Time-encoded pseudocontinuous arterial spin labeling: Basic properties and timing strategies for human applications
Purpose In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 72; H. 6; S. 1712 - 1722 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Blackwell Publishing Ltd
01.12.2014
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored.
Methods
First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te‐pCASL are introduced: variable block duration to compensate for T1‐decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses.
Results
No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time‐encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te‐pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order.
Conclusion
Adjusting the timing of encoding blocks in te‐pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te‐pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712–1722, 2014. © 2014 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored.PURPOSEIn this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored.First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses.METHODSFirst, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses.No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order.RESULTSNo signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order.Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR.CONCLUSIONAdjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Purpose In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te‐pCASL are introduced: variable block duration to compensate for T1‐decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. Results No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time‐encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te‐pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Conclusion Adjusting the timing of encoding blocks in te‐pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te‐pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712–1722, 2014. © 2014 Wiley Periodicals, Inc. Purpose In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. Results No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Conclusion Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712-1722, 2014. copyright 2014 Wiley Periodicals, Inc. Purpose In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. Results No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Conclusion Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712-1722, 2014. © 2014 Wiley Periodicals, Inc. |
| Author | Schmid, Sophie Teeuwisse, Wouter M. Ghariq, Eidrees Veer, Ilya M. van Osch, Matthias J.P. |
| Author_xml | – sequence: 1 givenname: Wouter M. surname: Teeuwisse fullname: Teeuwisse, Wouter M. email: w.m.teeuwisse@lumc.nl organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 2 givenname: Sophie surname: Schmid fullname: Schmid, Sophie organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 3 givenname: Eidrees surname: Ghariq fullname: Ghariq, Eidrees organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 4 givenname: Ilya M. surname: Veer fullname: Veer, Ilya M. organization: Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands – sequence: 5 givenname: Matthias J.P. surname: van Osch fullname: van Osch, Matthias J.P. organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24395462$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0ctu1DAUBmALFdFpYcELIEtsyiKtr3HCDkZ0QGrLrYil5Th2cUns1HYEfXs8nZkuKpBYOXK-_8jnnAOw54M3ADzH6BgjRE7GOB4Tjhr6CCwwJ6QivGV7YIEEQxXFLdsHByldI4TaVrAnYJ8w2nJWkwVIl240lfE69KaHUzJzH3Tw2fk5zAmqmE10aoBpch4OqjOD81ev4VuVnIZTDJOJ2ZkCfQ-zG8tPmHJU2Vytb22I8Mc8Kg_VNA1Oq-yCT0_BY6uGZJ5tz0Pw7fTd5fJ9dfZx9WH55qzSvOW06hBmuBGN7RVVSGnGLe5aUT6MIKSxhNquOKwFY6T0g5veYtthqxpmRa3pITja1C3vvJlNynJ0SZthUN6U5iSuKUcUC9b-ByVF1Vys6csH9DrM0ZdG1opQzlHNinqxVXM3ml5O0Y0q3srd5As42QAdQ0rRWKldvptPGZ8bJEZyvVtZdivvdlsSrx4kdkX_ZrfVf7nB3P4byvMv57tEtUm4lM3v-4SKP2UtqODy-8VK0q-k_fzpdClX9A8eHMKl |
| CODEN | MRMEEN |
| CitedBy_id | crossref_primary_10_1002_nbm_4051 crossref_primary_10_1002_mrm_30540 crossref_primary_10_1002_mrm_27692 crossref_primary_10_1016_j_mri_2018_03_011 crossref_primary_10_3389_fonc_2022_810263 crossref_primary_10_1177_0271678X16636393 crossref_primary_10_1177_0271678X20982396 crossref_primary_10_1002_mrm_26842 crossref_primary_10_1002_mrm_26723 crossref_primary_10_1007_s00330_017_5066_7 crossref_primary_10_1177_0271678X16683690 crossref_primary_10_1002_mrm_70004 crossref_primary_10_1002_nbm_3603 crossref_primary_10_1016_j_neuroimage_2021_118755 crossref_primary_10_1097_RLI_0000000000000833 crossref_primary_10_1007_s00234_016_1756_0 crossref_primary_10_1016_j_neuroimage_2024_120506 crossref_primary_10_1002_mrm_26926 crossref_primary_10_3389_fphys_2021_621720 crossref_primary_10_1002_mrm_29268 crossref_primary_10_1177_0271678X17713434 crossref_primary_10_1002_mrm_26078 crossref_primary_10_1002_mrm_29783 crossref_primary_10_1002_nbm_4202 crossref_primary_10_1002_mrm_30415 crossref_primary_10_1002_nbm_5177 crossref_primary_10_1002_mrm_30407 crossref_primary_10_1002_mrm_28613 crossref_primary_10_1016_j_neuroimage_2017_12_095 crossref_primary_10_1371_journal_pone_0229444 crossref_primary_10_1002_hbm_23516 crossref_primary_10_1002_mrm_30091 crossref_primary_10_1002_mrm_29491 crossref_primary_10_1371_journal_pone_0141108 crossref_primary_10_1007_s10334_023_01121_y crossref_primary_10_1016_j_neuroimage_2018_05_050 crossref_primary_10_1002_mrm_30527 crossref_primary_10_1002_alz_14059 crossref_primary_10_1002_nbm_4519 crossref_primary_10_1016_j_mri_2023_11_011 crossref_primary_10_1002_nbm_4319 crossref_primary_10_1002_mrm_26542 crossref_primary_10_1002_mrm_26587 crossref_primary_10_1002_nbm_70069 crossref_primary_10_1016_j_neuroimage_2020_117246 crossref_primary_10_1016_j_neuroimage_2015_08_025 crossref_primary_10_1002_mrm_28807 crossref_primary_10_1148_radiol_2016150789 crossref_primary_10_1097_RCT_0000000000001566 crossref_primary_10_1002_mrm_28310 crossref_primary_10_1016_j_mri_2015_03_001 crossref_primary_10_1016_j_nicl_2022_102950 crossref_primary_10_1097_PR9_0000000000000750 crossref_primary_10_1016_j_nicl_2021_102853 crossref_primary_10_1016_j_ahj_2024_09_028 crossref_primary_10_1177_0271678X17721830 crossref_primary_10_12688_f1000research_7287_1 crossref_primary_10_1177_0271678X241264407 crossref_primary_10_1038_s41467_020_16002_4 crossref_primary_10_1002_mrm_28314 crossref_primary_10_3389_fnins_2021_823876 crossref_primary_10_1161_STROKEAHA_122_040759 crossref_primary_10_1177_0271678X17743240 |
| Cites_doi | 10.1002/mrm.22002 10.1002/mrm.24260 10.1097/RMR.0b013e31821e570a 10.1002/mrm.23311 10.1097/00004647-199611000-00019 10.1002/mrm.20784 10.1002/mrm.22256 10.1016/j.jmr.2003.11.002 10.1002/mrm.23103 10.3174/ajnr.A2525 10.1002/mrm.21403 10.1002/mrm.20338 10.1006/jmrb.1994.1048 10.1148/radiol.2461062100 10.1161/01.STR.31.3.680 10.3233/JAD-2012-111877 10.1002/mrm.22266 10.1002/mrm.21790 10.1002/mrm.1910360410 10.1002/mrm.24335 10.1002/mrm.20178 10.1016/j.neuroimage.2009.07.068 |
| ContentType | Journal Article |
| Copyright | 2014 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
| DOI | 10.1002/mrm.25083 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1722 |
| ExternalDocumentID | 3491262341 24395462 10_1002_mrm_25083 MRM25083 ark_67375_WNG_3S29QPFC_G |
| Genre | article Journal Article |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
| ID | FETCH-LOGICAL-c5953-b0141878fda3a0ac45f1b97ac4e7228f23fb9531c744239518df1fb1fa84f76c3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344798300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Oct 07 09:22:25 EDT 2025 Fri Jul 11 10:08:24 EDT 2025 Sat Nov 29 14:20:19 EST 2025 Thu Apr 03 07:03:33 EDT 2025 Tue Nov 18 22:03:39 EST 2025 Sat Nov 29 02:37:34 EST 2025 Wed Jan 22 16:56:04 EST 2025 Sun Sep 21 06:18:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Hadamard encoded magnetic resonance imaging time encoded arterial spin labeling arterial transit time |
| Language | English |
| License | 2014 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5953-b0141878fda3a0ac45f1b97ac4e7228f23fb9531c744239518df1fb1fa84f76c3 |
| Notes | istex:30B49EC412E73A9D6C0B92089070AF8A4B50C567 ArticleID:MRM25083 ark:/67375/WNG-3S29QPFC-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25083 |
| PMID | 24395462 |
| PQID | 1622355064 |
| PQPubID | 1016391 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1635031749 proquest_miscellaneous_1624936579 proquest_journals_1622355064 pubmed_primary_24395462 crossref_citationtrail_10_1002_mrm_25083 crossref_primary_10_1002_mrm_25083 wiley_primary_10_1002_mrm_25083_MRM25083 istex_primary_ark_67375_WNG_3S29QPFC_G |
| PublicationCentury | 2000 |
| PublicationDate | December 2014 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Hrabe J, Lewis DP. Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times. J Magn Reson 2004;167:49-55. Dai W, Shankaranarayanan A, Alsop DC. Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling. Magn Reson Med 2013;69:1014-1022. Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994;104:1-10. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249. Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility study, Part II. Results from a multi-center arterial spin labeling test-retest study. Neuroimage 2010;49:104-113. Wells JA, Lythgoe MF, Gadian DG, Ordidge RJ, Thomas DL. In vivo hadamard encoded continuous arterial spin labeling (H-CASL). Magn Reson Med 2010;63:1111-1118. Okell TW, Chappell MA, Schulz UG, Jezzard P. A kinetic model for vessel-encoded dynamic angiography with arterial spin labeling. Magn Reson Med 2012;68:969-979. Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687. Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, MacIntosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497. Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004;52:679-682. Wu W-C, Fernandez-Seara M, Detre JA, Wehrli FW, Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007;58:1020-1027. Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging. Magn Reson Med 2012;67:1252-1265. Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15-21. Mak HKF, Chan Q, Zhang Z, Petersen ET, Qiu D, Zhang L, Yau KKW, Chu L-W, Golay X. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal elderly adults at 3-Tesla. J Alzheimers Dis 2012;31:33-44. Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F. Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 1996;36:562-566. Van Osch MJP, Teeuwisse WM, van Walderveen MAA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173. Uchihashi Y, Hosoda K, Zimine I, Fujita A, Fujii M, Sugimura K, Kohmura E. Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single-photon emission CT. AJNR Am J Neuroradiol 2011;32:1545-1551. Wu W-C, St Lawrence KS, Licht DJ, Wang DJJ. Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 2010;21:65-73. Hendrikse J, Petersen ET, van Laar PJ, Golay X. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008;246:572-580. MacIntosh BJ, Filippini N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 2010;63:641-647. 2004; 167 2010; 21 2004; 52 2010; 49 2013; 69 2009; 62 1994; 104 2006; 55 2000; 31 2005; 53 2011; 32 2008; 246 1996; 36 2012; 68 1996; 16 2012; 67 2008; 60 2010; 63 2007; 58 2012; 31 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_25_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_23_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_24_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_21_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_22_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_20_1 |
| References_xml | – reference: Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F. Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 1996;36:562-566. – reference: Hendrikse J, Petersen ET, van Laar PJ, Golay X. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008;246:572-580. – reference: Dai W, Shankaranarayanan A, Alsop DC. Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling. Magn Reson Med 2013;69:1014-1022. – reference: Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687. – reference: Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, MacIntosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570. – reference: Wu W-C, St Lawrence KS, Licht DJ, Wang DJJ. Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 2010;21:65-73. – reference: Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility study, Part II. Results from a multi-center arterial spin labeling test-retest study. Neuroimage 2010;49:104-113. – reference: Mak HKF, Chan Q, Zhang Z, Petersen ET, Qiu D, Zhang L, Yau KKW, Chu L-W, Golay X. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal elderly adults at 3-Tesla. J Alzheimers Dis 2012;31:33-44. – reference: Wu W-C, Fernandez-Seara M, Detre JA, Wehrli FW, Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007;58:1020-1027. – reference: Wells JA, Lythgoe MF, Gadian DG, Ordidge RJ, Thomas DL. In vivo hadamard encoded continuous arterial spin labeling (H-CASL). Magn Reson Med 2010;63:1111-1118. – reference: Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994;104:1-10. – reference: Hrabe J, Lewis DP. Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times. J Magn Reson 2004;167:49-55. – reference: MacIntosh BJ, Filippini N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 2010;63:641-647. – reference: Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15-21. – reference: Uchihashi Y, Hosoda K, Zimine I, Fujita A, Fujii M, Sugimura K, Kohmura E. Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single-photon emission CT. AJNR Am J Neuroradiol 2011;32:1545-1551. – reference: Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249. – reference: Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497. – reference: Van Osch MJP, Teeuwisse WM, van Walderveen MAA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173. – reference: Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging. Magn Reson Med 2012;67:1252-1265. – reference: Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232. – reference: Okell TW, Chappell MA, Schulz UG, Jezzard P. A kinetic model for vessel-encoded dynamic angiography with arterial spin labeling. Magn Reson Med 2012;68:969-979. – reference: Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004;52:679-682. – volume: 52 start-page: 679 year: 2004 end-page: 682 article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla publication-title: Magn Reson Med – volume: 63 start-page: 1111 year: 2010 end-page: 1118 article-title: In vivo hadamard encoded continuous arterial spin labeling (H‐CASL) publication-title: Magn Reson Med – volume: 68 start-page: 969 year: 2012 end-page: 979 article-title: A kinetic model for vessel‐encoded dynamic angiography with arterial spin labeling publication-title: Magn Reson Med – volume: 58 start-page: 1020 year: 2007 end-page: 1027 article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 31 start-page: 680 year: 2000 end-page: 687 article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling publication-title: Stroke – volume: 31 start-page: 33 year: 2012 end-page: 44 article-title: Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal elderly adults at 3‐Tesla publication-title: J Alzheimers Dis – volume: 16 start-page: 1236 year: 1996 end-page: 1249 article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow publication-title: J Cereb Blood Flow Metab – volume: 55 start-page: 219 year: 2006 end-page: 232 article-title: Model‐free arterial spin labeling quantification approach for perfusion MRI publication-title: Magn Reson Med – volume: 36 start-page: 562 year: 1996 end-page: 566 article-title: Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy publication-title: Magn Reson Med – volume: 60 start-page: 1488 year: 2008 end-page: 1497 article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med – volume: 167 start-page: 49 year: 2004 end-page: 55 article-title: Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times publication-title: J Magn Reson – volume: 49 start-page: 104 year: 2010 end-page: 113 article-title: The QUASAR reproducibility study, Part II. Results from a multi‐center arterial spin labeling test‐retest study publication-title: Neuroimage – volume: 69 start-page: 563 year: 2013 end-page: 570 article-title: Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements publication-title: Magn Reson Med – volume: 62 start-page: 165 year: 2009 end-page: 173 article-title: Can arterial spin labeling detect white matter perfusion signal? publication-title: Magn Reson Med – volume: 246 start-page: 572 year: 2008 end-page: 580 article-title: Cerebral border zones between distal end branches of intracranial arteries: MR imaging publication-title: Radiology – volume: 53 start-page: 15 year: 2005 end-page: 21 article-title: Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging publication-title: Magn Reson Med – volume: 32 start-page: 1545 year: 2011 end-page: 1551 article-title: Clinical application of arterial spin‐labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single‐photon emission CT publication-title: AJNR Am J Neuroradiol – volume: 69 start-page: 1014 year: 2013 end-page: 1022 article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling publication-title: Magn Reson Med – volume: 104 start-page: 1 year: 1994 end-page: 10 article-title: WET, a T1‐ and B1‐insensitive water‐suppression method for in vivo localized 1H NMR spectroscopy publication-title: J Magn Reson B – volume: 67 start-page: 1252 year: 2012 end-page: 1265 article-title: Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging publication-title: Magn Reson Med – volume: 63 start-page: 641 year: 2010 end-page: 647 article-title: Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI publication-title: Magn Reson Med – volume: 21 start-page: 65 year: 2010 end-page: 73 article-title: Quantification issues in arterial spin labeling perfusion magnetic resonance imaging publication-title: Top Magn Reson Imaging – ident: e_1_2_5_17_1 doi: 10.1002/mrm.22002 – ident: e_1_2_5_24_1 doi: 10.1002/mrm.24260 – ident: e_1_2_5_2_1 doi: 10.1097/RMR.0b013e31821e570a – ident: e_1_2_5_23_1 doi: 10.1002/mrm.23311 – ident: e_1_2_5_3_1 doi: 10.1097/00004647-199611000-00019 – ident: e_1_2_5_15_1 doi: 10.1002/mrm.20784 – ident: e_1_2_5_18_1 doi: 10.1002/mrm.22256 – ident: e_1_2_5_21_1 doi: 10.1016/j.jmr.2003.11.002 – ident: e_1_2_5_25_1 doi: 10.1002/mrm.23103 – ident: e_1_2_5_20_1 doi: 10.3174/ajnr.A2525 – ident: e_1_2_5_10_1 doi: 10.1002/mrm.21403 – ident: e_1_2_5_6_1 – ident: e_1_2_5_13_1 doi: 10.1002/mrm.20338 – ident: e_1_2_5_12_1 doi: 10.1006/jmrb.1994.1048 – ident: e_1_2_5_4_1 doi: 10.1148/radiol.2461062100 – ident: e_1_2_5_16_1 doi: 10.1161/01.STR.31.3.680 – ident: e_1_2_5_19_1 doi: 10.3233/JAD-2012-111877 – ident: e_1_2_5_22_1 – ident: e_1_2_5_7_1 doi: 10.1002/mrm.22266 – ident: e_1_2_5_9_1 doi: 10.1002/mrm.21790 – ident: e_1_2_5_14_1 doi: 10.1002/mrm.1910360410 – ident: e_1_2_5_8_1 doi: 10.1002/mrm.24335 – ident: e_1_2_5_11_1 doi: 10.1002/mrm.20178 – ident: e_1_2_5_5_1 doi: 10.1016/j.neuroimage.2009.07.068 |
| SSID | ssj0009974 |
| Score | 2.39875 |
| Snippet | Purpose
In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the... In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra... Purpose In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1712 |
| SubjectTerms | Adult Algorithms arterial spin labeling arterial transit time Blood Flow Velocity - physiology Coronary Circulation - physiology Coronary Vessels - anatomy & histology Coronary Vessels - physiology Female Hadamard encoded Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods magnetic resonance imaging Male Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Spin Labels time encoded |
| Title | Time-encoded pseudocontinuous arterial spin labeling: Basic properties and timing strategies for human applications |
| URI | https://api.istex.fr/ark:/67375/WNG-3S29QPFC-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25083 https://www.ncbi.nlm.nih.gov/pubmed/24395462 https://www.proquest.com/docview/1622355064 https://www.proquest.com/docview/1624936579 https://www.proquest.com/docview/1635031749 |
| Volume | 72 |
| WOSCitedRecordID | wos000344798300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKC4gLjwJloawMQohL2rVjxzacoLAFiV2VQtW9RXZio1VpdpVsEEd-Ar-RX8LYeZRKBSFxc5RJ5MfM-LM9_gahJ3ykbcYTFiWS6ogRSyLlYM0jM3B-xhBLjQzJJsR0KmczdbCGXnR3YRp-iH7DzVtG8NfewLWpds9IQ0_L0x3qyczB_xJGfPaC43fTM8Jd1TAwC-b9jGIdq9CI7vZfnpuLNny3frsIaJ7HrWHiGd_4ryrfRNdbvIlfNgpyC63ZYhNdnbQn6pvoSggBzarbqPa3QX5-_-GZLXOb42Vl63zhQ9nnRb2oKxyiP0FdcbWcFxi0J1xlf45fafgBXvpd_dLTs2Jd5Hjls4V9xtWqo6LAgI5xyAiIfz80v4OOxm8-7b2N2qQMUcYVjyPjI0OlkC7XsR7pjHFHjBJQsIJS6WjsDMiRTDDPLciJzB1xhjgtmRNJFt9F68WisPcQNtbAM0CunMbMiLBYdVJplxkLSqIG6Fk3PGnWMpb7xBlf0oZrmabQoWno0AF63IsuG5qOi4SehjHuJXR54uPaBE-Pp_tp_JGqDwfjvXR_gLY7JUhbk65SkgCS4p7fb4Ae9a_BGP0Jiy4sDISXYSpOuFB_k4k5eFLBQGarUbC-QhTgIWcJhZYHPfpzW9LJ4SQU7v-76AN0DeAea4JxttH6qqztQ3Q5-7qaV-UQXRIzOUQbrw_HR--HwZh-Ab1sIKo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKy-vCo7wWChiEEJfQjWPHMeICFdtWdKMCRe3Nsh0braDZVbJBHPkJ_EZ-CWPnUSoVhMTNUSaRHzPjz_b4G4SesLGyhqU0SjOiIhrbOBIO1jyZAeendWyJzkKyCZ7n2dGR2F9BL_u7MC0_xLDh5i0j-Gtv4H5DevOENfS4On5OPJv5ObRGAWj4xA2Hu_kJ5a5oOZg59Z5G0J5XaEw2h09PzUZrvmO_nQU1TyPXMPVMrv5fpa-hKx3kxK9aHbmOVmy5ji5Ou0P1dXQhRIGa-gZq_IWQn99_eHLLwhZ4UdummPto9lnZzJsahwBQ0FhcL2YlBgUKt9lf4NcKfoAXfmO_8gytWJUFXvqEYZ9wvezZKDAAZBySAuLfz81voo-TNwdbO1GXlyEyTLAk0j44NOOZK1SixspQ5mItOBQsJyRzJHEa5GLDqacXZHFWuNjp2KmMOp6a5BZaLeelvYOwthqeAXUVJKGah_Wqy4RyRlvQEzFCz_rxkaYjLfe5M77Ilm6ZSOhQGTp0hB4PoouWqeMsoadhkAcJVX32oW2cycN8WyYfiHi3P9mS2yO00WuB7Ky6lnEKYIp5ir8RejS8Bnv0hyyqtDAQXoaKJGVc_E0mYeBMOQWZ262GDRUigBAZTQm0PCjSn9sip--noXD330Ufoks7B9M9ubebv72HLgP6o21szgZaXVaNvY_Om6_LWV09CLb0C9MLIkA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXai48Ci0LBQwCCEuoRvHjmPEBVq2ILqrpVDRm2UnNlpBs1GyQRz5CfxGfgm28yiVCkLi5iiTyI-Z8Wd7_A3AIzqWOqUxCeIEy4CEOgy4sWueJLXOT6lQY5X4ZBNsNkuOj_l8DZ53d2Eafoh-w81ZhvfXzsB1kZmdU9bQk_LkKXZs5hdgSFwSmQEM9w4nRwenpLu8YWFmxPkaTjpmoTHe6T8-Mx8NXdd-Ow9snsWufvKZXP2_al-DKy3oRC8aLbkOazrfgPVpe6y-AZd8HGha3YDaXQn5-f2Ho7fMdIaKStfZ0sWzL_J6WVfIh4BanUVVsciRVSF_n_0ZeintD1DhtvZLx9GKZJ6hlUsZ9glVq46PAlmIjHxaQPT7yflNOJq8-rD7OmgzMwQp5TQKlAsPTVhiMhnJsUwJNaHizBY0wzgxODLKyoUpI45gkIZJZkKjQiMTYlicRpswyJe5vgVIaWWfLe7KcEQU8ytWk3BpUqWtpvARPOnGR6QtbbnLnvFFNITLWNgOFb5DR_CwFy0aro7zhB77Qe4lZPnZBbcxKj7O9kX0HvN388mu2B_BdqcForXrSoSxhVPUkfyN4EH_2lqkO2aRubYD4WQIj2LK-N9kImrdKSNWZqvRsL5C2GJESmJsW-4V6c9tEdPDqS_c_nfR-7A-35uIgzezt3fgsoV_pAnO2YbBqqz1XbiYfl0tqvJea0y_AL2OIuk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-encoded+pseudocontinuous+arterial+spin+labeling%3A+basic+properties+and+timing+strategies+for+human+applications&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Teeuwisse%2C+Wouter+M&rft.au=Schmid%2C+Sophie&rft.au=Ghariq%2C+Eidrees&rft.au=Veer%2C+Ilya+M&rft.date=2014-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=72&rft.issue=6&rft.spage=1712&rft_id=info:doi/10.1002%2Fmrm.25083&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |