Time-encoded pseudocontinuous arterial spin labeling: Basic properties and timing strategies for human applications

Purpose In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 72; H. 6; S. 1712 - 1722
Hauptverfasser: Teeuwisse, Wouter M., Schmid, Sophie, Ghariq, Eidrees, Veer, Ilya M., van Osch, Matthias J.P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Blackwell Publishing Ltd 01.12.2014
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te‐pCASL are introduced: variable block duration to compensate for T1‐decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. Results No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time‐encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te‐pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Conclusion Adjusting the timing of encoding blocks in te‐pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te‐pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712–1722, 2014. © 2014 Wiley Periodicals, Inc.
AbstractList In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored.PURPOSEIn this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored.First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses.METHODSFirst, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses.No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order.RESULTSNo signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order.Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR.CONCLUSIONAdjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR.
In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR.
Purpose In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te‐pCASL are introduced: variable block duration to compensate for T1‐decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. Results No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time‐encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te‐pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Conclusion Adjusting the timing of encoding blocks in te‐pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te‐pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712–1722, 2014. © 2014 Wiley Periodicals, Inc.
Purpose In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. Results No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Conclusion Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712-1722, 2014. copyright 2014 Wiley Periodicals, Inc.
Purpose In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. Methods First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. Results No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. Conclusion Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR. Magn Reson Med 72:1712-1722, 2014. © 2014 Wiley Periodicals, Inc.
Author Schmid, Sophie
Teeuwisse, Wouter M.
Ghariq, Eidrees
Veer, Ilya M.
van Osch, Matthias J.P.
Author_xml – sequence: 1
  givenname: Wouter M.
  surname: Teeuwisse
  fullname: Teeuwisse, Wouter M.
  email: w.m.teeuwisse@lumc.nl
  organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 2
  givenname: Sophie
  surname: Schmid
  fullname: Schmid, Sophie
  organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 3
  givenname: Eidrees
  surname: Ghariq
  fullname: Ghariq, Eidrees
  organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 4
  givenname: Ilya M.
  surname: Veer
  fullname: Veer, Ilya M.
  organization: Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
– sequence: 5
  givenname: Matthias J.P.
  surname: van Osch
  fullname: van Osch, Matthias J.P.
  organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24395462$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctu1DAUBmALFdFpYcELIEtsyiKtr3HCDkZ0QGrLrYil5Th2cUns1HYEfXs8nZkuKpBYOXK-_8jnnAOw54M3ADzH6BgjRE7GOB4Tjhr6CCwwJ6QivGV7YIEEQxXFLdsHByldI4TaVrAnYJ8w2nJWkwVIl240lfE69KaHUzJzH3Tw2fk5zAmqmE10aoBpch4OqjOD81ev4VuVnIZTDJOJ2ZkCfQ-zG8tPmHJU2Vytb22I8Mc8Kg_VNA1Oq-yCT0_BY6uGZJ5tz0Pw7fTd5fJ9dfZx9WH55qzSvOW06hBmuBGN7RVVSGnGLe5aUT6MIKSxhNquOKwFY6T0g5veYtthqxpmRa3pITja1C3vvJlNynJ0SZthUN6U5iSuKUcUC9b-ByVF1Vys6csH9DrM0ZdG1opQzlHNinqxVXM3ml5O0Y0q3srd5As42QAdQ0rRWKldvptPGZ8bJEZyvVtZdivvdlsSrx4kdkX_ZrfVf7nB3P4byvMv57tEtUm4lM3v-4SKP2UtqODy-8VK0q-k_fzpdClX9A8eHMKl
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_nbm_4051
crossref_primary_10_1002_mrm_30540
crossref_primary_10_1002_mrm_27692
crossref_primary_10_1016_j_mri_2018_03_011
crossref_primary_10_3389_fonc_2022_810263
crossref_primary_10_1177_0271678X16636393
crossref_primary_10_1177_0271678X20982396
crossref_primary_10_1002_mrm_26842
crossref_primary_10_1002_mrm_26723
crossref_primary_10_1007_s00330_017_5066_7
crossref_primary_10_1177_0271678X16683690
crossref_primary_10_1002_mrm_70004
crossref_primary_10_1002_nbm_3603
crossref_primary_10_1016_j_neuroimage_2021_118755
crossref_primary_10_1097_RLI_0000000000000833
crossref_primary_10_1007_s00234_016_1756_0
crossref_primary_10_1016_j_neuroimage_2024_120506
crossref_primary_10_1002_mrm_26926
crossref_primary_10_3389_fphys_2021_621720
crossref_primary_10_1002_mrm_29268
crossref_primary_10_1177_0271678X17713434
crossref_primary_10_1002_mrm_26078
crossref_primary_10_1002_mrm_29783
crossref_primary_10_1002_nbm_4202
crossref_primary_10_1002_mrm_30415
crossref_primary_10_1002_nbm_5177
crossref_primary_10_1002_mrm_30407
crossref_primary_10_1002_mrm_28613
crossref_primary_10_1016_j_neuroimage_2017_12_095
crossref_primary_10_1371_journal_pone_0229444
crossref_primary_10_1002_hbm_23516
crossref_primary_10_1002_mrm_30091
crossref_primary_10_1002_mrm_29491
crossref_primary_10_1371_journal_pone_0141108
crossref_primary_10_1007_s10334_023_01121_y
crossref_primary_10_1016_j_neuroimage_2018_05_050
crossref_primary_10_1002_mrm_30527
crossref_primary_10_1002_alz_14059
crossref_primary_10_1002_nbm_4519
crossref_primary_10_1016_j_mri_2023_11_011
crossref_primary_10_1002_nbm_4319
crossref_primary_10_1002_mrm_26542
crossref_primary_10_1002_mrm_26587
crossref_primary_10_1002_nbm_70069
crossref_primary_10_1016_j_neuroimage_2020_117246
crossref_primary_10_1016_j_neuroimage_2015_08_025
crossref_primary_10_1002_mrm_28807
crossref_primary_10_1148_radiol_2016150789
crossref_primary_10_1097_RCT_0000000000001566
crossref_primary_10_1002_mrm_28310
crossref_primary_10_1016_j_mri_2015_03_001
crossref_primary_10_1016_j_nicl_2022_102950
crossref_primary_10_1097_PR9_0000000000000750
crossref_primary_10_1016_j_nicl_2021_102853
crossref_primary_10_1016_j_ahj_2024_09_028
crossref_primary_10_1177_0271678X17721830
crossref_primary_10_12688_f1000research_7287_1
crossref_primary_10_1177_0271678X241264407
crossref_primary_10_1038_s41467_020_16002_4
crossref_primary_10_1002_mrm_28314
crossref_primary_10_3389_fnins_2021_823876
crossref_primary_10_1161_STROKEAHA_122_040759
crossref_primary_10_1177_0271678X17743240
Cites_doi 10.1002/mrm.22002
10.1002/mrm.24260
10.1097/RMR.0b013e31821e570a
10.1002/mrm.23311
10.1097/00004647-199611000-00019
10.1002/mrm.20784
10.1002/mrm.22256
10.1016/j.jmr.2003.11.002
10.1002/mrm.23103
10.3174/ajnr.A2525
10.1002/mrm.21403
10.1002/mrm.20338
10.1006/jmrb.1994.1048
10.1148/radiol.2461062100
10.1161/01.STR.31.3.680
10.3233/JAD-2012-111877
10.1002/mrm.22266
10.1002/mrm.21790
10.1002/mrm.1910360410
10.1002/mrm.24335
10.1002/mrm.20178
10.1016/j.neuroimage.2009.07.068
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25083
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE

Engineering Research Database
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1722
ExternalDocumentID 3491262341
24395462
10_1002_mrm_25083
MRM25083
ark_67375_WNG_3S29QPFC_G
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c5953-b0141878fda3a0ac45f1b97ac4e7228f23fb9531c744239518df1fb1fa84f76c3
IEDL.DBID WIN
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344798300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Oct 07 09:22:25 EDT 2025
Fri Jul 11 10:08:24 EDT 2025
Sat Nov 29 14:20:19 EST 2025
Thu Apr 03 07:03:33 EDT 2025
Tue Nov 18 22:03:39 EST 2025
Sat Nov 29 02:37:34 EST 2025
Wed Jan 22 16:56:04 EST 2025
Sun Sep 21 06:18:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Hadamard encoded
magnetic resonance imaging
time encoded
arterial spin labeling
arterial transit time
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5953-b0141878fda3a0ac45f1b97ac4e7228f23fb9531c744239518df1fb1fa84f76c3
Notes istex:30B49EC412E73A9D6C0B92089070AF8A4B50C567
ArticleID:MRM25083
ark:/67375/WNG-3S29QPFC-G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25083
PMID 24395462
PQID 1622355064
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_1635031749
proquest_miscellaneous_1624936579
proquest_journals_1622355064
pubmed_primary_24395462
crossref_citationtrail_10_1002_mrm_25083
crossref_primary_10_1002_mrm_25083
wiley_primary_10_1002_mrm_25083_MRM25083
istex_primary_ark_67375_WNG_3S29QPFC_G
PublicationCentury 2000
PublicationDate December 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hrabe J, Lewis DP. Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times. J Magn Reson 2004;167:49-55.
Dai W, Shankaranarayanan A, Alsop DC. Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling. Magn Reson Med 2013;69:1014-1022.
Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994;104:1-10.
Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249.
Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility study, Part II. Results from a multi-center arterial spin labeling test-retest study. Neuroimage 2010;49:104-113.
Wells JA, Lythgoe MF, Gadian DG, Ordidge RJ, Thomas DL. In vivo hadamard encoded continuous arterial spin labeling (H-CASL). Magn Reson Med 2010;63:1111-1118.
Okell TW, Chappell MA, Schulz UG, Jezzard P. A kinetic model for vessel-encoded dynamic angiography with arterial spin labeling. Magn Reson Med 2012;68:969-979.
Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232.
Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687.
Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, MacIntosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570.
Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497.
Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004;52:679-682.
Wu W-C, Fernandez-Seara M, Detre JA, Wehrli FW, Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007;58:1020-1027.
Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging. Magn Reson Med 2012;67:1252-1265.
Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15-21.
Mak HKF, Chan Q, Zhang Z, Petersen ET, Qiu D, Zhang L, Yau KKW, Chu L-W, Golay X. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal elderly adults at 3-Tesla. J Alzheimers Dis 2012;31:33-44.
Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F. Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 1996;36:562-566.
Van Osch MJP, Teeuwisse WM, van Walderveen MAA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173.
Uchihashi Y, Hosoda K, Zimine I, Fujita A, Fujii M, Sugimura K, Kohmura E. Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single-photon emission CT. AJNR Am J Neuroradiol 2011;32:1545-1551.
Wu W-C, St Lawrence KS, Licht DJ, Wang DJJ. Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 2010;21:65-73.
Hendrikse J, Petersen ET, van Laar PJ, Golay X. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008;246:572-580.
MacIntosh BJ, Filippini N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 2010;63:641-647.
2004; 167
2010; 21
2004; 52
2010; 49
2013; 69
2009; 62
1994; 104
2006; 55
2000; 31
2005; 53
2011; 32
2008; 246
1996; 36
2012; 68
1996; 16
2012; 67
2008; 60
2010; 63
2007; 58
2012; 31
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_25_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_23_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_24_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_21_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_22_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_20_1
References_xml – reference: Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F. Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 1996;36:562-566.
– reference: Hendrikse J, Petersen ET, van Laar PJ, Golay X. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008;246:572-580.
– reference: Dai W, Shankaranarayanan A, Alsop DC. Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling. Magn Reson Med 2013;69:1014-1022.
– reference: Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687.
– reference: Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, MacIntosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570.
– reference: Wu W-C, St Lawrence KS, Licht DJ, Wang DJJ. Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 2010;21:65-73.
– reference: Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility study, Part II. Results from a multi-center arterial spin labeling test-retest study. Neuroimage 2010;49:104-113.
– reference: Mak HKF, Chan Q, Zhang Z, Petersen ET, Qiu D, Zhang L, Yau KKW, Chu L-W, Golay X. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal elderly adults at 3-Tesla. J Alzheimers Dis 2012;31:33-44.
– reference: Wu W-C, Fernandez-Seara M, Detre JA, Wehrli FW, Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007;58:1020-1027.
– reference: Wells JA, Lythgoe MF, Gadian DG, Ordidge RJ, Thomas DL. In vivo hadamard encoded continuous arterial spin labeling (H-CASL). Magn Reson Med 2010;63:1111-1118.
– reference: Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994;104:1-10.
– reference: Hrabe J, Lewis DP. Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times. J Magn Reson 2004;167:49-55.
– reference: MacIntosh BJ, Filippini N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 2010;63:641-647.
– reference: Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15-21.
– reference: Uchihashi Y, Hosoda K, Zimine I, Fujita A, Fujii M, Sugimura K, Kohmura E. Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single-photon emission CT. AJNR Am J Neuroradiol 2011;32:1545-1551.
– reference: Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249.
– reference: Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497.
– reference: Van Osch MJP, Teeuwisse WM, van Walderveen MAA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173.
– reference: Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging. Magn Reson Med 2012;67:1252-1265.
– reference: Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232.
– reference: Okell TW, Chappell MA, Schulz UG, Jezzard P. A kinetic model for vessel-encoded dynamic angiography with arterial spin labeling. Magn Reson Med 2012;68:969-979.
– reference: Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004;52:679-682.
– volume: 52
  start-page: 679
  year: 2004
  end-page: 682
  article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1111
  year: 2010
  end-page: 1118
  article-title: In vivo hadamard encoded continuous arterial spin labeling (H‐CASL)
  publication-title: Magn Reson Med
– volume: 68
  start-page: 969
  year: 2012
  end-page: 979
  article-title: A kinetic model for vessel‐encoded dynamic angiography with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1020
  year: 2007
  end-page: 1027
  article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 31
  start-page: 680
  year: 2000
  end-page: 687
  article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling
  publication-title: Stroke
– volume: 31
  start-page: 33
  year: 2012
  end-page: 44
  article-title: Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal elderly adults at 3‐Tesla
  publication-title: J Alzheimers Dis
– volume: 16
  start-page: 1236
  year: 1996
  end-page: 1249
  article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow
  publication-title: J Cereb Blood Flow Metab
– volume: 55
  start-page: 219
  year: 2006
  end-page: 232
  article-title: Model‐free arterial spin labeling quantification approach for perfusion MRI
  publication-title: Magn Reson Med
– volume: 36
  start-page: 562
  year: 1996
  end-page: 566
  article-title: Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1488
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
– volume: 167
  start-page: 49
  year: 2004
  end-page: 55
  article-title: Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times
  publication-title: J Magn Reson
– volume: 49
  start-page: 104
  year: 2010
  end-page: 113
  article-title: The QUASAR reproducibility study, Part II. Results from a multi‐center arterial spin labeling test‐retest study
  publication-title: Neuroimage
– volume: 69
  start-page: 563
  year: 2013
  end-page: 570
  article-title: Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements
  publication-title: Magn Reson Med
– volume: 62
  start-page: 165
  year: 2009
  end-page: 173
  article-title: Can arterial spin labeling detect white matter perfusion signal?
  publication-title: Magn Reson Med
– volume: 246
  start-page: 572
  year: 2008
  end-page: 580
  article-title: Cerebral border zones between distal end branches of intracranial arteries: MR imaging
  publication-title: Radiology
– volume: 53
  start-page: 15
  year: 2005
  end-page: 21
  article-title: Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging
  publication-title: Magn Reson Med
– volume: 32
  start-page: 1545
  year: 2011
  end-page: 1551
  article-title: Clinical application of arterial spin‐labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single‐photon emission CT
  publication-title: AJNR Am J Neuroradiol
– volume: 69
  start-page: 1014
  year: 2013
  end-page: 1022
  article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 104
  start-page: 1
  year: 1994
  end-page: 10
  article-title: WET, a T1‐ and B1‐insensitive water‐suppression method for in vivo localized 1H NMR spectroscopy
  publication-title: J Magn Reson B
– volume: 67
  start-page: 1252
  year: 2012
  end-page: 1265
  article-title: Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging
  publication-title: Magn Reson Med
– volume: 63
  start-page: 641
  year: 2010
  end-page: 647
  article-title: Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI
  publication-title: Magn Reson Med
– volume: 21
  start-page: 65
  year: 2010
  end-page: 73
  article-title: Quantification issues in arterial spin labeling perfusion magnetic resonance imaging
  publication-title: Top Magn Reson Imaging
– ident: e_1_2_5_17_1
  doi: 10.1002/mrm.22002
– ident: e_1_2_5_24_1
  doi: 10.1002/mrm.24260
– ident: e_1_2_5_2_1
  doi: 10.1097/RMR.0b013e31821e570a
– ident: e_1_2_5_23_1
  doi: 10.1002/mrm.23311
– ident: e_1_2_5_3_1
  doi: 10.1097/00004647-199611000-00019
– ident: e_1_2_5_15_1
  doi: 10.1002/mrm.20784
– ident: e_1_2_5_18_1
  doi: 10.1002/mrm.22256
– ident: e_1_2_5_21_1
  doi: 10.1016/j.jmr.2003.11.002
– ident: e_1_2_5_25_1
  doi: 10.1002/mrm.23103
– ident: e_1_2_5_20_1
  doi: 10.3174/ajnr.A2525
– ident: e_1_2_5_10_1
  doi: 10.1002/mrm.21403
– ident: e_1_2_5_6_1
– ident: e_1_2_5_13_1
  doi: 10.1002/mrm.20338
– ident: e_1_2_5_12_1
  doi: 10.1006/jmrb.1994.1048
– ident: e_1_2_5_4_1
  doi: 10.1148/radiol.2461062100
– ident: e_1_2_5_16_1
  doi: 10.1161/01.STR.31.3.680
– ident: e_1_2_5_19_1
  doi: 10.3233/JAD-2012-111877
– ident: e_1_2_5_22_1
– ident: e_1_2_5_7_1
  doi: 10.1002/mrm.22266
– ident: e_1_2_5_9_1
  doi: 10.1002/mrm.21790
– ident: e_1_2_5_14_1
  doi: 10.1002/mrm.1910360410
– ident: e_1_2_5_8_1
  doi: 10.1002/mrm.24335
– ident: e_1_2_5_11_1
  doi: 10.1002/mrm.20178
– ident: e_1_2_5_5_1
  doi: 10.1016/j.neuroimage.2009.07.068
SSID ssj0009974
Score 2.39875
Snippet Purpose In this study, the basic properties and requirements of time‐encoded pseudocontinuous arterial spin labeling (te‐pCASL) are investigated. Also, the...
In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra...
Purpose In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1712
SubjectTerms Adult
Algorithms
arterial spin labeling
arterial transit time
Blood Flow Velocity - physiology
Coronary Circulation - physiology
Coronary Vessels - anatomy & histology
Coronary Vessels - physiology
Female
Hadamard encoded
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
magnetic resonance imaging
Male
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Spin Labels
time encoded
Title Time-encoded pseudocontinuous arterial spin labeling: Basic properties and timing strategies for human applications
URI https://api.istex.fr/ark:/67375/WNG-3S29QPFC-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25083
https://www.ncbi.nlm.nih.gov/pubmed/24395462
https://www.proquest.com/docview/1622355064
https://www.proquest.com/docview/1624936579
https://www.proquest.com/docview/1635031749
Volume 72
WOSCitedRecordID wos000344798300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKC4gLjwJloawMQohL2rVjxzacoLAFiV2VQtW9RXZio1VpdpVsEEd-Ar-RX8LYeZRKBSFxc5RJ5MfM-LM9_gahJ3ykbcYTFiWS6ogRSyLlYM0jM3B-xhBLjQzJJsR0KmczdbCGXnR3YRp-iH7DzVtG8NfewLWpds9IQ0_L0x3qyczB_xJGfPaC43fTM8Jd1TAwC-b9jGIdq9CI7vZfnpuLNny3frsIaJ7HrWHiGd_4ryrfRNdbvIlfNgpyC63ZYhNdnbQn6pvoSggBzarbqPa3QX5-_-GZLXOb42Vl63zhQ9nnRb2oKxyiP0FdcbWcFxi0J1xlf45fafgBXvpd_dLTs2Jd5Hjls4V9xtWqo6LAgI5xyAiIfz80v4OOxm8-7b2N2qQMUcYVjyPjI0OlkC7XsR7pjHFHjBJQsIJS6WjsDMiRTDDPLciJzB1xhjgtmRNJFt9F68WisPcQNtbAM0CunMbMiLBYdVJplxkLSqIG6Fk3PGnWMpb7xBlf0oZrmabQoWno0AF63IsuG5qOi4SehjHuJXR54uPaBE-Pp_tp_JGqDwfjvXR_gLY7JUhbk65SkgCS4p7fb4Ae9a_BGP0Jiy4sDISXYSpOuFB_k4k5eFLBQGarUbC-QhTgIWcJhZYHPfpzW9LJ4SQU7v-76AN0DeAea4JxttH6qqztQ3Q5-7qaV-UQXRIzOUQbrw_HR--HwZh-Ab1sIKo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKy-vCo7wWChiEEJfQjWPHMeICFdtWdKMCRe3Nsh0braDZVbJBHPkJ_EZ-CWPnUSoVhMTNUSaRHzPjz_b4G4SesLGyhqU0SjOiIhrbOBIO1jyZAeendWyJzkKyCZ7n2dGR2F9BL_u7MC0_xLDh5i0j-Gtv4H5DevOENfS4On5OPJv5ObRGAWj4xA2Hu_kJ5a5oOZg59Z5G0J5XaEw2h09PzUZrvmO_nQU1TyPXMPVMrv5fpa-hKx3kxK9aHbmOVmy5ji5Ou0P1dXQhRIGa-gZq_IWQn99_eHLLwhZ4UdummPto9lnZzJsahwBQ0FhcL2YlBgUKt9lf4NcKfoAXfmO_8gytWJUFXvqEYZ9wvezZKDAAZBySAuLfz81voo-TNwdbO1GXlyEyTLAk0j44NOOZK1SixspQ5mItOBQsJyRzJHEa5GLDqacXZHFWuNjp2KmMOp6a5BZaLeelvYOwthqeAXUVJKGah_Wqy4RyRlvQEzFCz_rxkaYjLfe5M77Ilm6ZSOhQGTp0hB4PoouWqeMsoadhkAcJVX32oW2cycN8WyYfiHi3P9mS2yO00WuB7Ky6lnEKYIp5ir8RejS8Bnv0hyyqtDAQXoaKJGVc_E0mYeBMOQWZ262GDRUigBAZTQm0PCjSn9sip--noXD330Ufoks7B9M9ubebv72HLgP6o21szgZaXVaNvY_Om6_LWV09CLb0C9MLIkA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXai48Ci0LBQwCCEuoRvHjmPEBVq2ILqrpVDRm2UnNlpBs1GyQRz5CfxGfgm28yiVCkLi5iiTyI-Z8Wd7_A3AIzqWOqUxCeIEy4CEOgy4sWueJLXOT6lQY5X4ZBNsNkuOj_l8DZ53d2Eafoh-w81ZhvfXzsB1kZmdU9bQk_LkKXZs5hdgSFwSmQEM9w4nRwenpLu8YWFmxPkaTjpmoTHe6T8-Mx8NXdd-Ow9snsWufvKZXP2_al-DKy3oRC8aLbkOazrfgPVpe6y-AZd8HGha3YDaXQn5-f2Ho7fMdIaKStfZ0sWzL_J6WVfIh4BanUVVsciRVSF_n_0ZeintD1DhtvZLx9GKZJ6hlUsZ9glVq46PAlmIjHxaQPT7yflNOJq8-rD7OmgzMwQp5TQKlAsPTVhiMhnJsUwJNaHizBY0wzgxODLKyoUpI45gkIZJZkKjQiMTYlicRpswyJe5vgVIaWWfLe7KcEQU8ytWk3BpUqWtpvARPOnGR6QtbbnLnvFFNITLWNgOFb5DR_CwFy0aro7zhB77Qe4lZPnZBbcxKj7O9kX0HvN388mu2B_BdqcForXrSoSxhVPUkfyN4EH_2lqkO2aRubYD4WQIj2LK-N9kImrdKSNWZqvRsL5C2GJESmJsW-4V6c9tEdPDqS_c_nfR-7A-35uIgzezt3fgsoV_pAnO2YbBqqz1XbiYfl0tqvJea0y_AL2OIuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-encoded+pseudocontinuous+arterial+spin+labeling%3A+basic+properties+and+timing+strategies+for+human+applications&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Teeuwisse%2C+Wouter+M&rft.au=Schmid%2C+Sophie&rft.au=Ghariq%2C+Eidrees&rft.au=Veer%2C+Ilya+M&rft.date=2014-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=72&rft.issue=6&rft.spage=1712&rft_id=info:doi/10.1002%2Fmrm.25083&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon