1ePI2qA1_paOH__89j8iDBpHSfj2FtskdVz0m243OL-nbhpj63RNSYFDI7JriTjYMNh662qf98txhCPw-HUznIaJ9NQ0Vpippv4KLmg8aXnF8XS7mEzejH0LwbTVZUoDM9AwzO1E8DwW3npJvR4df3x_HTZKGuEhxCbFIMp05lRjtNZJnAYJILDg1YBkccz4T1lkNX5VZXhbcK2a4Lrz0KvW-FGBvnpGtal6554Ri_rO0YF4r4YRMM3B1wAIJkToeWOQjEq8HKC8aBnNMpDHLa-5lnmMf5m0fRuRNK39Rc3f8UXKA491KIed2uDFfTPJGhfPSmiQzNlW-TIW0wjjtmbLokTILCCAie-vZkjeGAF6RsgwwllIsIq_aalBh3JcxlZtfBhklwdArHZGdenK1LekBoFRMqojIjWm30dTNmmp6HmjCFUI1lUGvhWn3ly7IAQZ9AX9U7_6j_Atyn2OcT4hm2iNbq8Wle0nuFVer6XLRDeoIpRyrLukMDoejz92w7gHlKf8USqjvjE5ORz_g6uxk-BM_ATyJ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRK8AOMaGGAkECAtWuI5sfOAUMeYWq2rKjFgPIVc7K5SlYy2G-qf4jdyjnOBitvTHnhMbCWx852bffwdgKc8TyPpa-ESVborpDauMknmmkBqLXwuE7tj-mEgh0N1fByN1uBbcxaG0iobnWgVdV5mtEa-jXY4RGOllP_69ItLVaNod7UpoVHB4kAvv2LINn_V38P_-4zz_bdHb3puXVXAzQJa88q8MAq18pLIRMT2hCbPS9ELRyhrX5tQpDqN0IkKU55n3Cg_4VFmpFGBMblAAcHnXoJ1gWBXHVgf9Q9Hn36s6gQ7RAfTsEN6fDvJz4kVnFviF7li_WyRgN95tr8maP7sOFvLt3_9f5uzG3Ct9rFZtxKKDVjTxU3YqLXYnL2oqbZf3oKM0lymS0Z78whfOka2xbr5iaak_i22Oyltjv5iYhuSImfdAi8qhmt8RW-Zz8qxnrI9m05cjOcMgwD2kWpVMTrhhbduw_sLGewd6BRloe8Bo4puQeabSAktZBBi8IY6VYhAc8uL74DbwCHOak52Kg0yjSs2aR4TfOIWPg48b_ufVmwkf-y5S-hqexGLuL1RzsZxrZTiPE28MEkDZfJAyFQkOjK-SinG9lP0aRzYbHAV16oNX9GCyoEnbTMqJdppSgpdntk-SqLpUpEDdysot1-ygy6y8qVyQK6AfOVTV1uKyYklPlfkfKoQZ82Kwz-mIEbH7h1G2NH9vw_jMVzpHR0O4kF_ePAArnJKWrKpWZvQWczO9EO4nJ0vJvPZo1raGXy-aGH5Dj-Ujf0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA6G9AOO2wAAjgQBpURvPjp0HhDpKtWmjqsRtbyEXu6tUJaPthvrX-HWc41yg4va0Bx4TW0nsfOdmH38H4AnP00gFRvhEle4LZayvbZL5VipjRMBV4nZMPx6p4VAfH0ejNfjWnIWhtMpGJzpFnZcZrZF30A6HaKy0Djq2TosY9QevTr_4VEGKdlqbchoVRA7N8iuGb_OXB3381085H7x5_3rfrysM-Jmk9a-sG0ah0d0kshExP6H566bokSOsTWBsKFKTRuhQhSnPM251kPAos8pqaW0uUFjwuZfgshJSknS95aMf6ztyl4hhGp7ILu8k-Tnxg3NHAaNW7KArF_A7H_fXVM2fXWhnAwfX_-fZuwHXas-b9SpR2YQ1U9yEzVq3zdnzmoD7xS3IKPllumS0Y4-gpsNlO6yXnxhK9d9he5PSZe4vJq4hKXLWK_Ci4r3GV-wv81k5NlPWd0nGxXjOMDRgn6iCFaNzX3jrNny4kMHegfWiLMwWMKrzJrPARloYoWSIIR1qWiGk4Y4t3wO_gUac1UztVDBkGlcc0zwmKMUtlDx41vY_rThK_thzj5DW9iJucXejnI3jWlXFeZp0wySV2uZSqFQkJrKBTinyDlL0dDzYbjAW1woPX9ECzIPHbTOqKtp_SgpTnrk-WqFB05EHdytYt1-yi46zDpT2QK0AfuVTV1uKyYmjQ9fkkuoQZ82Jxj-mIEZ37x3G3dG9vw_jEVxFCYmPDoaH92GDUyaTy9fahvXF7Mw8gCvZ-WIynz10Ys_g80VLynei3JU7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stretchable%2C+Adhesive%2C+Biocompatible%2C+and+Antibacterial+Hydrogel+Dressings+for+Wound+Healing&rft.jtitle=Advanced+science&rft.au=Yang%2C+Zifeng&rft.au=Huang%2C+Rongkang&rft.au=Zheng%2C+Bingna&rft.au=Guo%2C+Wentai&rft.date=2021-04-01&rft.eissn=2198-3844&rft.volume=8&rft.issue=8&rft.spage=2003627&rft_id=info:doi/10.1002%2Fadvs.202003627&rft_id=info%3Apmid%2F33898178&rft.externalDocID=33898178 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |