Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials

Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 8; číslo 17; s. e2100864 - n/a
Hlavní autoři: Mahapatra, Susmriti Das, Mohapatra, Preetam Chandan, Aria, Adrianus Indrat, Christie, Graham, Mishra, Yogendra Kumar, Hofmann, Stephan, Thakur, Vijay Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany John Wiley & Sons, Inc 01.09.2021
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed. This paper presents a comprehensive review of the energy harvesting performance of different types of piezoelectric materials. These materials include nanostructured materials, polymers, polymer nanocomposites synthesized using different types of fillers and piezoelectric films. The fabrication techniques, energy harvesting mechanisms, and applications of piezoelectric nanogenerators built using these materials are discussed thoroughly.
AbstractList Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed. This paper presents a comprehensive review of the energy harvesting performance of different types of piezoelectric materials. These materials include nanostructured materials, polymers, polymer nanocomposites synthesized using different types of fillers and piezoelectric films. The fabrication techniques, energy harvesting mechanisms, and applications of piezoelectric nanogenerators built using these materials are discussed thoroughly.
Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed.
Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed. This paper presents a comprehensive review of the energy harvesting performance of different types of piezoelectric materials. These materials include nanostructured materials, polymers, polymer nanocomposites synthesized using different types of fillers and piezoelectric films. The fabrication techniques, energy harvesting mechanisms, and applications of piezoelectric nanogenerators built using these materials are discussed thoroughly.
Abstract Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed.
Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high-power densities compared to electro-magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non-conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self-powered sensors is highlighted, and the current challenges and future prospects are critically discussed.Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high-power densities compared to electro-magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non-conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self-powered sensors is highlighted, and the current challenges and future prospects are critically discussed.
Author Thakur, Vijay Kumar
Aria, Adrianus Indrat
Mishra, Yogendra Kumar
Mohapatra, Preetam Chandan
Hofmann, Stephan
Mahapatra, Susmriti Das
Christie, Graham
AuthorAffiliation 4 Mads Clausen Institute NanoSYD University of Southern Denmark Alsion 2 Sønderborg 6400 Denmark
1 Technology & Manufacturing Group Intel Corporation 5000 West Chandler Boulevard Chandler Arizona 85226 USA
2 Surface Engineering and Precision Centre School of Aerospace Transport and Manufacturing Cranfield University Cranfield MK43 0AL UK
6 Biorefining and Advanced Materials Research Center Scotland's Rural College (SRUC) Kings Buildings Edinburgh EH9 3JG UK
3 Institute of Biotechnology Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB2 1QT UK
7 Department of Mechanical Engineering School of Engineering Shiv Nadar University Delhi Uttar Pradesh 201314 India
5 Division of Electrical Engineering Department of Engineering University of Cambridge Cambridge CB2 1PZ UK
AuthorAffiliation_xml – name: 7 Department of Mechanical Engineering School of Engineering Shiv Nadar University Delhi Uttar Pradesh 201314 India
– name: 5 Division of Electrical Engineering Department of Engineering University of Cambridge Cambridge CB2 1PZ UK
– name: 6 Biorefining and Advanced Materials Research Center Scotland's Rural College (SRUC) Kings Buildings Edinburgh EH9 3JG UK
– name: 2 Surface Engineering and Precision Centre School of Aerospace Transport and Manufacturing Cranfield University Cranfield MK43 0AL UK
– name: 1 Technology & Manufacturing Group Intel Corporation 5000 West Chandler Boulevard Chandler Arizona 85226 USA
– name: 3 Institute of Biotechnology Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB2 1QT UK
– name: 4 Mads Clausen Institute NanoSYD University of Southern Denmark Alsion 2 Sønderborg 6400 Denmark
Author_xml – sequence: 1
  givenname: Susmriti Das
  surname: Mahapatra
  fullname: Mahapatra, Susmriti Das
  organization: Intel Corporation
– sequence: 2
  givenname: Preetam Chandan
  surname: Mohapatra
  fullname: Mohapatra, Preetam Chandan
  organization: Intel Corporation
– sequence: 3
  givenname: Adrianus Indrat
  surname: Aria
  fullname: Aria, Adrianus Indrat
  organization: Cranfield University
– sequence: 4
  givenname: Graham
  surname: Christie
  fullname: Christie, Graham
  organization: University of Cambridge
– sequence: 5
  givenname: Yogendra Kumar
  surname: Mishra
  fullname: Mishra, Yogendra Kumar
  email: mishra@mci.sdu.dk
  organization: University of Southern Denmark
– sequence: 6
  givenname: Stephan
  surname: Hofmann
  fullname: Hofmann, Stephan
  email: sh315@cam.ac.uk
  organization: University of Cambridge
– sequence: 7
  givenname: Vijay Kumar
  orcidid: 0000-0002-0790-2264
  surname: Thakur
  fullname: Thakur, Vijay Kumar
  email: Vijay.thakur@sruc.ac.uk, Vijay.thakur@snu.edu.in
  organization: Shiv Nadar University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34254467$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbSK0e0EhcuCbbX9no5IEWlpZWKQAS4WhN_BEcbe2vvBqW_vs5HS1sJcZqx_c7jVzPzsjjwwZuieI3RGCNE3oNepTFBJB8Ep8-KI4IbMaoEpQcP8sPiJKUFQgizqqZYvCgOK0oYpbw-KhbfnLkJpjWqj06VX6A30UGbShtieeZNnK_LC4grk3rn5yV4XU6NT5t80nWtU9C74NOH8nsAvYRuW3c-9EM05XQJsf-LfFU8tzmYk308Ln6en_04vRhdff18eTq5GinWMDbiYHGlYcasVg3njM8YEOCN0gy0tVRR2gCpNEfNjNWkstZyDZqSBomaCl4dF5c7rg6wkF102cZaBnByexHiXGZfTrVGao1A6AYrZSsKwIGZBjNDFNbc4Npm1scdqxtmS6OV8X2E9hH08Yt3v-U8rKTIHRaCZcC7PSCG6yF3US5dUqZtwZswJEkYwwQJUeMsfftEughD9LlVWVUjgmiFaVa9eejo3srdSLOA7gQqhpSisVK5fjulbNC1EiO5WR65WR55vzy5bPyk7I78z4L9P39ca9b_UcvJp19TIgirbgH7Zdg8
CitedBy_id crossref_primary_10_1007_s00707_025_04464_w
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_3390_mi13020232
crossref_primary_10_1016_j_nanoen_2024_110071
crossref_primary_10_1007_s10999_025_09755_7
crossref_primary_10_1016_j_nanoen_2024_110195
crossref_primary_10_1002_advs_202414969
crossref_primary_10_3390_en15176227
crossref_primary_10_1016_j_mser_2025_101049
crossref_primary_10_1039_D2NR01457B
crossref_primary_10_1109_TED_2024_3487081
crossref_primary_10_3390_math10020268
crossref_primary_10_1134_S2635167624602778
crossref_primary_10_1016_j_cossms_2023_101134
crossref_primary_10_1016_j_cej_2022_140771
crossref_primary_10_1016_j_nanoen_2024_109887
crossref_primary_10_1002_adfm_202502346
crossref_primary_10_1002_advs_202303674
crossref_primary_10_1016_j_bioadv_2022_212808
crossref_primary_10_3390_mi13091422
crossref_primary_10_1007_s10338_024_00466_8
crossref_primary_10_1007_s10854_024_13687_x
crossref_primary_10_1002_smtd_202300701
crossref_primary_10_1002_mame_202200442
crossref_primary_10_1007_s10999_025_09792_2
crossref_primary_10_1016_j_biortech_2021_126156
crossref_primary_10_1002_cphc_202500148
crossref_primary_10_1063_5_0196548
crossref_primary_10_1002_advs_202411209
crossref_primary_10_3390_inorganics10110183
crossref_primary_10_3390_polym13193336
crossref_primary_10_1002_adma_202204964
crossref_primary_10_1016_j_ceramint_2025_04_387
crossref_primary_10_1002_adfm_202425080
crossref_primary_10_1016_j_nanoen_2023_108606
crossref_primary_10_1088_1361_6463_accfaa
crossref_primary_10_1007_s41204_022_00217_5
crossref_primary_10_1016_j_matdes_2021_110371
crossref_primary_10_1109_TIM_2024_3403185
crossref_primary_10_1016_j_jallcom_2025_182455
crossref_primary_10_3390_molecules30010179
crossref_primary_10_1016_j_energy_2024_132452
crossref_primary_10_1016_j_seta_2022_102982
crossref_primary_10_1016_j_surfin_2024_103945
crossref_primary_10_1016_j_matpr_2023_05_213
crossref_primary_10_1063_5_0150084
crossref_primary_10_1016_j_biomaterials_2025_123083
crossref_primary_10_1002_adfm_202513106
crossref_primary_10_1039_D4RA08459D
crossref_primary_10_1002_smll_202408414
crossref_primary_10_1088_1402_4896_adf3ff
crossref_primary_10_3390_bios13010113
crossref_primary_10_1109_LRA_2024_3500884
crossref_primary_10_1007_s12221_025_01131_8
crossref_primary_10_1039_D5NA00474H
crossref_primary_10_1016_j_cej_2024_154249
crossref_primary_10_3390_s23031545
crossref_primary_10_1016_j_ijmecsci_2025_110725
crossref_primary_10_3389_felec_2025_1528802
crossref_primary_10_1080_25740881_2023_2280622
crossref_primary_10_1016_j_nanoen_2024_109741
crossref_primary_10_1061_JAEEEZ_ASENG_5144
crossref_primary_10_1002_anie_202216680
crossref_primary_10_1016_j_fuel_2021_122953
crossref_primary_10_1063_5_0255746
crossref_primary_10_1002_adma_202300437
crossref_primary_10_1002_adma_202314380
crossref_primary_10_1002_advs_202202187
crossref_primary_10_1002_gch2_202300019
crossref_primary_10_1016_j_cej_2024_157865
crossref_primary_10_1002_adma_202313612
crossref_primary_10_1002_adma_202402542
crossref_primary_10_1088_1361_665X_adffcf
crossref_primary_10_1016_j_mser_2025_101072
crossref_primary_10_1016_j_nanoen_2023_108987
crossref_primary_10_1016_j_addma_2021_102321
crossref_primary_10_1002_adem_202101312
crossref_primary_10_1002_adom_202402794
crossref_primary_10_1016_j_egyr_2025_02_005
crossref_primary_10_1016_j_mtcomm_2025_112518
crossref_primary_10_1016_j_nanoen_2023_108741
crossref_primary_10_1016_j_nanoen_2024_109443
crossref_primary_10_1016_j_nanoen_2025_111128
crossref_primary_10_1002_adma_202404492
crossref_primary_10_1016_j_euromechsol_2024_105560
crossref_primary_10_1002_aesr_202200062
crossref_primary_10_1063_5_0142958
crossref_primary_10_1002_admt_202301226
crossref_primary_10_3762_bjnano_14_67
crossref_primary_10_1016_j_scib_2024_05_012
crossref_primary_10_1016_j_ijmecsci_2025_110544
crossref_primary_10_1016_j_polymer_2023_125910
crossref_primary_10_1016_j_eml_2024_102235
crossref_primary_10_1021_acsaem_5c01693
crossref_primary_10_1007_s10999_024_09731_7
crossref_primary_10_1016_j_ccr_2025_216950
crossref_primary_10_1016_j_cej_2023_141546
crossref_primary_10_1021_acsnano_5c02641
crossref_primary_10_1007_s10854_025_15671_5
crossref_primary_10_1088_1361_665X_ad4d45
crossref_primary_10_1016_j_nanoen_2025_111000
crossref_primary_10_1002_pen_26152
crossref_primary_10_3389_fenrg_2022_900534
crossref_primary_10_1016_j_nanoen_2022_107422
crossref_primary_10_1016_j_chemosphere_2022_135182
crossref_primary_10_1177_09544062251343709
crossref_primary_10_1016_j_sna_2025_116723
crossref_primary_10_1021_acsmaterialslett_5c00641
crossref_primary_10_1016_j_addma_2024_103982
crossref_primary_10_1016_j_nanoen_2024_110544
crossref_primary_10_1039_D4SC05166A
crossref_primary_10_1002_adma_202300576
crossref_primary_10_1039_D3RA08713A
crossref_primary_10_1021_jacs_5c05701
crossref_primary_10_1002_admt_202300021
crossref_primary_10_1002_advs_202408653
crossref_primary_10_1080_15376494_2023_2254757
crossref_primary_10_3390_encyclopedia3020050
crossref_primary_10_1007_s42114_023_00783_5
crossref_primary_10_1016_j_matpr_2023_01_128
crossref_primary_10_1108_IJCST_12_2024_0252
crossref_primary_10_1016_j_matlet_2021_130971
crossref_primary_10_3390_polym14091840
crossref_primary_10_1007_s42247_025_01138_0
crossref_primary_10_1016_j_jmat_2023_09_011
crossref_primary_10_3103_S1062873823703446
crossref_primary_10_1038_s41467_024_53020_y
crossref_primary_10_1016_j_jcis_2022_09_096
crossref_primary_10_3390_min13060817
crossref_primary_10_3390_jcs9020071
crossref_primary_10_1002_pol_20240371
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_1002_adfm_202407611
crossref_primary_10_1016_j_tsf_2023_140042
crossref_primary_10_1002_adfm_202301302
crossref_primary_10_1002_eom2_12337
crossref_primary_10_1007_s10118_022_2706_4
crossref_primary_10_3390_electronics13050987
crossref_primary_10_1016_j_jallcom_2025_182376
crossref_primary_10_1039_D2RA08342F
crossref_primary_10_3390_en15217959
crossref_primary_10_1016_j_jallcom_2022_164060
crossref_primary_10_1016_j_matlet_2021_131237
crossref_primary_10_1007_s12274_023_5579_0
crossref_primary_10_1016_j_nanoen_2023_108933
crossref_primary_10_1016_j_device_2025_100893
crossref_primary_10_1002_smll_202306989
crossref_primary_10_1038_s41598_025_98048_2
crossref_primary_10_1063_5_0242816
crossref_primary_10_3390_polym16030347
crossref_primary_10_1002_adfm_202214745
crossref_primary_10_1007_s10854_023_11318_5
crossref_primary_10_1109_TITS_2023_3309924
crossref_primary_10_3390_nano14141173
crossref_primary_10_1016_j_isci_2021_103728
crossref_primary_10_1002_pol_20210628
crossref_primary_10_1016_j_apenergy_2023_122370
crossref_primary_10_51646_jsesd_v14iSI_MSMS2E_402
crossref_primary_10_1016_j_mser_2025_101038
crossref_primary_10_1016_j_cej_2024_154554
crossref_primary_10_3390_polym14020320
crossref_primary_10_1007_s11664_023_10884_y
crossref_primary_10_1016_j_optlastec_2024_112196
crossref_primary_10_1002_adem_202101194
crossref_primary_10_1007_s10854_025_14781_4
crossref_primary_10_1007_s42114_025_01225_0
crossref_primary_10_1007_s11426_024_2412_y
crossref_primary_10_1016_j_jddst_2024_106526
crossref_primary_10_3390_nano14141225
crossref_primary_10_1039_D5NR00394F
crossref_primary_10_1016_j_cossms_2022_101016
crossref_primary_10_1016_j_optmat_2023_113930
crossref_primary_10_1007_s11831_022_09827_3
crossref_primary_10_3390_mi14061273
crossref_primary_10_1002_mabi_202200550
crossref_primary_10_1002_cssc_202301718
crossref_primary_10_1002_adhm_202102654
crossref_primary_10_1088_1361_665X_ad315f
crossref_primary_10_1109_JSEN_2023_3236039
crossref_primary_10_1016_j_jallcom_2023_169298
crossref_primary_10_1016_j_engstruct_2023_116447
crossref_primary_10_3390_ma16093603
crossref_primary_10_1007_s10853_023_08435_1
crossref_primary_10_1016_j_matchemphys_2025_130961
crossref_primary_10_1002_adfm_202500685
crossref_primary_10_1016_j_jallcom_2024_174372
crossref_primary_10_1002_smll_202103829
crossref_primary_10_1016_j_enconman_2023_117030
crossref_primary_10_1016_j_physe_2024_116151
crossref_primary_10_1021_acsami_4c21765
crossref_primary_10_1002_advs_202204187
crossref_primary_10_1002_adma_202305940
crossref_primary_10_1002_smll_202303285
crossref_primary_10_1109_TIE_2023_3331108
crossref_primary_10_1016_j_compstruct_2023_117718
crossref_primary_10_1038_s41598_025_98147_0
crossref_primary_10_1002_adfm_202411172
crossref_primary_10_1016_j_apmt_2024_102092
crossref_primary_10_3390_ma16083107
crossref_primary_10_1016_j_cej_2025_161804
crossref_primary_10_1002_pat_70228
crossref_primary_10_1016_j_pmatsci_2023_101156
crossref_primary_10_1063_5_0175670
crossref_primary_10_3390_polym13213660
crossref_primary_10_1002_aelm_202300556
crossref_primary_10_1016_j_sse_2025_109195
crossref_primary_10_3390_en14185936
crossref_primary_10_3390_nano11112975
crossref_primary_10_1007_s10854_024_12808_w
crossref_primary_10_1109_ACCESS_2023_3332165
crossref_primary_10_1002_marc_202300619
crossref_primary_10_1007_s10751_024_01956_4
crossref_primary_10_3390_inventions10030041
crossref_primary_10_1002_smll_202306318
crossref_primary_10_1016_j_nanoen_2022_108024
crossref_primary_10_1002_adma_202305837
crossref_primary_10_1142_S2010135X24500322
crossref_primary_10_3390_ma18092113
crossref_primary_10_1039_D2BM01970A
crossref_primary_10_1002_mame_202300101
crossref_primary_10_1002_adma_202416897
crossref_primary_10_3390_ma18010022
crossref_primary_10_3390_bios13010085
crossref_primary_10_1002_admt_202300873
crossref_primary_10_1186_s40807_025_00156_0
crossref_primary_10_3390_electronics12194045
crossref_primary_10_3724_BNSFC_2025_02_27_0002
crossref_primary_10_1063_5_0157431
crossref_primary_10_1109_JSEN_2025_3555561
crossref_primary_10_1111_jace_19551
crossref_primary_10_3390_polym14132546
crossref_primary_10_1002_crat_202200130
crossref_primary_10_1088_1361_665X_ada2cb
crossref_primary_10_1007_s12221_025_00867_7
crossref_primary_10_1016_j_cclet_2025_111389
crossref_primary_10_1002_adfm_202307607
crossref_primary_10_1016_j_mtcomm_2023_107661
crossref_primary_10_1002_pc_27437
crossref_primary_10_1016_j_sna_2024_116149
crossref_primary_10_1002_advs_202510349
crossref_primary_10_1016_j_nxmate_2023_100092
crossref_primary_10_1109_JSEN_2021_3123541
crossref_primary_10_1007_s40242_022_2084_z
crossref_primary_10_1039_D5TC01739D
crossref_primary_10_3390_pharmaceutics15051338
crossref_primary_10_1002_smll_202310110
crossref_primary_10_1002_adfm_202400295
crossref_primary_10_1002_adfm_202211272
crossref_primary_10_3390_mi14081553
crossref_primary_10_1016_j_jcrysgro_2024_127925
crossref_primary_10_1016_j_polymer_2025_128286
crossref_primary_10_1002_adma_202500466
crossref_primary_10_1016_j_coco_2024_102019
crossref_primary_10_1016_j_ultsonch_2023_106602
crossref_primary_10_1039_D2MH01221A
crossref_primary_10_1016_j_nanoen_2022_107514
crossref_primary_10_1080_15376494_2025_2509258
crossref_primary_10_1007_s10853_024_10293_4
crossref_primary_10_1016_j_matt_2025_102136
crossref_primary_10_3390_polym13162596
crossref_primary_10_1002_adem_202301066
crossref_primary_10_1002_pc_27667
crossref_primary_10_1002_est2_519
crossref_primary_10_1016_j_nanoen_2022_107141
crossref_primary_10_1002_adfm_202214915
crossref_primary_10_1002_dac_5654
crossref_primary_10_1016_j_colsurfa_2023_131279
crossref_primary_10_1016_j_mssp_2023_107942
crossref_primary_10_1002_adma_202401264
crossref_primary_10_1016_j_measurement_2023_113856
crossref_primary_10_1002_ange_202216680
crossref_primary_10_1146_annurev_bioeng_020524_121438
crossref_primary_10_1016_j_oceaneng_2025_121669
crossref_primary_10_1007_s00161_025_01385_w
crossref_primary_10_1186_s12951_025_03541_5
crossref_primary_10_1039_D5TC01075F
crossref_primary_10_1002_adsr_202300198
crossref_primary_10_1007_s42417_024_01395_z
crossref_primary_10_1016_j_jece_2025_118871
crossref_primary_10_1021_acs_macromol_5c01023
crossref_primary_10_1002_smtd_202201251
crossref_primary_10_1016_j_carbon_2023_118120
crossref_primary_10_1002_aenm_202300557
crossref_primary_10_1021_acsaelm_5c00548
crossref_primary_10_1016_j_biomaterials_2024_122528
crossref_primary_10_1002_pi_6643
crossref_primary_10_1016_j_matchar_2023_113371
crossref_primary_10_1146_annurev_matsci_080921_102916
crossref_primary_10_1016_j_device_2024_100548
crossref_primary_10_1109_ACCESS_2025_3584863
crossref_primary_10_1016_j_jeurceramsoc_2022_12_024
crossref_primary_10_1002_adfm_202409602
crossref_primary_10_1002_adfm_202512101
crossref_primary_10_1177_15589250221125437
crossref_primary_10_1016_j_euromechsol_2024_105397
crossref_primary_10_1002_pc_28493
crossref_primary_10_1016_j_physb_2024_416436
crossref_primary_10_1063_5_0180931
crossref_primary_10_1007_s40820_024_01587_y
crossref_primary_10_1016_j_nanoen_2025_111094
crossref_primary_10_3390_jlpea13010011
crossref_primary_10_1016_j_ultsonch_2025_107353
crossref_primary_10_1088_1361_6528_ad0502
crossref_primary_10_1002_pc_27841
crossref_primary_10_1002_adem_202400445
crossref_primary_10_1016_j_apsusc_2023_158996
crossref_primary_10_1088_1674_1056_adb7d1
crossref_primary_10_1038_s41467_024_53123_6
crossref_primary_10_3390_inventions8050119
crossref_primary_10_1002_eom2_12298
crossref_primary_10_3390_molecules27175659
crossref_primary_10_1016_j_ijmecsci_2025_110007
crossref_primary_10_1016_j_nanoen_2024_109380
crossref_primary_10_1088_1361_6439_aca20f
crossref_primary_10_32604_cmes_2024_058842
crossref_primary_10_1002_admt_202401858
crossref_primary_10_1002_advs_202201586
crossref_primary_10_1142_S0219455425501275
crossref_primary_10_1039_D5TA01701G
crossref_primary_10_1134_S2635167623600487
crossref_primary_10_1080_15376494_2025_2527394
crossref_primary_10_1039_D3MH00325F
crossref_primary_10_1039_D5MH00550G
crossref_primary_10_1007_s11998_023_00819_x
crossref_primary_10_1016_j_biomaterials_2023_122421
crossref_primary_10_1002_adfm_202517112
crossref_primary_10_1016_j_ceramint_2022_05_039
crossref_primary_10_1016_j_ceramint_2022_11_266
crossref_primary_10_1016_j_sna_2025_116301
crossref_primary_10_1016_j_nanoen_2023_108773
crossref_primary_10_3390_en17194935
crossref_primary_10_1039_D5MR00041F
crossref_primary_10_1109_ACCESS_2021_3138890
crossref_primary_10_1177_03611981231192984
crossref_primary_10_3389_fenrg_2025_1570397
crossref_primary_10_1002_adfm_202402554
crossref_primary_10_1016_j_nanoen_2024_109496
crossref_primary_10_1016_j_nanoen_2024_110489
crossref_primary_10_1016_j_nanoen_2022_108121
crossref_primary_10_1016_j_nanoen_2024_110367
crossref_primary_10_1016_j_nanoen_2023_109195
crossref_primary_10_46670_JSST_2024_33_1_34
crossref_primary_10_1080_21663831_2022_2150096
crossref_primary_10_3390_cryst13071063
crossref_primary_10_1016_j_ijnonlinmec_2025_105193
crossref_primary_10_1093_iti_liad014
crossref_primary_10_1002_adma_202208256
crossref_primary_10_1039_D2BM01733D
crossref_primary_10_1038_s41545_023_00293_3
crossref_primary_10_1021_acsami_5c07116
crossref_primary_10_1063_5_0194194
crossref_primary_10_3390_jfb12040054
crossref_primary_10_1080_15376494_2024_2407518
crossref_primary_10_2140_jomms_2024_19_141
crossref_primary_10_1002_sstr_202100128
crossref_primary_10_1007_s11831_023_09983_0
crossref_primary_10_1155_2023_5568046
crossref_primary_10_1016_j_chphi_2024_100550
crossref_primary_10_1038_s41598_024_66258_9
crossref_primary_10_1021_acsami_5c07356
Cites_doi 10.1021/nl0602701
10.1007/s11664-019-07915-y
10.1016/j.mtchem.2020.100304
10.1016/j.polymer.2011.08.051
10.1016/j.nanoen.2012.07.019
10.1016/j.nanoen.2018.11.082
10.3390/nano8090743
10.1039/c2nr11841f
10.1016/j.matchemphys.2014.10.003
10.1063/1.3072362
10.1080/00222340902837527
10.1039/C8NR05292A
10.1021/nn200942s
10.1088/0957-4484/24/18/185501
10.1023/A:1009926623551
10.1016/j.jallcom.2013.07.118
10.1088/0022-3727/48/24/245303
10.1002/adfm.201202867
10.1088/0964-1726/19/8/085012
10.1063/1.325454
10.1016/j.matchemphys.2018.05.010
10.1295/polymj.11.429
10.1063/1.2170425
10.1002/adfm.201501695
10.1016/j.compositesb.2018.09.059
10.1557/mrs2007.42
10.1039/C6TA09590A
10.1039/c1ee01558c
10.1021/nl035198a
10.1021/nl101973h
10.1016/j.sna.2009.05.009
10.1002/smll.201604245
10.9790/019X-04020105
10.1002/adfm.201303484
10.1088/0957-4484/24/40/405401
10.1016/j.procs.2016.08.028
10.1039/C6RA20599B
10.1002/marc.200700544
10.1039/c1ra00210d
10.1016/j.apsusc.2013.04.070
10.1021/nl9040719
10.1039/c2nr31031g
10.1021/acs.iecr.7b02622
10.1002/ente.201600419
10.1016/j.polymer.2006.01.015
10.1007/s10854-017-7491-4
10.1063/1.336351
10.1016/S1369-7021(13)70011-7
10.1109/14.30878
10.1016/j.sna.2012.10.021
10.1109/PROC.1965.4253
10.1002/adma.201400562
10.3390/c3040030
10.1021/acsami.7b04095
10.1016/j.apacoust.2009.11.009
10.3390/polym12112697
10.1016/j.apsusc.2017.09.077
10.1021/nn406481k
10.1080/00150198208260664
10.1016/j.rser.2018.04.113
10.1021/nl202208n
10.1038/nnano.2008.314
10.1002/polb.1994.090320509
10.1016/j.progpolymsci.2013.07.006
10.1002/adfm.202004446
10.1016/j.nanoen.2017.09.046
10.1016/j.compscitech.2018.10.009
10.1016/j.nanoen.2018.08.036
10.1039/C7TA07570G
10.1063/1.2472539
10.1021/nl204440g
10.1016/j.polymer.2012.01.058
10.1039/c3cp50915j
10.1002/app.1330
10.1039/C3EE42540A
10.1016/j.nanoen.2017.05.010
10.1016/j.matlet.2015.09.117
10.1039/c2jm15665b
10.1038/ncomms2639
10.1016/j.nanoen.2018.07.053
10.1016/j.nanoen.2014.11.038
10.1002/aenm.201300458
10.1021/acsomega.8b00940
10.1016/j.nanoen.2014.04.016
10.1063/1.1611635
10.1063/1.373675
10.1063/1.4880101
10.1038/srep13209
10.1016/j.matdes.2016.12.090
10.1088/0964-1726/22/8/085017
10.1021/acsomega.7b00041
10.1002/adsu.201700068
10.1038/nmat4423
10.1088/0964-1726/20/5/055019
10.1039/c3nr00866e
10.1007/s003390100991
10.1002/adma.200903815
10.1021/acsomega.9b00243
10.1021/jp909713c
10.1007/s10973-012-2834-0
10.1021/acssuschemeng.8b01851
10.1016/j.nanoen.2016.10.034
10.1021/acsami.5b04161
10.1016/j.commatsci.2004.12.040
10.1002/pat.4096
10.1016/j.physb.2009.06.009
10.1016/j.apsusc.2016.12.197
10.1063/1.4918986
10.1039/b912801h
10.1088/0964-1726/23/2/025003
10.1021/jacs.6b09024
10.1021/nl900115y
10.1039/C4NR02246G
10.1002/adfm.201301971
10.1134/1.1595194
10.1039/c2ee22744d
10.1063/1.4980130
10.1021/jp4011026
10.1109/TSM.2015.2468053
10.1016/j.matdes.2019.107636
10.1021/nl103203u
10.1016/j.rser.2017.01.073
10.1021/am302275b
10.1002/aelm.201800791
10.1002/slct.201602046
10.1016/j.ceramint.2006.05.010
10.1088/0957-4484/25/37/375603
10.1002/ecj.10348
10.1109/ACCESS.2019.2958684
10.1063/1.2405014
10.1016/j.nanoso.2017.10.006
10.1039/C7RA10223B
10.1007/s10832-007-9047-0
10.1016/j.physleta.2008.11.026
10.1016/j.compositesb.2014.12.001
10.1002/app.38746
10.1109/JSEN.2011.2182043
10.1039/C5CP01820J
10.1126/science.1122225
10.1063/1.4973596
10.1016/j.cap.2013.01.009
10.1016/j.apsusc.2017.01.314
10.1063/1.1862317
10.1002/mame.201700214
10.1016/j.nanoen.2016.06.009
10.1080/1539445X.2010.495630
10.1016/j.reactfunctpolym.2020.104638
10.1166/mex.2017.1393
10.1002/adfm.201602634
10.1109/TDEI.2006.247839
10.1126/science.220.4602.1115
10.1021/acsami.5b11356
10.1002/app.25603
10.1039/C3EE42454E
10.1021/ma00229a008
10.1039/C8SE00519B
10.1007/s11671-010-9629-7
10.1109/JMEMS.2007.911375
10.1109/TUFFC.2013.2786
10.1007/s10832-004-5130-y
10.1063/1.360959
10.1021/acsami.6b02177
10.1088/0953-8984/16/25/R01
10.1155/2012/132424
10.1021/acssuschemeng.7b00117
10.1016/j.orgel.2019.105405
10.7569/JRM.2017.634173
10.1016/j.nanoen.2019.04.090
10.1021/acsami.5b08168
10.1016/j.apsusc.2012.04.118
10.1016/j.tsf.2012.12.114
10.4028/www.scientific.net/MSF.514-516.872
10.1088/0022-3727/24/10/020
10.1038/srep02017
10.1016/j.nanoen.2018.10.053
10.1016/j.sna.2013.01.007
10.1515/ehs-2016-0028
10.1021/nn5046568
10.1063/1.5028756
10.1002/adma.201200359
10.1039/C7RA01267E
10.3390/polym9020033
10.1016/j.sna.2017.05.027
10.1021/acsami.6b01547
10.1021/am4016878
10.3390/nano8060420
10.1002/app.1973.070171111
10.1038/s41598-017-19082-3
10.1002/mame.201800463
10.1016/j.mtcomm.2017.04.001
10.1088/1757-899X/338/1/012026
10.1016/j.eurpolymj.2019.04.043
10.1021/acsami.6b04497
10.1002/adfm.201301379
10.1007/s10854-015-4221-7
10.1016/j.compositesb.2019.01.055
10.1021/acs.chemrev.5b00495
10.1002/app.12267
10.1021/nl060820v
10.1016/j.orgel.2018.06.006
10.1088/0964-1726/17/4/043001
10.1021/nn503269b
10.1007/s00339-002-1497-2
10.1063/1.3157837
10.1016/j.nanoen.2014.11.059
10.1016/j.nanoen.2014.10.010
10.1088/1361-665X/aa738e
10.1186/1556-276X-9-4
10.1007/s10854-017-7020-5
10.1016/j.compscitech.2015.11.032
10.1016/j.sna.2015.07.002
10.1039/C5RA25671B
10.1002/pola.23183
10.1016/j.ceramint.2021.02.140
10.1038/318162a0
10.1021/am5031648
10.1126/science.1124005
10.1016/j.clay.2017.10.036
10.1021/am502234q
10.1002/smll.200500331
10.1021/nl303539c
10.1080/00150198108238674
10.1016/j.addr.2008.03.012
10.1016/j.nanoen.2013.01.001
10.1007/s10832-007-9044-3
10.1063/1.4749279
10.1063/1.3237170
10.1016/j.mee.2013.01.058
10.1039/c0jm02408b
10.1016/j.compositesa.2019.03.031
10.1088/0022-3727/47/13/135302
10.1007/s10965-015-0765-8
10.1016/j.nanoen.2017.11.065
10.1016/j.jiec.2012.12.043
10.1021/jp711598j
10.1016/j.orgel.2015.06.007
10.3390/cryst11020085
10.1088/0964-1726/19/6/065010
10.1021/la7035407
10.1088/0957-4484/27/32/325403
10.1016/j.rser.2015.10.046
10.1021/acsami.6b03597
10.1002/adfm.201500856
10.1002/0471216275.esm063
10.1002/ente.201700756
10.1002/mame.201100176
10.1039/C5RA03524D
10.1016/S0142-9418(03)00003-5
10.1016/j.compscitech.2020.108100
10.1088/0964-1726/22/7/075017
10.1002/app.33239
10.1016/j.compscitech.2017.06.013
10.3390/s19040830
10.1016/j.nanoen.2016.08.030
10.1039/D0SM00341G
10.1063/1.4768923
10.1088/0957-4484/25/48/485401
10.1016/j.eurpolymj.2012.09.023
10.1021/jp502057p
10.1016/j.compositesa.2018.02.004
10.1080/00150198108238688
10.1021/nn3016585
10.1016/j.jpowsour.2013.11.079
10.1143/JJAP.8.975
10.1016/j.jpowsour.2013.06.081
10.1038/nature06601
10.1016/j.sna.2013.03.023
10.1021/nl400169t
10.1088/0957-4484/27/44/445403
10.1039/c2nr32185h
10.1002/aenm.201400723
10.1143/JJAP.44.7555
10.1039/C5RA16604G
10.1063/1.2360266
10.1016/j.nanoen.2018.05.068
10.1088/0957-4484/17/17/036
10.1039/C9CE00406H
10.1016/j.tca.2007.05.023
10.1557/PROC-851-NN9.11
10.1016/j.nanoen.2016.10.042
10.1021/jp3038768
10.1016/j.mser.2009.02.001
10.1021/nn404659d
10.1007/s00339-016-0161-1
10.1021/acsami.5b01679
10.1016/j.jnoncrysol.2006.02.052
10.1016/j.jeurceramsoc.2005.03.125
10.1007/s10854-012-0851-1
10.1021/acsami.7b08008
10.1039/C6TC00613B
10.1021/mz300234a
10.1016/j.polymer.2013.12.014
10.1063/1.4961623
10.1109/3516.891044
10.1021/nl803904b
10.1021/jz301805f
10.1016/j.nanoen.2012.02.003
10.1002/pi.1692
10.1016/j.sna.2013.10.011
10.1007/s10965-011-9570-1
10.1021/acsami.7b16973
10.1007/s10832-012-9706-7
10.1039/C5RA14889H
10.1063/1.4900845
10.1021/cr800187m
10.1016/j.jcis.2012.10.060
10.1080/10584580601098589
10.1002/adma.201102067
10.1016/j.polymer.2011.03.024
10.1016/j.ceramint.2015.02.148
10.1016/j.compscitech.2016.11.017
10.1002/aenm.201601016
10.1016/j.apenergy.2018.09.009
10.1038/nature03028
10.1002/crat.2170231029
10.1016/j.sna.2014.05.027
10.1080/00222347008217130
10.1088/0964-1726/22/6/065011
10.1063/1.2975834
10.1021/acsomega.8b00237
10.1016/j.matpr.2017.10.205
10.1021/acsaem.7b00337
10.1021/nl104412b
10.1021/ma901765j
10.1021/acsami.5b09502
10.3390/s100301473
10.1007/s42247-018-0007-z
10.1063/1.4921832
10.1016/j.orgel.2018.04.037
10.1109/MPRV.2005.9
10.1016/j.apsusc.2015.08.187
10.1109/TRANSDUCERS.2011.5969865
10.1039/c2ee22354f
10.1201/9781482295450
10.1038/ncomms1098
10.1002/adma.200803605
10.1021/ma00025a014
10.1080/00150198108238678
10.1016/j.energy.2019.01.043
10.1021/ja054771k
10.1016/j.compscitech.2017.03.015
10.1063/1.2748076
10.1016/j.polymer.2010.09.067
10.1039/C8NJ04751K
10.1016/j.sna.2016.04.056
10.1007/s10965-014-0434-3
10.1007/978-0-387-76540-2
10.1039/c1py00225b
10.1016/j.enconman.2019.01.073
10.1016/j.msec.2019.01.081
10.1021/acsami.5b01760
10.1109/TUFFC.2012.2168
10.1002/aenm.201301624
10.1016/j.nanoen.2017.01.062
10.1021/nl300972f
10.1016/j.sna.2014.11.012
10.1002/pen.20817
10.1039/C8EE03006E
10.1016/j.ceramint.2015.10.170
10.1039/c4ta01714e
10.1016/j.compscitech.2011.02.003
10.1016/j.matlet.2015.02.038
10.1002/adma.201103727
10.1002/polb.23443
10.1002/jbm.a.36050
10.1109/TNANO.2018.2800406
10.1016/j.compstruct.2015.06.075
10.1016/j.apsusc.2014.09.030
10.1021/nl201505c
10.1016/j.nanoen.2020.104516
10.1109/JPROC.2008.927494
10.1021/ma060261e
10.1038/nature07872
10.1016/j.nanoen.2018.11.031
10.1007/s10965-017-1396-z
10.1021/nn2039033
10.1002/adma.201470103
10.1002/aelm.201800413
10.1016/j.polymer.2004.05.057
10.1021/nn403428m
10.1039/C8SM01655K
10.1016/j.sna.2013.03.007
10.1007/s00339-006-3688-8
10.1002/adma.201500367
10.1021/ma100166a
10.1016/j.jallcom.2017.06.028
10.1021/nl301490q
10.1143/JJAP.37.2775
10.1088/2053-1591/aa8583
10.1016/j.polymer.2004.01.005
10.1016/j.mser.2010.06.015
10.1002/adma.201200105
10.1016/j.matchemphys.2018.04.013
10.1039/C5NR02067K
10.1021/nl061802g
10.1016/j.nanoen.2015.04.030
10.1109/58.883516
10.1088/0964-1726/23/3/033001
10.1016/j.matdes.2019.108176
10.1557/mrc.2017.126
10.3390/s140609889
10.1021/nl204334x
10.1038/nnano.2010.46
10.1016/S0079-6700(00)00044-7
10.1002/pen.24088
10.1021/ma980683r
10.1146/annurev.matsci.28.1.563
10.3390/s20123512
10.1002/polb.21550
10.7567/APEX.8.101501
10.1088/1361-665X/aab865
10.1016/j.apsusc.2017.06.109
10.1039/C5EE01593F
10.1002/polb.23146
10.1063/1.361055
10.1143/JJAP.19.L109
10.1063/1.1829394
10.1021/nn202251m
10.1021/ja01539a017
10.1016/j.nanoen.2018.08.006
10.1016/j.nanoen.2014.11.061
10.1016/j.sna.2010.09.019
10.3390/proceedings1040335
10.1016/j.matpr.2020.09.339
10.1021/ma051268j
10.1007/s10570-016-1070-3
10.1109/ISE.1999.832131
10.1021/nl102959k
10.1021/nl100812k
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202100864
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_dd0a8d91ccf34aa6a5e915e2c1d6e17f
PMC8425885
34254467
10_1002_advs_202100864
ADVS2825
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: UKRI
  funderid: EP/T024607/1
– fundername: Interreg Deutschland–Denmark
– fundername: European Regional Development Fund
  funderid: 096‐1.1‐18
– fundername: UKRI
  funderid: 133908; 133913
– fundername: Royal Academy of Engineering
  funderid: IAPP‐33‐24/01/2017; IAPP18‐19∖295
– fundername: UKRI
  grantid: EP/T024607/1
– fundername: UKRI
  grantid: 133908
– fundername: UKRI
  grantid: 133913
– fundername: Interreg Deutschland-Denmark
– fundername: European Regional Development Fund
  grantid: 096-1.1-18
– fundername: Royal Academy of Engineering
  grantid: IAPP-33-24/01/2017
– fundername: Royal Academy of Engineering
  grantid: IAPP18-19∖295
– fundername: ;
  grantid: IAPP‐33‐24/01/2017; IAPP18‐19∖295
– fundername: UKRI
  grantid: 133908; 133913
– fundername: ;
  grantid: 096‐1.1‐18
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5955-6af13dab5fdc96656b5a2a69cd5adff4c449a23d609b5723fff6dad4290874863
IEDL.DBID BENPR
ISICitedReferencesCount 482
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:41:25 EDT 2025
Tue Nov 04 01:52:00 EST 2025
Sun Nov 09 10:16:54 EST 2025
Sun Nov 09 08:03:12 EST 2025
Wed Feb 19 02:27:55 EST 2025
Sat Nov 29 07:19:04 EST 2025
Tue Nov 18 22:20:41 EST 2025
Wed Jan 22 16:29:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords energy harvesting
flexible devices
polymer nanocomposites
piezoelectric nanogenerator
polyvinylidene fluoride copolymers
nanostructured materials
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5955-6af13dab5fdc96656b5a2a69cd5adff4c449a23d609b5723fff6dad4290874863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0790-2264
OpenAccessLink https://www.proquest.com/docview/2570204314?pq-origsite=%requestingapplication%
PMID 34254467
PQID 2570204314
PQPubID 4365299
PageCount 73
ParticipantIDs doaj_primary_oai_doaj_org_article_dd0a8d91ccf34aa6a5e915e2c1d6e17f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425885
proquest_miscellaneous_2551208871
proquest_journals_2570204314
pubmed_primary_34254467
crossref_citationtrail_10_1002_advs_202100864
crossref_primary_10_1002_advs_202100864
wiley_primary_10_1002_advs_202100864_ADVS2825
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2020; 20
2015; 148
2019; 12
2013; 129
2004; 4
2020; 17
2020; 16
2016; 30
2019; 19
2020; 12
2012; 15
1996; 79
2012; 12
2019; 167
2019; 164
2017; 74
2009; 95
2010; 1
2018; 215
2009; 94
2019; 21
2018; 338
2015; 131
2018; 213
2013; 117
2016; 42
2013; 60
2013; 113
2019; 158
2008; 24
2013; 110
2009; 404
2008; 112
2012; 24
2010; 5
2012; 22
2017; 722
2010; 8
2011; 120
2021; 47
2007; 19
2011; 2
2009; 64
2011; 1
2018; 107
2004; 45
2006; 352
2010; 164
2001; 26
2013; 581
2019; 184
2011; 4
1979; 11
2011; 5
2016; 15
2017; 138
2012; 50
2016; 4
2018; 230
2016; 6
2004; 432
1985; 318
2020; 30
2015; 356
2020; 154
2019; 43
2015; 233
2017; 56
2018; 92
2005; 4
2005; 97
1999; 32
2008; 46
1998; 2
2017; 262
2017; 144
2016; 28
2016; 27
2019; 171
2016; 26
2016; 8
2017; 149
2016; 23
1965; 53
2017; 41
2013; 22
2016; 109
2019; 55
2013; 24
2013; 23
2013; 204
2019; 56
2013; 200
2017; 110
2003; 94
2007; 32
2007; 33
1970; 4
2017; 117
2014; 1
2007; 28
2013; 19
1969; 8
2013; 15
2014; 4
2019; 62
2014; 2
2017; 37
2013; 13
2017; 33
2020; 49
2016; 116
1958; 80
2003; 1
2010; 70
2014; 9
2014; 52
2014; 8
2014; 7
2008; 60
2014; 6
2018; 1942
1981; 32
2014; 55
2006; 125
2003; 89
2010; 71
2004; 85
2015; 5
2013; 49
2017; 26
2012
2019; 75
2011
2006; 13
2010
2017; 28
2006; 17
2017; 24
1986; 59
2016; 245
2008
2016; 123
2016; 122
2005
2018; 429
2018; 428
2008; 96
2019; 304
2018; 61
2002
2015; 8
1989; 24
2015; 7
2008; 93
2003; 77
1980; 19
1991; 24
2017; 11
2020; 70
2017; 13
2013; 30
2017; 12
2009; 9
2013; 531
2018; 52
2016; 138
2018; 50
2009; 4
2008; 451
2018; 53
2017; 105
2007; 47
2018; 59
2007; 104
2010; 10
2007; 101
1880; 3
2013; 3
2013; 4
2013; 2
2010; 19
2019; 98
2015; 72
2018; 168
2006; 39
2000; 88
1973; 17
2007; 461
2006; 514‐516
2014; 26
2011; 52
2014; 25
2014; 24
2013; 7
2018; 44
2013; 5
2014; 251
2014; 23
2014; 21
2010; 22
2018; 6
2009; 11
2004; 851
2018; 8
2018; 3
2018; 5
1990
2018; 1
2010; 114
2011; 71
2003; 48
2014; 14
2013; 196
2012; 258
2013; 193
2014; 245
2019; 7
2018; 29
2017; 418
2019; 4
2019; 3
2012; 101
2019; 5
2015; 55
2013; 189
2007; 90
2014; 47
1995
2016; 94
2016; 164
2018; 27
1999
2009; 458
2010; 43
2018; 17
2012; 112
2005; 127
2006; 47
2011; 94
1982; 44
1988; 23
1978; 49
2014; 39
2009; 109
2007; 88
2018; 10
2012; 116
2017; 302
2010; 51
2003; 22
2018; 14
2017; 5
2017; 7
2009; 47
1982; 15
2014; 216
2017; 1
2017; 2
2012; 2012
2017; 3
2017; 4
2009; 42
2000; 47
2000; 5
2015; 222
2011; 11
2015; 106
2009; 153
2015; 107
2012; 59
2011; 18
2017; 9
2009; 48
2012; 53
2005; 25
2019; 121
2017; 405
2015; 48
2012; 297
1983; 220
2015; 41
2011; 20
2019; 116
2013; 279
2011; 21
2013; 393
2011; 23
2014; 320
2021; 41
2005; 33
1994; 32
2014; 118
2015; 15
1998; 28
2015; 14
2015; 17
2009; 21
2015; 11
2008; 17
2016; 54
2006; 6
2006; 2
2009; 373
2015; 149–150
2005; 44
2006; 312
2006; 311
2001; 80
1998; 37
2018; 152
2015; 25
2006; 85
2015; 28
2012; 3
2015; 27
2012; 1
2021; 11
2004; 16
2006; 88
2020; 192
2015; 22
2004; 13
2005; 54
2012; 6
2012; 4
2012; 5
2001; 73
2014; 104
e_1_2_12_443_1
e_1_2_12_191_1
e_1_2_12_420_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_345_1
e_1_2_12_368_1
e_1_2_12_85_1
e_1_2_12_322_1
e_1_2_12_201_1
e_1_2_12_224_1
e_1_2_12_247_1
e_1_2_12_62_1
e_1_2_12_180_1
e_1_2_12_431_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_333_1
e_1_2_12_356_1
e_1_2_12_379_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_310_1
e_1_2_12_73_1
e_1_2_12_212_1
e_1_2_12_258_1
e_1_2_12_50_1
e_1_2_12_235_1
e_1_2_12_421_1
e_1_2_12_190_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_346_1
e_1_2_12_369_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_323_1
e_1_2_12_300_1
e_1_2_12_202_1
e_1_2_12_248_1
e_1_2_12_40_1
e_1_2_12_225_1
e_1_2_12_432_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_334_1
e_1_2_12_103_1
e_1_2_12_357_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_311_1
e_1_2_12_213_1
e_1_2_12_236_1
e_1_2_12_259_1
e_1_2_12_51_1
e_1_2_12_193_1
e_1_2_12_238_1
e_1_2_12_422_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_324_1
e_1_2_12_347_1
e_1_2_12_359_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_301_1
e_1_2_12_83_1
e_1_2_12_203_1
e_1_2_12_226_1
e_1_2_12_410_1
e_1_2_12_182_1
e_1_2_12_249_1
e_1_2_12_433_1
e_1_2_12_335_1
e_1_2_12_358_1
e_1_2_12_118_1
e_1_2_12_312_1
e_1_2_12_290_1
e_1_2_12_8_1
e_1_2_12_94_1
e_1_2_12_237_1
e_1_2_12_71_1
e_1_2_12_214_1
e_1_2_12_400_1
e_1_2_12_423_1
e_1_2_12_216_1
e_1_2_12_239_1
e_1_2_12_192_1
e_1_2_12_116_1
e_1_2_12_325_1
e_1_2_12_337_1
e_1_2_12_302_1
e_1_2_12_128_1
e_1_2_12_280_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_411_1
e_1_2_12_434_1
e_1_2_12_227_1
e_1_2_12_181_1
e_1_2_12_105_1
Aldas M. (e_1_2_12_158_1) 2010
e_1_2_12_336_1
e_1_2_12_348_1
e_1_2_12_313_1
e_1_2_12_117_1
e_1_2_12_291_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_215_1
e_1_2_12_9_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_341_1
e_1_2_12_387_1
e_1_2_12_364_1
e_1_2_12_134_1
e_1_2_12_220_1
e_1_2_12_243_1
e_1_2_12_266_1
e_1_2_12_289_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_352_1
e_1_2_12_375_1
e_1_2_12_398_1
e_1_2_12_28_1
e_1_2_12_254_1
e_1_2_12_231_1
e_1_2_12_409_1
e_1_2_12_92_1
e_1_2_12_277_1
e_1_2_12_18_1
e_1_2_12_440_1
e_1_2_12_110_1
e_1_2_12_179_1
e_1_2_12_342_1
e_1_2_12_365_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_244_1
e_1_2_12_221_1
e_1_2_12_82_1
e_1_2_12_267_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_330_1
e_1_2_12_376_1
e_1_2_12_29_1
e_1_2_12_353_1
e_1_2_12_145_1
e_1_2_12_399_1
e_1_2_12_232_1
e_1_2_12_255_1
e_1_2_12_278_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_441_1
e_1_2_12_38_1
e_1_2_12_159_1
e_1_2_12_343_1
e_1_2_12_366_1
e_1_2_12_113_1
e_1_2_12_389_1
e_1_2_12_320_1
e_1_2_12_26_1
e_1_2_12_222_1
e_1_2_12_245_1
e_1_2_12_268_1
e_1_2_12_49_1
e_1_2_12_148_1
e_1_2_12_331_1
e_1_2_12_354_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_377_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_233_1
e_1_2_12_279_1
e_1_2_12_210_1
e_1_2_12_256_1
e_1_2_12_442_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_39_1
e_1_2_12_344_1
e_1_2_12_367_1
e_1_2_12_321_1
e_1_2_12_80_1
e_1_2_12_200_1
e_1_2_12_223_1
e_1_2_12_269_1
e_1_2_12_246_1
e_1_2_12_430_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_332_1
e_1_2_12_355_1
e_1_2_12_124_1
e_1_2_12_378_1
Curie P. (e_1_2_12_53_1) 1880; 3
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_211_1
e_1_2_12_234_1
e_1_2_12_257_1
e_1_2_12_130_1
e_1_2_12_383_1
e_1_2_12_2_1
e_1_2_12_360_1
e_1_2_12_319_1
e_1_2_12_153_1
e_1_2_12_199_1
e_1_2_12_176_1
Dey S. (e_1_2_12_230_1) 2012
e_1_2_12_262_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_285_1
e_1_2_12_417_1
e_1_2_12_371_1
e_1_2_12_394_1
e_1_2_12_209_1
Mokhtari F. (e_1_2_12_196_1) 2015; 107
e_1_2_12_165_1
e_1_2_12_142_1
e_1_2_12_188_1
e_1_2_12_307_1
e_1_2_12_273_1
e_1_2_12_35_1
e_1_2_12_250_1
e_1_2_12_58_1
Atkinson G. M. (e_1_2_12_140_1) 2003
e_1_2_12_12_1
e_1_2_12_296_1
e_1_2_12_428_1
e_1_2_12_405_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_361_1
e_1_2_12_384_1
e_1_2_12_175_1
e_1_2_12_198_1
e_1_2_12_240_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_418_1
e_1_2_12_263_1
e_1_2_12_286_1
e_1_2_12_141_1
e_1_2_12_372_1
e_1_2_12_308_1
e_1_2_12_395_1
e_1_2_12_164_1
e_1_2_12_187_1
e_1_2_12_251_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_429_1
e_1_2_12_274_1
e_1_2_12_297_1
e_1_2_12_406_1
e_1_2_12_362_1
e_1_2_12_385_1
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_155_1
e_1_2_12_22_1
e_1_2_12_45_1
e_1_2_12_68_1
e_1_2_12_419_1
e_1_2_12_241_1
e_1_2_12_264_1
e_1_2_12_287_1
e_1_2_12_350_1
e_1_2_12_121_1
e_1_2_12_309_1
e_1_2_12_373_1
e_1_2_12_396_1
Kim J. Y.‐H. (e_1_2_12_60_1) 2011
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_33_1
e_1_2_12_56_1
e_1_2_12_79_1
e_1_2_12_407_1
e_1_2_12_252_1
e_1_2_12_10_1
e_1_2_12_275_1
e_1_2_12_298_1
e_1_2_12_1_1
e_1_2_12_340_1
e_1_2_12_363_1
e_1_2_12_386_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_177_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_265_1
e_1_2_12_242_1
e_1_2_12_288_1
Ikeda T. (e_1_2_12_69_1) 1990
e_1_2_12_351_1
e_1_2_12_397_1
e_1_2_12_120_1
e_1_2_12_374_1
e_1_2_12_143_1
e_1_2_12_189_1
e_1_2_12_166_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_408_1
e_1_2_12_253_1
e_1_2_12_11_1
e_1_2_12_276_1
e_1_2_12_299_1
e_1_2_12_217_1
e_1_2_12_195_1
e_1_2_12_424_1
e_1_2_12_6_1
e_1_2_12_172_1
e_1_2_12_401_1
e_1_2_12_315_1
e_1_2_12_108_1
e_1_2_12_281_1
e_1_2_12_303_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_338_1
e_1_2_12_43_1
e_1_2_12_89_1
e_1_2_12_436_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_228_1
e_1_2_12_390_1
e_1_2_12_205_1
e_1_2_12_435_1
e_1_2_12_412_1
e_1_2_12_314_1
e_1_2_12_326_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_292_1
e_1_2_12_349_1
e_1_2_12_54_1
Araújo E. B. (e_1_2_12_388_1) 2011
e_1_2_12_171_1
e_1_2_12_402_1
e_1_2_12_194_1
e_1_2_12_218_1
e_1_2_12_380_1
e_1_2_12_316_1
e_1_2_12_282_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_339_1
e_1_2_12_107_1
e_1_2_12_67_1
e_1_2_12_414_1
e_1_2_12_437_1
e_1_2_12_206_1
e_1_2_12_160_1
e_1_2_12_413_1
e_1_2_12_183_1
e_1_2_12_229_1
e_1_2_12_391_1
e_1_2_12_304_1
e_1_2_12_270_1
e_1_2_12_293_1
e_1_2_12_119_1
e_1_2_12_327_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_78_1
e_1_2_12_7_1
e_1_2_12_425_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_219_1
e_1_2_12_151_1
e_1_2_12_381_1
e_1_2_12_317_1
e_1_2_12_197_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_283_1
e_1_2_12_64_1
e_1_2_12_260_1
e_1_2_12_415_1
e_1_2_12_438_1
e_1_2_12_163_1
e_1_2_12_207_1
e_1_2_12_392_1
e_1_2_12_186_1
e_1_2_12_305_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_271_1
e_1_2_12_328_1
e_1_2_12_75_1
e_1_2_12_294_1
e_1_2_12_403_1
e_1_2_12_426_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_5_1
e_1_2_12_382_1
Harrison J. S. (e_1_2_12_136_1) 2002
e_1_2_12_318_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_284_1
e_1_2_12_261_1
Chang J. (e_1_2_12_204_1) 2011
e_1_2_12_439_1
e_1_2_12_416_1
e_1_2_12_185_1
e_1_2_12_208_1
e_1_2_12_162_1
e_1_2_12_393_1
e_1_2_12_370_1
e_1_2_12_306_1
e_1_2_12_30_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_272_1
e_1_2_12_295_1
e_1_2_12_329_1
e_1_2_12_404_1
e_1_2_12_427_1
References_xml – volume: 429
  start-page: 164
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 3091
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 2693
  year: 2005
  publication-title: J. Eur. Ceram. Soc.
– volume: 112
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 33
  start-page: 224
  year: 2005
  publication-title: Comput. Mater. Sci.
– volume: 14
  start-page: 9889
  year: 2014
  publication-title: Sensors
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. American Chem. Socie.
– volume: 71
  start-page: 885
  year: 2011
  publication-title: Compos. Sci. Technol.
– volume: 230
  start-page: 865
  year: 2018
  publication-title: Appl. Energy
– volume: 27
  start-page: 3773
  year: 2016
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 22
  start-page: 2187
  year: 2010
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2185
  year: 2009
  publication-title: Adv. Mater.
– volume: 105
  start-page: 1984
  year: 2017
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 262
  start-page: 123
  year: 2017
  publication-title: Sens. Actuators, A
– volume: 45
  start-page: 5417
  year: 2004
  publication-title: Polymer
– volume: 109
  start-page: 6632
  year: 2009
  publication-title: Chem. Rev.
– volume: 12
  start-page: 3086
  year: 2012
  publication-title: Nano Lett.
– volume: 7
  start-page: 9831
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 3
  year: 2019
  publication-title: Energy Harvesting Syst.
– volume: 320
  start-page: 339
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 3751
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 39
  start-page: 15
  year: 2006
  publication-title: Macromolecules
– volume: 167
  year: 2019
  publication-title: Mater. Des.
– volume: 5
  start-page: 331
  year: 2000
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 26
  year: 2017
  publication-title: Smart Mater. Struct.
– volume: 7
  start-page: 960
  year: 2017
  publication-title: MRS Commun.
– volume: 17
  start-page: 334
  year: 2008
  publication-title: J. Microelectromech. Syst.
– volume: 6
  start-page: 6231
  year: 2012
  publication-title: ACS Nano
– volume: 5
  start-page: 6117
  year: 2013
  publication-title: Nanoscale
– volume: 4
  start-page: 18
  year: 2005
  publication-title: IEEE Pervasive Comput.
– volume: 71
  start-page: 439
  year: 2010
  publication-title: Appl. Acoust.
– volume: 30
  start-page: 434
  year: 2016
  publication-title: Nano Energy
– volume: 4
  start-page: 6568
  year: 2012
  publication-title: Nanoscale
– volume: 220
  start-page: 1115
  year: 1983
  publication-title: Science
– volume: 39
  start-page: 4202
  year: 2006
  publication-title: Macromolecules
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 3625
  year: 2016
  publication-title: Cellulose
– volume: 233
  start-page: 195
  year: 2015
  publication-title: Sens. Actuators, A
– volume: 61
  start-page: 289
  year: 2018
  publication-title: Org. Electron.
– volume: 9
  start-page: 1223
  year: 2009
  publication-title: Nano Lett.
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 33
  year: 2014
  publication-title: Nano Energy
– volume: 114
  start-page: 1379
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 28
  year: 2017
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 851
  start-page: 499
  year: 2004
  publication-title: MRS Online Proc. Libr.
– volume: 32
  start-page: 109
  year: 2007
  publication-title: MRS Bull.
– volume: 48
  start-page: 514
  year: 2009
  publication-title: J. Macromol. Sci., Part B: Phys.
– year: 2002
– volume: 70
  start-page: 320
  year: 2010
  publication-title: Mater. Sci. Eng., R
– volume: 16
  start-page: R829
  year: 2004
  publication-title: J. Phys.: Condens. Matter
– volume: 356
  start-page: 1214
  year: 2015
  publication-title: Appl. Surf. Sci.
– year: 1995
– volume: 297
  start-page: 209
  year: 2012
  publication-title: Macromol. Mater. Eng.
– volume: 24
  year: 2013
  publication-title: Nanotechnology
– volume: 20
  year: 2011
  publication-title: Smart Mater. Struct.
– volume: 17
  start-page: 4497
  year: 2006
  publication-title: Nanotechnology
– volume: 531
  start-page: 404
  year: 2013
  publication-title: Thin Solid Films
– volume: 196
  start-page: 55
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 312
  start-page: 242
  year: 2006
  publication-title: Science
– volume: 3
  start-page: 3599
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 4939
  year: 2010
  publication-title: Nano Lett.
– volume: 15
  start-page: 177
  year: 2015
  publication-title: Nano Energy
– volume: 79
  start-page: 1713
  year: 1996
  publication-title: J. Appl. Phys.
– volume: 405
  start-page: 420
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 204
  start-page: 74
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 4
  year: 2017
  publication-title: Mater. Res. Express
– volume: 28
  start-page: 2159
  year: 2007
  publication-title: Macromol. Rapid Commun.
– volume: 42
  start-page: 2734
  year: 2016
  publication-title: Ceram. Int.
– volume: 581
  start-page: 724
  year: 2013
  publication-title: J. Alloys Compd.
– start-page: 747
  year: 2011
  end-page: 750
– volume: 8
  start-page: 2766
  year: 2014
  publication-title: ACS Nano
– volume: 11
  start-page: 85
  year: 2021
  publication-title: Crystals
– volume: 373
  start-page: 177
  year: 2009
  publication-title: Phys. Lett. A
– volume: 10
  start-page: 1473
  year: 2010
  publication-title: Sensors
– volume: 53
  start-page: 1372
  year: 1965
  publication-title: Proc. IEEE
– volume: 48
  start-page: 649
  year: 2003
  publication-title: Crystallogr. Rep.
– volume: 2
  start-page: 561
  year: 2006
  publication-title: Small
– volume: 122
  start-page: 637
  year: 2016
  publication-title: Appl. Phys. A
– volume: 4
  start-page: 4387
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 245
  start-page: 135
  year: 2016
  publication-title: Sens. Actuators, A
– volume: 15
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 21
  start-page: 434
  year: 2014
  publication-title: J. Polym. Res.
– volume: 279
  start-page: 204
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 1201
  year: 2009
  publication-title: Nano Lett.
– volume: 24
  start-page: 37
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 5951
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 1539
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 164
  start-page: 136
  year: 2016
  publication-title: Mater. Lett.
– volume: 110
  start-page: 282
  year: 2013
  publication-title: Microelectron. Eng.
– volume: 12
  start-page: 1959
  year: 2012
  publication-title: Nano Lett.
– volume: 4
  start-page: 1633
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 14
  start-page: 8803
  year: 2018
  publication-title: Soft Matter
– volume: 121
  start-page: 223
  year: 2019
  publication-title: Composites, Part A
– volume: 216
  start-page: 196
  year: 2014
  publication-title: Sens. Actuators, A
– volume: 311
  start-page: 1740
  year: 2006
  publication-title: Science
– volume: 24
  start-page: 2999
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8962
  year: 2014
  publication-title: Nanoscale
– volume: 107
  start-page: 1037
  year: 2015
  publication-title: J. Text. Inst.
– volume: 11
  start-page: 163
  year: 2017
  publication-title: Mater. Today Commun.
– volume: 458
  start-page: 872
  year: 2009
  publication-title: Nature
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 4
  start-page: 889
  year: 1970
  publication-title: J. Macromol. Sci., Part B: Phys.
– volume: 19
  year: 2010
  publication-title: Smart Mater. Struct.
– volume: 47
  year: 2014
  publication-title: J. Phys. D: Appl. Phys.
– volume: 14
  start-page: 3
  year: 2015
  publication-title: Nano Energy
– volume: 1
  year: 2017
  publication-title: Adv. Sustainable Syst.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 1344
  year: 2007
  publication-title: Polym. Eng. Sci.
– volume: 2
  start-page: 257
  year: 1998
  publication-title: J. Electroceram.
– volume: 24
  start-page: 110
  year: 2012
  publication-title: Adv. Mater.
– volume: 514‐516
  start-page: 872
  year: 2006
  publication-title: Materials Science Forum
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 719
  year: 2015
  publication-title: Nano Energy
– volume: 24
  start-page: 3326
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 8528
  year: 2012
  publication-title: Energy Environ. Sci.
– year: 2005
– volume: 59
  start-page: 149
  year: 2018
  publication-title: Org. Electron.
– volume: 2
  start-page: 75
  year: 2013
  publication-title: Nano Energy
– volume: 12
  start-page: 2697
  year: 2020
  publication-title: Polymers
– volume: 24
  start-page: 670
  year: 2008
  publication-title: Langmuir
– volume: 51
  start-page: 5846
  year: 2010
  publication-title: Polymer
– volume: 22
  start-page: 130
  year: 2015
  publication-title: J. Polym. Res.
– volume: 251
  start-page: 423
  year: 2014
  publication-title: J. Power Sources
– volume: 37
  start-page: 126
  year: 2017
  publication-title: Nano Energy
– volume: 222
  start-page: 293
  year: 2015
  publication-title: Sens. Actuators, A
– volume: 118
  start-page: 8831
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 17
  year: 2008
  publication-title: Smart Mater. Struct.
– volume: 12
  start-page: 2238
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  year: 2011
  publication-title: ACS Nano
– volume: 92
  start-page: 834
  year: 2018
  publication-title: Renewable Sustainable Energy Rev.
– volume: 54
  start-page: 1035
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 7
  start-page: 8932
  year: 2013
  publication-title: ACS Nano
– volume: 19
  start-page: 141
  year: 2007
  publication-title: J. Electroceram.
– volume: 432
  start-page: 84
  year: 2004
  publication-title: Nature
– volume: 98
  start-page: 1210
  year: 2019
  publication-title: Mater. Sci. Eng., C
– volume: 45
  start-page: 2281
  year: 2004
  publication-title: Polymer
– volume: 42
  start-page: 8870
  year: 2009
  publication-title: Macromolecules
– volume: 149
  start-page: 127
  year: 2017
  publication-title: Compos. Sci. Technol.
– volume: 428
  start-page: 356
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 335
  year: 2017
  publication-title: Proceedings
– volume: 21
  start-page: 3478
  year: 2019
  publication-title: CrystEngComm
– volume: 6
  start-page: 1
  year: 2018
  publication-title: J. Renewable Mater.
– volume: 5
  start-page: 6707
  year: 2011
  publication-title: ACS Nano
– volume: 59
  start-page: 163
  year: 2012
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
– volume: 15
  start-page: 40
  year: 1982
  publication-title: Macromolecules
– volume: 8
  start-page: 4532
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 192
  year: 2020
  publication-title: Compos. Sci. Technol.
– volume: 152
  start-page: 93
  year: 2018
  publication-title: Appl. Clay Sci.
– volume: 116
  start-page: 4260
  year: 2016
  publication-title: Chem. Rev.
– volume: 117
  start-page: 203
  year: 2017
  publication-title: Mater. Des.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 6
  start-page: 6251
  year: 2016
  publication-title: RSC Adv.
– volume: 125
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 2445
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 94
  start-page: 183
  year: 2016
  publication-title: Procedia Comput. Sci.
– volume: 30
  start-page: 30
  year: 2013
  publication-title: J. Electroceram.
– volume: 32
  start-page: 859
  year: 1994
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 28
  start-page: 356
  year: 2016
  publication-title: Nano Energy
– volume: 94
  start-page: 1
  year: 2011
  publication-title: Electron. Commun. Jpn.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 1
  start-page: 93
  year: 2010
  publication-title: Nat. Commun.
– volume: 37
  start-page: 2775
  year: 1998
  publication-title: Jpn. J. Appl. Phys.
– volume: 6
  start-page: 2768
  year: 2006
  publication-title: Nano Lett.
– volume: 164
  start-page: 131
  year: 2010
  publication-title: Sens. Actuators, A
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 4788
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 2450
  year: 2014
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2017
  year: 2013
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1889
  year: 2012
  publication-title: IEEE Sens. J.
– volume: 164
  start-page: 703
  year: 2019
  publication-title: Composites, Part B
– volume: 19
  start-page: L109
  year: 1980
  publication-title: Jpn. J. Appl. Phys.
– volume: 1
  year: 2014
  publication-title: Appl. Phys. Rev.
– volume: 50
  start-page: 1433
  year: 2012
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 97
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 1
  year: 2015
  publication-title: Nano Energy
– volume: 43
  start-page: 284
  year: 2019
  publication-title: New J. Chem.
– volume: 49
  start-page: 4490
  year: 1978
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 1848
  year: 1991
  publication-title: J. Phys. D: Appl. Phys.
– volume: 85
  start-page: 5658
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 2774
  year: 2017
  publication-title: ChemistrySelect
– volume: 96
  start-page: 1457
  year: 2008
  publication-title: Proc. IEEE
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 2677
  year: 2020
  publication-title: J. Electron. Mater.
– volume: 24
  start-page: 6644
  year: 1991
  publication-title: Macromolecules
– volume: 3
  start-page: 774
  year: 2019
  publication-title: Sustainable Energy Fuels
– volume: 56
  start-page: 420
  year: 2019
  publication-title: Nano Energy
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 288
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 2142
  year: 1986
  publication-title: J. Appl. Phys.
– volume: 144
  start-page: 1
  year: 2017
  publication-title: Compos. Sci. Technol.
– volume: 77
  start-page: 561
  year: 2003
  publication-title: Appl. Phys. A
– volume: 17
  year: 2020
  publication-title: Mater. Today Chem.
– volume: 89
  start-page: 1093
  year: 2003
  publication-title: J. Appl. Polym. Sci.
– volume: 24
  start-page: 220
  year: 2017
  publication-title: J. Polym. Res.
– volume: 94
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 34
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 1163
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 4068
  year: 2011
  publication-title: Adv. Mater.
– volume: 14
  start-page: 15
  year: 2015
  publication-title: Nano Energy
– volume: 7
  start-page: 7436
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 420
  year: 2018
  publication-title: Nanomaterials
– volume: 72
  start-page: 130
  year: 2015
  publication-title: Composites, Part B
– volume: 52
  start-page: 153
  year: 2018
  publication-title: Nano Energy
– volume: 18
  start-page: 1653
  year: 2011
  publication-title: J. Polym. Res.
– volume: 3
  start-page: 89
  year: 1880
  publication-title: Bulletin of the Mineralogical Society of France
– volume: 8
  start-page: 1555
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  year: 2013
  publication-title: Smart Mater. Struct.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 61
  year: 1981
  publication-title: Ferroelectrics
– volume: 154
  year: 2020
  publication-title: React. Funct. Polym.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 25
  year: 2014
  publication-title: Nanotechnology
– volume: 302
  year: 2017
  publication-title: Macromol. Mater. Eng.
– volume: 26
  start-page: 4880
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 92
  year: 2015
  publication-title: Org. Electron.
– volume: 44
  start-page: 456
  year: 2018
  publication-title: Nano Energy
– volume: 70
  year: 2020
  publication-title: Nano Energy
– start-page: 473
  year: 2011
  end-page: 476
– volume: 6
  start-page: 1656
  year: 2006
  publication-title: Nano Lett.
– volume: 32
  start-page: 85
  year: 1981
  publication-title: Ferroelectrics
– volume: 5
  start-page: 747
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5142
  year: 2011
  publication-title: Nano Lett.
– volume: 26
  start-page: 504
  year: 2016
  publication-title: Nano Energy
– volume: 20
  start-page: 3512
  year: 2020
  publication-title: Sensors
– year: 1990
– volume: 1
  start-page: 576
  year: 2011
  publication-title: RSC Adv.
– volume: 112
  start-page: 8827
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 120
  start-page: 1080
  year: 2011
  publication-title: J. Appl. Polym. Sci.
– volume: 7
  year: 2019
  publication-title: IEEE Access
– year: 2008
– volume: 107
  start-page: 536
  year: 2018
  publication-title: Composites, Part A
– volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 52
  start-page: 2228
  year: 2011
  publication-title: Polymer
– volume: 461
  start-page: 153
  year: 2007
  publication-title: Thermochim. Acta
– volume: 153
  start-page: 251
  year: 2009
  publication-title: Sens. Actuators, A
– volume: 44
  start-page: 197
  year: 1982
  publication-title: Ferroelectrics
– volume: 2
  start-page: 2985
  year: 2017
  publication-title: ACS Omega
– volume: 5
  start-page: 4197
  year: 2011
  publication-title: ACS Nano
– volume: 393
  start-page: 97
  year: 2013
  publication-title: J. Colloid Interface Sci.
– volume: 23
  year: 2014
  publication-title: Smart Mater. Struct.
– volume: 10
  start-page: 3151
  year: 2010
  publication-title: Nano Lett.
– volume: 12
  start-page: 1143
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 234
  year: 2017
  publication-title: Energy Technol.
– volume: 16
  start-page: 5679
  year: 2020
  publication-title: Soft Matter
– volume: 129
  start-page: 391
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 24
  start-page: 2620
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 536
  year: 2017
  publication-title: Mater. Express
– volume: 10
  start-page: 2793
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 91
  year: 2013
  publication-title: Nano Lett.
– volume: 11
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 80
  start-page: 2259
  year: 2001
  publication-title: J. Appl. Polym. Sci.
– volume: 85
  start-page: 125
  year: 2006
  publication-title: Appl. Phys. A
– volume: 22
  start-page: 699
  year: 2003
  publication-title: Polym. Test.
– volume: 17
  start-page: 311
  year: 2018
  publication-title: IEEE Trans. Nanotechnol.
– start-page: 1
  year: 2010
  end-page: 4
– volume: 184
  start-page: 600
  year: 2019
  publication-title: Energy Convers. Manage.
– volume: 46
  start-page: 2173
  year: 2008
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 13
  start-page: 1110
  year: 2006
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 1
  start-page: 356
  year: 2012
  publication-title: Nano Energy
– volume: 189
  start-page: 328
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 55
  start-page: 1589
  year: 2015
  publication-title: Polym. Eng. Sci.
– volume: 43
  start-page: 3844
  year: 2010
  publication-title: Macromolecules
– volume: 60
  start-page: 2013
  year: 2013
  publication-title: IEEE Tans. Ultrason., Ferroelectr., Freq. Control
– volume: 13
  year: 2017
  publication-title: Small
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 752
  year: 2012
  publication-title: Nanoscale
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 56
  year: 2017
  publication-title: Ind. Eng. Chem. Res.
– volume: 32
  start-page: 989
  year: 1999
  publication-title: Macromolecules
– volume: 193
  start-page: 13
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 143
  year: 2018
  publication-title: Polym. Adv. Technol.
– volume: 6
  start-page: 839
  year: 2006
  publication-title: Nano Lett.
– volume: 39
  start-page: 683
  year: 2014
  publication-title: Prog. Polym. Sci.
– volume: 1942
  year: 2018
  publication-title: AIP Conf. Proc.
– volume: 1
  start-page: 867
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 44
  start-page: 7555
  year: 2005
  publication-title: Jpn. J. Appl. Phys.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 55
  start-page: 611
  year: 2014
  publication-title: Polymer
– volume: 8
  start-page: 9311
  year: 2014
  publication-title: ACS Nano
– volume: 13
  start-page: 385
  year: 2004
  publication-title: J. Electroceram.
– volume: 10
  start-page: 5025
  year: 2010
  publication-title: Nano Lett.
– volume: 4
  start-page: 587
  year: 2004
  publication-title: Nano Lett.
– volume: 55
  start-page: 288
  year: 2019
  publication-title: Nano Energy
– volume: 13
  start-page: S131
  year: 2013
  publication-title: Curr. Appl. Phys.
– volume: 101
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 743
  year: 2018
  publication-title: Nanomaterials
– volume: 113
  start-page: 821
  year: 2013
  publication-title: J. Therm. Anal. Calorim.
– volume: 15
  start-page: 78
  year: 2016
  publication-title: Nat. Mater.
– volume: 722
  start-page: 829
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 25
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 47
  year: 2021
  publication-title: Ceram. Int.
– volume: 4
  start-page: 3359
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 521
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 171
  start-page: 485
  year: 2019
  publication-title: Energy
– volume: 30
  year: 2020
  publication-title: Advanced Functional Materials
– volume: 138
  start-page: 49
  year: 2017
  publication-title: Compos. Sci. Technol.
– volume: 19
  start-page: 1377
  year: 2013
  publication-title: J. Ind. Eng. Chem.
– volume: 2
  start-page: 2000
  year: 2011
  publication-title: Polym. Chem.
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 3
  start-page: 5317
  year: 2018
  publication-title: ACS Omega
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 94
  start-page: 5964
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 131
  start-page: 1090
  year: 2015
  publication-title: Compos. Struct.
– volume: 47
  start-page: 722
  year: 2009
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 168
  start-page: 397
  year: 2018
  publication-title: Compos. Sci. Technol.
– volume: 75
  year: 2019
  publication-title: Org. Electron.
– year: 2011
– volume: 26
  start-page: 7708
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 1678
  year: 2006
  publication-title: Polymer
– volume: 52
  start-page: 391
  year: 2018
  publication-title: Nano Energy
– volume: 1
  start-page: 55
  year: 2018
  publication-title: Emergent Mater.
– volume: 5
  start-page: 366
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 33
  start-page: 462
  year: 2017
  publication-title: Nano Energy
– volume: 2
  start-page: 749
  year: 2013
  publication-title: Nano Energy
– volume: 12
  start-page: 3701
  year: 2012
  publication-title: Nano Lett.
– volume: 304
  year: 2019
  publication-title: Macromol. Mater. Eng.
– volume: 53
  start-page: 1404
  year: 2012
  publication-title: Polymer
– volume: 8
  start-page: 274
  year: 2010
  publication-title: Soft Mater.
– volume: 9
  start-page: 4
  year: 2014
  publication-title: Nanoscale Res. Lett.
– volume: 25
  start-page: 3203
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2018
  publication-title: Mater. Today: Proc.
– volume: 7
  year: 2015
  publication-title: J. Renewable Sustainable Energy
– volume: 184
  year: 2019
  publication-title: Mater. Des.
– volume: 318
  start-page: 162
  year: 1985
  publication-title: Nature
– volume: 4
  start-page: 1
  year: 2017
  publication-title: IOSR J. Polym. Text. Eng.
– start-page: 21
  year: 2012
  end-page: 24
– volume: 12
  start-page: 174
  year: 2017
  publication-title: Nano‐Struct. Nano‐Objects
– volume: 41
  start-page: 8008
  year: 2015
  publication-title: Ceram. Int.
– volume: 5
  start-page: 4730
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 62
  start-page: 475
  year: 2019
  publication-title: Nano Energy
– volume: 19
  start-page: 113
  year: 2007
  publication-title: J. Electroceram.
– volume: 215
  start-page: 46
  year: 2018
  publication-title: Mater. Chem. Phys.
– volume: 116
  start-page: 554
  year: 2019
  publication-title: Eur. Polym. J.
– volume: 3
  start-page: 30
  year: 2017
  publication-title: C
– volume: 5
  start-page: 8932
  year: 2012
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 33
  start-page: 1369
  year: 2007
  publication-title: Ceram. Int.
– volume: 418
  start-page: 362
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 50
  start-page: 632
  year: 2018
  publication-title: Nano Energy
– volume: 13
  start-page: 2393
  year: 2013
  publication-title: Nano Lett.
– volume: 32
  start-page: 167
  year: 1981
  publication-title: Ferroelectrics
– volume: 11
  start-page: 2572
  year: 2011
  publication-title: Nano Lett.
– volume: 15
  start-page: 532
  year: 2012
  publication-title: Mater. Today
– volume: 4
  start-page: 6312
  year: 2019
  publication-title: ACS Omega
– volume: 3
  start-page: 8891
  year: 2018
  publication-title: ACS Omega
– volume: 41
  start-page: 335
  year: 2021
  publication-title: Mater. Today: Proc.
– volume: 56
  start-page: 588
  year: 2019
  publication-title: Nano Energy
– volume: 28
  start-page: 563
  year: 1998
  publication-title: Annu. Rev. Mater. Sci.
– volume: 27
  year: 2018
  publication-title: Smart Mater. Struct.
– volume: 8
  start-page: 754
  year: 2018
  publication-title: Sci. Rep.
– volume: 148
  start-page: 58
  year: 2015
  publication-title: Mater. Lett.
– volume: 338
  year: 2018
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 258
  start-page: 7668
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 158
  start-page: 141
  year: 2019
  publication-title: Composites, Part B
– volume: 30
  start-page: 621
  year: 2016
  publication-title: Nano Energy
– volume: 11
  start-page: 429
  year: 1979
  publication-title: Polym. J.
– volume: 88
  start-page: 44
  year: 2007
  publication-title: Integr. Ferroelectr.
– volume: 4
  start-page: 7250
  year: 2012
  publication-title: Nanoscale
– volume: 11
  start-page: 1331
  year: 2011
  publication-title: Nano Lett.
– volume: 5
  start-page: 6430
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 213
  start-page: 525
  year: 2018
  publication-title: Mater. Chem. Phys.
– volume: 404
  start-page: 3637
  year: 2009
  publication-title: Phys. B
– volume: 10
  start-page: 726
  year: 2010
  publication-title: Nano Lett.
– volume: 8
  year: 2015
  publication-title: Appl. Phys. Express
– volume: 8
  start-page: 975
  year: 1969
  publication-title: Jpn. J. Appl. Phys.
– volume: 74
  start-page: 1
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 52
  start-page: 4970
  year: 2011
  publication-title: Polymer
– volume: 24
  start-page: 375
  year: 1989
  publication-title: IEEE Trans. Electr. Insul.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 105
  year: 2001
  publication-title: Prog. Polym. Sci.
– volume: 149–150
  start-page: 172
  year: 2015
  publication-title: Mater. Chem. Phys.
– start-page: 655
  year: 1999
  end-page: 658
– volume: 54
  start-page: 226
  year: 2005
  publication-title: Polym. Int.
– volume: 53
  start-page: 245
  year: 2018
  publication-title: Nano Energy
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 927
  year: 2013
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 2012
  year: 2012
  publication-title: J. Nanomater.
– volume: 28
  start-page: 486
  year: 2015
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 41
  start-page: 337
  year: 2017
  publication-title: Nano Energy
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 2133
  year: 2010
  publication-title: Nano Lett.
– volume: 123
  start-page: 259
  year: 2016
  publication-title: Compos. Sci. Technol.
– volume: 245
  start-page: 129
  year: 2014
  publication-title: J. Power Sources
– volume: 1
  start-page: 2474
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 2866
  year: 2015
  publication-title: Adv. Mater.
– volume: 352
  start-page: 2226
  year: 2006
  publication-title: J. Non‐Cryst. Solids
– volume: 47
  start-page: 1277
  year: 2000
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
– volume: 52
  start-page: 496
  year: 2014
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 9
  start-page: 33
  year: 2017
  publication-title: Polymers
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 8
  start-page: 2677
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 104
  start-page: 858
  year: 2007
  publication-title: J. Appl. Polym. Sci.
– volume: 73
  start-page: 641
  year: 2001
  publication-title: Appl. Phys. A
– volume: 6
  start-page: 922
  year: 2018
  publication-title: Energy Technol.
– volume: 19
  start-page: 830
  year: 2019
  publication-title: Sensors
– volume: 5
  start-page: 1217
  year: 2010
  publication-title: Nanoscale Res. Lett.
– volume: 1
  start-page: 782
  year: 2003
  end-page: 785
– volume: 48
  year: 2015
  publication-title: J. Phys. D: Appl. Phys.
– volume: 60
  start-page: 1278
  year: 2008
  publication-title: Adv. Drug Delivery Rev.
– volume: 7
  year: 2017
  publication-title: AIP Adv.
– volume: 64
  start-page: 33
  year: 2009
  publication-title: Mater. Sci. Eng., R
– volume: 49
  start-page: 90
  year: 2013
  publication-title: Eur. Polym. J.
– volume: 451
  start-page: 809
  year: 2008
  publication-title: Nature
– volume: 17
  start-page: 3367
  year: 1973
  publication-title: J. Appl. Polym. Sci.
– volume: 200
  start-page: 21
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 79
  start-page: 2016
  year: 1996
  publication-title: J. Appl. Phys.
– volume: 88
  start-page: 416
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 1360
  year: 1988
  publication-title: Cryst. Res. Technol.
– ident: e_1_2_12_200_1
  doi: 10.1021/nl0602701
– ident: e_1_2_12_383_1
  doi: 10.1007/s11664-019-07915-y
– ident: e_1_2_12_173_1
  doi: 10.1016/j.mtchem.2020.100304
– ident: e_1_2_12_324_1
  doi: 10.1016/j.polymer.2011.08.051
– ident: e_1_2_12_442_1
  doi: 10.1016/j.nanoen.2012.07.019
– ident: e_1_2_12_246_1
  doi: 10.1016/j.nanoen.2018.11.082
– ident: e_1_2_12_421_1
  doi: 10.3390/nano8090743
– ident: e_1_2_12_423_1
  doi: 10.1039/c2nr11841f
– ident: e_1_2_12_321_1
  doi: 10.1016/j.matchemphys.2014.10.003
– ident: e_1_2_12_83_1
  doi: 10.1063/1.3072362
– ident: e_1_2_12_182_1
  doi: 10.1080/00222340902837527
– ident: e_1_2_12_438_1
  doi: 10.1039/C8NR05292A
– ident: e_1_2_12_108_1
  doi: 10.1021/nn200942s
– ident: e_1_2_12_255_1
  doi: 10.1088/0957-4484/24/18/185501
– ident: e_1_2_12_11_1
  doi: 10.1023/A:1009926623551
– ident: e_1_2_12_365_1
  doi: 10.1016/j.jallcom.2013.07.118
– ident: e_1_2_12_377_1
  doi: 10.1088/0022-3727/48/24/245303
– ident: e_1_2_12_437_1
  doi: 10.1002/adfm.201202867
– ident: e_1_2_12_54_1
  doi: 10.1088/0964-1726/19/8/085012
– ident: e_1_2_12_181_1
  doi: 10.1063/1.325454
– ident: e_1_2_12_367_1
  doi: 10.1016/j.matchemphys.2018.05.010
– ident: e_1_2_12_216_1
  doi: 10.1295/polymj.11.429
– ident: e_1_2_12_152_1
  doi: 10.1063/1.2170425
– ident: e_1_2_12_249_1
  doi: 10.1002/adfm.201501695
– ident: e_1_2_12_363_1
  doi: 10.1016/j.compositesb.2018.09.059
– ident: e_1_2_12_74_1
  doi: 10.1557/mrs2007.42
– ident: e_1_2_12_65_1
  doi: 10.1039/C6TA09590A
– ident: e_1_2_12_440_1
  doi: 10.1039/c1ee01558c
– ident: e_1_2_12_102_1
  doi: 10.1021/nl035198a
– volume-title: Fundamentals of Piezoelectricity
  year: 1990
  ident: e_1_2_12_69_1
– ident: e_1_2_12_50_1
  doi: 10.1021/nl101973h
– ident: e_1_2_12_167_1
  doi: 10.1016/j.sna.2009.05.009
– ident: e_1_2_12_282_1
  doi: 10.1002/smll.201604245
– ident: e_1_2_12_214_1
  doi: 10.9790/019X-04020105
– ident: e_1_2_12_418_1
  doi: 10.1002/adfm.201303484
– ident: e_1_2_12_347_1
  doi: 10.1088/0957-4484/24/40/405401
– ident: e_1_2_12_7_1
  doi: 10.1016/j.procs.2016.08.028
– ident: e_1_2_12_332_1
  doi: 10.1039/C6RA20599B
– ident: e_1_2_12_188_1
  doi: 10.1002/marc.200700544
– ident: e_1_2_12_281_1
  doi: 10.1039/c1ra00210d
– ident: e_1_2_12_290_1
  doi: 10.1016/j.apsusc.2013.04.070
– ident: e_1_2_12_201_1
  doi: 10.1021/nl9040719
– ident: e_1_2_12_97_1
  doi: 10.1039/c2nr31031g
– ident: e_1_2_12_313_1
  doi: 10.1021/acs.iecr.7b02622
– ident: e_1_2_12_335_1
  doi: 10.1002/ente.201600419
– ident: e_1_2_12_179_1
  doi: 10.1016/j.polymer.2006.01.015
– ident: e_1_2_12_387_1
  doi: 10.1007/s10854-017-7491-4
– ident: e_1_2_12_146_1
  doi: 10.1063/1.336351
– ident: e_1_2_12_35_1
  doi: 10.1016/S1369-7021(13)70011-7
– ident: e_1_2_12_56_1
  doi: 10.1109/14.30878
– ident: e_1_2_12_14_1
  doi: 10.1016/j.sna.2012.10.021
– ident: e_1_2_12_100_1
  doi: 10.1109/PROC.1965.4253
– ident: e_1_2_12_42_1
  doi: 10.1002/adma.201400562
– ident: e_1_2_12_340_1
  doi: 10.3390/c3040030
– ident: e_1_2_12_271_1
  doi: 10.1021/acsami.7b04095
– ident: e_1_2_12_242_1
  doi: 10.1016/j.apacoust.2009.11.009
– ident: e_1_2_12_424_1
  doi: 10.3390/polym12112697
– ident: e_1_2_12_389_1
  doi: 10.1016/j.apsusc.2017.09.077
– ident: e_1_2_12_270_1
  doi: 10.1021/nn406481k
– ident: e_1_2_12_233_1
  doi: 10.1080/00150198208260664
– ident: e_1_2_12_1_1
  doi: 10.1016/j.rser.2018.04.113
– ident: e_1_2_12_208_1
  doi: 10.1021/nl202208n
– ident: e_1_2_12_237_1
– ident: e_1_2_12_82_1
  doi: 10.1038/nnano.2008.314
– ident: e_1_2_12_177_1
  doi: 10.1002/polb.1994.090320509
– ident: e_1_2_12_150_1
  doi: 10.1016/j.progpolymsci.2013.07.006
– ident: e_1_2_12_30_1
  doi: 10.1002/adfm.202004446
– ident: e_1_2_12_431_1
  doi: 10.1016/j.nanoen.2017.09.046
– ident: e_1_2_12_328_1
  doi: 10.1016/j.compscitech.2018.10.009
– ident: e_1_2_12_342_1
  doi: 10.1016/j.nanoen.2018.08.036
– ident: e_1_2_12_128_1
  doi: 10.1039/C7TA07570G
– ident: e_1_2_12_129_1
  doi: 10.1063/1.2472539
– ident: e_1_2_12_432_1
  doi: 10.1021/nl204440g
– ident: e_1_2_12_211_1
  doi: 10.1016/j.polymer.2012.01.058
– ident: e_1_2_12_103_1
  doi: 10.1039/c3cp50915j
– ident: e_1_2_12_151_1
  doi: 10.1002/app.1330
– ident: e_1_2_12_126_1
  doi: 10.1039/C3EE42540A
– ident: e_1_2_12_408_1
  doi: 10.1016/j.nanoen.2017.05.010
– ident: e_1_2_12_202_1
  doi: 10.1016/j.matlet.2015.09.117
– ident: e_1_2_12_170_1
  doi: 10.1039/c2jm15665b
– ident: e_1_2_12_231_1
  doi: 10.1038/ncomms2639
– ident: e_1_2_12_433_1
  doi: 10.1016/j.nanoen.2018.07.053
– ident: e_1_2_12_23_1
  doi: 10.1016/j.nanoen.2014.11.038
– ident: e_1_2_12_415_1
  doi: 10.1002/aenm.201300458
– ident: e_1_2_12_269_1
  doi: 10.1021/acsomega.8b00940
– ident: e_1_2_12_223_1
  doi: 10.1016/j.nanoen.2014.04.016
– ident: e_1_2_12_71_1
  doi: 10.1063/1.1611635
– ident: e_1_2_12_310_1
  doi: 10.1063/1.373675
– ident: e_1_2_12_130_1
  doi: 10.1063/1.4880101
– ident: e_1_2_12_336_1
  doi: 10.1038/srep13209
– ident: e_1_2_12_384_1
  doi: 10.1016/j.matdes.2016.12.090
– ident: e_1_2_12_364_1
  doi: 10.1088/0964-1726/22/8/085017
– ident: e_1_2_12_72_1
  doi: 10.1021/acsomega.7b00041
– ident: e_1_2_12_239_1
  doi: 10.1002/adsu.201700068
– ident: e_1_2_12_174_1
  doi: 10.1038/nmat4423
– ident: e_1_2_12_26_1
  doi: 10.1088/0964-1726/20/5/055019
– ident: e_1_2_12_414_1
  doi: 10.1039/c3nr00866e
– ident: e_1_2_12_156_1
  doi: 10.1007/s003390100991
– ident: e_1_2_12_86_1
  doi: 10.1002/adma.200903815
– ident: e_1_2_12_323_1
  doi: 10.1021/acsomega.9b00243
– ident: e_1_2_12_85_1
  doi: 10.1021/jp909713c
– ident: e_1_2_12_284_1
  doi: 10.1007/s10973-012-2834-0
– ident: e_1_2_12_318_1
  doi: 10.1021/acssuschemeng.8b01851
– ident: e_1_2_12_274_1
  doi: 10.1016/j.nanoen.2016.10.034
– ident: e_1_2_12_25_1
  doi: 10.1021/acsami.5b04161
– ident: e_1_2_12_175_1
  doi: 10.1016/j.commatsci.2004.12.040
– ident: e_1_2_12_294_1
  doi: 10.1002/pat.4096
– ident: e_1_2_12_24_1
  doi: 10.1016/j.physb.2009.06.009
– ident: e_1_2_12_404_1
  doi: 10.1016/j.apsusc.2016.12.197
– ident: e_1_2_12_27_1
  doi: 10.1063/1.4918986
– ident: e_1_2_12_263_1
  doi: 10.1039/b912801h
– ident: e_1_2_12_205_1
  doi: 10.1088/0964-1726/23/2/025003
– ident: e_1_2_12_259_1
  doi: 10.1021/jacs.6b09024
– ident: e_1_2_12_80_1
  doi: 10.1021/nl900115y
– ident: e_1_2_12_392_1
  doi: 10.1039/C4NR02246G
– start-page: 473
  volume-title: IEEE 24th Int. Conf. Micro Electro Mechanical Systems
  year: 2011
  ident: e_1_2_12_60_1
– ident: e_1_2_12_436_1
  doi: 10.1002/adfm.201301971
– ident: e_1_2_12_55_1
  doi: 10.1134/1.1595194
– ident: e_1_2_12_98_1
  doi: 10.1039/c2ee22744d
– ident: e_1_2_12_228_1
  doi: 10.1063/1.4980130
– ident: e_1_2_12_337_1
  doi: 10.1021/jp4011026
– ident: e_1_2_12_16_1
  doi: 10.1109/TSM.2015.2468053
– ident: e_1_2_12_260_1
  doi: 10.1016/j.matdes.2019.107636
– ident: e_1_2_12_90_1
  doi: 10.1021/nl103203u
– ident: e_1_2_12_3_1
  doi: 10.1016/j.rser.2017.01.073
– ident: e_1_2_12_349_1
  doi: 10.1021/am302275b
– ident: e_1_2_12_18_1
  doi: 10.1002/aelm.201800791
– ident: e_1_2_12_373_1
  doi: 10.1002/slct.201602046
– ident: e_1_2_12_258_1
  doi: 10.1016/j.ceramint.2006.05.010
– ident: e_1_2_12_127_1
  doi: 10.1088/0957-4484/25/37/375603
– ident: e_1_2_12_162_1
  doi: 10.1002/ecj.10348
– ident: e_1_2_12_6_1
  doi: 10.1109/ACCESS.2019.2958684
– ident: e_1_2_12_104_1
  doi: 10.1063/1.2405014
– ident: e_1_2_12_366_1
  doi: 10.1016/j.nanoso.2017.10.006
– ident: e_1_2_12_297_1
  doi: 10.1039/C7RA10223B
– ident: e_1_2_12_112_1
  doi: 10.1007/s10832-007-9047-0
– ident: e_1_2_12_147_1
  doi: 10.1016/j.physleta.2008.11.026
– ident: e_1_2_12_275_1
  doi: 10.1016/j.compositesb.2014.12.001
– ident: e_1_2_12_292_1
  doi: 10.1002/app.38746
– ident: e_1_2_12_257_1
  doi: 10.1109/JSEN.2011.2182043
– ident: e_1_2_12_422_1
  doi: 10.1039/C5CP01820J
– ident: e_1_2_12_322_1
  doi: 10.1126/science.1122225
– ident: e_1_2_12_334_1
  doi: 10.1063/1.4973596
– ident: e_1_2_12_44_1
  doi: 10.1016/j.cap.2013.01.009
– ident: e_1_2_12_283_1
  doi: 10.1016/j.apsusc.2017.01.314
– volume-title: Encycl. Polym. Sci. Technol.
  year: 2002
  ident: e_1_2_12_136_1
– ident: e_1_2_12_308_1
  doi: 10.1063/1.1862317
– ident: e_1_2_12_425_1
  doi: 10.1002/mame.201700214
– ident: e_1_2_12_405_1
  doi: 10.1016/j.nanoen.2016.06.009
– ident: e_1_2_12_187_1
  doi: 10.1080/1539445X.2010.495630
– ident: e_1_2_12_247_1
  doi: 10.1016/j.reactfunctpolym.2020.104638
– ident: e_1_2_12_253_1
  doi: 10.1166/mex.2017.1393
– ident: e_1_2_12_407_1
  doi: 10.1002/adfm.201602634
– ident: e_1_2_12_139_1
  doi: 10.1109/TDEI.2006.247839
– ident: e_1_2_12_148_1
  doi: 10.1126/science.220.4602.1115
– ident: e_1_2_12_361_1
  doi: 10.1021/acsami.5b11356
– ident: e_1_2_12_155_1
  doi: 10.1002/app.25603
– ident: e_1_2_12_9_1
  doi: 10.1039/C3EE42454E
– ident: e_1_2_12_176_1
  doi: 10.1021/ma00229a008
– ident: e_1_2_12_380_1
  doi: 10.1039/C8SE00519B
– ident: e_1_2_12_409_1
  doi: 10.1007/s11671-010-9629-7
– ident: e_1_2_12_62_1
  doi: 10.1109/JMEMS.2007.911375
– ident: e_1_2_12_222_1
  doi: 10.1109/TUFFC.2013.2786
– ident: e_1_2_12_13_1
  doi: 10.1007/s10832-004-5130-y
– ident: e_1_2_12_243_1
  doi: 10.1063/1.360959
– ident: e_1_2_12_395_1
  doi: 10.1021/acsami.6b02177
– ident: e_1_2_12_75_1
  doi: 10.1088/0953-8984/16/25/R01
– ident: e_1_2_12_315_1
  doi: 10.1155/2012/132424
– ident: e_1_2_12_396_1
  doi: 10.1021/acssuschemeng.7b00117
– ident: e_1_2_12_386_1
  doi: 10.1016/j.orgel.2019.105405
– ident: e_1_2_12_166_1
  doi: 10.7569/JRM.2017.634173
– ident: e_1_2_12_36_1
  doi: 10.1016/j.nanoen.2019.04.090
– ident: e_1_2_12_419_1
  doi: 10.1021/acsami.5b08168
– ident: e_1_2_12_374_1
  doi: 10.1016/j.apsusc.2012.04.118
– ident: e_1_2_12_70_1
  doi: 10.1016/j.tsf.2012.12.114
– ident: e_1_2_12_183_1
  doi: 10.4028/www.scientific.net/MSF.514-516.872
– ident: e_1_2_12_145_1
  doi: 10.1088/0022-3727/24/10/020
– ident: e_1_2_12_106_1
  doi: 10.1038/srep02017
– ident: e_1_2_12_22_1
  doi: 10.1016/j.nanoen.2018.10.053
– ident: e_1_2_12_345_1
  doi: 10.1016/j.sna.2013.01.007
– ident: e_1_2_12_32_1
  doi: 10.1515/ehs-2016-0028
– ident: e_1_2_12_57_1
– ident: e_1_2_12_399_1
  doi: 10.1021/nn5046568
– ident: e_1_2_12_372_1
  doi: 10.1063/1.5028756
– ident: e_1_2_12_417_1
  doi: 10.1002/adma.201200359
– ident: e_1_2_12_134_1
  doi: 10.1039/C7RA01267E
– ident: e_1_2_12_382_1
  doi: 10.3390/polym9020033
– ident: e_1_2_12_213_1
  doi: 10.1016/j.sna.2017.05.027
– ident: e_1_2_12_362_1
  doi: 10.1021/acsami.6b01547
– ident: e_1_2_12_226_1
  doi: 10.1021/am4016878
– ident: e_1_2_12_348_1
  doi: 10.3390/nano8060420
– ident: e_1_2_12_232_1
  doi: 10.1002/app.1973.070171111
– ident: e_1_2_12_296_1
  doi: 10.1038/s41598-017-19082-3
– ident: e_1_2_12_238_1
  doi: 10.1002/mame.201800463
– ident: e_1_2_12_359_1
  doi: 10.1016/j.mtcomm.2017.04.001
– ident: e_1_2_12_305_1
  doi: 10.1088/1757-899X/338/1/012026
– ident: e_1_2_12_312_1
  doi: 10.1016/j.eurpolymj.2019.04.043
– ident: e_1_2_12_64_1
  doi: 10.1021/acsami.6b04497
– ident: e_1_2_12_398_1
  doi: 10.1002/adfm.201301379
– ident: e_1_2_12_59_1
– ident: e_1_2_12_47_1
  doi: 10.1007/s10854-015-4221-7
– ident: e_1_2_12_357_1
  doi: 10.1016/j.compositesb.2019.01.055
– ident: e_1_2_12_250_1
  doi: 10.1021/acs.chemrev.5b00495
– ident: e_1_2_12_178_1
  doi: 10.1002/app.12267
– ident: e_1_2_12_77_1
– ident: e_1_2_12_132_1
  doi: 10.1021/nl060820v
– ident: e_1_2_12_381_1
  doi: 10.1016/j.orgel.2018.06.006
– ident: e_1_2_12_33_1
  doi: 10.1088/0964-1726/17/4/043001
– ident: e_1_2_12_207_1
  doi: 10.1021/nn503269b
– ident: e_1_2_12_400_1
  doi: 10.1007/s00339-002-1497-2
– ident: e_1_2_12_116_1
  doi: 10.1063/1.3157837
– ident: e_1_2_12_92_1
  doi: 10.1016/j.nanoen.2014.11.059
– ident: e_1_2_12_402_1
  doi: 10.1016/j.nanoen.2014.10.010
– ident: e_1_2_12_63_1
  doi: 10.1088/1361-665X/aa738e
– ident: e_1_2_12_41_1
  doi: 10.1186/1556-276X-9-4
– ident: e_1_2_12_240_1
  doi: 10.1007/s10854-017-7020-5
– ident: e_1_2_12_354_1
  doi: 10.1016/j.compscitech.2015.11.032
– ident: e_1_2_12_252_1
  doi: 10.1016/j.sna.2015.07.002
– ident: e_1_2_12_351_1
  doi: 10.1039/C5RA25671B
– ident: e_1_2_12_248_1
  doi: 10.1002/pola.23183
– ident: e_1_2_12_411_1
  doi: 10.1016/j.ceramint.2021.02.140
– ident: e_1_2_12_356_1
  doi: 10.1038/318162a0
– ident: e_1_2_12_435_1
  doi: 10.1021/am5031648
– ident: e_1_2_12_73_1
  doi: 10.1126/science.1124005
– ident: e_1_2_12_329_1
  doi: 10.1016/j.clay.2017.10.036
– ident: e_1_2_12_124_1
  doi: 10.1021/am502234q
– ident: e_1_2_12_105_1
  doi: 10.1002/smll.200500331
– ident: e_1_2_12_120_1
  doi: 10.1021/nl303539c
– ident: e_1_2_12_220_1
  doi: 10.1080/00150198108238674
– ident: e_1_2_12_37_1
  doi: 10.1016/j.addr.2008.03.012
– ident: e_1_2_12_96_1
  doi: 10.1016/j.nanoen.2013.01.001
– ident: e_1_2_12_40_1
  doi: 10.1007/s10832-007-9044-3
– ident: e_1_2_12_91_1
  doi: 10.1063/1.4749279
– ident: e_1_2_12_121_1
  doi: 10.1063/1.3237170
– ident: e_1_2_12_122_1
  doi: 10.1016/j.mee.2013.01.058
– ident: e_1_2_12_171_1
  doi: 10.1039/c0jm02408b
– ident: e_1_2_12_265_1
  doi: 10.1016/j.compositesa.2019.03.031
– ident: e_1_2_12_264_1
  doi: 10.1088/0022-3727/47/13/135302
– ident: e_1_2_12_288_1
  doi: 10.1007/s10965-015-0765-8
– ident: e_1_2_12_293_1
  doi: 10.1016/j.nanoen.2017.11.065
– ident: e_1_2_12_314_1
  doi: 10.1016/j.jiec.2012.12.043
– ident: e_1_2_12_410_1
  doi: 10.1021/jp711598j
– ident: e_1_2_12_229_1
  doi: 10.1016/j.orgel.2015.06.007
– ident: e_1_2_12_277_1
  doi: 10.3390/cryst11020085
– ident: e_1_2_12_143_1
  doi: 10.1088/0964-1726/19/6/065010
– ident: e_1_2_12_391_1
  doi: 10.1021/la7035407
– ident: e_1_2_12_131_1
  doi: 10.1088/0957-4484/27/32/325403
– ident: e_1_2_12_5_1
  doi: 10.1016/j.rser.2015.10.046
– ident: e_1_2_12_163_1
  doi: 10.1021/acsami.6b03597
– ident: e_1_2_12_225_1
  doi: 10.1002/adfm.201500856
– ident: e_1_2_12_135_1
  doi: 10.1002/0471216275.esm063
– ident: e_1_2_12_413_1
  doi: 10.1002/ente.201700756
– ident: e_1_2_12_190_1
  doi: 10.1002/mame.201100176
– ident: e_1_2_12_427_1
  doi: 10.1039/C5RA03524D
– ident: e_1_2_12_180_1
  doi: 10.1016/S0142-9418(03)00003-5
– ident: e_1_2_12_426_1
  doi: 10.1016/j.compscitech.2020.108100
– ident: e_1_2_12_49_1
  doi: 10.1088/0964-1726/22/7/075017
– ident: e_1_2_12_189_1
  doi: 10.1002/app.33239
– ident: e_1_2_12_266_1
  doi: 10.1016/j.compscitech.2017.06.013
– ident: e_1_2_12_289_1
  doi: 10.3390/s19040830
– ident: e_1_2_12_67_1
  doi: 10.1016/j.nanoen.2016.08.030
– ident: e_1_2_12_333_1
  doi: 10.1039/D0SM00341G
– ident: e_1_2_12_355_1
  doi: 10.1063/1.4768923
– ident: e_1_2_12_52_1
  doi: 10.1088/0957-4484/25/48/485401
– ident: e_1_2_12_327_1
  doi: 10.1016/j.eurpolymj.2012.09.023
– ident: e_1_2_12_109_1
  doi: 10.1021/jp502057p
– ident: e_1_2_12_268_1
  doi: 10.1016/j.compositesa.2018.02.004
– ident: e_1_2_12_221_1
  doi: 10.1080/00150198108238688
– ident: e_1_2_12_119_1
  doi: 10.1021/nn3016585
– ident: e_1_2_12_316_1
  doi: 10.1016/j.jpowsour.2013.11.079
– ident: e_1_2_12_141_1
  doi: 10.1143/JJAP.8.975
– ident: e_1_2_12_4_1
  doi: 10.1016/j.jpowsour.2013.06.081
– ident: e_1_2_12_95_1
  doi: 10.1038/nature06601
– ident: e_1_2_12_276_1
  doi: 10.1016/j.sna.2013.03.023
– ident: e_1_2_12_403_1
  doi: 10.1021/nl400169t
– ident: e_1_2_12_285_1
  doi: 10.1088/0957-4484/27/44/445403
– ident: e_1_2_12_338_1
  doi: 10.1039/c2nr32185h
– ident: e_1_2_12_227_1
  doi: 10.1002/aenm.201400723
– ident: e_1_2_12_101_1
  doi: 10.1143/JJAP.44.7555
– ident: e_1_2_12_206_1
  doi: 10.1039/C5RA16604G
– ident: e_1_2_12_159_1
  doi: 10.1063/1.2360266
– ident: e_1_2_12_212_1
  doi: 10.1016/j.nanoen.2018.05.068
– ident: e_1_2_12_117_1
  doi: 10.1088/0957-4484/17/17/036
– ident: e_1_2_12_304_1
  doi: 10.1039/C9CE00406H
– ident: e_1_2_12_193_1
  doi: 10.1016/j.tca.2007.05.023
– ident: e_1_2_12_346_1
  doi: 10.1557/PROC-851-NN9.11
– ident: e_1_2_12_66_1
  doi: 10.1016/j.nanoen.2016.10.042
– ident: e_1_2_12_320_1
  doi: 10.1021/jp3038768
– ident: e_1_2_12_76_1
  doi: 10.1016/j.mser.2009.02.001
– ident: e_1_2_12_397_1
  doi: 10.1021/nn404659d
– ident: e_1_2_12_286_1
  doi: 10.1007/s00339-016-0161-1
– ident: e_1_2_12_406_1
  doi: 10.1021/acsami.5b01679
– ident: e_1_2_12_195_1
  doi: 10.1016/j.jnoncrysol.2006.02.052
– ident: e_1_2_12_113_1
  doi: 10.1016/j.jeurceramsoc.2005.03.125
– ident: e_1_2_12_360_1
  doi: 10.1007/s10854-012-0851-1
– ident: e_1_2_12_420_1
  doi: 10.1021/acsami.7b08008
– ident: e_1_2_12_245_1
  doi: 10.1039/C6TC00613B
– ident: e_1_2_12_165_1
  doi: 10.1021/mz300234a
– ident: e_1_2_12_350_1
  doi: 10.1016/j.polymer.2013.12.014
– ident: e_1_2_12_68_1
  doi: 10.1063/1.4961623
– ident: e_1_2_12_21_1
  doi: 10.1109/3516.891044
– start-page: 1
  volume-title: 2010 10th IEEE Int. Conf. Solid Dielectr.
  year: 2010
  ident: e_1_2_12_158_1
– ident: e_1_2_12_81_1
  doi: 10.1021/nl803904b
– ident: e_1_2_12_394_1
  doi: 10.1021/jz301805f
– ident: e_1_2_12_197_1
  doi: 10.1016/j.nanoen.2012.02.003
– ident: e_1_2_12_325_1
  doi: 10.1002/pi.1692
– ident: e_1_2_12_311_1
  doi: 10.1016/j.sna.2013.10.011
– ident: e_1_2_12_194_1
  doi: 10.1007/s10965-011-9570-1
– ident: e_1_2_12_319_1
  doi: 10.1021/acsami.7b16973
– ident: e_1_2_12_307_1
  doi: 10.1007/s10832-012-9706-7
– ident: e_1_2_12_376_1
  doi: 10.1039/C5RA14889H
– ident: e_1_2_12_10_1
  doi: 10.1063/1.4900845
– ident: e_1_2_12_154_1
  doi: 10.1021/cr800187m
– ident: e_1_2_12_352_1
  doi: 10.1016/j.jcis.2012.10.060
– ident: e_1_2_12_309_1
  doi: 10.1080/10584580601098589
– ident: e_1_2_12_441_1
  doi: 10.1002/adma.201102067
– ident: e_1_2_12_191_1
  doi: 10.1016/j.polymer.2011.03.024
– ident: e_1_2_12_306_1
  doi: 10.1016/j.ceramint.2015.02.148
– ident: e_1_2_12_358_1
  doi: 10.1016/j.compscitech.2016.11.017
– ident: e_1_2_12_371_1
  doi: 10.1002/aenm.201601016
– ident: e_1_2_12_439_1
  doi: 10.1016/j.apenergy.2018.09.009
– ident: e_1_2_12_111_1
  doi: 10.1038/nature03028
– ident: e_1_2_12_287_1
  doi: 10.1002/crat.2170231029
– volume-title: Advances in Ceramics – Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment
  year: 2011
  ident: e_1_2_12_388_1
– ident: e_1_2_12_210_1
  doi: 10.1016/j.sna.2014.05.027
– ident: e_1_2_12_186_1
  doi: 10.1080/00222347008217130
– ident: e_1_2_12_262_1
  doi: 10.1088/0964-1726/22/6/065011
– ident: e_1_2_12_199_1
  doi: 10.1063/1.2975834
– ident: e_1_2_12_378_1
  doi: 10.1021/acsomega.8b00237
– ident: e_1_2_12_302_1
  doi: 10.1016/j.matpr.2017.10.205
– ident: e_1_2_12_272_1
  doi: 10.1021/acsaem.7b00337
– ident: e_1_2_12_46_1
  doi: 10.1021/nl104412b
– start-page: 782
  volume-title: TRANSDUCERS 2003–12th Int. Conf. Solid‐State Sens. Actuators Microsyst. Dig. Tech. Pap.
  year: 2003
  ident: e_1_2_12_140_1
– ident: e_1_2_12_344_1
  doi: 10.1021/ma901765j
– ident: e_1_2_12_429_1
  doi: 10.1021/acsami.5b09502
– ident: e_1_2_12_164_1
  doi: 10.3390/s100301473
– ident: e_1_2_12_267_1
  doi: 10.1007/s42247-018-0007-z
– ident: e_1_2_12_28_1
  doi: 10.1063/1.4921832
– ident: e_1_2_12_385_1
  doi: 10.1016/j.orgel.2018.04.037
– ident: e_1_2_12_2_1
  doi: 10.1109/MPRV.2005.9
– ident: e_1_2_12_99_1
  doi: 10.1016/j.apsusc.2015.08.187
– start-page: 747
  volume-title: 2011 16th Int. Solid‐State Sens. Actuators Microsyst. Conf.
  year: 2011
  ident: e_1_2_12_204_1
  doi: 10.1109/TRANSDUCERS.2011.5969865
– ident: e_1_2_12_443_1
  doi: 10.1039/c2ee22354f
– ident: e_1_2_12_144_1
  doi: 10.1201/9781482295450
– ident: e_1_2_12_51_1
  doi: 10.1038/ncomms1098
– ident: e_1_2_12_84_1
  doi: 10.1002/adma.200803605
– ident: e_1_2_12_160_1
  doi: 10.1021/ma00025a014
– ident: e_1_2_12_219_1
  doi: 10.1080/00150198108238678
– ident: e_1_2_12_331_1
  doi: 10.1016/j.energy.2019.01.043
– ident: e_1_2_12_79_1
  doi: 10.1021/ja054771k
– ident: e_1_2_12_412_1
  doi: 10.1016/j.compscitech.2017.03.015
– ident: e_1_2_12_157_1
  doi: 10.1063/1.2748076
– ident: e_1_2_12_261_1
  doi: 10.1016/j.polymer.2010.09.067
– ident: e_1_2_12_369_1
  doi: 10.1039/C8NJ04751K
– ident: e_1_2_12_339_1
  doi: 10.1016/j.sna.2016.04.056
– volume: 107
  start-page: 1037
  year: 2015
  ident: e_1_2_12_196_1
  publication-title: J. Text. Inst.
– ident: e_1_2_12_390_1
  doi: 10.1007/s10965-014-0434-3
– ident: e_1_2_12_153_1
  doi: 10.1007/978-0-387-76540-2
– ident: e_1_2_12_172_1
  doi: 10.1039/c1py00225b
– ident: e_1_2_12_343_1
  doi: 10.1016/j.enconman.2019.01.073
– ident: e_1_2_12_78_1
– ident: e_1_2_12_43_1
  doi: 10.1016/j.msec.2019.01.081
– ident: e_1_2_12_434_1
  doi: 10.1021/acsami.5b01760
– ident: e_1_2_12_291_1
  doi: 10.1109/TUFFC.2012.2168
– ident: e_1_2_12_209_1
  doi: 10.1002/aenm.201301624
– ident: e_1_2_12_295_1
  doi: 10.1016/j.nanoen.2017.01.062
– ident: e_1_2_12_89_1
  doi: 10.1021/nl300972f
– ident: e_1_2_12_15_1
  doi: 10.1016/j.sna.2014.11.012
– ident: e_1_2_12_192_1
  doi: 10.1002/pen.20817
– ident: e_1_2_12_58_1
  doi: 10.1039/C8EE03006E
– ident: e_1_2_12_278_1
  doi: 10.1016/j.ceramint.2015.10.170
– ident: e_1_2_12_93_1
  doi: 10.1039/c4ta01714e
– ident: e_1_2_12_168_1
  doi: 10.1016/j.compscitech.2011.02.003
– ident: e_1_2_12_241_1
  doi: 10.1016/j.matlet.2015.02.038
– ident: e_1_2_12_88_1
  doi: 10.1002/adma.201103727
– ident: e_1_2_12_224_1
  doi: 10.1002/polb.23443
– ident: e_1_2_12_38_1
  doi: 10.1002/jbm.a.36050
– ident: e_1_2_12_110_1
  doi: 10.1109/TNANO.2018.2800406
– ident: e_1_2_12_48_1
  doi: 10.1016/j.compstruct.2015.06.075
– ident: e_1_2_12_370_1
  doi: 10.1016/j.apsusc.2014.09.030
– ident: e_1_2_12_87_1
  doi: 10.1021/nl201505c
– ident: e_1_2_12_280_1
  doi: 10.1016/j.nanoen.2020.104516
– ident: e_1_2_12_34_1
  doi: 10.1109/JPROC.2008.927494
– ident: e_1_2_12_138_1
  doi: 10.1021/ma060261e
– ident: e_1_2_12_353_1
  doi: 10.1038/nature07872
– ident: e_1_2_12_29_1
  doi: 10.1016/j.nanoen.2018.11.031
– ident: e_1_2_12_317_1
  doi: 10.1007/s10965-017-1396-z
– ident: e_1_2_12_401_1
  doi: 10.1021/nn2039033
– ident: e_1_2_12_428_1
  doi: 10.1002/adma.201470103
– ident: e_1_2_12_17_1
  doi: 10.1002/aelm.201800413
– ident: e_1_2_12_61_1
  doi: 10.1016/j.polymer.2004.05.057
– ident: e_1_2_12_107_1
  doi: 10.1021/nn403428m
– volume: 3
  start-page: 89
  year: 1880
  ident: e_1_2_12_53_1
  publication-title: Bulletin of the Mineralogical Society of France
– ident: e_1_2_12_298_1
  doi: 10.1039/C8SM01655K
– ident: e_1_2_12_279_1
  doi: 10.1016/j.sna.2013.03.007
– ident: e_1_2_12_12_1
  doi: 10.1007/s00339-006-3688-8
– ident: e_1_2_12_416_1
  doi: 10.1002/adma.201500367
– ident: e_1_2_12_149_1
  doi: 10.1021/ma100166a
– ident: e_1_2_12_303_1
  doi: 10.1016/j.jallcom.2017.06.028
– ident: e_1_2_12_115_1
  doi: 10.1021/nl301490q
– ident: e_1_2_12_142_1
  doi: 10.1143/JJAP.37.2775
– ident: e_1_2_12_330_1
  doi: 10.1088/2053-1591/aa8583
– ident: e_1_2_12_217_1
  doi: 10.1016/j.polymer.2004.01.005
– ident: e_1_2_12_19_1
  doi: 10.1016/j.mser.2010.06.015
– ident: e_1_2_12_125_1
  doi: 10.1002/adma.201200105
– ident: e_1_2_12_301_1
  doi: 10.1016/j.matchemphys.2018.04.013
– ident: e_1_2_12_368_1
  doi: 10.1039/C5NR02067K
– ident: e_1_2_12_133_1
  doi: 10.1021/nl061802g
– ident: e_1_2_12_273_1
  doi: 10.1016/j.nanoen.2015.04.030
– ident: e_1_2_12_137_1
  doi: 10.1109/58.883516
– ident: e_1_2_12_31_1
  doi: 10.1088/0964-1726/23/3/033001
– ident: e_1_2_12_299_1
  doi: 10.1016/j.matdes.2019.108176
– ident: e_1_2_12_379_1
  doi: 10.1557/mrc.2017.126
– ident: e_1_2_12_341_1
  doi: 10.3390/s140609889
– ident: e_1_2_12_123_1
  doi: 10.1021/nl204334x
– ident: e_1_2_12_94_1
  doi: 10.1038/nnano.2010.46
– ident: e_1_2_12_234_1
  doi: 10.1016/S0079-6700(00)00044-7
– ident: e_1_2_12_45_1
  doi: 10.1002/pen.24088
– ident: e_1_2_12_235_1
  doi: 10.1021/ma980683r
– ident: e_1_2_12_20_1
  doi: 10.1146/annurev.matsci.28.1.563
– ident: e_1_2_12_8_1
  doi: 10.3390/s20123512
– ident: e_1_2_12_326_1
  doi: 10.1002/polb.21550
– ident: e_1_2_12_169_1
  doi: 10.7567/APEX.8.101501
– ident: e_1_2_12_215_1
  doi: 10.1088/1361-665X/aab865
– ident: e_1_2_12_393_1
  doi: 10.1016/j.apsusc.2017.06.109
– ident: e_1_2_12_39_1
  doi: 10.1039/C5EE01593F
– ident: e_1_2_12_184_1
  doi: 10.1002/polb.23146
– start-page: 21
  volume-title: Nanotechnol. Mater. Devices Conf.
  year: 2012
  ident: e_1_2_12_230_1
– ident: e_1_2_12_185_1
  doi: 10.1063/1.361055
– ident: e_1_2_12_218_1
  doi: 10.1143/JJAP.19.L109
– ident: e_1_2_12_114_1
  doi: 10.1063/1.1829394
– ident: e_1_2_12_256_1
  doi: 10.1021/nn202251m
– ident: e_1_2_12_375_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_12_254_1
  doi: 10.1016/j.nanoen.2018.08.006
– ident: e_1_2_12_251_1
  doi: 10.1016/j.nanoen.2014.11.061
– ident: e_1_2_12_203_1
  doi: 10.1016/j.sna.2010.09.019
– ident: e_1_2_12_161_1
  doi: 10.3390/proceedings1040335
– ident: e_1_2_12_198_1
  doi: 10.1016/j.matpr.2020.09.339
– ident: e_1_2_12_236_1
  doi: 10.1021/ma051268j
– ident: e_1_2_12_300_1
  doi: 10.1007/s10570-016-1070-3
– ident: e_1_2_12_244_1
  doi: 10.1109/ISE.1999.832131
– ident: e_1_2_12_430_1
  doi: 10.1021/nl102959k
– ident: e_1_2_12_118_1
  doi: 10.1021/nl100812k
SSID ssj0001537418
Score 2.6570241
SecondaryResourceType review_article
Snippet Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and...
Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and...
Abstract Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100864
SubjectTerms Alternative energy sources
Aqueous solutions
Biosensing Techniques - methods
Electric Power Supplies
energy harvesting
Energy resources
Equipment Design - methods
flexible devices
Internet of Things
Nanocomposites
Nanostructured materials
Nanotechnology - methods
Nanowires
Photovoltaic cells
piezoelectric nanogenerator
polymer nanocomposites
polyvinylidene fluoride copolymers
Review
Reviews
Sensors
Smart Materials
Wireless communications
Zinc oxides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELojwDBRkJCThEjZ-JuRXUFQeoKhak3qKJHcMimq3abQ_8embsbNgVoF64RfHEtuZhf47tbxh7gaCjq5QUpegE_brxsuyMUaWr-kp1krIEpqwlH-qjo-bkxB1vpPqiM2GZHjgrbj-ECprghPdRaQALpnfC9NKLYHtRRxp9EfVsLKby_WBFtCxrlsZK7kO4InZuSWQ2Vm_NQoms_28I88-DkpsANs1Aszvs9ggd-UHu8i670Q932e4YnBf81cgg_foe-3686H8uc4abhecfYZX9jCNC5Yfpth-npEDEsDF85TAEPqeD7Ph8sLGh_YZ_WkI4hbP03Syxj_D5Kersd5X32ZfZ4ed378sxqULpjTOmtBCFCtCZGDwudYztDEiwzgcDIUbttXYgVbCV60wtVYzRBgg4bVVNrRurHrCdYTn0jxhvwHkfNCAirLX3HpGNVzjwIsRRyrpQsHKt5NaPjOOU-OJHm7mSZUtGaSejFOzlJH-WuTb-KfmWbDZJEUd2eoGe046e017nOQXbW1u8HQMXmzB1ui4ssI3nUzGGHO2jwNAvL0kGURKNzqJgD7ODTD1RmjjfbF2west1trq6XTIsviVab9oQbRqDWktOdo0KWoQtc7p4_Ph_6OIJu0U158Nze2xndX7ZP2U3_dVqcXH-LMXWLwhlKbQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSKM9AQUZCAg5R42dibgV1xQGqFQtSb9HEjttFNKl2tz301-NxstmNACHELXImtjOesT-_viHkVQAdVSY4S1nFcOnG8rRSSqQmqzNRcYwSGKOWfMqPj4uTEzPdusXf8UMMC27oGbG_RgeHanmwIQ0Fd4V02xzZabS8SW4xJgoM3sDldLPKogTSs2CEuTC7TkUh5Zq5MeMH4yxGI1Mk8P8d6vz18OQ2qI2j0uTu___PPbLbI1J62JnQHrlRN_fJXu_zS_qmJ6Z--4B8n87r67YLnDO39DOsOvOlAfjSo3iJkGKsISTuaE4pNI7O8Hx8eD7c2id_R7-04M7hIn43iaQmdHYebHiT5UPybXL09cPHtI_VkFpllEo1eCYcVMo7G2ZQSlcKOGhjnQLnvbRSGuDC6cxUKufCe68duDAaZkUuCy0ekZ2mbeonhBZgrHUSAtDMpbU2ACYrQn8ekJMQ2riEpOt2Km1PZI7xNH6UHQUzL1GV5aDKhLwe5C86Co8_Sr7HZh-kkHo7JrSL07L35NK5DApnmLVeSAANqjZM1dwyp2uW-4Tsr42m7PuDUITK4y1kFsp4ObwOnozbM9DU7SXKBPCFnT5LyOPOxoaaCIlUcjpPSD6yvlFVx2-a-VlkC8d91qJQQWvR-v6igjKgoRneZ376j_LPyB1M7I7f7ZOd1eKyfk5u26vVfLl4Eb3yJ-5-OQ8
  priority: 102
  providerName: Wiley-Blackwell
Title Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100864
https://www.ncbi.nlm.nih.gov/pubmed/34254467
https://www.proquest.com/docview/2570204314
https://www.proquest.com/docview/2551208871
https://pubmed.ncbi.nlm.nih.gov/PMC8425885
https://doaj.org/article/dd0a8d91ccf34aa6a5e915e2c1d6e17f
Volume 8
WOSCitedRecordID wos000672287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYy4ELMD4DozISEnCIFn8m4YI21IpJtEQriHKKHDsZnbaktN0O_PX4OW62iq8DFyupnTbJe37-9dn-_RB6YUFHETFKQlIQSN1oGhZCsDCNyogVFFQCnWrJh3gySWazNPMJt5VfVrmJiS5Qm0ZDjnwf1NZgHyfhbxffQ1CNgtlVL6Gxg_rAVMZ7qH84nGTHV1kWwYCeZcPWGNF9ZS6BpZsCqY3kW6ORI-3_HdL8dcHkdSDrRqLRnf99hrvotseg-KB1ml10o6zvoV3fy1f4laeifn0fnWbz8kfTSuXMNR6rdeuw2EJdPHTbBjGoCwFVR32CVW3wFFbE2-ODazPjb_Bxo8y5WrjrRo7GBE_PrddefeUD9Hk0_PTufejVGUItUiFCqSrCjCpEZbT9zyRkIRRVMtVGKFNVXHOeKsqMjNJCxJRVVSWNMnb8i5KYJ5I9RL26qcvHCCcq1dpwZaFlzLXWFiJpZiO4xUqMydQEKNxYKdeeuhwUNM7ylnSZ5mDVvLNqgF527RctaccfWx6C0btWQLbtPmiWJ7nvu7kxkUpMSrSuGFdKKlGmRJRUEyNLElcB2tuYO_cRwP5EZ-sAPe-qbd-FCRlVl80FtLFwC8I8CdCj1sO6O2EcyONkHKB4y_e2bnW7pp5_c_zgMLOaJMK-Neel_3gFucU_U9jB_OTvj_EU3YJr2vV1e6i3Xl6Uz9BNfbmer5YDtEN5Zst4lgx8Jxy4_IYtx_SjK219PzsaZ1_t2ZejyU88Sj66
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ZbtNAFL0qKRJ9AcpSDAUGCQQ8WLVns42EUIFGjZpEEWml8mTGM3YJonZI0iL4KL6Rud7aiO2pD7xZ9ngbn3vneJZzAB5b0pF4jPqun_jYdaOpmwjB3MhLPZZQdAksXUv6wXAYHh5GoxX40ayFwWmVTU4sE7UpNPaRb6HbGq7j9Pmr6RcXXaNwdLWx0KhgsZd--2p_2eYve2_t931CaXdn_82uW7sKuFpEQrhSZT4zKhGZ0ZbrC5kIRZWMtBHKZBnXnEeKMiO9KBEBZVmWSaOMzdteGPBQMnvdS7DKLdjDDqyOeoPR-7NeHcFQDqZRh_ToljKnqApOUURH8qXWrzQJ-B2z_XWC5nniXLZ83Wv_W51dh6s1xybbVVCsw0qa34D1OovNybNaavv5Tfg0mqTfi8oKaKLJQC2qgCSWypOdclkkQfcklCLJj4jKDRnjjH-7vX1u5P8FeVcoc6ym5XndUqaFjI9tVJ5d8hYcXMg734ZOXuTpHSChirQ2XFnqHHCttaWAmtkWynJBxmRkHHAbVMS6lmZHh5DPcSUqTWNEUdyiyIGnbflpJUryx5KvEWRtKRQTL3cUs6O4zk2xMZ4KTeRrnTGulFQijXyRUu0bmfpB5sBmA6-4znD2Fi22HHjUHra5CQecVJ4WJ1jG0klsxnwHNipEt0_COIrjycCBYAnrS4-6fCSffCz1z3HkOAyFrbUyKv5RBbHld2NcoX3376_xEK7s7g_6cb833LsHa3h-NZdwEzqL2Ul6Hy7r08VkPntQBz2BDxcdMz8BjsCVcA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBSE2hfJ0KTBIIGBhxZ6XbSSECm1E1RIiAlJ3Zjxjl6DWTpO0CD6Nr2Pu-NFGvFZdsIvisWNP7uN45t5zAB5Z0JEFjIZ-mIW4dKOpnwnB_CTIA5ZRVAl0qiW70WAQ7-0lwyX40fbCYFllGxNdoDaVxjXyHqqtYR9nyHtFUxYx3Oy_nBz5qCCFO62tnEZtIjv5t6_29W32YnvT_tePKe1vfXj9xm8UBnwtEiF8qYqQGZWJwmiL-4XMhKJKJtoIZYqCa84TRZmRQZKJiLKiKKRRxsbwII54LJm97gW4GHGblLFskL47Xd8RDIlhWp7IgPaUOUF-cIp0OpIv5EEnF_A7jPtrqeZZCO1yYP_q_zx712ClQd5ko3aVVVjKy-uw2sS2GXnaEHA_uwFfhuP8e1ULBI01eavmtZsSC_DJlmuWJKiphAQl5T5RpSEj7AOwnzfO1AM8J-8rZQ7VxJ3Xd-QtZHRoffX0kjfh47k88y1YLqsyvwMkVonWhisLqCOutbbAUDObtyxCZEwmxgO_tZBUN4TtqBtykNZU0zRFi0o7i_LgSTd-UlOV_HHkKzS4bhRSjLsvqul-2kSs1JhAxSYJtS4YV0oqkSehyKkOjczDqPBgvTW1tIl79ic6O_PgYXfYRizchlJlXh3jGAsyMbmFHtyurbu7E8aRMk9GHkQLdr9wq4tHyvFnx4qO-8lxLOysOQ_5xxSkFvWNsG977e-P8QAuW0dJd7cHO3fhCp5eFxiuw_J8epzfg0v6ZD6eTe877yfw6bwd5if39pyq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+Materials+for+Energy+Harvesting+and+Sensing+Applications%3A+Roadmap+for+Future+Smart+Materials&rft.jtitle=Advanced+science&rft.au=Susmriti+Das+Mahapatra&rft.au=Preetam+Chandan+Mohapatra&rft.au=Aria%2C+Adrianus+Indrat&rft.au=Christie%2C+Graham&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=8&rft.issue=17&rft_id=info:doi/10.1002%2Fadvs.202100864&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon