Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials
Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting...
Uloženo v:
| Vydáno v: | Advanced science Ročník 8; číslo 17; s. e2100864 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
John Wiley & Sons, Inc
01.09.2021
John Wiley and Sons Inc Wiley |
| Témata: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed.
This paper presents a comprehensive review of the energy harvesting performance of different types of piezoelectric materials. These materials include nanostructured materials, polymers, polymer nanocomposites synthesized using different types of fillers and piezoelectric films. The fabrication techniques, energy harvesting mechanisms, and applications of piezoelectric nanogenerators built using these materials are discussed thoroughly. |
|---|---|
| AbstractList | Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed. This paper presents a comprehensive review of the energy harvesting performance of different types of piezoelectric materials. These materials include nanostructured materials, polymers, polymer nanocomposites synthesized using different types of fillers and piezoelectric films. The fabrication techniques, energy harvesting mechanisms, and applications of piezoelectric nanogenerators built using these materials are discussed thoroughly. Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed. Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed. This paper presents a comprehensive review of the energy harvesting performance of different types of piezoelectric materials. These materials include nanostructured materials, polymers, polymer nanocomposites synthesized using different types of fillers and piezoelectric films. The fabrication techniques, energy harvesting mechanisms, and applications of piezoelectric nanogenerators built using these materials are discussed thoroughly. Abstract Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high‐power densities compared to electro‐magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non‐conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self‐powered sensors is highlighted, and the current challenges and future prospects are critically discussed. Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high-power densities compared to electro-magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non-conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self-powered sensors is highlighted, and the current challenges and future prospects are critically discussed.Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high-power densities compared to electro-magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non-conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self-powered sensors is highlighted, and the current challenges and future prospects are critically discussed. |
| Author | Thakur, Vijay Kumar Aria, Adrianus Indrat Mishra, Yogendra Kumar Mohapatra, Preetam Chandan Hofmann, Stephan Mahapatra, Susmriti Das Christie, Graham |
| AuthorAffiliation | 4 Mads Clausen Institute NanoSYD University of Southern Denmark Alsion 2 Sønderborg 6400 Denmark 1 Technology & Manufacturing Group Intel Corporation 5000 West Chandler Boulevard Chandler Arizona 85226 USA 2 Surface Engineering and Precision Centre School of Aerospace Transport and Manufacturing Cranfield University Cranfield MK43 0AL UK 6 Biorefining and Advanced Materials Research Center Scotland's Rural College (SRUC) Kings Buildings Edinburgh EH9 3JG UK 3 Institute of Biotechnology Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB2 1QT UK 7 Department of Mechanical Engineering School of Engineering Shiv Nadar University Delhi Uttar Pradesh 201314 India 5 Division of Electrical Engineering Department of Engineering University of Cambridge Cambridge CB2 1PZ UK |
| AuthorAffiliation_xml | – name: 7 Department of Mechanical Engineering School of Engineering Shiv Nadar University Delhi Uttar Pradesh 201314 India – name: 5 Division of Electrical Engineering Department of Engineering University of Cambridge Cambridge CB2 1PZ UK – name: 6 Biorefining and Advanced Materials Research Center Scotland's Rural College (SRUC) Kings Buildings Edinburgh EH9 3JG UK – name: 2 Surface Engineering and Precision Centre School of Aerospace Transport and Manufacturing Cranfield University Cranfield MK43 0AL UK – name: 1 Technology & Manufacturing Group Intel Corporation 5000 West Chandler Boulevard Chandler Arizona 85226 USA – name: 3 Institute of Biotechnology Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB2 1QT UK – name: 4 Mads Clausen Institute NanoSYD University of Southern Denmark Alsion 2 Sønderborg 6400 Denmark |
| Author_xml | – sequence: 1 givenname: Susmriti Das surname: Mahapatra fullname: Mahapatra, Susmriti Das organization: Intel Corporation – sequence: 2 givenname: Preetam Chandan surname: Mohapatra fullname: Mohapatra, Preetam Chandan organization: Intel Corporation – sequence: 3 givenname: Adrianus Indrat surname: Aria fullname: Aria, Adrianus Indrat organization: Cranfield University – sequence: 4 givenname: Graham surname: Christie fullname: Christie, Graham organization: University of Cambridge – sequence: 5 givenname: Yogendra Kumar surname: Mishra fullname: Mishra, Yogendra Kumar email: mishra@mci.sdu.dk organization: University of Southern Denmark – sequence: 6 givenname: Stephan surname: Hofmann fullname: Hofmann, Stephan email: sh315@cam.ac.uk organization: University of Cambridge – sequence: 7 givenname: Vijay Kumar orcidid: 0000-0002-0790-2264 surname: Thakur fullname: Thakur, Vijay Kumar email: Vijay.thakur@sruc.ac.uk, Vijay.thakur@snu.edu.in organization: Shiv Nadar University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34254467$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhleoiJbSK0e0EhcuCbbX9no5IEWlpZWKQAS4WhN_BEcbe2vvBqW_vs5HS1sJcZqx_c7jVzPzsjjwwZuieI3RGCNE3oNepTFBJB8Ep8-KI4IbMaoEpQcP8sPiJKUFQgizqqZYvCgOK0oYpbw-KhbfnLkJpjWqj06VX6A30UGbShtieeZNnK_LC4grk3rn5yV4XU6NT5t80nWtU9C74NOH8nsAvYRuW3c-9EM05XQJsf-LfFU8tzmYk308Ln6en_04vRhdff18eTq5GinWMDbiYHGlYcasVg3njM8YEOCN0gy0tVRR2gCpNEfNjNWkstZyDZqSBomaCl4dF5c7rg6wkF102cZaBnByexHiXGZfTrVGao1A6AYrZSsKwIGZBjNDFNbc4Npm1scdqxtmS6OV8X2E9hH08Yt3v-U8rKTIHRaCZcC7PSCG6yF3US5dUqZtwZswJEkYwwQJUeMsfftEughD9LlVWVUjgmiFaVa9eejo3srdSLOA7gQqhpSisVK5fjulbNC1EiO5WR65WR55vzy5bPyk7I78z4L9P39ca9b_UcvJp19TIgirbgH7Zdg8 |
| CitedBy_id | crossref_primary_10_1007_s00707_025_04464_w crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_3390_mi13020232 crossref_primary_10_1016_j_nanoen_2024_110071 crossref_primary_10_1007_s10999_025_09755_7 crossref_primary_10_1016_j_nanoen_2024_110195 crossref_primary_10_1002_advs_202414969 crossref_primary_10_3390_en15176227 crossref_primary_10_1016_j_mser_2025_101049 crossref_primary_10_1039_D2NR01457B crossref_primary_10_1109_TED_2024_3487081 crossref_primary_10_3390_math10020268 crossref_primary_10_1134_S2635167624602778 crossref_primary_10_1016_j_cossms_2023_101134 crossref_primary_10_1016_j_cej_2022_140771 crossref_primary_10_1016_j_nanoen_2024_109887 crossref_primary_10_1002_adfm_202502346 crossref_primary_10_1002_advs_202303674 crossref_primary_10_1016_j_bioadv_2022_212808 crossref_primary_10_3390_mi13091422 crossref_primary_10_1007_s10338_024_00466_8 crossref_primary_10_1007_s10854_024_13687_x crossref_primary_10_1002_smtd_202300701 crossref_primary_10_1002_mame_202200442 crossref_primary_10_1007_s10999_025_09792_2 crossref_primary_10_1016_j_biortech_2021_126156 crossref_primary_10_1002_cphc_202500148 crossref_primary_10_1063_5_0196548 crossref_primary_10_1002_advs_202411209 crossref_primary_10_3390_inorganics10110183 crossref_primary_10_3390_polym13193336 crossref_primary_10_1002_adma_202204964 crossref_primary_10_1016_j_ceramint_2025_04_387 crossref_primary_10_1002_adfm_202425080 crossref_primary_10_1016_j_nanoen_2023_108606 crossref_primary_10_1088_1361_6463_accfaa crossref_primary_10_1007_s41204_022_00217_5 crossref_primary_10_1016_j_matdes_2021_110371 crossref_primary_10_1109_TIM_2024_3403185 crossref_primary_10_1016_j_jallcom_2025_182455 crossref_primary_10_3390_molecules30010179 crossref_primary_10_1016_j_energy_2024_132452 crossref_primary_10_1016_j_seta_2022_102982 crossref_primary_10_1016_j_surfin_2024_103945 crossref_primary_10_1016_j_matpr_2023_05_213 crossref_primary_10_1063_5_0150084 crossref_primary_10_1016_j_biomaterials_2025_123083 crossref_primary_10_1002_adfm_202513106 crossref_primary_10_1039_D4RA08459D crossref_primary_10_1002_smll_202408414 crossref_primary_10_1088_1402_4896_adf3ff crossref_primary_10_3390_bios13010113 crossref_primary_10_1109_LRA_2024_3500884 crossref_primary_10_1007_s12221_025_01131_8 crossref_primary_10_1039_D5NA00474H crossref_primary_10_1016_j_cej_2024_154249 crossref_primary_10_3390_s23031545 crossref_primary_10_1016_j_ijmecsci_2025_110725 crossref_primary_10_3389_felec_2025_1528802 crossref_primary_10_1080_25740881_2023_2280622 crossref_primary_10_1016_j_nanoen_2024_109741 crossref_primary_10_1061_JAEEEZ_ASENG_5144 crossref_primary_10_1002_anie_202216680 crossref_primary_10_1016_j_fuel_2021_122953 crossref_primary_10_1063_5_0255746 crossref_primary_10_1002_adma_202300437 crossref_primary_10_1002_adma_202314380 crossref_primary_10_1002_advs_202202187 crossref_primary_10_1002_gch2_202300019 crossref_primary_10_1016_j_cej_2024_157865 crossref_primary_10_1002_adma_202313612 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1088_1361_665X_adffcf crossref_primary_10_1016_j_mser_2025_101072 crossref_primary_10_1016_j_nanoen_2023_108987 crossref_primary_10_1016_j_addma_2021_102321 crossref_primary_10_1002_adem_202101312 crossref_primary_10_1002_adom_202402794 crossref_primary_10_1016_j_egyr_2025_02_005 crossref_primary_10_1016_j_mtcomm_2025_112518 crossref_primary_10_1016_j_nanoen_2023_108741 crossref_primary_10_1016_j_nanoen_2024_109443 crossref_primary_10_1016_j_nanoen_2025_111128 crossref_primary_10_1002_adma_202404492 crossref_primary_10_1016_j_euromechsol_2024_105560 crossref_primary_10_1002_aesr_202200062 crossref_primary_10_1063_5_0142958 crossref_primary_10_1002_admt_202301226 crossref_primary_10_3762_bjnano_14_67 crossref_primary_10_1016_j_scib_2024_05_012 crossref_primary_10_1016_j_ijmecsci_2025_110544 crossref_primary_10_1016_j_polymer_2023_125910 crossref_primary_10_1016_j_eml_2024_102235 crossref_primary_10_1021_acsaem_5c01693 crossref_primary_10_1007_s10999_024_09731_7 crossref_primary_10_1016_j_ccr_2025_216950 crossref_primary_10_1016_j_cej_2023_141546 crossref_primary_10_1021_acsnano_5c02641 crossref_primary_10_1007_s10854_025_15671_5 crossref_primary_10_1088_1361_665X_ad4d45 crossref_primary_10_1016_j_nanoen_2025_111000 crossref_primary_10_1002_pen_26152 crossref_primary_10_3389_fenrg_2022_900534 crossref_primary_10_1016_j_nanoen_2022_107422 crossref_primary_10_1016_j_chemosphere_2022_135182 crossref_primary_10_1177_09544062251343709 crossref_primary_10_1016_j_sna_2025_116723 crossref_primary_10_1021_acsmaterialslett_5c00641 crossref_primary_10_1016_j_addma_2024_103982 crossref_primary_10_1016_j_nanoen_2024_110544 crossref_primary_10_1039_D4SC05166A crossref_primary_10_1002_adma_202300576 crossref_primary_10_1039_D3RA08713A crossref_primary_10_1021_jacs_5c05701 crossref_primary_10_1002_admt_202300021 crossref_primary_10_1002_advs_202408653 crossref_primary_10_1080_15376494_2023_2254757 crossref_primary_10_3390_encyclopedia3020050 crossref_primary_10_1007_s42114_023_00783_5 crossref_primary_10_1016_j_matpr_2023_01_128 crossref_primary_10_1108_IJCST_12_2024_0252 crossref_primary_10_1016_j_matlet_2021_130971 crossref_primary_10_3390_polym14091840 crossref_primary_10_1007_s42247_025_01138_0 crossref_primary_10_1016_j_jmat_2023_09_011 crossref_primary_10_3103_S1062873823703446 crossref_primary_10_1038_s41467_024_53020_y crossref_primary_10_1016_j_jcis_2022_09_096 crossref_primary_10_3390_min13060817 crossref_primary_10_3390_jcs9020071 crossref_primary_10_1002_pol_20240371 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_1002_adfm_202407611 crossref_primary_10_1016_j_tsf_2023_140042 crossref_primary_10_1002_adfm_202301302 crossref_primary_10_1002_eom2_12337 crossref_primary_10_1007_s10118_022_2706_4 crossref_primary_10_3390_electronics13050987 crossref_primary_10_1016_j_jallcom_2025_182376 crossref_primary_10_1039_D2RA08342F crossref_primary_10_3390_en15217959 crossref_primary_10_1016_j_jallcom_2022_164060 crossref_primary_10_1016_j_matlet_2021_131237 crossref_primary_10_1007_s12274_023_5579_0 crossref_primary_10_1016_j_nanoen_2023_108933 crossref_primary_10_1016_j_device_2025_100893 crossref_primary_10_1002_smll_202306989 crossref_primary_10_1038_s41598_025_98048_2 crossref_primary_10_1063_5_0242816 crossref_primary_10_3390_polym16030347 crossref_primary_10_1002_adfm_202214745 crossref_primary_10_1007_s10854_023_11318_5 crossref_primary_10_1109_TITS_2023_3309924 crossref_primary_10_3390_nano14141173 crossref_primary_10_1016_j_isci_2021_103728 crossref_primary_10_1002_pol_20210628 crossref_primary_10_1016_j_apenergy_2023_122370 crossref_primary_10_51646_jsesd_v14iSI_MSMS2E_402 crossref_primary_10_1016_j_mser_2025_101038 crossref_primary_10_1016_j_cej_2024_154554 crossref_primary_10_3390_polym14020320 crossref_primary_10_1007_s11664_023_10884_y crossref_primary_10_1016_j_optlastec_2024_112196 crossref_primary_10_1002_adem_202101194 crossref_primary_10_1007_s10854_025_14781_4 crossref_primary_10_1007_s42114_025_01225_0 crossref_primary_10_1007_s11426_024_2412_y crossref_primary_10_1016_j_jddst_2024_106526 crossref_primary_10_3390_nano14141225 crossref_primary_10_1039_D5NR00394F crossref_primary_10_1016_j_cossms_2022_101016 crossref_primary_10_1016_j_optmat_2023_113930 crossref_primary_10_1007_s11831_022_09827_3 crossref_primary_10_3390_mi14061273 crossref_primary_10_1002_mabi_202200550 crossref_primary_10_1002_cssc_202301718 crossref_primary_10_1002_adhm_202102654 crossref_primary_10_1088_1361_665X_ad315f crossref_primary_10_1109_JSEN_2023_3236039 crossref_primary_10_1016_j_jallcom_2023_169298 crossref_primary_10_1016_j_engstruct_2023_116447 crossref_primary_10_3390_ma16093603 crossref_primary_10_1007_s10853_023_08435_1 crossref_primary_10_1016_j_matchemphys_2025_130961 crossref_primary_10_1002_adfm_202500685 crossref_primary_10_1016_j_jallcom_2024_174372 crossref_primary_10_1002_smll_202103829 crossref_primary_10_1016_j_enconman_2023_117030 crossref_primary_10_1016_j_physe_2024_116151 crossref_primary_10_1021_acsami_4c21765 crossref_primary_10_1002_advs_202204187 crossref_primary_10_1002_adma_202305940 crossref_primary_10_1002_smll_202303285 crossref_primary_10_1109_TIE_2023_3331108 crossref_primary_10_1016_j_compstruct_2023_117718 crossref_primary_10_1038_s41598_025_98147_0 crossref_primary_10_1002_adfm_202411172 crossref_primary_10_1016_j_apmt_2024_102092 crossref_primary_10_3390_ma16083107 crossref_primary_10_1016_j_cej_2025_161804 crossref_primary_10_1002_pat_70228 crossref_primary_10_1016_j_pmatsci_2023_101156 crossref_primary_10_1063_5_0175670 crossref_primary_10_3390_polym13213660 crossref_primary_10_1002_aelm_202300556 crossref_primary_10_1016_j_sse_2025_109195 crossref_primary_10_3390_en14185936 crossref_primary_10_3390_nano11112975 crossref_primary_10_1007_s10854_024_12808_w crossref_primary_10_1109_ACCESS_2023_3332165 crossref_primary_10_1002_marc_202300619 crossref_primary_10_1007_s10751_024_01956_4 crossref_primary_10_3390_inventions10030041 crossref_primary_10_1002_smll_202306318 crossref_primary_10_1016_j_nanoen_2022_108024 crossref_primary_10_1002_adma_202305837 crossref_primary_10_1142_S2010135X24500322 crossref_primary_10_3390_ma18092113 crossref_primary_10_1039_D2BM01970A crossref_primary_10_1002_mame_202300101 crossref_primary_10_1002_adma_202416897 crossref_primary_10_3390_ma18010022 crossref_primary_10_3390_bios13010085 crossref_primary_10_1002_admt_202300873 crossref_primary_10_1186_s40807_025_00156_0 crossref_primary_10_3390_electronics12194045 crossref_primary_10_3724_BNSFC_2025_02_27_0002 crossref_primary_10_1063_5_0157431 crossref_primary_10_1109_JSEN_2025_3555561 crossref_primary_10_1111_jace_19551 crossref_primary_10_3390_polym14132546 crossref_primary_10_1002_crat_202200130 crossref_primary_10_1088_1361_665X_ada2cb crossref_primary_10_1007_s12221_025_00867_7 crossref_primary_10_1016_j_cclet_2025_111389 crossref_primary_10_1002_adfm_202307607 crossref_primary_10_1016_j_mtcomm_2023_107661 crossref_primary_10_1002_pc_27437 crossref_primary_10_1016_j_sna_2024_116149 crossref_primary_10_1002_advs_202510349 crossref_primary_10_1016_j_nxmate_2023_100092 crossref_primary_10_1109_JSEN_2021_3123541 crossref_primary_10_1007_s40242_022_2084_z crossref_primary_10_1039_D5TC01739D crossref_primary_10_3390_pharmaceutics15051338 crossref_primary_10_1002_smll_202310110 crossref_primary_10_1002_adfm_202400295 crossref_primary_10_1002_adfm_202211272 crossref_primary_10_3390_mi14081553 crossref_primary_10_1016_j_jcrysgro_2024_127925 crossref_primary_10_1016_j_polymer_2025_128286 crossref_primary_10_1002_adma_202500466 crossref_primary_10_1016_j_coco_2024_102019 crossref_primary_10_1016_j_ultsonch_2023_106602 crossref_primary_10_1039_D2MH01221A crossref_primary_10_1016_j_nanoen_2022_107514 crossref_primary_10_1080_15376494_2025_2509258 crossref_primary_10_1007_s10853_024_10293_4 crossref_primary_10_1016_j_matt_2025_102136 crossref_primary_10_3390_polym13162596 crossref_primary_10_1002_adem_202301066 crossref_primary_10_1002_pc_27667 crossref_primary_10_1002_est2_519 crossref_primary_10_1016_j_nanoen_2022_107141 crossref_primary_10_1002_adfm_202214915 crossref_primary_10_1002_dac_5654 crossref_primary_10_1016_j_colsurfa_2023_131279 crossref_primary_10_1016_j_mssp_2023_107942 crossref_primary_10_1002_adma_202401264 crossref_primary_10_1016_j_measurement_2023_113856 crossref_primary_10_1002_ange_202216680 crossref_primary_10_1146_annurev_bioeng_020524_121438 crossref_primary_10_1016_j_oceaneng_2025_121669 crossref_primary_10_1007_s00161_025_01385_w crossref_primary_10_1186_s12951_025_03541_5 crossref_primary_10_1039_D5TC01075F crossref_primary_10_1002_adsr_202300198 crossref_primary_10_1007_s42417_024_01395_z crossref_primary_10_1016_j_jece_2025_118871 crossref_primary_10_1021_acs_macromol_5c01023 crossref_primary_10_1002_smtd_202201251 crossref_primary_10_1016_j_carbon_2023_118120 crossref_primary_10_1002_aenm_202300557 crossref_primary_10_1021_acsaelm_5c00548 crossref_primary_10_1016_j_biomaterials_2024_122528 crossref_primary_10_1002_pi_6643 crossref_primary_10_1016_j_matchar_2023_113371 crossref_primary_10_1146_annurev_matsci_080921_102916 crossref_primary_10_1016_j_device_2024_100548 crossref_primary_10_1109_ACCESS_2025_3584863 crossref_primary_10_1016_j_jeurceramsoc_2022_12_024 crossref_primary_10_1002_adfm_202409602 crossref_primary_10_1002_adfm_202512101 crossref_primary_10_1177_15589250221125437 crossref_primary_10_1016_j_euromechsol_2024_105397 crossref_primary_10_1002_pc_28493 crossref_primary_10_1016_j_physb_2024_416436 crossref_primary_10_1063_5_0180931 crossref_primary_10_1007_s40820_024_01587_y crossref_primary_10_1016_j_nanoen_2025_111094 crossref_primary_10_3390_jlpea13010011 crossref_primary_10_1016_j_ultsonch_2025_107353 crossref_primary_10_1088_1361_6528_ad0502 crossref_primary_10_1002_pc_27841 crossref_primary_10_1002_adem_202400445 crossref_primary_10_1016_j_apsusc_2023_158996 crossref_primary_10_1088_1674_1056_adb7d1 crossref_primary_10_1038_s41467_024_53123_6 crossref_primary_10_3390_inventions8050119 crossref_primary_10_1002_eom2_12298 crossref_primary_10_3390_molecules27175659 crossref_primary_10_1016_j_ijmecsci_2025_110007 crossref_primary_10_1016_j_nanoen_2024_109380 crossref_primary_10_1088_1361_6439_aca20f crossref_primary_10_32604_cmes_2024_058842 crossref_primary_10_1002_admt_202401858 crossref_primary_10_1002_advs_202201586 crossref_primary_10_1142_S0219455425501275 crossref_primary_10_1039_D5TA01701G crossref_primary_10_1134_S2635167623600487 crossref_primary_10_1080_15376494_2025_2527394 crossref_primary_10_1039_D3MH00325F crossref_primary_10_1039_D5MH00550G crossref_primary_10_1007_s11998_023_00819_x crossref_primary_10_1016_j_biomaterials_2023_122421 crossref_primary_10_1002_adfm_202517112 crossref_primary_10_1016_j_ceramint_2022_05_039 crossref_primary_10_1016_j_ceramint_2022_11_266 crossref_primary_10_1016_j_sna_2025_116301 crossref_primary_10_1016_j_nanoen_2023_108773 crossref_primary_10_3390_en17194935 crossref_primary_10_1039_D5MR00041F crossref_primary_10_1109_ACCESS_2021_3138890 crossref_primary_10_1177_03611981231192984 crossref_primary_10_3389_fenrg_2025_1570397 crossref_primary_10_1002_adfm_202402554 crossref_primary_10_1016_j_nanoen_2024_109496 crossref_primary_10_1016_j_nanoen_2024_110489 crossref_primary_10_1016_j_nanoen_2022_108121 crossref_primary_10_1016_j_nanoen_2024_110367 crossref_primary_10_1016_j_nanoen_2023_109195 crossref_primary_10_46670_JSST_2024_33_1_34 crossref_primary_10_1080_21663831_2022_2150096 crossref_primary_10_3390_cryst13071063 crossref_primary_10_1016_j_ijnonlinmec_2025_105193 crossref_primary_10_1093_iti_liad014 crossref_primary_10_1002_adma_202208256 crossref_primary_10_1039_D2BM01733D crossref_primary_10_1038_s41545_023_00293_3 crossref_primary_10_1021_acsami_5c07116 crossref_primary_10_1063_5_0194194 crossref_primary_10_3390_jfb12040054 crossref_primary_10_1080_15376494_2024_2407518 crossref_primary_10_2140_jomms_2024_19_141 crossref_primary_10_1002_sstr_202100128 crossref_primary_10_1007_s11831_023_09983_0 crossref_primary_10_1155_2023_5568046 crossref_primary_10_1016_j_chphi_2024_100550 crossref_primary_10_1038_s41598_024_66258_9 crossref_primary_10_1021_acsami_5c07356 |
| Cites_doi | 10.1021/nl0602701 10.1007/s11664-019-07915-y 10.1016/j.mtchem.2020.100304 10.1016/j.polymer.2011.08.051 10.1016/j.nanoen.2012.07.019 10.1016/j.nanoen.2018.11.082 10.3390/nano8090743 10.1039/c2nr11841f 10.1016/j.matchemphys.2014.10.003 10.1063/1.3072362 10.1080/00222340902837527 10.1039/C8NR05292A 10.1021/nn200942s 10.1088/0957-4484/24/18/185501 10.1023/A:1009926623551 10.1016/j.jallcom.2013.07.118 10.1088/0022-3727/48/24/245303 10.1002/adfm.201202867 10.1088/0964-1726/19/8/085012 10.1063/1.325454 10.1016/j.matchemphys.2018.05.010 10.1295/polymj.11.429 10.1063/1.2170425 10.1002/adfm.201501695 10.1016/j.compositesb.2018.09.059 10.1557/mrs2007.42 10.1039/C6TA09590A 10.1039/c1ee01558c 10.1021/nl035198a 10.1021/nl101973h 10.1016/j.sna.2009.05.009 10.1002/smll.201604245 10.9790/019X-04020105 10.1002/adfm.201303484 10.1088/0957-4484/24/40/405401 10.1016/j.procs.2016.08.028 10.1039/C6RA20599B 10.1002/marc.200700544 10.1039/c1ra00210d 10.1016/j.apsusc.2013.04.070 10.1021/nl9040719 10.1039/c2nr31031g 10.1021/acs.iecr.7b02622 10.1002/ente.201600419 10.1016/j.polymer.2006.01.015 10.1007/s10854-017-7491-4 10.1063/1.336351 10.1016/S1369-7021(13)70011-7 10.1109/14.30878 10.1016/j.sna.2012.10.021 10.1109/PROC.1965.4253 10.1002/adma.201400562 10.3390/c3040030 10.1021/acsami.7b04095 10.1016/j.apacoust.2009.11.009 10.3390/polym12112697 10.1016/j.apsusc.2017.09.077 10.1021/nn406481k 10.1080/00150198208260664 10.1016/j.rser.2018.04.113 10.1021/nl202208n 10.1038/nnano.2008.314 10.1002/polb.1994.090320509 10.1016/j.progpolymsci.2013.07.006 10.1002/adfm.202004446 10.1016/j.nanoen.2017.09.046 10.1016/j.compscitech.2018.10.009 10.1016/j.nanoen.2018.08.036 10.1039/C7TA07570G 10.1063/1.2472539 10.1021/nl204440g 10.1016/j.polymer.2012.01.058 10.1039/c3cp50915j 10.1002/app.1330 10.1039/C3EE42540A 10.1016/j.nanoen.2017.05.010 10.1016/j.matlet.2015.09.117 10.1039/c2jm15665b 10.1038/ncomms2639 10.1016/j.nanoen.2018.07.053 10.1016/j.nanoen.2014.11.038 10.1002/aenm.201300458 10.1021/acsomega.8b00940 10.1016/j.nanoen.2014.04.016 10.1063/1.1611635 10.1063/1.373675 10.1063/1.4880101 10.1038/srep13209 10.1016/j.matdes.2016.12.090 10.1088/0964-1726/22/8/085017 10.1021/acsomega.7b00041 10.1002/adsu.201700068 10.1038/nmat4423 10.1088/0964-1726/20/5/055019 10.1039/c3nr00866e 10.1007/s003390100991 10.1002/adma.200903815 10.1021/acsomega.9b00243 10.1021/jp909713c 10.1007/s10973-012-2834-0 10.1021/acssuschemeng.8b01851 10.1016/j.nanoen.2016.10.034 10.1021/acsami.5b04161 10.1016/j.commatsci.2004.12.040 10.1002/pat.4096 10.1016/j.physb.2009.06.009 10.1016/j.apsusc.2016.12.197 10.1063/1.4918986 10.1039/b912801h 10.1088/0964-1726/23/2/025003 10.1021/jacs.6b09024 10.1021/nl900115y 10.1039/C4NR02246G 10.1002/adfm.201301971 10.1134/1.1595194 10.1039/c2ee22744d 10.1063/1.4980130 10.1021/jp4011026 10.1109/TSM.2015.2468053 10.1016/j.matdes.2019.107636 10.1021/nl103203u 10.1016/j.rser.2017.01.073 10.1021/am302275b 10.1002/aelm.201800791 10.1002/slct.201602046 10.1016/j.ceramint.2006.05.010 10.1088/0957-4484/25/37/375603 10.1002/ecj.10348 10.1109/ACCESS.2019.2958684 10.1063/1.2405014 10.1016/j.nanoso.2017.10.006 10.1039/C7RA10223B 10.1007/s10832-007-9047-0 10.1016/j.physleta.2008.11.026 10.1016/j.compositesb.2014.12.001 10.1002/app.38746 10.1109/JSEN.2011.2182043 10.1039/C5CP01820J 10.1126/science.1122225 10.1063/1.4973596 10.1016/j.cap.2013.01.009 10.1016/j.apsusc.2017.01.314 10.1063/1.1862317 10.1002/mame.201700214 10.1016/j.nanoen.2016.06.009 10.1080/1539445X.2010.495630 10.1016/j.reactfunctpolym.2020.104638 10.1166/mex.2017.1393 10.1002/adfm.201602634 10.1109/TDEI.2006.247839 10.1126/science.220.4602.1115 10.1021/acsami.5b11356 10.1002/app.25603 10.1039/C3EE42454E 10.1021/ma00229a008 10.1039/C8SE00519B 10.1007/s11671-010-9629-7 10.1109/JMEMS.2007.911375 10.1109/TUFFC.2013.2786 10.1007/s10832-004-5130-y 10.1063/1.360959 10.1021/acsami.6b02177 10.1088/0953-8984/16/25/R01 10.1155/2012/132424 10.1021/acssuschemeng.7b00117 10.1016/j.orgel.2019.105405 10.7569/JRM.2017.634173 10.1016/j.nanoen.2019.04.090 10.1021/acsami.5b08168 10.1016/j.apsusc.2012.04.118 10.1016/j.tsf.2012.12.114 10.4028/www.scientific.net/MSF.514-516.872 10.1088/0022-3727/24/10/020 10.1038/srep02017 10.1016/j.nanoen.2018.10.053 10.1016/j.sna.2013.01.007 10.1515/ehs-2016-0028 10.1021/nn5046568 10.1063/1.5028756 10.1002/adma.201200359 10.1039/C7RA01267E 10.3390/polym9020033 10.1016/j.sna.2017.05.027 10.1021/acsami.6b01547 10.1021/am4016878 10.3390/nano8060420 10.1002/app.1973.070171111 10.1038/s41598-017-19082-3 10.1002/mame.201800463 10.1016/j.mtcomm.2017.04.001 10.1088/1757-899X/338/1/012026 10.1016/j.eurpolymj.2019.04.043 10.1021/acsami.6b04497 10.1002/adfm.201301379 10.1007/s10854-015-4221-7 10.1016/j.compositesb.2019.01.055 10.1021/acs.chemrev.5b00495 10.1002/app.12267 10.1021/nl060820v 10.1016/j.orgel.2018.06.006 10.1088/0964-1726/17/4/043001 10.1021/nn503269b 10.1007/s00339-002-1497-2 10.1063/1.3157837 10.1016/j.nanoen.2014.11.059 10.1016/j.nanoen.2014.10.010 10.1088/1361-665X/aa738e 10.1186/1556-276X-9-4 10.1007/s10854-017-7020-5 10.1016/j.compscitech.2015.11.032 10.1016/j.sna.2015.07.002 10.1039/C5RA25671B 10.1002/pola.23183 10.1016/j.ceramint.2021.02.140 10.1038/318162a0 10.1021/am5031648 10.1126/science.1124005 10.1016/j.clay.2017.10.036 10.1021/am502234q 10.1002/smll.200500331 10.1021/nl303539c 10.1080/00150198108238674 10.1016/j.addr.2008.03.012 10.1016/j.nanoen.2013.01.001 10.1007/s10832-007-9044-3 10.1063/1.4749279 10.1063/1.3237170 10.1016/j.mee.2013.01.058 10.1039/c0jm02408b 10.1016/j.compositesa.2019.03.031 10.1088/0022-3727/47/13/135302 10.1007/s10965-015-0765-8 10.1016/j.nanoen.2017.11.065 10.1016/j.jiec.2012.12.043 10.1021/jp711598j 10.1016/j.orgel.2015.06.007 10.3390/cryst11020085 10.1088/0964-1726/19/6/065010 10.1021/la7035407 10.1088/0957-4484/27/32/325403 10.1016/j.rser.2015.10.046 10.1021/acsami.6b03597 10.1002/adfm.201500856 10.1002/0471216275.esm063 10.1002/ente.201700756 10.1002/mame.201100176 10.1039/C5RA03524D 10.1016/S0142-9418(03)00003-5 10.1016/j.compscitech.2020.108100 10.1088/0964-1726/22/7/075017 10.1002/app.33239 10.1016/j.compscitech.2017.06.013 10.3390/s19040830 10.1016/j.nanoen.2016.08.030 10.1039/D0SM00341G 10.1063/1.4768923 10.1088/0957-4484/25/48/485401 10.1016/j.eurpolymj.2012.09.023 10.1021/jp502057p 10.1016/j.compositesa.2018.02.004 10.1080/00150198108238688 10.1021/nn3016585 10.1016/j.jpowsour.2013.11.079 10.1143/JJAP.8.975 10.1016/j.jpowsour.2013.06.081 10.1038/nature06601 10.1016/j.sna.2013.03.023 10.1021/nl400169t 10.1088/0957-4484/27/44/445403 10.1039/c2nr32185h 10.1002/aenm.201400723 10.1143/JJAP.44.7555 10.1039/C5RA16604G 10.1063/1.2360266 10.1016/j.nanoen.2018.05.068 10.1088/0957-4484/17/17/036 10.1039/C9CE00406H 10.1016/j.tca.2007.05.023 10.1557/PROC-851-NN9.11 10.1016/j.nanoen.2016.10.042 10.1021/jp3038768 10.1016/j.mser.2009.02.001 10.1021/nn404659d 10.1007/s00339-016-0161-1 10.1021/acsami.5b01679 10.1016/j.jnoncrysol.2006.02.052 10.1016/j.jeurceramsoc.2005.03.125 10.1007/s10854-012-0851-1 10.1021/acsami.7b08008 10.1039/C6TC00613B 10.1021/mz300234a 10.1016/j.polymer.2013.12.014 10.1063/1.4961623 10.1109/3516.891044 10.1021/nl803904b 10.1021/jz301805f 10.1016/j.nanoen.2012.02.003 10.1002/pi.1692 10.1016/j.sna.2013.10.011 10.1007/s10965-011-9570-1 10.1021/acsami.7b16973 10.1007/s10832-012-9706-7 10.1039/C5RA14889H 10.1063/1.4900845 10.1021/cr800187m 10.1016/j.jcis.2012.10.060 10.1080/10584580601098589 10.1002/adma.201102067 10.1016/j.polymer.2011.03.024 10.1016/j.ceramint.2015.02.148 10.1016/j.compscitech.2016.11.017 10.1002/aenm.201601016 10.1016/j.apenergy.2018.09.009 10.1038/nature03028 10.1002/crat.2170231029 10.1016/j.sna.2014.05.027 10.1080/00222347008217130 10.1088/0964-1726/22/6/065011 10.1063/1.2975834 10.1021/acsomega.8b00237 10.1016/j.matpr.2017.10.205 10.1021/acsaem.7b00337 10.1021/nl104412b 10.1021/ma901765j 10.1021/acsami.5b09502 10.3390/s100301473 10.1007/s42247-018-0007-z 10.1063/1.4921832 10.1016/j.orgel.2018.04.037 10.1109/MPRV.2005.9 10.1016/j.apsusc.2015.08.187 10.1109/TRANSDUCERS.2011.5969865 10.1039/c2ee22354f 10.1201/9781482295450 10.1038/ncomms1098 10.1002/adma.200803605 10.1021/ma00025a014 10.1080/00150198108238678 10.1016/j.energy.2019.01.043 10.1021/ja054771k 10.1016/j.compscitech.2017.03.015 10.1063/1.2748076 10.1016/j.polymer.2010.09.067 10.1039/C8NJ04751K 10.1016/j.sna.2016.04.056 10.1007/s10965-014-0434-3 10.1007/978-0-387-76540-2 10.1039/c1py00225b 10.1016/j.enconman.2019.01.073 10.1016/j.msec.2019.01.081 10.1021/acsami.5b01760 10.1109/TUFFC.2012.2168 10.1002/aenm.201301624 10.1016/j.nanoen.2017.01.062 10.1021/nl300972f 10.1016/j.sna.2014.11.012 10.1002/pen.20817 10.1039/C8EE03006E 10.1016/j.ceramint.2015.10.170 10.1039/c4ta01714e 10.1016/j.compscitech.2011.02.003 10.1016/j.matlet.2015.02.038 10.1002/adma.201103727 10.1002/polb.23443 10.1002/jbm.a.36050 10.1109/TNANO.2018.2800406 10.1016/j.compstruct.2015.06.075 10.1016/j.apsusc.2014.09.030 10.1021/nl201505c 10.1016/j.nanoen.2020.104516 10.1109/JPROC.2008.927494 10.1021/ma060261e 10.1038/nature07872 10.1016/j.nanoen.2018.11.031 10.1007/s10965-017-1396-z 10.1021/nn2039033 10.1002/adma.201470103 10.1002/aelm.201800413 10.1016/j.polymer.2004.05.057 10.1021/nn403428m 10.1039/C8SM01655K 10.1016/j.sna.2013.03.007 10.1007/s00339-006-3688-8 10.1002/adma.201500367 10.1021/ma100166a 10.1016/j.jallcom.2017.06.028 10.1021/nl301490q 10.1143/JJAP.37.2775 10.1088/2053-1591/aa8583 10.1016/j.polymer.2004.01.005 10.1016/j.mser.2010.06.015 10.1002/adma.201200105 10.1016/j.matchemphys.2018.04.013 10.1039/C5NR02067K 10.1021/nl061802g 10.1016/j.nanoen.2015.04.030 10.1109/58.883516 10.1088/0964-1726/23/3/033001 10.1016/j.matdes.2019.108176 10.1557/mrc.2017.126 10.3390/s140609889 10.1021/nl204334x 10.1038/nnano.2010.46 10.1016/S0079-6700(00)00044-7 10.1002/pen.24088 10.1021/ma980683r 10.1146/annurev.matsci.28.1.563 10.3390/s20123512 10.1002/polb.21550 10.7567/APEX.8.101501 10.1088/1361-665X/aab865 10.1016/j.apsusc.2017.06.109 10.1039/C5EE01593F 10.1002/polb.23146 10.1063/1.361055 10.1143/JJAP.19.L109 10.1063/1.1829394 10.1021/nn202251m 10.1021/ja01539a017 10.1016/j.nanoen.2018.08.006 10.1016/j.nanoen.2014.11.061 10.1016/j.sna.2010.09.019 10.3390/proceedings1040335 10.1016/j.matpr.2020.09.339 10.1021/ma051268j 10.1007/s10570-016-1070-3 10.1109/ISE.1999.832131 10.1021/nl102959k 10.1021/nl100812k |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202100864 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Proquest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_dd0a8d91ccf34aa6a5e915e2c1d6e17f PMC8425885 34254467 10_1002_advs_202100864 ADVS2825 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: UKRI funderid: EP/T024607/1 – fundername: Interreg Deutschland–Denmark – fundername: European Regional Development Fund funderid: 096‐1.1‐18 – fundername: UKRI funderid: 133908; 133913 – fundername: Royal Academy of Engineering funderid: IAPP‐33‐24/01/2017; IAPP18‐19∖295 – fundername: UKRI grantid: EP/T024607/1 – fundername: UKRI grantid: 133908 – fundername: UKRI grantid: 133913 – fundername: Interreg Deutschland-Denmark – fundername: European Regional Development Fund grantid: 096-1.1-18 – fundername: Royal Academy of Engineering grantid: IAPP-33-24/01/2017 – fundername: Royal Academy of Engineering grantid: IAPP18-19∖295 – fundername: ; grantid: IAPP‐33‐24/01/2017; IAPP18‐19∖295 – fundername: UKRI grantid: 133908; 133913 – fundername: ; grantid: 096‐1.1‐18 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c5955-6af13dab5fdc96656b5a2a69cd5adff4c449a23d609b5723fff6dad4290874863 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 482 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:41:25 EDT 2025 Tue Nov 04 01:52:00 EST 2025 Sun Nov 09 10:16:54 EST 2025 Sun Nov 09 08:03:12 EST 2025 Wed Feb 19 02:27:55 EST 2025 Sat Nov 29 07:19:04 EST 2025 Tue Nov 18 22:20:41 EST 2025 Wed Jan 22 16:29:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | energy harvesting flexible devices polymer nanocomposites piezoelectric nanogenerator polyvinylidene fluoride copolymers nanostructured materials |
| Language | English |
| License | Attribution 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5955-6af13dab5fdc96656b5a2a69cd5adff4c449a23d609b5723fff6dad4290874863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-0790-2264 |
| OpenAccessLink | https://www.proquest.com/docview/2570204314?pq-origsite=%requestingapplication% |
| PMID | 34254467 |
| PQID | 2570204314 |
| PQPubID | 4365299 |
| PageCount | 73 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dd0a8d91ccf34aa6a5e915e2c1d6e17f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425885 proquest_miscellaneous_2551208871 proquest_journals_2570204314 pubmed_primary_34254467 crossref_citationtrail_10_1002_advs_202100864 crossref_primary_10_1002_advs_202100864 wiley_primary_10_1002_advs_202100864_ADVS2825 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2020; 20 2015; 148 2019; 12 2013; 129 2004; 4 2020; 17 2020; 16 2016; 30 2019; 19 2020; 12 2012; 15 1996; 79 2012; 12 2019; 167 2019; 164 2017; 74 2009; 95 2010; 1 2018; 215 2009; 94 2019; 21 2018; 338 2015; 131 2018; 213 2013; 117 2016; 42 2013; 60 2013; 113 2019; 158 2008; 24 2013; 110 2009; 404 2008; 112 2012; 24 2010; 5 2012; 22 2017; 722 2010; 8 2011; 120 2021; 47 2007; 19 2011; 2 2009; 64 2011; 1 2018; 107 2004; 45 2006; 352 2010; 164 2001; 26 2013; 581 2019; 184 2011; 4 1979; 11 2011; 5 2016; 15 2017; 138 2012; 50 2016; 4 2018; 230 2016; 6 2004; 432 1985; 318 2020; 30 2015; 356 2020; 154 2019; 43 2015; 233 2017; 56 2018; 92 2005; 4 2005; 97 1999; 32 2008; 46 1998; 2 2017; 262 2017; 144 2016; 28 2016; 27 2019; 171 2016; 26 2016; 8 2017; 149 2016; 23 1965; 53 2017; 41 2013; 22 2016; 109 2019; 55 2013; 24 2013; 23 2013; 204 2019; 56 2013; 200 2017; 110 2003; 94 2007; 32 2007; 33 1970; 4 2017; 117 2014; 1 2007; 28 2013; 19 1969; 8 2013; 15 2014; 4 2019; 62 2014; 2 2017; 37 2013; 13 2017; 33 2020; 49 2016; 116 1958; 80 2003; 1 2010; 70 2014; 9 2014; 52 2014; 8 2014; 7 2008; 60 2014; 6 2018; 1942 1981; 32 2014; 55 2006; 125 2003; 89 2010; 71 2004; 85 2015; 5 2013; 49 2017; 26 2012 2019; 75 2011 2006; 13 2010 2017; 28 2006; 17 2017; 24 1986; 59 2016; 245 2008 2016; 123 2016; 122 2005 2018; 429 2018; 428 2008; 96 2019; 304 2018; 61 2002 2015; 8 1989; 24 2015; 7 2008; 93 2003; 77 1980; 19 1991; 24 2017; 11 2020; 70 2017; 13 2013; 30 2017; 12 2009; 9 2013; 531 2018; 52 2016; 138 2018; 50 2009; 4 2008; 451 2018; 53 2017; 105 2007; 47 2018; 59 2007; 104 2010; 10 2007; 101 1880; 3 2013; 3 2013; 4 2013; 2 2010; 19 2019; 98 2015; 72 2018; 168 2006; 39 2000; 88 1973; 17 2007; 461 2006; 514‐516 2014; 26 2011; 52 2014; 25 2014; 24 2013; 7 2018; 44 2013; 5 2014; 251 2014; 23 2014; 21 2010; 22 2018; 6 2009; 11 2004; 851 2018; 8 2018; 3 2018; 5 1990 2018; 1 2010; 114 2011; 71 2003; 48 2014; 14 2013; 196 2012; 258 2013; 193 2014; 245 2019; 7 2018; 29 2017; 418 2019; 4 2019; 3 2012; 101 2019; 5 2015; 55 2013; 189 2007; 90 2014; 47 1995 2016; 94 2016; 164 2018; 27 1999 2009; 458 2010; 43 2018; 17 2012; 112 2005; 127 2006; 47 2011; 94 1982; 44 1988; 23 1978; 49 2014; 39 2009; 109 2007; 88 2018; 10 2012; 116 2017; 302 2010; 51 2003; 22 2018; 14 2017; 5 2017; 7 2009; 47 1982; 15 2014; 216 2017; 1 2017; 2 2012; 2012 2017; 3 2017; 4 2009; 42 2000; 47 2000; 5 2015; 222 2011; 11 2015; 106 2009; 153 2015; 107 2012; 59 2011; 18 2017; 9 2009; 48 2012; 53 2005; 25 2019; 121 2017; 405 2015; 48 2012; 297 1983; 220 2015; 41 2011; 20 2019; 116 2013; 279 2011; 21 2013; 393 2011; 23 2014; 320 2021; 41 2005; 33 1994; 32 2014; 118 2015; 15 1998; 28 2015; 14 2015; 17 2009; 21 2015; 11 2008; 17 2016; 54 2006; 6 2006; 2 2009; 373 2015; 149–150 2005; 44 2006; 312 2006; 311 2001; 80 1998; 37 2018; 152 2015; 25 2006; 85 2015; 28 2012; 3 2015; 27 2012; 1 2021; 11 2004; 16 2006; 88 2020; 192 2015; 22 2004; 13 2005; 54 2012; 6 2012; 4 2012; 5 2001; 73 2014; 104 e_1_2_12_443_1 e_1_2_12_191_1 e_1_2_12_420_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_345_1 e_1_2_12_368_1 e_1_2_12_85_1 e_1_2_12_322_1 e_1_2_12_201_1 e_1_2_12_224_1 e_1_2_12_247_1 e_1_2_12_62_1 e_1_2_12_180_1 e_1_2_12_431_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_333_1 e_1_2_12_356_1 e_1_2_12_379_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_310_1 e_1_2_12_73_1 e_1_2_12_212_1 e_1_2_12_258_1 e_1_2_12_50_1 e_1_2_12_235_1 e_1_2_12_421_1 e_1_2_12_190_1 e_1_2_12_137_1 e_1_2_12_114_1 e_1_2_12_346_1 e_1_2_12_369_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_323_1 e_1_2_12_300_1 e_1_2_12_202_1 e_1_2_12_248_1 e_1_2_12_40_1 e_1_2_12_225_1 e_1_2_12_432_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_334_1 e_1_2_12_103_1 e_1_2_12_357_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_311_1 e_1_2_12_213_1 e_1_2_12_236_1 e_1_2_12_259_1 e_1_2_12_51_1 e_1_2_12_193_1 e_1_2_12_238_1 e_1_2_12_422_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_324_1 e_1_2_12_347_1 e_1_2_12_359_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_301_1 e_1_2_12_83_1 e_1_2_12_203_1 e_1_2_12_226_1 e_1_2_12_410_1 e_1_2_12_182_1 e_1_2_12_249_1 e_1_2_12_433_1 e_1_2_12_335_1 e_1_2_12_358_1 e_1_2_12_118_1 e_1_2_12_312_1 e_1_2_12_290_1 e_1_2_12_8_1 e_1_2_12_94_1 e_1_2_12_237_1 e_1_2_12_71_1 e_1_2_12_214_1 e_1_2_12_400_1 e_1_2_12_423_1 e_1_2_12_216_1 e_1_2_12_239_1 e_1_2_12_192_1 e_1_2_12_116_1 e_1_2_12_325_1 e_1_2_12_337_1 e_1_2_12_302_1 e_1_2_12_128_1 e_1_2_12_280_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_411_1 e_1_2_12_434_1 e_1_2_12_227_1 e_1_2_12_181_1 e_1_2_12_105_1 Aldas M. (e_1_2_12_158_1) 2010 e_1_2_12_336_1 e_1_2_12_348_1 e_1_2_12_313_1 e_1_2_12_117_1 e_1_2_12_291_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_215_1 e_1_2_12_9_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_341_1 e_1_2_12_387_1 e_1_2_12_364_1 e_1_2_12_134_1 e_1_2_12_220_1 e_1_2_12_243_1 e_1_2_12_266_1 e_1_2_12_289_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_352_1 e_1_2_12_375_1 e_1_2_12_398_1 e_1_2_12_28_1 e_1_2_12_254_1 e_1_2_12_231_1 e_1_2_12_409_1 e_1_2_12_92_1 e_1_2_12_277_1 e_1_2_12_18_1 e_1_2_12_440_1 e_1_2_12_110_1 e_1_2_12_179_1 e_1_2_12_342_1 e_1_2_12_365_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_244_1 e_1_2_12_221_1 e_1_2_12_82_1 e_1_2_12_267_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_330_1 e_1_2_12_376_1 e_1_2_12_29_1 e_1_2_12_353_1 e_1_2_12_145_1 e_1_2_12_399_1 e_1_2_12_232_1 e_1_2_12_255_1 e_1_2_12_278_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_441_1 e_1_2_12_38_1 e_1_2_12_159_1 e_1_2_12_343_1 e_1_2_12_366_1 e_1_2_12_113_1 e_1_2_12_389_1 e_1_2_12_320_1 e_1_2_12_26_1 e_1_2_12_222_1 e_1_2_12_245_1 e_1_2_12_268_1 e_1_2_12_49_1 e_1_2_12_148_1 e_1_2_12_331_1 e_1_2_12_354_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_377_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_233_1 e_1_2_12_279_1 e_1_2_12_210_1 e_1_2_12_256_1 e_1_2_12_442_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_39_1 e_1_2_12_344_1 e_1_2_12_367_1 e_1_2_12_321_1 e_1_2_12_80_1 e_1_2_12_200_1 e_1_2_12_223_1 e_1_2_12_269_1 e_1_2_12_246_1 e_1_2_12_430_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_332_1 e_1_2_12_355_1 e_1_2_12_124_1 e_1_2_12_378_1 Curie P. (e_1_2_12_53_1) 1880; 3 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_211_1 e_1_2_12_234_1 e_1_2_12_257_1 e_1_2_12_130_1 e_1_2_12_383_1 e_1_2_12_2_1 e_1_2_12_360_1 e_1_2_12_319_1 e_1_2_12_153_1 e_1_2_12_199_1 e_1_2_12_176_1 Dey S. (e_1_2_12_230_1) 2012 e_1_2_12_262_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_285_1 e_1_2_12_417_1 e_1_2_12_371_1 e_1_2_12_394_1 e_1_2_12_209_1 Mokhtari F. (e_1_2_12_196_1) 2015; 107 e_1_2_12_165_1 e_1_2_12_142_1 e_1_2_12_188_1 e_1_2_12_307_1 e_1_2_12_273_1 e_1_2_12_35_1 e_1_2_12_250_1 e_1_2_12_58_1 Atkinson G. M. (e_1_2_12_140_1) 2003 e_1_2_12_12_1 e_1_2_12_296_1 e_1_2_12_428_1 e_1_2_12_405_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_361_1 e_1_2_12_384_1 e_1_2_12_175_1 e_1_2_12_198_1 e_1_2_12_240_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_418_1 e_1_2_12_263_1 e_1_2_12_286_1 e_1_2_12_141_1 e_1_2_12_372_1 e_1_2_12_308_1 e_1_2_12_395_1 e_1_2_12_164_1 e_1_2_12_187_1 e_1_2_12_251_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_13_1 e_1_2_12_429_1 e_1_2_12_274_1 e_1_2_12_297_1 e_1_2_12_406_1 e_1_2_12_362_1 e_1_2_12_385_1 e_1_2_12_132_1 e_1_2_12_178_1 e_1_2_12_155_1 e_1_2_12_22_1 e_1_2_12_45_1 e_1_2_12_68_1 e_1_2_12_419_1 e_1_2_12_241_1 e_1_2_12_264_1 e_1_2_12_287_1 e_1_2_12_350_1 e_1_2_12_121_1 e_1_2_12_309_1 e_1_2_12_373_1 e_1_2_12_396_1 Kim J. Y.‐H. (e_1_2_12_60_1) 2011 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_33_1 e_1_2_12_56_1 e_1_2_12_79_1 e_1_2_12_407_1 e_1_2_12_252_1 e_1_2_12_10_1 e_1_2_12_275_1 e_1_2_12_298_1 e_1_2_12_1_1 e_1_2_12_340_1 e_1_2_12_363_1 e_1_2_12_386_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_177_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_265_1 e_1_2_12_242_1 e_1_2_12_288_1 Ikeda T. (e_1_2_12_69_1) 1990 e_1_2_12_351_1 e_1_2_12_397_1 e_1_2_12_120_1 e_1_2_12_374_1 e_1_2_12_143_1 e_1_2_12_189_1 e_1_2_12_166_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_408_1 e_1_2_12_253_1 e_1_2_12_11_1 e_1_2_12_276_1 e_1_2_12_299_1 e_1_2_12_217_1 e_1_2_12_195_1 e_1_2_12_424_1 e_1_2_12_6_1 e_1_2_12_172_1 e_1_2_12_401_1 e_1_2_12_315_1 e_1_2_12_108_1 e_1_2_12_281_1 e_1_2_12_303_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_338_1 e_1_2_12_43_1 e_1_2_12_89_1 e_1_2_12_436_1 e_1_2_12_161_1 e_1_2_12_184_1 e_1_2_12_228_1 e_1_2_12_390_1 e_1_2_12_205_1 e_1_2_12_435_1 e_1_2_12_412_1 e_1_2_12_314_1 e_1_2_12_326_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_292_1 e_1_2_12_349_1 e_1_2_12_54_1 Araújo E. B. (e_1_2_12_388_1) 2011 e_1_2_12_171_1 e_1_2_12_402_1 e_1_2_12_194_1 e_1_2_12_218_1 e_1_2_12_380_1 e_1_2_12_316_1 e_1_2_12_282_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_339_1 e_1_2_12_107_1 e_1_2_12_67_1 e_1_2_12_414_1 e_1_2_12_437_1 e_1_2_12_206_1 e_1_2_12_160_1 e_1_2_12_413_1 e_1_2_12_183_1 e_1_2_12_229_1 e_1_2_12_391_1 e_1_2_12_304_1 e_1_2_12_270_1 e_1_2_12_293_1 e_1_2_12_119_1 e_1_2_12_327_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_78_1 e_1_2_12_7_1 e_1_2_12_425_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_219_1 e_1_2_12_151_1 e_1_2_12_381_1 e_1_2_12_317_1 e_1_2_12_197_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_283_1 e_1_2_12_64_1 e_1_2_12_260_1 e_1_2_12_415_1 e_1_2_12_438_1 e_1_2_12_163_1 e_1_2_12_207_1 e_1_2_12_392_1 e_1_2_12_186_1 e_1_2_12_305_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_271_1 e_1_2_12_328_1 e_1_2_12_75_1 e_1_2_12_294_1 e_1_2_12_403_1 e_1_2_12_426_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_5_1 e_1_2_12_382_1 Harrison J. S. (e_1_2_12_136_1) 2002 e_1_2_12_318_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_284_1 e_1_2_12_261_1 Chang J. (e_1_2_12_204_1) 2011 e_1_2_12_439_1 e_1_2_12_416_1 e_1_2_12_185_1 e_1_2_12_208_1 e_1_2_12_162_1 e_1_2_12_393_1 e_1_2_12_370_1 e_1_2_12_306_1 e_1_2_12_30_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_272_1 e_1_2_12_295_1 e_1_2_12_329_1 e_1_2_12_404_1 e_1_2_12_427_1 |
| References_xml | – volume: 429 start-page: 164 year: 2018 publication-title: Appl. Surf. Sci. – volume: 5 start-page: 3091 year: 2017 publication-title: J. Mater. Chem. A – volume: 25 start-page: 2693 year: 2005 publication-title: J. Eur. Ceram. Soc. – volume: 112 year: 2012 publication-title: J. Appl. Phys. – volume: 33 start-page: 224 year: 2005 publication-title: Comput. Mater. Sci. – volume: 14 start-page: 9889 year: 2014 publication-title: Sensors – volume: 80 start-page: 1339 year: 1958 publication-title: J. American Chem. Socie. – volume: 71 start-page: 885 year: 2011 publication-title: Compos. Sci. Technol. – volume: 230 start-page: 865 year: 2018 publication-title: Appl. Energy – volume: 27 start-page: 3773 year: 2016 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 22 start-page: 2187 year: 2010 publication-title: Adv. Mater. – volume: 21 start-page: 2185 year: 2009 publication-title: Adv. Mater. – volume: 105 start-page: 1984 year: 2017 publication-title: J. Biomed. Mater. Res., Part A – volume: 262 start-page: 123 year: 2017 publication-title: Sens. Actuators, A – volume: 45 start-page: 5417 year: 2004 publication-title: Polymer – volume: 109 start-page: 6632 year: 2009 publication-title: Chem. Rev. – volume: 12 start-page: 3086 year: 2012 publication-title: Nano Lett. – volume: 7 start-page: 9831 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 3 year: 2019 publication-title: Energy Harvesting Syst. – volume: 320 start-page: 339 year: 2014 publication-title: Appl. Surf. Sci. – volume: 21 start-page: 3751 year: 2011 publication-title: J. Mater. Chem. – volume: 39 start-page: 15 year: 2006 publication-title: Macromolecules – volume: 167 year: 2019 publication-title: Mater. Des. – volume: 5 start-page: 331 year: 2000 publication-title: IEEE/ASME Trans. Mechatronics – volume: 26 year: 2017 publication-title: Smart Mater. Struct. – volume: 7 start-page: 960 year: 2017 publication-title: MRS Commun. – volume: 17 start-page: 334 year: 2008 publication-title: J. Microelectromech. Syst. – volume: 6 start-page: 6231 year: 2012 publication-title: ACS Nano – volume: 5 start-page: 6117 year: 2013 publication-title: Nanoscale – volume: 4 start-page: 18 year: 2005 publication-title: IEEE Pervasive Comput. – volume: 71 start-page: 439 year: 2010 publication-title: Appl. Acoust. – volume: 30 start-page: 434 year: 2016 publication-title: Nano Energy – volume: 4 start-page: 6568 year: 2012 publication-title: Nanoscale – volume: 220 start-page: 1115 year: 1983 publication-title: Science – volume: 39 start-page: 4202 year: 2006 publication-title: Macromolecules – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 3625 year: 2016 publication-title: Cellulose – volume: 233 start-page: 195 year: 2015 publication-title: Sens. Actuators, A – volume: 61 start-page: 289 year: 2018 publication-title: Org. Electron. – volume: 9 start-page: 1223 year: 2009 publication-title: Nano Lett. – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 33 year: 2014 publication-title: Nano Energy – volume: 114 start-page: 1379 year: 2010 publication-title: J. Phys. Chem. C – volume: 28 year: 2017 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 851 start-page: 499 year: 2004 publication-title: MRS Online Proc. Libr. – volume: 32 start-page: 109 year: 2007 publication-title: MRS Bull. – volume: 48 start-page: 514 year: 2009 publication-title: J. Macromol. Sci., Part B: Phys. – year: 2002 – volume: 70 start-page: 320 year: 2010 publication-title: Mater. Sci. Eng., R – volume: 16 start-page: R829 year: 2004 publication-title: J. Phys.: Condens. Matter – volume: 356 start-page: 1214 year: 2015 publication-title: Appl. Surf. Sci. – year: 1995 – volume: 297 start-page: 209 year: 2012 publication-title: Macromol. Mater. Eng. – volume: 24 year: 2013 publication-title: Nanotechnology – volume: 20 year: 2011 publication-title: Smart Mater. Struct. – volume: 17 start-page: 4497 year: 2006 publication-title: Nanotechnology – volume: 531 start-page: 404 year: 2013 publication-title: Thin Solid Films – volume: 196 start-page: 55 year: 2013 publication-title: Sens. Actuators, A – volume: 312 start-page: 242 year: 2006 publication-title: Science – volume: 3 start-page: 3599 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 4939 year: 2010 publication-title: Nano Lett. – volume: 15 start-page: 177 year: 2015 publication-title: Nano Energy – volume: 79 start-page: 1713 year: 1996 publication-title: J. Appl. Phys. – volume: 405 start-page: 420 year: 2017 publication-title: Appl. Surf. Sci. – volume: 204 start-page: 74 year: 2013 publication-title: Sens. Actuators, A – volume: 4 year: 2017 publication-title: Mater. Res. Express – volume: 28 start-page: 2159 year: 2007 publication-title: Macromol. Rapid Commun. – volume: 42 start-page: 2734 year: 2016 publication-title: Ceram. Int. – volume: 581 start-page: 724 year: 2013 publication-title: J. Alloys Compd. – start-page: 747 year: 2011 end-page: 750 – volume: 8 start-page: 2766 year: 2014 publication-title: ACS Nano – volume: 11 start-page: 85 year: 2021 publication-title: Crystals – volume: 373 start-page: 177 year: 2009 publication-title: Phys. Lett. A – volume: 10 start-page: 1473 year: 2010 publication-title: Sensors – volume: 53 start-page: 1372 year: 1965 publication-title: Proc. IEEE – volume: 48 start-page: 649 year: 2003 publication-title: Crystallogr. Rep. – volume: 2 start-page: 561 year: 2006 publication-title: Small – volume: 122 start-page: 637 year: 2016 publication-title: Appl. Phys. A – volume: 4 start-page: 4387 year: 2016 publication-title: J. Mater. Chem. C – volume: 245 start-page: 135 year: 2016 publication-title: Sens. Actuators, A – volume: 15 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 21 start-page: 434 year: 2014 publication-title: J. Polym. Res. – volume: 279 start-page: 204 year: 2013 publication-title: Appl. Surf. Sci. – volume: 9 start-page: 1201 year: 2009 publication-title: Nano Lett. – volume: 24 start-page: 37 year: 2014 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 5951 year: 2012 publication-title: J. Mater. Chem. – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 1539 year: 2013 publication-title: Adv. Energy Mater. – volume: 164 start-page: 136 year: 2016 publication-title: Mater. Lett. – volume: 110 start-page: 282 year: 2013 publication-title: Microelectron. Eng. – volume: 12 start-page: 1959 year: 2012 publication-title: Nano Lett. – volume: 4 start-page: 1633 year: 2013 publication-title: Nat. Commun. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 7 year: 2013 publication-title: ACS Nano – volume: 14 start-page: 8803 year: 2018 publication-title: Soft Matter – volume: 121 start-page: 223 year: 2019 publication-title: Composites, Part A – volume: 216 start-page: 196 year: 2014 publication-title: Sens. Actuators, A – volume: 311 start-page: 1740 year: 2006 publication-title: Science – volume: 24 start-page: 2999 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 8962 year: 2014 publication-title: Nanoscale – volume: 107 start-page: 1037 year: 2015 publication-title: J. Text. Inst. – volume: 11 start-page: 163 year: 2017 publication-title: Mater. Today Commun. – volume: 458 start-page: 872 year: 2009 publication-title: Nature – volume: 8 year: 2014 publication-title: ACS Nano – volume: 4 start-page: 889 year: 1970 publication-title: J. Macromol. Sci., Part B: Phys. – volume: 19 year: 2010 publication-title: Smart Mater. Struct. – volume: 47 year: 2014 publication-title: J. Phys. D: Appl. Phys. – volume: 14 start-page: 3 year: 2015 publication-title: Nano Energy – volume: 1 year: 2017 publication-title: Adv. Sustainable Syst. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 1344 year: 2007 publication-title: Polym. Eng. Sci. – volume: 2 start-page: 257 year: 1998 publication-title: J. Electroceram. – volume: 24 start-page: 110 year: 2012 publication-title: Adv. Mater. – volume: 514‐516 start-page: 872 year: 2006 publication-title: Materials Science Forum – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 719 year: 2015 publication-title: Nano Energy – volume: 24 start-page: 3326 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 8528 year: 2012 publication-title: Energy Environ. Sci. – year: 2005 – volume: 59 start-page: 149 year: 2018 publication-title: Org. Electron. – volume: 2 start-page: 75 year: 2013 publication-title: Nano Energy – volume: 12 start-page: 2697 year: 2020 publication-title: Polymers – volume: 24 start-page: 670 year: 2008 publication-title: Langmuir – volume: 51 start-page: 5846 year: 2010 publication-title: Polymer – volume: 22 start-page: 130 year: 2015 publication-title: J. Polym. Res. – volume: 251 start-page: 423 year: 2014 publication-title: J. Power Sources – volume: 37 start-page: 126 year: 2017 publication-title: Nano Energy – volume: 222 start-page: 293 year: 2015 publication-title: Sens. Actuators, A – volume: 118 start-page: 8831 year: 2014 publication-title: J. Phys. Chem. C – volume: 17 year: 2008 publication-title: Smart Mater. Struct. – volume: 12 start-page: 2238 year: 2012 publication-title: Nano Lett. – volume: 5 year: 2011 publication-title: ACS Nano – volume: 92 start-page: 834 year: 2018 publication-title: Renewable Sustainable Energy Rev. – volume: 54 start-page: 1035 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 7 start-page: 8932 year: 2013 publication-title: ACS Nano – volume: 19 start-page: 141 year: 2007 publication-title: J. Electroceram. – volume: 432 start-page: 84 year: 2004 publication-title: Nature – volume: 98 start-page: 1210 year: 2019 publication-title: Mater. Sci. Eng., C – volume: 45 start-page: 2281 year: 2004 publication-title: Polymer – volume: 42 start-page: 8870 year: 2009 publication-title: Macromolecules – volume: 149 start-page: 127 year: 2017 publication-title: Compos. Sci. Technol. – volume: 428 start-page: 356 year: 2018 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 335 year: 2017 publication-title: Proceedings – volume: 21 start-page: 3478 year: 2019 publication-title: CrystEngComm – volume: 6 start-page: 1 year: 2018 publication-title: J. Renewable Mater. – volume: 5 start-page: 6707 year: 2011 publication-title: ACS Nano – volume: 59 start-page: 163 year: 2012 publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control – volume: 15 start-page: 40 year: 1982 publication-title: Macromolecules – volume: 8 start-page: 4532 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 192 year: 2020 publication-title: Compos. Sci. Technol. – volume: 152 start-page: 93 year: 2018 publication-title: Appl. Clay Sci. – volume: 116 start-page: 4260 year: 2016 publication-title: Chem. Rev. – volume: 117 start-page: 203 year: 2017 publication-title: Mater. Des. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 6 start-page: 6251 year: 2016 publication-title: RSC Adv. – volume: 125 year: 2006 publication-title: J. Chem. Phys. – volume: 23 start-page: 2445 year: 2013 publication-title: Adv. Funct. Mater. – volume: 94 start-page: 183 year: 2016 publication-title: Procedia Comput. Sci. – volume: 30 start-page: 30 year: 2013 publication-title: J. Electroceram. – volume: 32 start-page: 859 year: 1994 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 28 start-page: 356 year: 2016 publication-title: Nano Energy – volume: 94 start-page: 1 year: 2011 publication-title: Electron. Commun. Jpn. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 1 start-page: 93 year: 2010 publication-title: Nat. Commun. – volume: 37 start-page: 2775 year: 1998 publication-title: Jpn. J. Appl. Phys. – volume: 6 start-page: 2768 year: 2006 publication-title: Nano Lett. – volume: 164 start-page: 131 year: 2010 publication-title: Sens. Actuators, A – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 4788 year: 2015 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 2450 year: 2014 publication-title: Adv. Mater. – volume: 3 start-page: 2017 year: 2013 publication-title: Sci. Rep. – volume: 12 start-page: 1889 year: 2012 publication-title: IEEE Sens. J. – volume: 164 start-page: 703 year: 2019 publication-title: Composites, Part B – volume: 19 start-page: L109 year: 1980 publication-title: Jpn. J. Appl. Phys. – volume: 1 year: 2014 publication-title: Appl. Phys. Rev. – volume: 50 start-page: 1433 year: 2012 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 97 year: 2005 publication-title: J. Appl. Phys. – volume: 11 start-page: 1 year: 2015 publication-title: Nano Energy – volume: 43 start-page: 284 year: 2019 publication-title: New J. Chem. – volume: 49 start-page: 4490 year: 1978 publication-title: J. Appl. Phys. – volume: 24 start-page: 1848 year: 1991 publication-title: J. Phys. D: Appl. Phys. – volume: 85 start-page: 5658 year: 2004 publication-title: Appl. Phys. Lett. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 2774 year: 2017 publication-title: ChemistrySelect – volume: 96 start-page: 1457 year: 2008 publication-title: Proc. IEEE – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 49 start-page: 2677 year: 2020 publication-title: J. Electron. Mater. – volume: 24 start-page: 6644 year: 1991 publication-title: Macromolecules – volume: 3 start-page: 774 year: 2019 publication-title: Sustainable Energy Fuels – volume: 56 start-page: 420 year: 2019 publication-title: Nano Energy – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 288 year: 2014 publication-title: Energy Environ. Sci. – volume: 59 start-page: 2142 year: 1986 publication-title: J. Appl. Phys. – volume: 144 start-page: 1 year: 2017 publication-title: Compos. Sci. Technol. – volume: 77 start-page: 561 year: 2003 publication-title: Appl. Phys. A – volume: 17 year: 2020 publication-title: Mater. Today Chem. – volume: 89 start-page: 1093 year: 2003 publication-title: J. Appl. Polym. Sci. – volume: 24 start-page: 220 year: 2017 publication-title: J. Polym. Res. – volume: 94 year: 2009 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 34 year: 2009 publication-title: Nat. Nanotechnol. – volume: 24 start-page: 1163 year: 2014 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 4068 year: 2011 publication-title: Adv. Mater. – volume: 14 start-page: 15 year: 2015 publication-title: Nano Energy – volume: 7 start-page: 7436 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 420 year: 2018 publication-title: Nanomaterials – volume: 72 start-page: 130 year: 2015 publication-title: Composites, Part B – volume: 52 start-page: 153 year: 2018 publication-title: Nano Energy – volume: 18 start-page: 1653 year: 2011 publication-title: J. Polym. Res. – volume: 3 start-page: 89 year: 1880 publication-title: Bulletin of the Mineralogical Society of France – volume: 8 start-page: 1555 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 22 year: 2013 publication-title: Smart Mater. Struct. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 32 start-page: 61 year: 1981 publication-title: Ferroelectrics – volume: 154 year: 2020 publication-title: React. Funct. Polym. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 25 year: 2014 publication-title: Nanotechnology – volume: 302 year: 2017 publication-title: Macromol. Mater. Eng. – volume: 26 start-page: 4880 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 92 year: 2015 publication-title: Org. Electron. – volume: 44 start-page: 456 year: 2018 publication-title: Nano Energy – volume: 70 year: 2020 publication-title: Nano Energy – start-page: 473 year: 2011 end-page: 476 – volume: 6 start-page: 1656 year: 2006 publication-title: Nano Lett. – volume: 32 start-page: 85 year: 1981 publication-title: Ferroelectrics – volume: 5 start-page: 747 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5142 year: 2011 publication-title: Nano Lett. – volume: 26 start-page: 504 year: 2016 publication-title: Nano Energy – volume: 20 start-page: 3512 year: 2020 publication-title: Sensors – year: 1990 – volume: 1 start-page: 576 year: 2011 publication-title: RSC Adv. – volume: 112 start-page: 8827 year: 2008 publication-title: J. Phys. Chem. C – volume: 120 start-page: 1080 year: 2011 publication-title: J. Appl. Polym. Sci. – volume: 7 year: 2019 publication-title: IEEE Access – year: 2008 – volume: 107 start-page: 536 year: 2018 publication-title: Composites, Part A – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 52 start-page: 2228 year: 2011 publication-title: Polymer – volume: 461 start-page: 153 year: 2007 publication-title: Thermochim. Acta – volume: 153 start-page: 251 year: 2009 publication-title: Sens. Actuators, A – volume: 44 start-page: 197 year: 1982 publication-title: Ferroelectrics – volume: 2 start-page: 2985 year: 2017 publication-title: ACS Omega – volume: 5 start-page: 4197 year: 2011 publication-title: ACS Nano – volume: 393 start-page: 97 year: 2013 publication-title: J. Colloid Interface Sci. – volume: 23 year: 2014 publication-title: Smart Mater. Struct. – volume: 10 start-page: 3151 year: 2010 publication-title: Nano Lett. – volume: 12 start-page: 1143 year: 2019 publication-title: Energy Environ. Sci. – volume: 5 start-page: 234 year: 2017 publication-title: Energy Technol. – volume: 16 start-page: 5679 year: 2020 publication-title: Soft Matter – volume: 129 start-page: 391 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 24 start-page: 2620 year: 2014 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 536 year: 2017 publication-title: Mater. Express – volume: 10 start-page: 2793 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 91 year: 2013 publication-title: Nano Lett. – volume: 11 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 80 start-page: 2259 year: 2001 publication-title: J. Appl. Polym. Sci. – volume: 85 start-page: 125 year: 2006 publication-title: Appl. Phys. A – volume: 22 start-page: 699 year: 2003 publication-title: Polym. Test. – volume: 17 start-page: 311 year: 2018 publication-title: IEEE Trans. Nanotechnol. – start-page: 1 year: 2010 end-page: 4 – volume: 184 start-page: 600 year: 2019 publication-title: Energy Convers. Manage. – volume: 46 start-page: 2173 year: 2008 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 13 start-page: 1110 year: 2006 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 1 start-page: 356 year: 2012 publication-title: Nano Energy – volume: 189 start-page: 328 year: 2013 publication-title: Sens. Actuators, A – volume: 55 start-page: 1589 year: 2015 publication-title: Polym. Eng. Sci. – volume: 43 start-page: 3844 year: 2010 publication-title: Macromolecules – volume: 60 start-page: 2013 year: 2013 publication-title: IEEE Tans. Ultrason., Ferroelectr., Freq. Control – volume: 13 year: 2017 publication-title: Small – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 4 start-page: 752 year: 2012 publication-title: Nanoscale – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 56 year: 2017 publication-title: Ind. Eng. Chem. Res. – volume: 32 start-page: 989 year: 1999 publication-title: Macromolecules – volume: 193 start-page: 13 year: 2013 publication-title: Sens. Actuators, A – volume: 93 year: 2008 publication-title: Appl. Phys. Lett. – volume: 29 start-page: 143 year: 2018 publication-title: Polym. Adv. Technol. – volume: 6 start-page: 839 year: 2006 publication-title: Nano Lett. – volume: 39 start-page: 683 year: 2014 publication-title: Prog. Polym. Sci. – volume: 1942 year: 2018 publication-title: AIP Conf. Proc. – volume: 1 start-page: 867 year: 2012 publication-title: ACS Macro Lett. – volume: 44 start-page: 7555 year: 2005 publication-title: Jpn. J. Appl. Phys. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 55 start-page: 611 year: 2014 publication-title: Polymer – volume: 8 start-page: 9311 year: 2014 publication-title: ACS Nano – volume: 13 start-page: 385 year: 2004 publication-title: J. Electroceram. – volume: 10 start-page: 5025 year: 2010 publication-title: Nano Lett. – volume: 4 start-page: 587 year: 2004 publication-title: Nano Lett. – volume: 55 start-page: 288 year: 2019 publication-title: Nano Energy – volume: 13 start-page: S131 year: 2013 publication-title: Curr. Appl. Phys. – volume: 101 year: 2007 publication-title: J. Appl. Phys. – volume: 8 start-page: 743 year: 2018 publication-title: Nanomaterials – volume: 113 start-page: 821 year: 2013 publication-title: J. Therm. Anal. Calorim. – volume: 15 start-page: 78 year: 2016 publication-title: Nat. Mater. – volume: 722 start-page: 829 year: 2017 publication-title: J. Alloys Compd. – volume: 7 start-page: 25 year: 2014 publication-title: Energy Environ. Sci. – volume: 47 year: 2021 publication-title: Ceram. Int. – volume: 4 start-page: 3359 year: 2011 publication-title: Energy Environ. Sci. – volume: 8 start-page: 521 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 171 start-page: 485 year: 2019 publication-title: Energy – volume: 30 year: 2020 publication-title: Advanced Functional Materials – volume: 138 start-page: 49 year: 2017 publication-title: Compos. Sci. Technol. – volume: 19 start-page: 1377 year: 2013 publication-title: J. Ind. Eng. Chem. – volume: 2 start-page: 2000 year: 2011 publication-title: Polym. Chem. – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 3 start-page: 5317 year: 2018 publication-title: ACS Omega – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 94 start-page: 5964 year: 2003 publication-title: J. Appl. Phys. – volume: 131 start-page: 1090 year: 2015 publication-title: Compos. Struct. – volume: 47 start-page: 722 year: 2009 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 168 start-page: 397 year: 2018 publication-title: Compos. Sci. Technol. – volume: 75 year: 2019 publication-title: Org. Electron. – year: 2011 – volume: 26 start-page: 7708 year: 2016 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 1678 year: 2006 publication-title: Polymer – volume: 52 start-page: 391 year: 2018 publication-title: Nano Energy – volume: 1 start-page: 55 year: 2018 publication-title: Emergent Mater. – volume: 5 start-page: 366 year: 2010 publication-title: Nat. Nanotechnol. – volume: 33 start-page: 462 year: 2017 publication-title: Nano Energy – volume: 2 start-page: 749 year: 2013 publication-title: Nano Energy – volume: 12 start-page: 3701 year: 2012 publication-title: Nano Lett. – volume: 304 year: 2019 publication-title: Macromol. Mater. Eng. – volume: 53 start-page: 1404 year: 2012 publication-title: Polymer – volume: 8 start-page: 274 year: 2010 publication-title: Soft Mater. – volume: 9 start-page: 4 year: 2014 publication-title: Nanoscale Res. Lett. – volume: 25 start-page: 3203 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 year: 2018 publication-title: Mater. Today: Proc. – volume: 7 year: 2015 publication-title: J. Renewable Sustainable Energy – volume: 184 year: 2019 publication-title: Mater. Des. – volume: 318 start-page: 162 year: 1985 publication-title: Nature – volume: 4 start-page: 1 year: 2017 publication-title: IOSR J. Polym. Text. Eng. – start-page: 21 year: 2012 end-page: 24 – volume: 12 start-page: 174 year: 2017 publication-title: Nano‐Struct. Nano‐Objects – volume: 41 start-page: 8008 year: 2015 publication-title: Ceram. Int. – volume: 5 start-page: 4730 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 62 start-page: 475 year: 2019 publication-title: Nano Energy – volume: 19 start-page: 113 year: 2007 publication-title: J. Electroceram. – volume: 215 start-page: 46 year: 2018 publication-title: Mater. Chem. Phys. – volume: 116 start-page: 554 year: 2019 publication-title: Eur. Polym. J. – volume: 3 start-page: 30 year: 2017 publication-title: C – volume: 5 start-page: 8932 year: 2012 – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 33 start-page: 1369 year: 2007 publication-title: Ceram. Int. – volume: 418 start-page: 362 year: 2017 publication-title: Appl. Surf. Sci. – volume: 50 start-page: 632 year: 2018 publication-title: Nano Energy – volume: 13 start-page: 2393 year: 2013 publication-title: Nano Lett. – volume: 32 start-page: 167 year: 1981 publication-title: Ferroelectrics – volume: 11 start-page: 2572 year: 2011 publication-title: Nano Lett. – volume: 15 start-page: 532 year: 2012 publication-title: Mater. Today – volume: 4 start-page: 6312 year: 2019 publication-title: ACS Omega – volume: 3 start-page: 8891 year: 2018 publication-title: ACS Omega – volume: 41 start-page: 335 year: 2021 publication-title: Mater. Today: Proc. – volume: 56 start-page: 588 year: 2019 publication-title: Nano Energy – volume: 28 start-page: 563 year: 1998 publication-title: Annu. Rev. Mater. Sci. – volume: 27 year: 2018 publication-title: Smart Mater. Struct. – volume: 8 start-page: 754 year: 2018 publication-title: Sci. Rep. – volume: 148 start-page: 58 year: 2015 publication-title: Mater. Lett. – volume: 338 year: 2018 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 258 start-page: 7668 year: 2012 publication-title: Appl. Surf. Sci. – volume: 158 start-page: 141 year: 2019 publication-title: Composites, Part B – volume: 30 start-page: 621 year: 2016 publication-title: Nano Energy – volume: 11 start-page: 429 year: 1979 publication-title: Polym. J. – volume: 88 start-page: 44 year: 2007 publication-title: Integr. Ferroelectr. – volume: 4 start-page: 7250 year: 2012 publication-title: Nanoscale – volume: 11 start-page: 1331 year: 2011 publication-title: Nano Lett. – volume: 5 start-page: 6430 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 213 start-page: 525 year: 2018 publication-title: Mater. Chem. Phys. – volume: 404 start-page: 3637 year: 2009 publication-title: Phys. B – volume: 10 start-page: 726 year: 2010 publication-title: Nano Lett. – volume: 8 year: 2015 publication-title: Appl. Phys. Express – volume: 8 start-page: 975 year: 1969 publication-title: Jpn. J. Appl. Phys. – volume: 74 start-page: 1 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 52 start-page: 4970 year: 2011 publication-title: Polymer – volume: 24 start-page: 375 year: 1989 publication-title: IEEE Trans. Electr. Insul. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 26 start-page: 105 year: 2001 publication-title: Prog. Polym. Sci. – volume: 149–150 start-page: 172 year: 2015 publication-title: Mater. Chem. Phys. – start-page: 655 year: 1999 end-page: 658 – volume: 54 start-page: 226 year: 2005 publication-title: Polym. Int. – volume: 53 start-page: 245 year: 2018 publication-title: Nano Energy – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 24 start-page: 927 year: 2013 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 2012 year: 2012 publication-title: J. Nanomater. – volume: 28 start-page: 486 year: 2015 publication-title: IEEE Trans. Semicond. Manuf. – volume: 41 start-page: 337 year: 2017 publication-title: Nano Energy – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 2133 year: 2010 publication-title: Nano Lett. – volume: 123 start-page: 259 year: 2016 publication-title: Compos. Sci. Technol. – volume: 245 start-page: 129 year: 2014 publication-title: J. Power Sources – volume: 1 start-page: 2474 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 start-page: 2866 year: 2015 publication-title: Adv. Mater. – volume: 352 start-page: 2226 year: 2006 publication-title: J. Non‐Cryst. Solids – volume: 47 start-page: 1277 year: 2000 publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control – volume: 52 start-page: 496 year: 2014 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 9 start-page: 33 year: 2017 publication-title: Polymers – volume: 10 year: 2018 publication-title: Nanoscale – volume: 8 start-page: 2677 year: 2015 publication-title: Energy Environ. Sci. – volume: 104 start-page: 858 year: 2007 publication-title: J. Appl. Polym. Sci. – volume: 73 start-page: 641 year: 2001 publication-title: Appl. Phys. A – volume: 6 start-page: 922 year: 2018 publication-title: Energy Technol. – volume: 19 start-page: 830 year: 2019 publication-title: Sensors – volume: 5 start-page: 1217 year: 2010 publication-title: Nanoscale Res. Lett. – volume: 1 start-page: 782 year: 2003 end-page: 785 – volume: 48 year: 2015 publication-title: J. Phys. D: Appl. Phys. – volume: 60 start-page: 1278 year: 2008 publication-title: Adv. Drug Delivery Rev. – volume: 7 year: 2017 publication-title: AIP Adv. – volume: 64 start-page: 33 year: 2009 publication-title: Mater. Sci. Eng., R – volume: 49 start-page: 90 year: 2013 publication-title: Eur. Polym. J. – volume: 451 start-page: 809 year: 2008 publication-title: Nature – volume: 17 start-page: 3367 year: 1973 publication-title: J. Appl. Polym. Sci. – volume: 200 start-page: 21 year: 2013 publication-title: Sens. Actuators, A – volume: 79 start-page: 2016 year: 1996 publication-title: J. Appl. Phys. – volume: 88 start-page: 416 year: 2000 publication-title: J. Appl. Phys. – volume: 23 start-page: 1360 year: 1988 publication-title: Cryst. Res. Technol. – ident: e_1_2_12_200_1 doi: 10.1021/nl0602701 – ident: e_1_2_12_383_1 doi: 10.1007/s11664-019-07915-y – ident: e_1_2_12_173_1 doi: 10.1016/j.mtchem.2020.100304 – ident: e_1_2_12_324_1 doi: 10.1016/j.polymer.2011.08.051 – ident: e_1_2_12_442_1 doi: 10.1016/j.nanoen.2012.07.019 – ident: e_1_2_12_246_1 doi: 10.1016/j.nanoen.2018.11.082 – ident: e_1_2_12_421_1 doi: 10.3390/nano8090743 – ident: e_1_2_12_423_1 doi: 10.1039/c2nr11841f – ident: e_1_2_12_321_1 doi: 10.1016/j.matchemphys.2014.10.003 – ident: e_1_2_12_83_1 doi: 10.1063/1.3072362 – ident: e_1_2_12_182_1 doi: 10.1080/00222340902837527 – ident: e_1_2_12_438_1 doi: 10.1039/C8NR05292A – ident: e_1_2_12_108_1 doi: 10.1021/nn200942s – ident: e_1_2_12_255_1 doi: 10.1088/0957-4484/24/18/185501 – ident: e_1_2_12_11_1 doi: 10.1023/A:1009926623551 – ident: e_1_2_12_365_1 doi: 10.1016/j.jallcom.2013.07.118 – ident: e_1_2_12_377_1 doi: 10.1088/0022-3727/48/24/245303 – ident: e_1_2_12_437_1 doi: 10.1002/adfm.201202867 – ident: e_1_2_12_54_1 doi: 10.1088/0964-1726/19/8/085012 – ident: e_1_2_12_181_1 doi: 10.1063/1.325454 – ident: e_1_2_12_367_1 doi: 10.1016/j.matchemphys.2018.05.010 – ident: e_1_2_12_216_1 doi: 10.1295/polymj.11.429 – ident: e_1_2_12_152_1 doi: 10.1063/1.2170425 – ident: e_1_2_12_249_1 doi: 10.1002/adfm.201501695 – ident: e_1_2_12_363_1 doi: 10.1016/j.compositesb.2018.09.059 – ident: e_1_2_12_74_1 doi: 10.1557/mrs2007.42 – ident: e_1_2_12_65_1 doi: 10.1039/C6TA09590A – ident: e_1_2_12_440_1 doi: 10.1039/c1ee01558c – ident: e_1_2_12_102_1 doi: 10.1021/nl035198a – volume-title: Fundamentals of Piezoelectricity year: 1990 ident: e_1_2_12_69_1 – ident: e_1_2_12_50_1 doi: 10.1021/nl101973h – ident: e_1_2_12_167_1 doi: 10.1016/j.sna.2009.05.009 – ident: e_1_2_12_282_1 doi: 10.1002/smll.201604245 – ident: e_1_2_12_214_1 doi: 10.9790/019X-04020105 – ident: e_1_2_12_418_1 doi: 10.1002/adfm.201303484 – ident: e_1_2_12_347_1 doi: 10.1088/0957-4484/24/40/405401 – ident: e_1_2_12_7_1 doi: 10.1016/j.procs.2016.08.028 – ident: e_1_2_12_332_1 doi: 10.1039/C6RA20599B – ident: e_1_2_12_188_1 doi: 10.1002/marc.200700544 – ident: e_1_2_12_281_1 doi: 10.1039/c1ra00210d – ident: e_1_2_12_290_1 doi: 10.1016/j.apsusc.2013.04.070 – ident: e_1_2_12_201_1 doi: 10.1021/nl9040719 – ident: e_1_2_12_97_1 doi: 10.1039/c2nr31031g – ident: e_1_2_12_313_1 doi: 10.1021/acs.iecr.7b02622 – ident: e_1_2_12_335_1 doi: 10.1002/ente.201600419 – ident: e_1_2_12_179_1 doi: 10.1016/j.polymer.2006.01.015 – ident: e_1_2_12_387_1 doi: 10.1007/s10854-017-7491-4 – ident: e_1_2_12_146_1 doi: 10.1063/1.336351 – ident: e_1_2_12_35_1 doi: 10.1016/S1369-7021(13)70011-7 – ident: e_1_2_12_56_1 doi: 10.1109/14.30878 – ident: e_1_2_12_14_1 doi: 10.1016/j.sna.2012.10.021 – ident: e_1_2_12_100_1 doi: 10.1109/PROC.1965.4253 – ident: e_1_2_12_42_1 doi: 10.1002/adma.201400562 – ident: e_1_2_12_340_1 doi: 10.3390/c3040030 – ident: e_1_2_12_271_1 doi: 10.1021/acsami.7b04095 – ident: e_1_2_12_242_1 doi: 10.1016/j.apacoust.2009.11.009 – ident: e_1_2_12_424_1 doi: 10.3390/polym12112697 – ident: e_1_2_12_389_1 doi: 10.1016/j.apsusc.2017.09.077 – ident: e_1_2_12_270_1 doi: 10.1021/nn406481k – ident: e_1_2_12_233_1 doi: 10.1080/00150198208260664 – ident: e_1_2_12_1_1 doi: 10.1016/j.rser.2018.04.113 – ident: e_1_2_12_208_1 doi: 10.1021/nl202208n – ident: e_1_2_12_237_1 – ident: e_1_2_12_82_1 doi: 10.1038/nnano.2008.314 – ident: e_1_2_12_177_1 doi: 10.1002/polb.1994.090320509 – ident: e_1_2_12_150_1 doi: 10.1016/j.progpolymsci.2013.07.006 – ident: e_1_2_12_30_1 doi: 10.1002/adfm.202004446 – ident: e_1_2_12_431_1 doi: 10.1016/j.nanoen.2017.09.046 – ident: e_1_2_12_328_1 doi: 10.1016/j.compscitech.2018.10.009 – ident: e_1_2_12_342_1 doi: 10.1016/j.nanoen.2018.08.036 – ident: e_1_2_12_128_1 doi: 10.1039/C7TA07570G – ident: e_1_2_12_129_1 doi: 10.1063/1.2472539 – ident: e_1_2_12_432_1 doi: 10.1021/nl204440g – ident: e_1_2_12_211_1 doi: 10.1016/j.polymer.2012.01.058 – ident: e_1_2_12_103_1 doi: 10.1039/c3cp50915j – ident: e_1_2_12_151_1 doi: 10.1002/app.1330 – ident: e_1_2_12_126_1 doi: 10.1039/C3EE42540A – ident: e_1_2_12_408_1 doi: 10.1016/j.nanoen.2017.05.010 – ident: e_1_2_12_202_1 doi: 10.1016/j.matlet.2015.09.117 – ident: e_1_2_12_170_1 doi: 10.1039/c2jm15665b – ident: e_1_2_12_231_1 doi: 10.1038/ncomms2639 – ident: e_1_2_12_433_1 doi: 10.1016/j.nanoen.2018.07.053 – ident: e_1_2_12_23_1 doi: 10.1016/j.nanoen.2014.11.038 – ident: e_1_2_12_415_1 doi: 10.1002/aenm.201300458 – ident: e_1_2_12_269_1 doi: 10.1021/acsomega.8b00940 – ident: e_1_2_12_223_1 doi: 10.1016/j.nanoen.2014.04.016 – ident: e_1_2_12_71_1 doi: 10.1063/1.1611635 – ident: e_1_2_12_310_1 doi: 10.1063/1.373675 – ident: e_1_2_12_130_1 doi: 10.1063/1.4880101 – ident: e_1_2_12_336_1 doi: 10.1038/srep13209 – ident: e_1_2_12_384_1 doi: 10.1016/j.matdes.2016.12.090 – ident: e_1_2_12_364_1 doi: 10.1088/0964-1726/22/8/085017 – ident: e_1_2_12_72_1 doi: 10.1021/acsomega.7b00041 – ident: e_1_2_12_239_1 doi: 10.1002/adsu.201700068 – ident: e_1_2_12_174_1 doi: 10.1038/nmat4423 – ident: e_1_2_12_26_1 doi: 10.1088/0964-1726/20/5/055019 – ident: e_1_2_12_414_1 doi: 10.1039/c3nr00866e – ident: e_1_2_12_156_1 doi: 10.1007/s003390100991 – ident: e_1_2_12_86_1 doi: 10.1002/adma.200903815 – ident: e_1_2_12_323_1 doi: 10.1021/acsomega.9b00243 – ident: e_1_2_12_85_1 doi: 10.1021/jp909713c – ident: e_1_2_12_284_1 doi: 10.1007/s10973-012-2834-0 – ident: e_1_2_12_318_1 doi: 10.1021/acssuschemeng.8b01851 – ident: e_1_2_12_274_1 doi: 10.1016/j.nanoen.2016.10.034 – ident: e_1_2_12_25_1 doi: 10.1021/acsami.5b04161 – ident: e_1_2_12_175_1 doi: 10.1016/j.commatsci.2004.12.040 – ident: e_1_2_12_294_1 doi: 10.1002/pat.4096 – ident: e_1_2_12_24_1 doi: 10.1016/j.physb.2009.06.009 – ident: e_1_2_12_404_1 doi: 10.1016/j.apsusc.2016.12.197 – ident: e_1_2_12_27_1 doi: 10.1063/1.4918986 – ident: e_1_2_12_263_1 doi: 10.1039/b912801h – ident: e_1_2_12_205_1 doi: 10.1088/0964-1726/23/2/025003 – ident: e_1_2_12_259_1 doi: 10.1021/jacs.6b09024 – ident: e_1_2_12_80_1 doi: 10.1021/nl900115y – ident: e_1_2_12_392_1 doi: 10.1039/C4NR02246G – start-page: 473 volume-title: IEEE 24th Int. Conf. Micro Electro Mechanical Systems year: 2011 ident: e_1_2_12_60_1 – ident: e_1_2_12_436_1 doi: 10.1002/adfm.201301971 – ident: e_1_2_12_55_1 doi: 10.1134/1.1595194 – ident: e_1_2_12_98_1 doi: 10.1039/c2ee22744d – ident: e_1_2_12_228_1 doi: 10.1063/1.4980130 – ident: e_1_2_12_337_1 doi: 10.1021/jp4011026 – ident: e_1_2_12_16_1 doi: 10.1109/TSM.2015.2468053 – ident: e_1_2_12_260_1 doi: 10.1016/j.matdes.2019.107636 – ident: e_1_2_12_90_1 doi: 10.1021/nl103203u – ident: e_1_2_12_3_1 doi: 10.1016/j.rser.2017.01.073 – ident: e_1_2_12_349_1 doi: 10.1021/am302275b – ident: e_1_2_12_18_1 doi: 10.1002/aelm.201800791 – ident: e_1_2_12_373_1 doi: 10.1002/slct.201602046 – ident: e_1_2_12_258_1 doi: 10.1016/j.ceramint.2006.05.010 – ident: e_1_2_12_127_1 doi: 10.1088/0957-4484/25/37/375603 – ident: e_1_2_12_162_1 doi: 10.1002/ecj.10348 – ident: e_1_2_12_6_1 doi: 10.1109/ACCESS.2019.2958684 – ident: e_1_2_12_104_1 doi: 10.1063/1.2405014 – ident: e_1_2_12_366_1 doi: 10.1016/j.nanoso.2017.10.006 – ident: e_1_2_12_297_1 doi: 10.1039/C7RA10223B – ident: e_1_2_12_112_1 doi: 10.1007/s10832-007-9047-0 – ident: e_1_2_12_147_1 doi: 10.1016/j.physleta.2008.11.026 – ident: e_1_2_12_275_1 doi: 10.1016/j.compositesb.2014.12.001 – ident: e_1_2_12_292_1 doi: 10.1002/app.38746 – ident: e_1_2_12_257_1 doi: 10.1109/JSEN.2011.2182043 – ident: e_1_2_12_422_1 doi: 10.1039/C5CP01820J – ident: e_1_2_12_322_1 doi: 10.1126/science.1122225 – ident: e_1_2_12_334_1 doi: 10.1063/1.4973596 – ident: e_1_2_12_44_1 doi: 10.1016/j.cap.2013.01.009 – ident: e_1_2_12_283_1 doi: 10.1016/j.apsusc.2017.01.314 – volume-title: Encycl. Polym. Sci. Technol. year: 2002 ident: e_1_2_12_136_1 – ident: e_1_2_12_308_1 doi: 10.1063/1.1862317 – ident: e_1_2_12_425_1 doi: 10.1002/mame.201700214 – ident: e_1_2_12_405_1 doi: 10.1016/j.nanoen.2016.06.009 – ident: e_1_2_12_187_1 doi: 10.1080/1539445X.2010.495630 – ident: e_1_2_12_247_1 doi: 10.1016/j.reactfunctpolym.2020.104638 – ident: e_1_2_12_253_1 doi: 10.1166/mex.2017.1393 – ident: e_1_2_12_407_1 doi: 10.1002/adfm.201602634 – ident: e_1_2_12_139_1 doi: 10.1109/TDEI.2006.247839 – ident: e_1_2_12_148_1 doi: 10.1126/science.220.4602.1115 – ident: e_1_2_12_361_1 doi: 10.1021/acsami.5b11356 – ident: e_1_2_12_155_1 doi: 10.1002/app.25603 – ident: e_1_2_12_9_1 doi: 10.1039/C3EE42454E – ident: e_1_2_12_176_1 doi: 10.1021/ma00229a008 – ident: e_1_2_12_380_1 doi: 10.1039/C8SE00519B – ident: e_1_2_12_409_1 doi: 10.1007/s11671-010-9629-7 – ident: e_1_2_12_62_1 doi: 10.1109/JMEMS.2007.911375 – ident: e_1_2_12_222_1 doi: 10.1109/TUFFC.2013.2786 – ident: e_1_2_12_13_1 doi: 10.1007/s10832-004-5130-y – ident: e_1_2_12_243_1 doi: 10.1063/1.360959 – ident: e_1_2_12_395_1 doi: 10.1021/acsami.6b02177 – ident: e_1_2_12_75_1 doi: 10.1088/0953-8984/16/25/R01 – ident: e_1_2_12_315_1 doi: 10.1155/2012/132424 – ident: e_1_2_12_396_1 doi: 10.1021/acssuschemeng.7b00117 – ident: e_1_2_12_386_1 doi: 10.1016/j.orgel.2019.105405 – ident: e_1_2_12_166_1 doi: 10.7569/JRM.2017.634173 – ident: e_1_2_12_36_1 doi: 10.1016/j.nanoen.2019.04.090 – ident: e_1_2_12_419_1 doi: 10.1021/acsami.5b08168 – ident: e_1_2_12_374_1 doi: 10.1016/j.apsusc.2012.04.118 – ident: e_1_2_12_70_1 doi: 10.1016/j.tsf.2012.12.114 – ident: e_1_2_12_183_1 doi: 10.4028/www.scientific.net/MSF.514-516.872 – ident: e_1_2_12_145_1 doi: 10.1088/0022-3727/24/10/020 – ident: e_1_2_12_106_1 doi: 10.1038/srep02017 – ident: e_1_2_12_22_1 doi: 10.1016/j.nanoen.2018.10.053 – ident: e_1_2_12_345_1 doi: 10.1016/j.sna.2013.01.007 – ident: e_1_2_12_32_1 doi: 10.1515/ehs-2016-0028 – ident: e_1_2_12_57_1 – ident: e_1_2_12_399_1 doi: 10.1021/nn5046568 – ident: e_1_2_12_372_1 doi: 10.1063/1.5028756 – ident: e_1_2_12_417_1 doi: 10.1002/adma.201200359 – ident: e_1_2_12_134_1 doi: 10.1039/C7RA01267E – ident: e_1_2_12_382_1 doi: 10.3390/polym9020033 – ident: e_1_2_12_213_1 doi: 10.1016/j.sna.2017.05.027 – ident: e_1_2_12_362_1 doi: 10.1021/acsami.6b01547 – ident: e_1_2_12_226_1 doi: 10.1021/am4016878 – ident: e_1_2_12_348_1 doi: 10.3390/nano8060420 – ident: e_1_2_12_232_1 doi: 10.1002/app.1973.070171111 – ident: e_1_2_12_296_1 doi: 10.1038/s41598-017-19082-3 – ident: e_1_2_12_238_1 doi: 10.1002/mame.201800463 – ident: e_1_2_12_359_1 doi: 10.1016/j.mtcomm.2017.04.001 – ident: e_1_2_12_305_1 doi: 10.1088/1757-899X/338/1/012026 – ident: e_1_2_12_312_1 doi: 10.1016/j.eurpolymj.2019.04.043 – ident: e_1_2_12_64_1 doi: 10.1021/acsami.6b04497 – ident: e_1_2_12_398_1 doi: 10.1002/adfm.201301379 – ident: e_1_2_12_59_1 – ident: e_1_2_12_47_1 doi: 10.1007/s10854-015-4221-7 – ident: e_1_2_12_357_1 doi: 10.1016/j.compositesb.2019.01.055 – ident: e_1_2_12_250_1 doi: 10.1021/acs.chemrev.5b00495 – ident: e_1_2_12_178_1 doi: 10.1002/app.12267 – ident: e_1_2_12_77_1 – ident: e_1_2_12_132_1 doi: 10.1021/nl060820v – ident: e_1_2_12_381_1 doi: 10.1016/j.orgel.2018.06.006 – ident: e_1_2_12_33_1 doi: 10.1088/0964-1726/17/4/043001 – ident: e_1_2_12_207_1 doi: 10.1021/nn503269b – ident: e_1_2_12_400_1 doi: 10.1007/s00339-002-1497-2 – ident: e_1_2_12_116_1 doi: 10.1063/1.3157837 – ident: e_1_2_12_92_1 doi: 10.1016/j.nanoen.2014.11.059 – ident: e_1_2_12_402_1 doi: 10.1016/j.nanoen.2014.10.010 – ident: e_1_2_12_63_1 doi: 10.1088/1361-665X/aa738e – ident: e_1_2_12_41_1 doi: 10.1186/1556-276X-9-4 – ident: e_1_2_12_240_1 doi: 10.1007/s10854-017-7020-5 – ident: e_1_2_12_354_1 doi: 10.1016/j.compscitech.2015.11.032 – ident: e_1_2_12_252_1 doi: 10.1016/j.sna.2015.07.002 – ident: e_1_2_12_351_1 doi: 10.1039/C5RA25671B – ident: e_1_2_12_248_1 doi: 10.1002/pola.23183 – ident: e_1_2_12_411_1 doi: 10.1016/j.ceramint.2021.02.140 – ident: e_1_2_12_356_1 doi: 10.1038/318162a0 – ident: e_1_2_12_435_1 doi: 10.1021/am5031648 – ident: e_1_2_12_73_1 doi: 10.1126/science.1124005 – ident: e_1_2_12_329_1 doi: 10.1016/j.clay.2017.10.036 – ident: e_1_2_12_124_1 doi: 10.1021/am502234q – ident: e_1_2_12_105_1 doi: 10.1002/smll.200500331 – ident: e_1_2_12_120_1 doi: 10.1021/nl303539c – ident: e_1_2_12_220_1 doi: 10.1080/00150198108238674 – ident: e_1_2_12_37_1 doi: 10.1016/j.addr.2008.03.012 – ident: e_1_2_12_96_1 doi: 10.1016/j.nanoen.2013.01.001 – ident: e_1_2_12_40_1 doi: 10.1007/s10832-007-9044-3 – ident: e_1_2_12_91_1 doi: 10.1063/1.4749279 – ident: e_1_2_12_121_1 doi: 10.1063/1.3237170 – ident: e_1_2_12_122_1 doi: 10.1016/j.mee.2013.01.058 – ident: e_1_2_12_171_1 doi: 10.1039/c0jm02408b – ident: e_1_2_12_265_1 doi: 10.1016/j.compositesa.2019.03.031 – ident: e_1_2_12_264_1 doi: 10.1088/0022-3727/47/13/135302 – ident: e_1_2_12_288_1 doi: 10.1007/s10965-015-0765-8 – ident: e_1_2_12_293_1 doi: 10.1016/j.nanoen.2017.11.065 – ident: e_1_2_12_314_1 doi: 10.1016/j.jiec.2012.12.043 – ident: e_1_2_12_410_1 doi: 10.1021/jp711598j – ident: e_1_2_12_229_1 doi: 10.1016/j.orgel.2015.06.007 – ident: e_1_2_12_277_1 doi: 10.3390/cryst11020085 – ident: e_1_2_12_143_1 doi: 10.1088/0964-1726/19/6/065010 – ident: e_1_2_12_391_1 doi: 10.1021/la7035407 – ident: e_1_2_12_131_1 doi: 10.1088/0957-4484/27/32/325403 – ident: e_1_2_12_5_1 doi: 10.1016/j.rser.2015.10.046 – ident: e_1_2_12_163_1 doi: 10.1021/acsami.6b03597 – ident: e_1_2_12_225_1 doi: 10.1002/adfm.201500856 – ident: e_1_2_12_135_1 doi: 10.1002/0471216275.esm063 – ident: e_1_2_12_413_1 doi: 10.1002/ente.201700756 – ident: e_1_2_12_190_1 doi: 10.1002/mame.201100176 – ident: e_1_2_12_427_1 doi: 10.1039/C5RA03524D – ident: e_1_2_12_180_1 doi: 10.1016/S0142-9418(03)00003-5 – ident: e_1_2_12_426_1 doi: 10.1016/j.compscitech.2020.108100 – ident: e_1_2_12_49_1 doi: 10.1088/0964-1726/22/7/075017 – ident: e_1_2_12_189_1 doi: 10.1002/app.33239 – ident: e_1_2_12_266_1 doi: 10.1016/j.compscitech.2017.06.013 – ident: e_1_2_12_289_1 doi: 10.3390/s19040830 – ident: e_1_2_12_67_1 doi: 10.1016/j.nanoen.2016.08.030 – ident: e_1_2_12_333_1 doi: 10.1039/D0SM00341G – ident: e_1_2_12_355_1 doi: 10.1063/1.4768923 – ident: e_1_2_12_52_1 doi: 10.1088/0957-4484/25/48/485401 – ident: e_1_2_12_327_1 doi: 10.1016/j.eurpolymj.2012.09.023 – ident: e_1_2_12_109_1 doi: 10.1021/jp502057p – ident: e_1_2_12_268_1 doi: 10.1016/j.compositesa.2018.02.004 – ident: e_1_2_12_221_1 doi: 10.1080/00150198108238688 – ident: e_1_2_12_119_1 doi: 10.1021/nn3016585 – ident: e_1_2_12_316_1 doi: 10.1016/j.jpowsour.2013.11.079 – ident: e_1_2_12_141_1 doi: 10.1143/JJAP.8.975 – ident: e_1_2_12_4_1 doi: 10.1016/j.jpowsour.2013.06.081 – ident: e_1_2_12_95_1 doi: 10.1038/nature06601 – ident: e_1_2_12_276_1 doi: 10.1016/j.sna.2013.03.023 – ident: e_1_2_12_403_1 doi: 10.1021/nl400169t – ident: e_1_2_12_285_1 doi: 10.1088/0957-4484/27/44/445403 – ident: e_1_2_12_338_1 doi: 10.1039/c2nr32185h – ident: e_1_2_12_227_1 doi: 10.1002/aenm.201400723 – ident: e_1_2_12_101_1 doi: 10.1143/JJAP.44.7555 – ident: e_1_2_12_206_1 doi: 10.1039/C5RA16604G – ident: e_1_2_12_159_1 doi: 10.1063/1.2360266 – ident: e_1_2_12_212_1 doi: 10.1016/j.nanoen.2018.05.068 – ident: e_1_2_12_117_1 doi: 10.1088/0957-4484/17/17/036 – ident: e_1_2_12_304_1 doi: 10.1039/C9CE00406H – ident: e_1_2_12_193_1 doi: 10.1016/j.tca.2007.05.023 – ident: e_1_2_12_346_1 doi: 10.1557/PROC-851-NN9.11 – ident: e_1_2_12_66_1 doi: 10.1016/j.nanoen.2016.10.042 – ident: e_1_2_12_320_1 doi: 10.1021/jp3038768 – ident: e_1_2_12_76_1 doi: 10.1016/j.mser.2009.02.001 – ident: e_1_2_12_397_1 doi: 10.1021/nn404659d – ident: e_1_2_12_286_1 doi: 10.1007/s00339-016-0161-1 – ident: e_1_2_12_406_1 doi: 10.1021/acsami.5b01679 – ident: e_1_2_12_195_1 doi: 10.1016/j.jnoncrysol.2006.02.052 – ident: e_1_2_12_113_1 doi: 10.1016/j.jeurceramsoc.2005.03.125 – ident: e_1_2_12_360_1 doi: 10.1007/s10854-012-0851-1 – ident: e_1_2_12_420_1 doi: 10.1021/acsami.7b08008 – ident: e_1_2_12_245_1 doi: 10.1039/C6TC00613B – ident: e_1_2_12_165_1 doi: 10.1021/mz300234a – ident: e_1_2_12_350_1 doi: 10.1016/j.polymer.2013.12.014 – ident: e_1_2_12_68_1 doi: 10.1063/1.4961623 – ident: e_1_2_12_21_1 doi: 10.1109/3516.891044 – start-page: 1 volume-title: 2010 10th IEEE Int. Conf. Solid Dielectr. year: 2010 ident: e_1_2_12_158_1 – ident: e_1_2_12_81_1 doi: 10.1021/nl803904b – ident: e_1_2_12_394_1 doi: 10.1021/jz301805f – ident: e_1_2_12_197_1 doi: 10.1016/j.nanoen.2012.02.003 – ident: e_1_2_12_325_1 doi: 10.1002/pi.1692 – ident: e_1_2_12_311_1 doi: 10.1016/j.sna.2013.10.011 – ident: e_1_2_12_194_1 doi: 10.1007/s10965-011-9570-1 – ident: e_1_2_12_319_1 doi: 10.1021/acsami.7b16973 – ident: e_1_2_12_307_1 doi: 10.1007/s10832-012-9706-7 – ident: e_1_2_12_376_1 doi: 10.1039/C5RA14889H – ident: e_1_2_12_10_1 doi: 10.1063/1.4900845 – ident: e_1_2_12_154_1 doi: 10.1021/cr800187m – ident: e_1_2_12_352_1 doi: 10.1016/j.jcis.2012.10.060 – ident: e_1_2_12_309_1 doi: 10.1080/10584580601098589 – ident: e_1_2_12_441_1 doi: 10.1002/adma.201102067 – ident: e_1_2_12_191_1 doi: 10.1016/j.polymer.2011.03.024 – ident: e_1_2_12_306_1 doi: 10.1016/j.ceramint.2015.02.148 – ident: e_1_2_12_358_1 doi: 10.1016/j.compscitech.2016.11.017 – ident: e_1_2_12_371_1 doi: 10.1002/aenm.201601016 – ident: e_1_2_12_439_1 doi: 10.1016/j.apenergy.2018.09.009 – ident: e_1_2_12_111_1 doi: 10.1038/nature03028 – ident: e_1_2_12_287_1 doi: 10.1002/crat.2170231029 – volume-title: Advances in Ceramics – Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment year: 2011 ident: e_1_2_12_388_1 – ident: e_1_2_12_210_1 doi: 10.1016/j.sna.2014.05.027 – ident: e_1_2_12_186_1 doi: 10.1080/00222347008217130 – ident: e_1_2_12_262_1 doi: 10.1088/0964-1726/22/6/065011 – ident: e_1_2_12_199_1 doi: 10.1063/1.2975834 – ident: e_1_2_12_378_1 doi: 10.1021/acsomega.8b00237 – ident: e_1_2_12_302_1 doi: 10.1016/j.matpr.2017.10.205 – ident: e_1_2_12_272_1 doi: 10.1021/acsaem.7b00337 – ident: e_1_2_12_46_1 doi: 10.1021/nl104412b – start-page: 782 volume-title: TRANSDUCERS 2003–12th Int. Conf. Solid‐State Sens. Actuators Microsyst. Dig. Tech. Pap. year: 2003 ident: e_1_2_12_140_1 – ident: e_1_2_12_344_1 doi: 10.1021/ma901765j – ident: e_1_2_12_429_1 doi: 10.1021/acsami.5b09502 – ident: e_1_2_12_164_1 doi: 10.3390/s100301473 – ident: e_1_2_12_267_1 doi: 10.1007/s42247-018-0007-z – ident: e_1_2_12_28_1 doi: 10.1063/1.4921832 – ident: e_1_2_12_385_1 doi: 10.1016/j.orgel.2018.04.037 – ident: e_1_2_12_2_1 doi: 10.1109/MPRV.2005.9 – ident: e_1_2_12_99_1 doi: 10.1016/j.apsusc.2015.08.187 – start-page: 747 volume-title: 2011 16th Int. Solid‐State Sens. Actuators Microsyst. Conf. year: 2011 ident: e_1_2_12_204_1 doi: 10.1109/TRANSDUCERS.2011.5969865 – ident: e_1_2_12_443_1 doi: 10.1039/c2ee22354f – ident: e_1_2_12_144_1 doi: 10.1201/9781482295450 – ident: e_1_2_12_51_1 doi: 10.1038/ncomms1098 – ident: e_1_2_12_84_1 doi: 10.1002/adma.200803605 – ident: e_1_2_12_160_1 doi: 10.1021/ma00025a014 – ident: e_1_2_12_219_1 doi: 10.1080/00150198108238678 – ident: e_1_2_12_331_1 doi: 10.1016/j.energy.2019.01.043 – ident: e_1_2_12_79_1 doi: 10.1021/ja054771k – ident: e_1_2_12_412_1 doi: 10.1016/j.compscitech.2017.03.015 – ident: e_1_2_12_157_1 doi: 10.1063/1.2748076 – ident: e_1_2_12_261_1 doi: 10.1016/j.polymer.2010.09.067 – ident: e_1_2_12_369_1 doi: 10.1039/C8NJ04751K – ident: e_1_2_12_339_1 doi: 10.1016/j.sna.2016.04.056 – volume: 107 start-page: 1037 year: 2015 ident: e_1_2_12_196_1 publication-title: J. Text. Inst. – ident: e_1_2_12_390_1 doi: 10.1007/s10965-014-0434-3 – ident: e_1_2_12_153_1 doi: 10.1007/978-0-387-76540-2 – ident: e_1_2_12_172_1 doi: 10.1039/c1py00225b – ident: e_1_2_12_343_1 doi: 10.1016/j.enconman.2019.01.073 – ident: e_1_2_12_78_1 – ident: e_1_2_12_43_1 doi: 10.1016/j.msec.2019.01.081 – ident: e_1_2_12_434_1 doi: 10.1021/acsami.5b01760 – ident: e_1_2_12_291_1 doi: 10.1109/TUFFC.2012.2168 – ident: e_1_2_12_209_1 doi: 10.1002/aenm.201301624 – ident: e_1_2_12_295_1 doi: 10.1016/j.nanoen.2017.01.062 – ident: e_1_2_12_89_1 doi: 10.1021/nl300972f – ident: e_1_2_12_15_1 doi: 10.1016/j.sna.2014.11.012 – ident: e_1_2_12_192_1 doi: 10.1002/pen.20817 – ident: e_1_2_12_58_1 doi: 10.1039/C8EE03006E – ident: e_1_2_12_278_1 doi: 10.1016/j.ceramint.2015.10.170 – ident: e_1_2_12_93_1 doi: 10.1039/c4ta01714e – ident: e_1_2_12_168_1 doi: 10.1016/j.compscitech.2011.02.003 – ident: e_1_2_12_241_1 doi: 10.1016/j.matlet.2015.02.038 – ident: e_1_2_12_88_1 doi: 10.1002/adma.201103727 – ident: e_1_2_12_224_1 doi: 10.1002/polb.23443 – ident: e_1_2_12_38_1 doi: 10.1002/jbm.a.36050 – ident: e_1_2_12_110_1 doi: 10.1109/TNANO.2018.2800406 – ident: e_1_2_12_48_1 doi: 10.1016/j.compstruct.2015.06.075 – ident: e_1_2_12_370_1 doi: 10.1016/j.apsusc.2014.09.030 – ident: e_1_2_12_87_1 doi: 10.1021/nl201505c – ident: e_1_2_12_280_1 doi: 10.1016/j.nanoen.2020.104516 – ident: e_1_2_12_34_1 doi: 10.1109/JPROC.2008.927494 – ident: e_1_2_12_138_1 doi: 10.1021/ma060261e – ident: e_1_2_12_353_1 doi: 10.1038/nature07872 – ident: e_1_2_12_29_1 doi: 10.1016/j.nanoen.2018.11.031 – ident: e_1_2_12_317_1 doi: 10.1007/s10965-017-1396-z – ident: e_1_2_12_401_1 doi: 10.1021/nn2039033 – ident: e_1_2_12_428_1 doi: 10.1002/adma.201470103 – ident: e_1_2_12_17_1 doi: 10.1002/aelm.201800413 – ident: e_1_2_12_61_1 doi: 10.1016/j.polymer.2004.05.057 – ident: e_1_2_12_107_1 doi: 10.1021/nn403428m – volume: 3 start-page: 89 year: 1880 ident: e_1_2_12_53_1 publication-title: Bulletin of the Mineralogical Society of France – ident: e_1_2_12_298_1 doi: 10.1039/C8SM01655K – ident: e_1_2_12_279_1 doi: 10.1016/j.sna.2013.03.007 – ident: e_1_2_12_12_1 doi: 10.1007/s00339-006-3688-8 – ident: e_1_2_12_416_1 doi: 10.1002/adma.201500367 – ident: e_1_2_12_149_1 doi: 10.1021/ma100166a – ident: e_1_2_12_303_1 doi: 10.1016/j.jallcom.2017.06.028 – ident: e_1_2_12_115_1 doi: 10.1021/nl301490q – ident: e_1_2_12_142_1 doi: 10.1143/JJAP.37.2775 – ident: e_1_2_12_330_1 doi: 10.1088/2053-1591/aa8583 – ident: e_1_2_12_217_1 doi: 10.1016/j.polymer.2004.01.005 – ident: e_1_2_12_19_1 doi: 10.1016/j.mser.2010.06.015 – ident: e_1_2_12_125_1 doi: 10.1002/adma.201200105 – ident: e_1_2_12_301_1 doi: 10.1016/j.matchemphys.2018.04.013 – ident: e_1_2_12_368_1 doi: 10.1039/C5NR02067K – ident: e_1_2_12_133_1 doi: 10.1021/nl061802g – ident: e_1_2_12_273_1 doi: 10.1016/j.nanoen.2015.04.030 – ident: e_1_2_12_137_1 doi: 10.1109/58.883516 – ident: e_1_2_12_31_1 doi: 10.1088/0964-1726/23/3/033001 – ident: e_1_2_12_299_1 doi: 10.1016/j.matdes.2019.108176 – ident: e_1_2_12_379_1 doi: 10.1557/mrc.2017.126 – ident: e_1_2_12_341_1 doi: 10.3390/s140609889 – ident: e_1_2_12_123_1 doi: 10.1021/nl204334x – ident: e_1_2_12_94_1 doi: 10.1038/nnano.2010.46 – ident: e_1_2_12_234_1 doi: 10.1016/S0079-6700(00)00044-7 – ident: e_1_2_12_45_1 doi: 10.1002/pen.24088 – ident: e_1_2_12_235_1 doi: 10.1021/ma980683r – ident: e_1_2_12_20_1 doi: 10.1146/annurev.matsci.28.1.563 – ident: e_1_2_12_8_1 doi: 10.3390/s20123512 – ident: e_1_2_12_326_1 doi: 10.1002/polb.21550 – ident: e_1_2_12_169_1 doi: 10.7567/APEX.8.101501 – ident: e_1_2_12_215_1 doi: 10.1088/1361-665X/aab865 – ident: e_1_2_12_393_1 doi: 10.1016/j.apsusc.2017.06.109 – ident: e_1_2_12_39_1 doi: 10.1039/C5EE01593F – ident: e_1_2_12_184_1 doi: 10.1002/polb.23146 – start-page: 21 volume-title: Nanotechnol. Mater. Devices Conf. year: 2012 ident: e_1_2_12_230_1 – ident: e_1_2_12_185_1 doi: 10.1063/1.361055 – ident: e_1_2_12_218_1 doi: 10.1143/JJAP.19.L109 – ident: e_1_2_12_114_1 doi: 10.1063/1.1829394 – ident: e_1_2_12_256_1 doi: 10.1021/nn202251m – ident: e_1_2_12_375_1 doi: 10.1021/ja01539a017 – ident: e_1_2_12_254_1 doi: 10.1016/j.nanoen.2018.08.006 – ident: e_1_2_12_251_1 doi: 10.1016/j.nanoen.2014.11.061 – ident: e_1_2_12_203_1 doi: 10.1016/j.sna.2010.09.019 – ident: e_1_2_12_161_1 doi: 10.3390/proceedings1040335 – ident: e_1_2_12_198_1 doi: 10.1016/j.matpr.2020.09.339 – ident: e_1_2_12_236_1 doi: 10.1021/ma051268j – ident: e_1_2_12_300_1 doi: 10.1007/s10570-016-1070-3 – ident: e_1_2_12_244_1 doi: 10.1109/ISE.1999.832131 – ident: e_1_2_12_430_1 doi: 10.1021/nl102959k – ident: e_1_2_12_118_1 doi: 10.1021/nl100812k |
| SSID | ssj0001537418 |
| Score | 2.6570241 |
| SecondaryResourceType | review_article |
| Snippet | Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical signals and... Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and... Abstract Piezoelectric materials are widely referred to as “smart” materials because they can transduce mechanical pressure acting on them to electrical... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2100864 |
| SubjectTerms | Alternative energy sources Aqueous solutions Biosensing Techniques - methods Electric Power Supplies energy harvesting Energy resources Equipment Design - methods flexible devices Internet of Things Nanocomposites Nanostructured materials Nanotechnology - methods Nanowires Photovoltaic cells piezoelectric nanogenerator polymer nanocomposites polyvinylidene fluoride copolymers Review Reviews Sensors Smart Materials Wireless communications Zinc oxides |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELonwGCjISEnCImji2Y3MrqCsOUFUsSL1FE48Ni2i2arc98Ovx2NmwK0C9cIuSiW3NjO1neeYNYy-gxl5HqFBGcGBKadGVEEwovSZ_Mqp3fapa8qE9OjInJ_Z4o9QXxYRleuCsuH3ECgza2rnQSAANyttaeeFq1L5uA62-EfVsHKZyfnBDtCxrlsZK7ANeETu3IDIbLbd2oUTW_zeE-Weg5CaATTvQ7A67PUJHfpCHvMtu-OEu2x0n5wV_NTJIv77Hvh8v_M9lrnCzcPwjrLKf8YhQ-WHK9uNUFIgYNoavHAbkcwpkj88HGxfab_inJeApnKX_Zol9hM9Po85-N3mffZkdfn73vhyLKpROWaVKDaFuEHoV0MWjjtK9AgHaOlSAIUgnpQXRoK5sr1rRhBA0AsZtqzKtNLp5wHaG5eAfMd5qiwlgNUZIELKv0FXY98Z5B0piwcq1kjs3Mo5T4YsfXeZKFh0ZpZuMUrCXk_xZ5tr4p-RbstkkRRzZ6UX0nG70nO46zynY3tri3ThxYxeqTenCdezj-fQ5Tjm6R4HBLy9JJqIkWp3rgj3MDjKNpJHE-abbgrVbrrM11O0vw-JbovWmC1FjVNRacrJrVNBF2DKnxOPH_0MXT9gtajkHz-2xndX5pX_Kbrqr1eLi_FmaW78AS3krVg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSKM9AQUZCAg5R42ccbgV1xQGqFQtSb9HEjttFNKl2tz301-NxstmNACHELXImtjOesT-_viHkFTBX6QAV0gAOTCoLZ1Pwxqe1RnsyqrJVjFryKT8-NicnxXTrFn_HDzEsuKFnxP4aHRyq5cGGNBTcFdJtc2Sn0fImucWYMBi8gcvpZpVFCaRnwQhzYXadCiPlmrkx4wfjLEYjUyTw_x3q_PXw5DaojaPS5O7__889stsjUnrYmdAeuVE398le7_NL-qYnpn77gHyfzuvrtgucM7f0M6w686UB-NKjeImQYqwhJO5oTik0js7wfHx4PtzaJ39Hv7TgzuEifjeJpCZ0dh5seJPlQ_JtcvT1w8e0j9WQWlUolWrwTDiolHc2zKCUrhRw0IV1Cpz30kpZABdOZ0Wlci6899qBC6NhZnJptHhEdpq2qZ8QmuvCRdwmDJfAZZU5m7mqMra2oKRLSLpup9L2ROYYT-NH2VEw8xJVWQ6qTMjrQf6io_D4o-R7bPZBCqm3Y0K7OC17Ty6dy8C4glnrhQTQoOqCqZpb5nTNcp-Q_bXRlH1_EIpQebyFzEIZL4fXwZNxewaaur1EmQC-sNNnCXnc2dhQEyGRSk7nCclH1jeq6vhNMz-LbOG4z2qMClqL1vcXFZQBDc3wPvPTf5R_Ru5gYnf8bp_srBaX9XNy216t5svFi-iVPwF4sTqx priority: 102 providerName: Wiley-Blackwell |
| Title | Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100864 https://www.ncbi.nlm.nih.gov/pubmed/34254467 https://www.proquest.com/docview/2570204314 https://www.proquest.com/docview/2551208871 https://pubmed.ncbi.nlm.nih.gov/PMC8425885 https://doaj.org/article/dd0a8d91ccf34aa6a5e915e2c1d6e17f |
| Volume | 8 |
| WOSCitedRecordID | wos000672287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYy4ELMD4DozISEnCIlji243BBG2rFJFqiFUQ5RY4dj05bUtpuB_56_Bw3W8XXgYuVxHZi-z0__-KP30PohYx1yS1UCC04ECHNtAqlESasOOiTYKUqndeSD-lkImazLPcTbiu_rXJjE52h1o2COfJ98LYG5zhj-nbxPQSvUbC66l1o7KA-MJXRHuofDif58dUsC0uAnmXD1hiRfakvgaWbAKkNp1ujkSPt_x3S_HXD5HUg60ai0Z3_rcNddNtjUHzQKs0uulHV99Cu7-Ur_MpTUb--j07zefWjaV3lzBUey3WrsNhCXTx0xwYxeBcCqo76BMta4ynsiLfXB9dWxt_g40bqc7lw-UaOxgRPz63WXr3yAfo8Gn569z703hlCxTLGQi5NnGhZMqOV_WdivGSSSJ4pzaQ2hipKM0kSzaOsZClJjDFcS23Hv0ikVPDkIerVTV09RjjlmXZILRGESkLLSKtIl6VQlZKM6gCFGykVylOXgweNs6IlXSYFSLXopBqgl136RUva8ceUhyD0LhWQbbsHzfKk8H230DqSQmexUiahUnLJqixmFVGx5lWcmgDtbcRdeAtgP9HJOkDPu2jbd2FBRtZVcwFpLNwCMx8H6FGrYV1JEgrkcTwNULqle1tF3Y6p598cPzisrArBbKs5Lf1HExQW_0zhBPOTv1fjKboFedr9dXuot15eVM_QTXW5nq-WA7RDaG7DdCYGvhMO3PyGDcfkowttfD8_Gudf7d2Xo8lP5NRAXA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwGP00OiT2AozLCAwwEgh4iJaL7ThICA1YtWptVdFNGk_BsZNRxJLSdkPwo_iN-HMuW8XtaQ-8RYmTOM75Pp_E9jkAj6WvU26ogmvIgXBprJUrc5G7GUc8CZaq1LqW9KPhUBwexqMV-NGshcFplU1OtIlalwr_kW-h2xqu4_Tpq-kXF12jcHS1sdCoYLGXfftqPtnmL3tvzft9EgTdnf03u27tKuAqFjPmcpn7oZYpy7UyXJ_xlMlA8lhpJnWeU0VpLINQcy9OWRSEeZ5zLbXJ256IqOChue4lWKUG7KIDq6PeYPT-7K8OC1EOplGH9IItqU9RFTxAER1Ol3o_axLwO2b76wTN88TZ9nzda_9bm12HqzXHJttVUKzDSlbcgPU6i83Js1pq-_lN-DSaZN_LygpooshALqqAJIbKkx27LJKgexJKkRRHRBaajHHGv9nePjfy_4K8K6U-llN7XtfKtJDxsYnKs0vegoMLeebb0CnKIrsDJOKxtkw0FAGVAU09rTydpkJlSjKqHXAbVCSqlmZHh5DPSSUqHSSIoqRFkQNP2_LTSpTkjyVfI8jaUigmbneUs6Okzk2J1p4UOvaVykMqJZcsi32WBcrXPPOj3IHNBl5JneHMLVpsOfCoPWxyEw44ySIrT7CMoZPYjfkObFSIbmsSUhTH45ED0RLWl6q6fKSYfLT65zhyLAQzrWaj4h9NkBh-N8YV2nf__hgP4cru_qCf9HvDvXuwhudXcwk3obOYnWT34bI6XUzmswd10BP4cNEx8xO0DpcS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAXoHwGChgJBByiTRzbcZAQKrQrqpZlxYLUW3DsuCyiybK7LYKfxq_D42TTrvg69cAtSpzEcd6MX-KZNwAPVGwK4ahC6MiBDFlmdKistGEpEE-SF7rwVUt208FA7u1lwxX4sciFwbDKhU_0jtrUGv-R97DaGuZxxqxn27CI4Wb_-eRLiBWkcKV1UU6jgchO-e2r-3ybPdvedO_6IaX9rXcvX4VthYFQ84zzUCgbJ0YV3BrteD8XBVdUiUwbroy1TDOWKZoYEWUFT2lirRVGGefDI5kyKRJ33TNwNmVuUsawQfrm-P8OT1AYZqETGdGeMkeoD05RTkewpXnQlwv4Hcf9NVTzJIX2c2D_0v88epfhYsu8yUZjKmuwUlZXYK31bTPyuBXgfnIVPg3H5fe6KRA01uS1mjdmShzBJ1s-WZJgTSUUKKn2iaoMGWEegNveOBEP8JS8rZU5UBN_Xt-Lt5DRgbPV40teg_en8szXYbWqq_ImkFRkxvPTRFKmKCsioyNTFFKXWnFmAggXCMl1K9iOdUM-543UNM0RUXmHqAAede0njVTJH1u-QMB1rVBi3O-op_t567FyYyIlTRZrbROmlFC8zGJeUh0bUcapDWB9AbW89XvuFh3OArjfHXYeC5ehVFXWh9jGkUyc3OIAbjTo7nqSMJTME2kA6RLul7q6fKQaf_Sq6LieLCV3o-Yt5B9DkDvWN8K87Vt_f4x7cN4ZSr67Pdi5DRfw9CbAcB1W59PD8g6c00fz8Wx611s_gQ-nbTA_ATMRnkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+Materials+for+Energy+Harvesting+and+Sensing+Applications%3A+Roadmap+for+Future+Smart+Materials&rft.jtitle=Advanced+science&rft.au=Mahapatra%2C+Susmriti+Das&rft.au=Mohapatra%2C+Preetam+Chandan&rft.au=Aria%2C+Adrianus+Indrat&rft.au=Christie%2C+Graham&rft.date=2021-09-01&rft.eissn=2198-3844&rft.volume=8&rft.issue=17&rft.spage=e2100864&rft_id=info:doi/10.1002%2Fadvs.202100864&rft_id=info%3Apmid%2F34254467&rft.externalDocID=34254467 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |