Stretchable Sweat‐Activated Battery in Skin‐Integrated Electronics for Continuous Wireless Sweat Monitoring

Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real‐time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most us...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced science Ročník 9; číslo 9; s. e2104635 - n/a
Hlavní autori: Liu, Yiming, Huang, Xingcan, Zhou, Jingkun, Yiu, Chun Ki, Song, Zhen, Huang, Wei, Nejad, Sina Khazaee, Li, Hu, Wong, Tsz Hung, Yao, Kuanming, Zhao, Ling, Yoo, Woojung, Park, Wooyoung, Li, Jiyu, Huang, Ya, Lam, Hiuwai Raymond, Song, Enming, Guo, Xu, Wang, Yanwei, Dai, Zhenxue, Chang, Lingqian, Li, Wen Jung, Xie, Zhaoqian, Yu, Xinge
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany John Wiley & Sons, Inc 01.03.2022
John Wiley and Sons Inc
Wiley
Predmet:
ISSN:2198-3844, 2198-3844
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real‐time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state‐of‐art skin‐integrated electronics. Sweat‐activated biocompatible batteries offer a new powering strategy for skin‐like electronics. However, the capacity of the reported sweat‐activated batteries (SABs) cannot support real‐time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm−2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long‐term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real‐time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real‐time monitoring of pH, glucose, and Na+ in sweat. A stretchable, conformable sweat‐activated battery (SAB) has been developed with high power density (7.46 mW cm−2) and energy capacity (42.5 mAh); it enables lighting 120 lighting emitting diodes (LEDs) for 5 h, and offers enough power to support Bluetooth wireless operation for real‐time recording of physiological signals in state‐of‐art wearable sensors for over 6 h. The SAB is also demonstrated in powering microfluidic system based sweat sensors for real‐time monitoring of pH, glucose, and Na+ in sweat.
AbstractList Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real‐time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state‐of‐art skin‐integrated electronics. Sweat‐activated biocompatible batteries offer a new powering strategy for skin‐like electronics. However, the capacity of the reported sweat‐activated batteries (SABs) cannot support real‐time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm−2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long‐term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real‐time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real‐time monitoring of pH, glucose, and Na+ in sweat. A stretchable, conformable sweat‐activated battery (SAB) has been developed with high power density (7.46 mW cm−2) and energy capacity (42.5 mAh); it enables lighting 120 lighting emitting diodes (LEDs) for 5 h, and offers enough power to support Bluetooth wireless operation for real‐time recording of physiological signals in state‐of‐art wearable sensors for over 6 h. The SAB is also demonstrated in powering microfluidic system based sweat sensors for real‐time monitoring of pH, glucose, and Na+ in sweat.
Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real-time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state-of-art skin-integrated electronics. Sweat-activated biocompatible batteries offer a new powering strategy for skin-like electronics. However, the capacity of the reported sweat-activated batteries (SABs) cannot support real-time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm-2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long-term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real-time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real-time monitoring of pH, glucose, and Na+ in sweat.Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real-time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state-of-art skin-integrated electronics. Sweat-activated biocompatible batteries offer a new powering strategy for skin-like electronics. However, the capacity of the reported sweat-activated batteries (SABs) cannot support real-time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm-2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long-term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real-time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real-time monitoring of pH, glucose, and Na+ in sweat.
Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real‐time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state‐of‐art skin‐integrated electronics. Sweat‐activated biocompatible batteries offer a new powering strategy for skin‐like electronics. However, the capacity of the reported sweat‐activated batteries (SABs) cannot support real‐time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm −2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long‐term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real‐time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real‐time monitoring of pH, glucose, and Na + in sweat.
Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real‐time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state‐of‐art skin‐integrated electronics. Sweat‐activated biocompatible batteries offer a new powering strategy for skin‐like electronics. However, the capacity of the reported sweat‐activated batteries (SABs) cannot support real‐time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm−2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long‐term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real‐time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real‐time monitoring of pH, glucose, and Na+ in sweat. A stretchable, conformable sweat‐activated battery (SAB) has been developed with high power density (7.46 mW cm−2) and energy capacity (42.5 mAh); it enables lighting 120 lighting emitting diodes (LEDs) for 5 h, and offers enough power to support Bluetooth wireless operation for real‐time recording of physiological signals in state‐of‐art wearable sensors for over 6 h. The SAB is also demonstrated in powering microfluidic system based sweat sensors for real‐time monitoring of pH, glucose, and Na+ in sweat.
Abstract Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real‐time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state‐of‐art skin‐integrated electronics. Sweat‐activated biocompatible batteries offer a new powering strategy for skin‐like electronics. However, the capacity of the reported sweat‐activated batteries (SABs) cannot support real‐time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm−2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long‐term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real‐time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real‐time monitoring of pH, glucose, and Na+ in sweat.
Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real-time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state-of-art skin-integrated electronics. Sweat-activated biocompatible batteries offer a new powering strategy for skin-like electronics. However, the capacity of the reported sweat-activated batteries (SABs) cannot support real-time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long-term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real-time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real-time monitoring of pH, glucose, and Na in sweat.
Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real‐time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state‐of‐art skin‐integrated electronics. Sweat‐activated biocompatible batteries offer a new powering strategy for skin‐like electronics. However, the capacity of the reported sweat‐activated batteries (SABs) cannot support real‐time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm−2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long‐term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real‐time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real‐time monitoring of pH, glucose, and Na+ in sweat.
Author Lam, Hiuwai Raymond
Guo, Xu
Song, Zhen
Yu, Xinge
Yiu, Chun Ki
Zhao, Ling
Wong, Tsz Hung
Park, Wooyoung
Yao, Kuanming
Chang, Lingqian
Yoo, Woojung
Li, Jiyu
Wang, Yanwei
Liu, Yiming
Zhou, Jingkun
Li, Hu
Huang, Ya
Song, Enming
Nejad, Sina Khazaee
Huang, Wei
Dai, Zhenxue
Li, Wen Jung
Huang, Xingcan
Xie, Zhaoqian
AuthorAffiliation 3 State Key Laboratory of Structural Analysis for Industrial Equipment Department of Engineering Mechanics International Research Center for Computational Mechanics Dalian University of Technology Dalian 116024 China
6 College of Construction Engineering Jilin University Changchun 130012 China
7 Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
2 Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories 999077 Hong Kong
9 Department of Mechanical Engineering City University of Hong Kong Kowloon Tong Hong Kong
1 Department of Biomedical Engineering City University of Hong Kong Kowloon Tong 999077 Hong Kong
5 Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics Fudan University Shanghai 200433 China
8 School of Biomedical Engineering Research and Engineering Center of Biomedical Materia
AuthorAffiliation_xml – name: 6 College of Construction Engineering Jilin University Changchun 130012 China
– name: 8 School of Biomedical Engineering Research and Engineering Center of Biomedical Materials Anhui Medical University Hefei 230032 China
– name: 1 Department of Biomedical Engineering City University of Hong Kong Kowloon Tong 999077 Hong Kong
– name: 3 State Key Laboratory of Structural Analysis for Industrial Equipment Department of Engineering Mechanics International Research Center for Computational Mechanics Dalian University of Technology Dalian 116024 China
– name: 5 Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics Fudan University Shanghai 200433 China
– name: 2 Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories 999077 Hong Kong
– name: 4 Ningbo Institute of Dalian University of Technology Dalian University of Technology Ningbo 315016 China
– name: 7 Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
– name: 9 Department of Mechanical Engineering City University of Hong Kong Kowloon Tong Hong Kong
Author_xml – sequence: 1
  givenname: Yiming
  orcidid: 0000-0003-0134-1934
  surname: Liu
  fullname: Liu, Yiming
  organization: City University of Hong Kong
– sequence: 2
  givenname: Xingcan
  surname: Huang
  fullname: Huang, Xingcan
  organization: City University of Hong Kong
– sequence: 3
  givenname: Jingkun
  surname: Zhou
  fullname: Zhou, Jingkun
  organization: Hong Kong Science Park
– sequence: 4
  givenname: Chun Ki
  surname: Yiu
  fullname: Yiu, Chun Ki
  organization: Hong Kong Science Park
– sequence: 5
  givenname: Zhen
  surname: Song
  fullname: Song, Zhen
  organization: Dalian University of Technology
– sequence: 6
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: City University of Hong Kong
– sequence: 7
  givenname: Sina Khazaee
  surname: Nejad
  fullname: Nejad, Sina Khazaee
  organization: Hong Kong Science Park
– sequence: 8
  givenname: Hu
  surname: Li
  fullname: Li, Hu
  organization: City University of Hong Kong
– sequence: 9
  givenname: Tsz Hung
  surname: Wong
  fullname: Wong, Tsz Hung
  organization: City University of Hong Kong
– sequence: 10
  givenname: Kuanming
  surname: Yao
  fullname: Yao, Kuanming
  organization: City University of Hong Kong
– sequence: 11
  givenname: Ling
  surname: Zhao
  fullname: Zhao, Ling
  organization: City University of Hong Kong
– sequence: 12
  givenname: Woojung
  surname: Yoo
  fullname: Yoo, Woojung
  organization: City University of Hong Kong
– sequence: 13
  givenname: Wooyoung
  surname: Park
  fullname: Park, Wooyoung
  organization: City University of Hong Kong
– sequence: 14
  givenname: Jiyu
  surname: Li
  fullname: Li, Jiyu
  organization: Hong Kong Science Park
– sequence: 15
  givenname: Ya
  surname: Huang
  fullname: Huang, Ya
  organization: Hong Kong Science Park
– sequence: 16
  givenname: Hiuwai Raymond
  surname: Lam
  fullname: Lam, Hiuwai Raymond
  organization: City University of Hong Kong
– sequence: 17
  givenname: Enming
  surname: Song
  fullname: Song, Enming
  organization: Fudan University
– sequence: 18
  givenname: Xu
  surname: Guo
  fullname: Guo, Xu
  organization: Dalian University of Technology
– sequence: 19
  givenname: Yanwei
  surname: Wang
  fullname: Wang, Yanwei
  organization: Jilin University
– sequence: 20
  givenname: Zhenxue
  surname: Dai
  fullname: Dai, Zhenxue
  email: dzx@jlu.edu.cn
  organization: Jilin University
– sequence: 21
  givenname: Lingqian
  surname: Chang
  fullname: Chang, Lingqian
  email: lingqianchang@buaa.edu.cn
  organization: Anhui Medical University
– sequence: 22
  givenname: Wen Jung
  surname: Li
  fullname: Li, Wen Jung
  email: wenjli@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 23
  givenname: Zhaoqian
  surname: Xie
  fullname: Xie, Zhaoqian
  email: zxie@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 24
  givenname: Xinge
  surname: Yu
  fullname: Yu, Xinge
  email: xingeyu@cityu.edu.hk
  organization: Hong Kong Science Park
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35088587$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEQgFeoiJbQK0e0EhcuCf5dey9IIRSIVMQh_Bwtr3c2ddjYxfamyo1H4Bl5EpwmrdpKiJMtzzefRzPztDhy3kFRPMdoghEir3W7iROCCEasovxRcUJwLcdUMnZ0535cnMa4QghhTgXD8klxTDmSkktxUvhFCpDMhW56KBdXoNOfX7-nJtmNTtCWb3VKELaldeXih3U5NncJluE6eNaDScE7a2LZ-VDOvEvWDX6I5XcboIcY98ryU4aSD9YtnxWPO91HOD2co-Lr-7Mvs4_j888f5rPp-djwmldjITirNYGGkUaIumUNII6QgKarJM3li6rjVcPzW42o5lCDQUQYJjraCA10VMz33tbrlboMdq3DVnlt1fWDD0ulQ7KmByWyrasJqziRDIzIKo5a0nCsG4l0k11v9q7LoVlDa8CloPt70vsRZy_U0m-UrJnkeTSj4tVBEPzPAWJSaxsN9L12kLulSEWorAnFLKMvH6ArPwSXW5UpRqpaCowz9eJuRbel3Mw1A2wPmOBjDNApY5NO1u8KtL3CSO02SO02SN1uUE6bPEi7Mf8z4fDPle1h-x9aTd99W1BKK_oXNarapw
CitedBy_id crossref_primary_10_1002_adfm_202209762
crossref_primary_10_1002_adfm_202209760
crossref_primary_10_1002_adma_202406798
crossref_primary_10_1016_j_mser_2024_100915
crossref_primary_10_1002_adfm_202405114
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1088_1674_4926_44_2_021601
crossref_primary_10_1038_s44222_023_00094_w
crossref_primary_10_3390_biomedicines12102307
crossref_primary_10_1002_advs_202409178
crossref_primary_10_1002_adfm_202410140
crossref_primary_10_1002_adsr_202300158
crossref_primary_10_1002_adma_202400333
crossref_primary_10_1002_bmm2_12124
crossref_primary_10_1007_s11071_024_10077_0
crossref_primary_10_1007_s42765_023_00296_2
crossref_primary_10_1002_adfm_202212083
crossref_primary_10_1002_adma_202303197
crossref_primary_10_1002_adsr_202300070
crossref_primary_10_1088_2515_7655_ad92aa
crossref_primary_10_1109_ACCESS_2024_3515859
crossref_primary_10_1016_j_microc_2025_114760
crossref_primary_10_1016_j_cej_2024_155938
crossref_primary_10_1109_JSEN_2024_3485592
crossref_primary_10_1002_advs_202302782
crossref_primary_10_1016_j_wees_2025_06_002
crossref_primary_10_1038_s41467_025_58085_x
crossref_primary_10_1088_2631_7990_ad65a0
crossref_primary_10_1088_2631_7990_adeccd
crossref_primary_10_1007_s42765_024_00484_8
crossref_primary_10_1002_smtd_202200653
crossref_primary_10_1039_D2NR06236D
crossref_primary_10_1002_adhm_202202846
crossref_primary_10_1007_s40820_023_01295_z
crossref_primary_10_1109_JSEN_2025_3561324
crossref_primary_10_3390_mi13050784
crossref_primary_10_1016_j_actbio_2025_05_047
crossref_primary_10_1016_j_cej_2024_152414
crossref_primary_10_1038_s41528_024_00318_y
crossref_primary_10_3390_chemosensors11090470
crossref_primary_10_3390_bios14010017
crossref_primary_10_1002_adma_202310505
crossref_primary_10_1002_admt_202200513
crossref_primary_10_1002_advs_202306111
crossref_primary_10_1155_2024_5572736
crossref_primary_10_1039_D3NR05488H
Cites_doi 10.1021/acs.analchem.6b04625
10.1021/acs.nanolett.0c01225
10.1038/s41560-020-0634-5
10.1038/s41378-018-0043-0
10.1038/s41560-020-00702-8
10.1038/nmat2896
10.1002/adma.201707629
10.1002/adfm.201703140
10.1038/ncomms14283
10.1039/C7CS00139H
10.1016/j.nanoen.2021.106247
10.1002/smtd.201800020
10.1002/adma.202000302
10.1016/j.bios.2013.11.039
10.1016/j.mtener.2021.100786
10.1002/adfm.201302957
10.1126/sciadv.aav3294
10.1002/admt.201900744
10.1152/jappl.1970.29.5.687
10.1126/scirobotics.aaz7946
10.1063/1.4921039
10.1016/j.actamat.2013.09.020
10.1016/j.ensm.2020.09.008
10.1016/j.elecom.2009.06.025
10.1016/j.mtener.2021.100657
10.37188/lam.2021.004
10.1038/s41551-021-00723-y
10.1038/s41467-019-13637-w
10.1002/inf2.12079
10.1080/15376520490446365
10.1002/adfm.201907269
10.1016/j.jpowsour.2018.02.070
10.1038/s41586-019-1687-0
10.1038/s41928-020-0443-7
10.1039/C9SE00643E
10.1016/j.bios.2018.09.086
10.1126/science.aau0780
10.1039/c2ee22294a
10.1126/sciadv.aax0649
10.1038/s41565-021-00908-1
10.1038/nature16521
10.1002/aelm.201901174
10.1016/j.snb.2021.130046
10.1016/j.tiv.2010.06.016
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202104635
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7507f92465284ec79ec50d2b51ab80ab
PMC8948546
35088587
10_1002_advs_202104635
ADVS3336
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Beijing Advanced Innovation Center for Biomedical Engineering
– fundername: City University of Hong Kong
  funderid: 9667199; 9667221; 9680322
– fundername: National Natural Science Foundation of China
  funderid: 12072057
– fundername: Fundamental Research Funds for the Central Universities
  funderid: DUT20RC(3)032
– fundername: Research Grants Council of the Hong Kong Special Administrative Region
  funderid: 21210820; 11213721
– fundername: Beijing Natural Science Foundation
  funderid: 7212204
– fundername: Hong Kong Center for Cerebra‐Cardiovascular Health Engineering
– fundername: Shenzhen Science and Technology Innovation Commission
  funderid: JCYJ20200109110201713
– fundername: LiaoNing Revitalization Talents Program
  funderid: XLYC2007196
– fundername: Shanghai Municipal Science and Technology Major Project
  funderid: 2018SHZDZX01
– fundername: National Natural Science Foundation of China
  grantid: 32071407
– fundername: Beijing Natural Science Foundation
  grantid: 7212204
– fundername: National Natural Science Foundation of China
  grantid: 62003032
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: JCYJ20200109110201713
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2018SHZDZX01
– fundername: National Key Research and Development Program of China
  grantid: 2018YFC1800900
– fundername: City University of Hong Kong
  grantid: 9667199
– fundername: Research Grants Council of the Hong Kong Special Administrative Region
  grantid: 21210820
– fundername: City University of Hong Kong
  grantid: 9680322
– fundername: ;
– fundername: ;
  grantid: 7212204
– fundername: ;
  grantid: DUT20RC(3)032
– fundername: Science and Technology Innovative Research Team
  grantid: 2019TD‐35
– fundername: ;
  grantid: 12072057
– fundername: ;
  grantid: 2018YFC1800900
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5956-77549a2eb42b779d4be05007ebf68335076f56b5500903a5e9ec027c47f3b7ae3
IEDL.DBID BENPR
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747753200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:52:27 EDT 2025
Tue Nov 04 01:58:50 EST 2025
Sun Nov 09 11:36:18 EST 2025
Sun Nov 09 08:26:54 EST 2025
Thu Apr 03 07:09:30 EDT 2025
Sat Nov 29 07:18:17 EST 2025
Tue Nov 18 22:39:55 EST 2025
Wed Jan 22 17:21:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords microfluidic system
sweat analysis
stretchable electronics
sweat-activated batteries
wireless communication
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5956-77549a2eb42b779d4be05007ebf68335076f56b5500903a5e9ec027c47f3b7ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0134-1934
OpenAccessLink https://www.proquest.com/docview/2642698711?pq-origsite=%requestingapplication%
PMID 35088587
PQID 2642698711
PQPubID 4365299
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_7507f92465284ec79ec50d2b51ab80ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8948546
proquest_miscellaneous_2623892314
proquest_journals_2642698711
pubmed_primary_35088587
crossref_citationtrail_10_1002_advs_202104635
crossref_primary_10_1002_advs_202104635
wiley_primary_10_1002_advs_202104635_ADVS3336
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 384
2017; 8
2021; 5
2021; 21
2019; 4
2021; 20
2019; 6
2021; 2
2019; 5
2021; 88
2020; 20
2017; 27
2019; 10
2013; 61
2017; 46
2016; 529
2017; 89
2014; 24
2020; 32
2021; 341
2015; 9
2019; 363
2021; 35
2009; 11
2021; 16
2020; 5
2020; 4
2018; 2
2020; 3
2020; 2
2020; 2020
2010; 24
2020; 30
2004; 14
2019; 124–125
2019; 575
2018; 30
1970; 29
2012; 5
2010; 9
2014; 54
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Liu Y. (e_1_2_10_22_1) 2020; 2020
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 6
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 5237
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 554
  year: 2020
  publication-title: Nat. Electron.
– volume: 5
  year: 2020
  publication-title: Sci. Robot.
– volume: 341
  year: 2021
  publication-title: Sens. Actuators, B
– volume: 2020
  year: 2020
  publication-title: Research
– volume: 29
  start-page: 687
  year: 1970
  publication-title: J. Appl. Physiol.
– volume: 24
  start-page: 2028
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 5
  start-page: 759
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 5
  start-page: 3
  year: 2019
  publication-title: Microsyst. Nanoeng.
– volume: 5
  start-page: 786
  year: 2020
  publication-title: Nat. Energy
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy
– volume: 54
  start-page: 603
  year: 2014
  publication-title: Biosens. Bioelectron.
– volume: 2
  start-page: 39
  year: 2021
  publication-title: Light: Adv. Manuf.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 16
  start-page: 854
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 318
  year: 2020
  publication-title: Infomat
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 9
  year: 2015
  publication-title: Biomicrofluidics
– volume: 11
  start-page: 1684
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 4445
  year: 2020
  publication-title: Nano Lett.
– volume: 363
  start-page: 6430
  year: 2019
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 35
  start-page: 538
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 575
  start-page: 473
  year: 2019
  publication-title: Nature
– volume: 20
  year: 2021
  publication-title: Mater. Today Energy
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 124–125
  start-page: 40
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 88
  year: 2021
  publication-title: Nano Energy
– volume: 5
  start-page: 8901
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1015
  year: 2010
  publication-title: Nat. Mater.
– volume: 10
  start-page: 5742
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 384
  start-page: 172
  year: 2018
  publication-title: J. Power Sources
– volume: 5
  year: 2020
  publication-title: Sci. Rob.
– volume: 89
  start-page: 3508
  year: 2017
  publication-title: Anal. Chem.
– volume: 14
  start-page: 205
  year: 2004
  publication-title: Toxicol. Mech. Methods
– volume: 61
  start-page: 7816
  year: 2013
  publication-title: Acta Mater.
– volume: 24
  start-page: 1790
  year: 2010
  publication-title: Toxicol. In Vitro
– volume: 4
  start-page: 68
  year: 2020
  publication-title: Sustainable Energy Fuels
– ident: e_1_2_10_44_1
  doi: 10.1021/acs.analchem.6b04625
– ident: e_1_2_10_30_1
  doi: 10.1021/acs.nanolett.0c01225
– ident: e_1_2_10_26_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_10_33_1
  doi: 10.1038/s41378-018-0043-0
– ident: e_1_2_10_25_1
  doi: 10.1038/s41560-020-00702-8
– ident: e_1_2_10_40_1
  doi: 10.1038/nmat2896
– ident: e_1_2_10_27_1
  doi: 10.1002/adma.201707629
– ident: e_1_2_10_19_1
  doi: 10.1002/adfm.201703140
– volume: 2020
  year: 2020
  ident: e_1_2_10_22_1
  publication-title: Research
– ident: e_1_2_10_13_1
  doi: 10.1038/ncomms14283
– ident: e_1_2_10_12_1
  doi: 10.1039/C7CS00139H
– ident: e_1_2_10_29_1
  doi: 10.1016/j.nanoen.2021.106247
– ident: e_1_2_10_8_1
  doi: 10.1002/smtd.201800020
– ident: e_1_2_10_10_1
  doi: 10.1002/adma.202000302
– ident: e_1_2_10_45_1
  doi: 10.1016/j.bios.2013.11.039
– ident: e_1_2_10_15_1
  doi: 10.1016/j.mtener.2021.100786
– ident: e_1_2_10_39_1
  doi: 10.1002/adfm.201302957
– ident: e_1_2_10_17_1
  doi: 10.1126/sciadv.aav3294
– ident: e_1_2_10_24_1
  doi: 10.1002/admt.201900744
– ident: e_1_2_10_43_1
  doi: 10.1152/jappl.1970.29.5.687
– ident: e_1_2_10_20_1
  doi: 10.1126/scirobotics.aaz7946
– ident: e_1_2_10_42_1
  doi: 10.1063/1.4921039
– ident: e_1_2_10_38_1
  doi: 10.1016/j.actamat.2013.09.020
– ident: e_1_2_10_35_1
  doi: 10.1016/j.ensm.2020.09.008
– ident: e_1_2_10_41_1
  doi: 10.1016/j.elecom.2009.06.025
– ident: e_1_2_10_7_1
  doi: 10.1016/j.mtener.2021.100657
– ident: e_1_2_10_4_1
  doi: 10.37188/lam.2021.004
– ident: e_1_2_10_6_1
  doi: 10.1038/s41551-021-00723-y
– ident: e_1_2_10_32_1
  doi: 10.1038/s41467-019-13637-w
– ident: e_1_2_10_21_1
  doi: 10.1002/inf2.12079
– ident: e_1_2_10_36_1
  doi: 10.1080/15376520490446365
– ident: e_1_2_10_2_1
  doi: 10.1002/adfm.201907269
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jpowsour.2018.02.070
– ident: e_1_2_10_14_1
  doi: 10.1038/s41586-019-1687-0
– ident: e_1_2_10_34_1
  doi: 10.1038/s41928-020-0443-7
– ident: e_1_2_10_18_1
  doi: 10.1039/C9SE00643E
– ident: e_1_2_10_16_1
  doi: 10.1016/j.bios.2018.09.086
– ident: e_1_2_10_1_1
  doi: 10.1126/science.aau0780
– ident: e_1_2_10_9_1
  doi: 10.1039/c2ee22294a
– ident: e_1_2_10_31_1
  doi: 10.1126/scirobotics.aaz7946
– ident: e_1_2_10_46_1
  doi: 10.1126/sciadv.aax0649
– ident: e_1_2_10_11_1
  doi: 10.1038/s41565-021-00908-1
– ident: e_1_2_10_3_1
  doi: 10.1038/nature16521
– ident: e_1_2_10_5_1
  doi: 10.1002/aelm.201901174
– ident: e_1_2_10_23_1
  doi: 10.1016/j.snb.2021.130046
– ident: e_1_2_10_37_1
  doi: 10.1016/j.tiv.2010.06.016
SSID ssj0001537418
Score 2.4680703
Snippet Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data...
Abstract Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2104635
SubjectTerms Biocompatibility
Cotton
Electric Power Supplies
Electrodes
Electrolytes
Electronics
microfluidic system
Oxidation
Scanning electron microscopy
Silicones
Skin
stretchable electronics
Sweat
sweat analysis
sweat‐activated batteries
Wearable Electronic Devices
wireless communication
Zinc
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPHgR39YXEQT1UOz2kXSPq6zoRQQVvJW8igvSlV1X8eZP8Df6S5xJunUXFS9em5CGmcnkmyTzDcA-59IZT2iT3ISpLk2oEBeHVlNFFF6iHUlXbEJcXuZ3d-2riVJf9CbM0wN7wR3jjiZKDBJ4ho4UR2hbnUUmVllLqjySirwvop6JYMrnBydEyzJmaYziY2meiZ07pjtNV9vtaxdyZP0_IczvDyUnAazbgc4WYaGGjqzjp7wEM7ZahqV6cQ7ZYc0gfbQCfbprRnVQWhS7fkF3-_H23tGukpk1zHNqvrJexaj2FrZdjEkjDOs2dXGGDAEtI_qqXjXqj4aMXso-oGf0QzLvDuhccBVuz7o3p-dhXVkh1BkRDxLtXVvGVqWxEqJtUmWjDNGCVSWnLKxI8DLjCqMXOsaRmUWpY_yqU1EmSkibrMFs1a_sBjDUSKlyHMBIg-CuVFxgCNUypqWjPNV5AOFY0oWuacep-sVD4QmT44I0UzSaCeCg6f_oCTd-7XlCimt6EVG2-4DmU9TmU_xlPgFsj9Ve1KsXf8EpwRdDyVYAe00zrju6TJGVRZFjHwQ7hI7TANa9lTQzSQj1ZrkIQEzZz9RUp1uq3r3j9s6JrSflKDVnaX-IoEDscp0kCd_8D1lswXxMyR3uhd02zD4NRnYH5vTzU2842HUL7BN2riwW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwEB1BYcEGKM9AQUZCAhZRk_iZZUGtYFNVKkjdRX4FrlTlopveInZ8At_IlzDj5KaNACHENracZDwzPmN7zgA8V8om5ckjNyEXvg25Q1ycR08VUVSLemRTsQl9eGhOTuqjS1n8Az_EtOFGlpH8NRm4df3uBWmoDedEt13RISWXV-FaWXJDxRsqcXSxyyI50bNQhTmMrnNuhNgwNxbV7nyI2cqUCPx_hzp_vTx5GdSmVeng1v__z224OSJStjeo0DZcid0d2B5tvmcvR2LqV3dhSUfYOMuUbcWOv6AX__Ht-55PBdJiYANV51e26BiV9MK2dxsuisD2p3I7PUOczIgVa9Gtl-ue0QXcU3S4w5Bs8DK03XgPPhzsv3_zNh8LNuReEp8hsenVtopOVE7rOggXC4kgJLpWUXJXoVUrlcOgiHaHrIx19BgWe6Fb7rSN_D5sdcsuPgTmdd06gwMEGxAztk5pjMzKEEpfGOFNBvlmsho_splTUY3TZuBhrhqSZzPJM4MXU__PA4_HH3u-prmfehH_dnqwXH1sRnNuEGfpFkNXJXF5R73GH5FFqJwsrTOFdRnsbDSnGZ0CvkJR3jBGqGUGz6ZmNGc6o7FdRJFjH8RQBLpFBg8GRZu-hBOYlkZnoGcqOPvUeUu3-JQoww2RAAmFUksq-BcRNAiJjjnn6tE_9n8MNypKD0l39HZg62y1jk_guj8_W_Srp8k0fwJdOD1D
  priority: 102
  providerName: Wiley-Blackwell
Title Stretchable Sweat‐Activated Battery in Skin‐Integrated Electronics for Continuous Wireless Sweat Monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202104635
https://www.ncbi.nlm.nih.gov/pubmed/35088587
https://www.proquest.com/docview/2642698711
https://www.proquest.com/docview/2623892314
https://pubmed.ncbi.nlm.nih.gov/PMC8948546
https://doaj.org/article/7507f92465284ec79ec50d2b51ab80ab
Volume 9
WOSCitedRecordID wos000747753200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Collection
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXQ5cKOVRAmVlJCTgEDWbh52cUIu2Yg9dIgpiOUXxI7BSlS2bbitu_AR-I7-EGcdJWfE6cLGUtZWNPePxN2P7G4AnnJdWeXwTpdqPVaV9ibjYN4oyovAK9ai0ySbEbJbO51nuAm6NO1bZ2URrqPVSUYx8HxfukKODPB6_OPvsU9Yo2l11KTS2YEhMZfEAhoeTWf7mKsqSRETP0rE1BuF-qS-IpTukvU2b4-1qNbKk_b9Dmr8emPwZyNqV6Gj7f_twC246DMoOWqXZgWumvg07bpY37Jmjon5-B5a0aY1ypftV7OQS7fb3r98OlE2JZjRryTm_sEXNKIkX1k079gnNJn2CnYYhMmbEg7Wo18t1w-jI7Sma2PaVrLUrFGC8C--OJm9fvvJdigZfJcRgSPx5WRkaGYdSiEzH0gQJwg4jK07XuQLBq4RLdIMoHlQmJjMKHWEViyqSojTRPRjUy9rcB6ZEVskUX6BLjSixklygLzbWeqyCNFapB34nqkI5_nJKo3FatMzLYUGiLXrRevC0b3_WMnf8seUhSb5vRYzb9ofl6mPhJnCByEpU6KzyBBd01GTsSBLoUCbjUqZBKT3Y62ReODOAf9EL3IPHfTVOYNqVKWuDQ45tEDURzI492G3VrP-SiOBzkgoPxIYCbnzqZk29-GRJwlOi_Yk5jppV1X8MQYEg6CSKIv7g7914CDdCuv9hD-HtweB8tTaP4Lq6OF80qxFshXGOpZinIzcTRzbIgeVx-NqWWD_Mp8f5B3x6P539AKC9QyY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyS6AcozUMBIIGARNXESJ1kgVKBVR21HI7VI7SrEj5SRqqRMOq264xP4Ej6KL-Fe51FGvFZdsI0tJ3aO78OPcwCeCZFb8LgmSLQbqkK7EuNi1yhSRBEF4ii3YhPxaJTs76fjBfjW3YWhY5WdTbSGWleK1shX0XFzgQmy7785_uySahTtrnYSGg0stsz5GaZs9evhe_y_zznfWN97t-m2qgKuioh0jyjf0pwbGXIZx6kOpfEi9JRGFoJuIGFiX0RCYuROSxh5ZFKjMHdTYVwEMs5NgO1egcUQwZ4MYHE83BkfXKzqRAHRwXTskB5fzfUpsYJz2ku1mnIX3s-KBPwusv31gObPgbP1fBs3_rcxuwnX2xibrTWTYhkWTHkLllsrVrOXLdX2q9tQ0aY84pbuj7HdM_RL3798XVNW8s1o1pCPnrNJyUikDMuGHbuGZuu9gFDNMPJnxPM1KWfVrGZ0pPgIXUjTJGvsJi2g3oEPl9LxuzAoq9LcB6bitJAJNqBzjVFwIUWMuaavta-8JFSJA24HjUy1_OwkE3KUNczSPCMoZT2UHHjR1z9umEn-WPMtIa2vRYzi9kE1PcxaA5Vh5BgXmIyLCAMWnKnYkcjTXEZ-LhMvlw6sdBjLWjOHr-gB5sDTvhgNFO065aXBIcc6GBVSGhE6cK-Bdf8lAaUHURI7EM8Bfu5T50vKySdLgp4QrVEocNTs1PjHEGQY5O0GQSAe_L0bT-Da5t7OdrY9HG09hCVOd13sgcMVGJxMZ-YRXFWnJ5N6-rid-Qw-XvbE-QGxPZZe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBSE2QHnVUGCQQMDCij32eJwFQoU2IipEkQpSd8bzMI1U2SVuWnXHJ_A9fA5fwr3jR4l4rbpgmxlN7PG5r3mcA_A4SXIHHt9GqfFjXRhfYV7sW02KKEmBOMqd2IScTNK9veF0Bb51d2HoWGXnE52jNpWmNfIBBm6eYIEchoOiPRYx3Rq9PPzsk4IU7bR2choNRHbs6QmWb_WL8RZ-6yecj7bfv37jtwoDvhZEwEf0b8OcWxVzJeXQxMoGAqOmVUVCt5GwyC9EojCLp-WMXNih1VjH6VgWkZK5jXDcC3BRxkKQdb3j07P1HRERMUzHExnwQW6OiR-c066qU5c7i4NOLuB3Oe6vRzV_TqFdDBxd-59n7zpcbTNvttmYyhqs2PIGrLW-rWbPWgLu5zehoq16RDPdKmO7Jxitvn_5uqmdEJw1rKEkPWWzkpF0GbaNO84Nw7Z7WaGaYT3AiP1rVi6qRc3ooPEBBpZmSNZ4U1pWvQUfzuXFb8NqWZV2HZiWw0KlOIDJDebGhUokVqChMaEO0linHvgdTDLdsraTeMhB1vBN84xglfWw8uBp3_-w4Sv5Y89XhLq-F_GMux-q-aesdVsZ5pOywBI9EZjGoP3ii4jAcCXCXKVBrjzY6PCWtc4P_6IHmweP-mZ0W7QXlZcWpxz7YK5IxUXswZ0G4v2TRFQ0iFR6IJfAv_Soyy3lbN9Ro6dEdhQnOGvOTP4xBRmmfrtRFCV3__4aD-EyWkv2djzZuQdXOF2AcacQN2D1aL6w9-GSPj6a1fMHzgUw-HjeVvMDW4WdnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+Sweat%E2%80%90Activated+Battery+in+Skin%E2%80%90Integrated+Electronics+for+Continuous+Wireless+Sweat+Monitoring&rft.jtitle=Advanced+science&rft.au=Liu%2C+Yiming&rft.au=Huang%2C+Xingcan&rft.au=Zhou%2C+Jingkun&rft.au=Yiu%2C+Chun+Ki&rft.date=2022-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=9&rft_id=info:doi/10.1002%2Fadvs.202104635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202104635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon