Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review

The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 9; číslo 18; s. e2200307 - n/a
Hlavní autoři: Liu, Fan, Shi, Chengxiang, Guo, Xiaolei, He, Zexing, Pan, Lun, Huang, Zhen‐Feng, Zhang, Xiangwen, Zou, Ji‐Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany John Wiley & Sons, Inc 01.06.2022
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. This review presents varieties of representative hydrogen evolution reaction (HER) electrocatalysts benefited from intrinsic and extrinsic design strategies and gives insight into classical/novel descriptors and reaction mechanism to provide the audience with a broad and basic understanding. Moreover, the progress on water‐splitting technology is also discussed. Some invigorating perspectives on the challenges and future directions at the HER field are provided.
AbstractList The excessive dependence on fossil fuels contributes to the majority of CO 2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. This review presents varieties of representative hydrogen evolution reaction (HER) electrocatalysts benefited from intrinsic and extrinsic design strategies and gives insight into classical/novel descriptors and reaction mechanism to provide the audience with a broad and basic understanding. Moreover, the progress on water‐splitting technology is also discussed. Some invigorating perspectives on the challenges and future directions at the HER field are provided.
Abstract The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
The excessive dependence on fossil fuels contributes to the majority of CO emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. This review presents varieties of representative hydrogen evolution reaction (HER) electrocatalysts benefited from intrinsic and extrinsic design strategies and gives insight into classical/novel descriptors and reaction mechanism to provide the audience with a broad and basic understanding. Moreover, the progress on water‐splitting technology is also discussed. Some invigorating perspectives on the challenges and future directions at the HER field are provided.
Author Huang, Zhen‐Feng
Zhang, Xiangwen
Zou, Ji‐Jun
He, Zexing
Shi, Chengxiang
Guo, Xiaolei
Liu, Fan
Pan, Lun
AuthorAffiliation 2 Collaborative Innovative Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
1 Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
3 Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China
AuthorAffiliation_xml – name: 1 Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
– name: 2 Collaborative Innovative Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
– name: 3 Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China
Author_xml – sequence: 1
  givenname: Fan
  surname: Liu
  fullname: Liu, Fan
  organization: Zhejiang Institute of Tianjin University
– sequence: 2
  givenname: Chengxiang
  surname: Shi
  fullname: Shi, Chengxiang
  organization: Zhejiang Institute of Tianjin University
– sequence: 3
  givenname: Xiaolei
  surname: Guo
  fullname: Guo, Xiaolei
  organization: Zhejiang Institute of Tianjin University
– sequence: 4
  givenname: Zexing
  surname: He
  fullname: He, Zexing
  organization: Zhejiang Institute of Tianjin University
– sequence: 5
  givenname: Lun
  surname: Pan
  fullname: Pan, Lun
  organization: Zhejiang Institute of Tianjin University
– sequence: 6
  givenname: Zhen‐Feng
  surname: Huang
  fullname: Huang, Zhen‐Feng
  email: zfhuang@tju.edu.cn
  organization: Zhejiang Institute of Tianjin University
– sequence: 7
  givenname: Xiangwen
  surname: Zhang
  fullname: Zhang, Xiangwen
  organization: Zhejiang Institute of Tianjin University
– sequence: 8
  givenname: Ji‐Jun
  orcidid: 0000-0002-9126-1251
  surname: Zou
  fullname: Zou, Ji‐Jun
  email: jj_zou@tju.edu.cn
  organization: Zhejiang Institute of Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35435329$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhUeoiJbSLUs0Ehs2CX7PmAVSaAOtVAmp5bFgYXk8d4IjZ5zanlT593iaErXddGXL_s7xse55XRz0voeieIvRFCNEPup2E6cEEYIQRdWL4ohgWU9ozdjBg_1hcRLjEiGEOa0Yrl8Vh5QzyimRR8WfK52s77UrzyDaRV_6rvwCKUEoz7dt8Avoy_nGu2GkyrkDk4I3Omm3jSmWnQ_lbz3S12tnU7L94lM5K69gY-H2TfGy0y7Cyf16XPz8Ov9xej65_P7t4nR2OTFccjwxFTY1YGMaLEmFa2qg4chITlpWCQGasboGxgBIpWWHNWRVR6loRScQxfS4uNj5tl4v1TrYlQ5b5bVVdwc-LJQOyRoHqoGWtZoagplkosKNkKIinEiCkREtyl6fd17roVlBa6BPQbtHpo9vevtXLfxGZYc6p80GH-4Ngr8ZICa1stGAc7oHP0RFBCc5NOYko--foEs_hDyLkaokpxhhmal3DxPto_yfYQamO8AEH2OAbo9gpMaeqLEnat-TLGBPBMamuxrkH1n3rOzWOtg-84ianf26pnWN6T95M9Av
CitedBy_id crossref_primary_10_1016_j_fuel_2025_135249
crossref_primary_10_1016_j_jcis_2023_03_036
crossref_primary_10_1002_aenm_202302828
crossref_primary_10_1002_sstr_202200404
crossref_primary_10_1080_1536383X_2025_2513649
crossref_primary_10_1002_smll_202400221
crossref_primary_10_1002_advs_202402978
crossref_primary_10_1016_j_ijhydene_2024_08_372
crossref_primary_10_1016_j_ijhydene_2024_01_027
crossref_primary_10_1038_s41467_024_45321_z
crossref_primary_10_1016_j_seppur_2022_122399
crossref_primary_10_1088_2977_3504_adbdd1
crossref_primary_10_1002_admi_202300920
crossref_primary_10_1016_j_mseb_2023_116884
crossref_primary_10_1016_j_cej_2023_143879
crossref_primary_10_1002_adma_202412925
crossref_primary_10_1002_aenm_202404167
crossref_primary_10_1016_j_colsurfa_2024_135446
crossref_primary_10_1039_D5NR00137D
crossref_primary_10_1002_smll_202303440
crossref_primary_10_3390_ma17133089
crossref_primary_10_1002_anie_202411470
crossref_primary_10_1002_adma_202307979
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1039_D5LF00104H
crossref_primary_10_1016_j_fuel_2024_132954
crossref_primary_10_1002_advs_202202750
crossref_primary_10_1002_ange_202400048
crossref_primary_10_1039_D3NR00514C
crossref_primary_10_1016_j_electacta_2024_144953
crossref_primary_10_26599_NR_2025_94907442
crossref_primary_10_1063_5_0203381
crossref_primary_10_1002_adfm_202305940
crossref_primary_10_1021_acs_inorgchem_5c03077
crossref_primary_10_1016_j_scowo_2025_100046
crossref_primary_10_1002_cphc_202400640
crossref_primary_10_1002_slct_202404995
crossref_primary_10_1063_5_0191316
crossref_primary_10_1002_advs_202414622
crossref_primary_10_1007_s12274_023_6393_4
crossref_primary_10_1016_j_cej_2024_149457
crossref_primary_10_1002_smll_202304512
crossref_primary_10_1002_smll_202305965
crossref_primary_10_1016_j_jallcom_2024_173572
crossref_primary_10_1016_j_jallcom_2022_166824
crossref_primary_10_1002_smll_202307052
crossref_primary_10_1002_adfm_202316544
crossref_primary_10_1002_adsu_202300380
crossref_primary_10_1002_smll_202506936
crossref_primary_10_1002_adfm_202405897
crossref_primary_10_1134_S199079312570023X
crossref_primary_10_1039_D3QI02668J
crossref_primary_10_1039_D3QM00841J
crossref_primary_10_1002_slct_202501775
crossref_primary_10_1016_j_electacta_2023_142119
crossref_primary_10_1002_adfm_202207536
crossref_primary_10_1039_D4QI00090K
crossref_primary_10_1002_ece2_73
crossref_primary_10_1016_j_jallcom_2022_167924
crossref_primary_10_1002_anie_202501721
crossref_primary_10_1002_cplu_202300739
crossref_primary_10_1002_smll_202310573
crossref_primary_10_1016_j_susmat_2024_e01073
crossref_primary_10_1016_j_ces_2024_120068
crossref_primary_10_1016_j_apsusc_2025_162869
crossref_primary_10_1002_smtd_202300461
crossref_primary_10_1016_j_ijhydene_2025_06_213
crossref_primary_10_1007_s11426_025_2646_7
crossref_primary_10_1039_D4EE05559D
crossref_primary_10_1016_j_jcis_2023_11_124
crossref_primary_10_3390_ijms24076861
crossref_primary_10_1021_acs_energyfuels_4c06084
crossref_primary_10_1016_j_jallcom_2024_175650
crossref_primary_10_1016_j_cej_2024_149406
crossref_primary_10_1002_smll_202304681
crossref_primary_10_1002_celc_202400301
crossref_primary_10_1016_j_cej_2025_164649
crossref_primary_10_1002_aenm_202401444
crossref_primary_10_1016_j_jcis_2022_11_091
crossref_primary_10_1002_chem_202301521
crossref_primary_10_1039_D2EE03323B
crossref_primary_10_1021_acsami_4c12784
crossref_primary_10_1016_j_jallcom_2024_174237
crossref_primary_10_1007_s41918_024_00237_6
crossref_primary_10_1038_s41524_025_01607_4
crossref_primary_10_1016_j_fuel_2023_130334
crossref_primary_10_1016_j_ica_2024_121967
crossref_primary_10_1002_adfm_202312672
crossref_primary_10_1002_smll_202306970
crossref_primary_10_1002_adsu_202400815
crossref_primary_10_1002_adfm_202309264
crossref_primary_10_1016_j_enconman_2025_119636
crossref_primary_10_1002_slct_202303891
crossref_primary_10_1039_D4NH00036F
crossref_primary_10_1002_adma_202404806
crossref_primary_10_26599_NR_2025_94907595
crossref_primary_10_1007_s40820_023_01024_6
crossref_primary_10_1021_acsami_5c01897
crossref_primary_10_1016_j_jiec_2023_01_014
crossref_primary_10_1016_j_jelechem_2023_117900
crossref_primary_10_1063_5_0271005
crossref_primary_10_1002_ange_202501721
crossref_primary_10_1002_admi_202300094
crossref_primary_10_1016_j_jcis_2023_09_189
crossref_primary_10_1002_cey2_630
crossref_primary_10_1002_ente_202201048
crossref_primary_10_1039_D3NR03694D
crossref_primary_10_1016_j_colsurfa_2024_135711
crossref_primary_10_1016_j_jcis_2024_07_179
crossref_primary_10_1039_D5CC01473E
crossref_primary_10_1002_ange_202411470
crossref_primary_10_1002_smll_202411883
crossref_primary_10_1002_advs_202403206
crossref_primary_10_1002_aenm_202302436
crossref_primary_10_1016_j_ijhydene_2024_02_215
crossref_primary_10_1016_j_cis_2022_102811
crossref_primary_10_3390_molecules29061215
crossref_primary_10_1002_aesr_202400433
crossref_primary_10_1016_j_ijhydene_2023_12_007
crossref_primary_10_1002_smll_202309823
crossref_primary_10_1016_j_fuel_2024_133761
crossref_primary_10_1002_smll_202502876
crossref_primary_10_1016_j_decarb_2023_100019
crossref_primary_10_1002_adma_202206960
crossref_primary_10_1007_s11244_025_02062_7
crossref_primary_10_1002_smll_202304807
crossref_primary_10_1016_j_colsurfa_2024_134049
crossref_primary_10_1021_prechem_4c00020
crossref_primary_10_1002_adma_202419360
crossref_primary_10_1016_j_cej_2024_152903
crossref_primary_10_1016_j_cej_2023_144670
crossref_primary_10_1016_j_fuel_2024_134178
crossref_primary_10_1007_s12209_023_00364_z
crossref_primary_10_1039_D5DT00800J
crossref_primary_10_1002_smll_202309122
crossref_primary_10_1016_j_ccr_2023_215492
crossref_primary_10_1002_smll_202403364
crossref_primary_10_1002_anie_202400048
crossref_primary_10_1007_s11708_024_0961_5
crossref_primary_10_1039_D3QM00766A
crossref_primary_10_1002_chem_202404422
crossref_primary_10_1002_aenm_202406080
crossref_primary_10_1021_acs_inorgchem_5c02931
crossref_primary_10_1016_j_cej_2025_159709
crossref_primary_10_1016_j_cej_2023_144660
crossref_primary_10_1016_j_jallcom_2025_179101
crossref_primary_10_1002_adsu_202500713
crossref_primary_10_1016_j_apsusc_2023_157203
crossref_primary_10_1002_advs_202508013
crossref_primary_10_1002_smll_202400662
crossref_primary_10_1007_s12274_024_6507_7
crossref_primary_10_1002_EXP_20240013
crossref_primary_10_1016_j_checat_2023_100643
crossref_primary_10_1038_s43246_025_00838_8
crossref_primary_10_1016_j_jcis_2023_04_043
crossref_primary_10_1007_s12678_024_00903_9
crossref_primary_10_1002_adfm_202519434
crossref_primary_10_1002_aenm_202304099
crossref_primary_10_1021_jacs_4c18149
crossref_primary_10_1016_j_jcis_2024_05_085
crossref_primary_10_1002_cssc_202501388
crossref_primary_10_1016_j_eurpolymj_2024_113125
crossref_primary_10_1016_j_nanoen_2024_110020
crossref_primary_10_1039_D3QI00656E
crossref_primary_10_1021_acsami_5c02561
crossref_primary_10_1007_s12274_023_6237_6
crossref_primary_10_1016_j_ijhydene_2025_150671
crossref_primary_10_3762_bjnano_16_104
crossref_primary_10_1039_D5GC02573G
crossref_primary_10_3389_fenrg_2024_1465349
crossref_primary_10_1016_j_apsusc_2024_160553
crossref_primary_10_1039_D3NR02511J
crossref_primary_10_1002_adfm_202308345
crossref_primary_10_1002_adfm_202308337
crossref_primary_10_1002_ente_202400941
crossref_primary_10_1039_D3MH01130E
crossref_primary_10_1039_D4CY00213J
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1002_ente_202200655
crossref_primary_10_1002_er_8505
crossref_primary_10_1016_j_fuel_2023_130174
crossref_primary_10_1002_aenm_202301047
crossref_primary_10_1016_j_seppur_2024_129934
crossref_primary_10_1016_j_jallcom_2024_173660
crossref_primary_10_1016_j_jcis_2024_05_061
crossref_primary_10_1016_j_jcis_2024_05_182
crossref_primary_10_1039_D3QM01156A
crossref_primary_10_1002_smll_202402511
crossref_primary_10_1002_celc_202400154
crossref_primary_10_1039_D4NR02879A
crossref_primary_10_1016_j_ijhydene_2023_03_090
crossref_primary_10_1002_adfm_202208358
crossref_primary_10_1039_D4EE05759G
Cites_doi 10.1126/science.aao3691
10.1002/adfm.202100698
10.1038/s41560-019-0402-6
10.1002/smll.202100832
10.1002/adma.201806326
10.1002/anie.201406468
10.1126/science.aad4998
10.1038/ncomms14969
10.1038/nenergy.2017.31
10.1039/D0CC04781C
10.1002/adfm.202107597
10.1021/acssuschemeng.9b00105
10.1038/s41467-018-04888-0
10.1126/science.aad3716
10.1021/acsnano.0c08671
10.1038/s41560-019-0404-4
10.1016/j.apcatb.2018.09.067
10.1021/acsnano.1c00171
10.1038/s41467-019-13631-2
10.1021/acsnano.0c10885
10.1038/s41467-021-23750-4
10.1002/adma.201900510
10.1002/adfm.202003198
10.1149/1.1856988
10.1016/j.apcatb.2019.117851
10.1039/C8TA03249A
10.1002/adma.202006034
10.1021/acs.nanolett.9b02888
10.1039/C9EE01202H
10.1038/s41467-020-16111-0
10.1039/C9NR07564J
10.1016/j.apcatb.2021.120490
10.1039/c3cs60067j
10.1039/C8CP06755D
10.1002/aenm.201700020
10.1039/D1TA02495G
10.1021/acscatal.7b02787
10.1016/j.electacta.2019.03.175
10.1007/s41918-018-0025-9
10.1038/s41560-021-00826-5
10.1039/C8TA12263F
10.1002/cssc.201803032
10.1016/j.apcatb.2021.120640
10.1039/C5EE00751H
10.1021/acsaem.0c00163
10.1021/acsnano.7b08149
10.1039/C7TA03673F
10.1002/adma.202006965
10.1021/acs.chemmater.5b01284
10.1038/nmat3313
10.1039/C7CS00690J
10.1039/C9CS00906J
10.1021/acs.chemmater.5b05006
10.1021/jacs.1c02831
10.1039/C9EE02388G
10.1039/D1EE02380B
10.1016/j.apcatb.2020.118649
10.1039/D1EE02105B
10.1002/smll.202104323
10.1002/adma.201502696
10.1016/j.apcatb.2020.119514
10.1021/acs.chemmater.7b01598
10.1016/j.nanoen.2020.104981
10.1002/anie.202017102
10.1039/C9NR10702A
10.1039/C8NR00908B
10.1039/c1ee01970h
10.1016/j.nanoen.2021.106047
10.1002/aenm.201801891
10.1002/aenm.202100141
10.1016/j.apsusc.2019.144320
10.1016/j.electacta.2019.135191
10.1002/anie.201915254
10.1016/j.nanoen.2021.106211
10.1039/C4EE02564D
10.1039/C9TA03442K
10.1126/sciadv.aav6009
10.1039/C8TA11251G
10.1002/smll.202007333
10.1021/nn501434a
10.1038/s41560-018-0132-1
10.1002/anie.201901010
10.1002/adfm.202004375
10.1021/ja503372r
10.1016/j.nanoen.2021.105940
10.1002/adma.201606459
10.1016/j.apcatb.2020.119795
10.1039/D0CC01300E
10.1002/adfm.201809151
10.1021/acsami.8b04528
10.1016/j.nanoen.2018.04.023
10.1016/j.apcatb.2020.119284
10.1016/j.apcatb.2019.03.053
10.1039/tf9585401053
10.1016/j.nanoen.2019.01.017
10.1039/C9NR08102J
10.1002/adma.202002584
10.1002/smll.202006730
10.1002/anie.201406848
10.1016/j.nanoen.2017.07.032
10.1002/adma.201505597
10.1016/j.apcatb.2020.119451
10.1146/annurev.physchem.53.100301.131630
10.1039/c3sc50205h
10.1021/acs.nanolett.0c00845
10.1039/D0CS00013B
10.1038/nchem.1574
10.1021/acs.nanolett.7b02518
10.1038/s41565-019-0550-7
10.1016/j.apcatb.2020.118597
10.1149/2.0271815jes
10.1021/acssuschemeng.9b04219
10.1016/S0022-0728(02)00683-6
10.1016/j.electacta.2020.136417
10.1021/acsnano.5b02420
10.1021/jacs.0c06960
10.1021/acssuschemeng.8b06861
10.1002/cctc.201900341
10.1039/C8TA10985K
10.1016/j.ijhydene.2018.11.084
10.1016/j.cattod.2012.04.059
10.1021/acsami.7b05290
10.1038/s41467-019-12997-7
10.1039/C9TA11945K
10.1021/acsnano.9b07324
10.1016/j.jechem.2019.08.018
10.1002/smll.202100998
10.1088/1361-6528/aa9eb5
10.1039/C9EE00197B
10.1002/adma.201807134
10.1039/C8TA07135G
10.1039/D1TA03704H
10.1039/C9TA07282A
10.1016/j.nanoen.2021.106579
10.1016/S0360-0564(02)45013-4
10.1021/acsenergylett.0c00642
10.1021/ja00544a007
10.1039/D0EE02020F
10.1021/ja0540019
10.1002/anie.201007987
10.1002/cssc.201802437
10.1021/acs.nanolett.7b00855
10.1016/j.cej.2020.126312
10.1039/C3CS60468C
10.1016/j.apcatb.2021.120630
10.1039/C4EE00957F
10.1021/jacs.8b09211
10.1002/advs.202002341
10.1016/j.cej.2020.125457
10.1002/anie.202013985
10.1002/admi.201601029
10.1039/C7TA00816C
10.1016/j.pmatsci.2019.100618
10.1016/j.cclet.2019.02.009
10.1016/j.apcatb.2018.11.004
10.1002/aenm.201800789
10.1002/adfm.201707564
10.1002/adma.201806296
10.1021/cm802123a
10.1002/anie.202016199
10.1016/j.jechem.2020.06.073
10.1002/advs.202004516
10.1002/aenm.202002260
10.1038/s41560-018-0209-x
10.1016/j.nanoen.2017.07.053
10.1016/S0022-0728(99)00291-0
10.1002/aenm.201900624
10.1021/jacs.5b11986
10.1002/adma.201802880
10.1021/acs.jpcc.7b05270
10.1021/nl302389d
10.1038/s41929-018-0063-z
10.1039/C5CC08097E
10.1126/science.aab3501
10.1021/acs.nanolett.9b01381
10.1002/smll.202103064
10.1002/smll.201804388
10.1016/j.apcatb.2019.118196
10.1002/anie.202106547
10.1039/C9TA06861A
10.1039/D0TA00445F
10.1002/adfm.202000561
10.1021/acsami.8b22052
10.1038/s41557-018-0035-6
10.1016/j.electacta.2019.135445
10.1038/s41467-019-12885-0
10.1016/j.apcatb.2019.04.028
10.1002/aenm.201802553
10.1039/C8NR04246B
10.1038/s41467-021-21595-5
10.1002/smll.202103517
10.1021/jacs.7b01376
10.1016/j.apcatb.2021.120100
10.1002/smll.202103018
10.1021/acsami.9b15844
10.1021/acscatal.0c03692
10.1021/acsnano.9b01583
10.1016/j.jechem.2020.07.037
10.1038/nmat1223
10.1021/acsami.9b20076
10.1016/j.apcatb.2021.120386
10.1016/j.nanoen.2019.06.045
10.1021/jacs.9b09229
10.1016/j.apcatb.2019.01.034
10.1063/1.481119
10.1038/s41467-020-17199-0
10.1039/C9CS00869A
10.1002/smll.202103798
10.1007/s12274-020-2881-y
10.1002/adma.201807001
10.1016/j.nanoen.2020.104850
10.1016/j.nanoen.2019.104332
10.1021/acs.chemrev.9b00248
10.1038/s41467-020-17904-z
10.1002/advs.201801829
10.1016/j.apcatb.2021.120455
10.1002/adma.201906384
10.1002/adma.202000231
10.1007/s12274-020-2807-8
10.1016/j.apcatb.2021.120660
10.1038/ncomms13216
10.1021/jacs.6b08096
10.1002/adfm.202002536
10.1016/j.apcatb.2021.119882
10.1016/j.nanoen.2021.106302
10.1016/j.jechem.2018.03.005
10.1021/jacs.8b13228
10.1038/ncomms6848
10.1016/j.apcatb.2021.120478
10.1002/advs.201900090
10.1021/acssuschemeng.9b04025
10.1039/C8TA11286J
10.1039/C9NR07362K
10.1016/j.jcis.2019.10.024
10.1021/acscatal.0c04975
10.1016/j.jcat.2019.05.031
10.1039/C5CS00151J
10.1016/j.apcatb.2019.118255
10.1016/j.apcatb.2020.119738
10.1007/s12274-020-2952-0
10.1039/D1TA01868J
10.1016/j.cej.2020.127270
10.1038/s41467-021-25647-8
10.1038/nmat1752
10.1021/acsami.0c07088
10.1002/smll.201805474
10.1038/s41560-020-00710-8
10.1002/anie.201812475
10.1016/j.apcatb.2021.120283
10.1002/smll.201905738
10.1038/s41560-020-0619-4
10.1039/D0TA02005B
10.1002/smll.202003161
10.1039/C9CY02552A
10.1002/anie.201408222
10.1016/j.nanoen.2020.104603
10.1016/j.nanoen.2020.105212
10.1002/adfm.202100883
10.1016/j.nanoen.2019.104335
10.1002/adma.201707301
10.1002/adma.201604464
10.1016/j.apcatb.2020.118627
10.1021/acscatal.1c02673
10.1021/jacs.5b01330
10.1039/C4TA04867A
10.1016/j.cej.2020.128293
10.1016/j.apcatb.2021.120696
10.1038/s41467-019-11847-w
10.1038/nchem.367
10.1002/smll.202002850
10.1002/anie.201804817
10.1038/376238a0
10.1039/D1TA06574B
10.1021/jacs.9b12113
10.1002/smll.201603706
10.1021/acsnano.8b07700
10.1039/D1EE00106J
10.1021/nl404444k
10.1002/cnma.201600096
10.1002/aenm.201903891
10.1002/aenm.201803312
10.1016/j.jpowsour.2020.227998
10.1016/j.jcis.2020.02.090
10.1039/C4EE00440J
10.1021/acs.chemmater.9b04377
10.1021/acsami.9b05670
10.1039/C9TA12714C
10.1039/C6TA01328G
10.1007/s11244-006-0004-y
10.1002/aenm.201803970
10.1007/s10562-004-3434-9
10.1021/jacs.1c06006
10.1016/j.apcatb.2020.119394
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202200307
DatabaseName Wiley Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bed4da3c21494671b69672529210c6d0
PMC9218766
35435329
10_1002_advs_202200307
ADVS3881
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2020YFA0710000
– fundername: National Natural Science Foundation of China
  funderid: 2200080551; 21978200; 22161142002; 22121004
– fundername: National Natural Science Foundation of China
  grantid: 22161142002
– fundername: National Natural Science Foundation of China
  grantid: 21978200
– fundername: National Natural Science Foundation of China
  grantid: 22121004
– fundername: National Key R&D Program of China
  grantid: 2020YFA0710000
– fundername: National Natural Science Foundation of China
  grantid: 2200080551
– fundername: ;
  grantid: 2200080551; 21978200; 22161142002; 22121004
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
AAYXX
AFFHD
CITATION
EJD
WIN
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5951-c71c8e1ccb1927183ceb50c952d4766ea4488e44ee27a9f1ae951f336d6f60313
IEDL.DBID DOA
ISICitedReferencesCount 371
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783221300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Tue Oct 14 19:03:50 EDT 2025
Tue Nov 04 01:53:50 EST 2025
Sun Nov 09 05:16:43 EST 2025
Wed Aug 13 07:06:29 EDT 2025
Mon Jul 21 05:58:17 EDT 2025
Sat Nov 29 07:23:30 EST 2025
Tue Nov 18 21:49:00 EST 2025
Sun Jul 06 04:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords intrinsic effects
water-splitting technology
extrinsic effects
catalyst design
hydrogen evolution reaction
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5951-c71c8e1ccb1927183ceb50c952d4766ea4488e44ee27a9f1ae951f336d6f60313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9126-1251
OpenAccessLink https://doaj.org/article/bed4da3c21494671b69672529210c6d0
PMID 35435329
PQID 2679531019
PQPubID 4365299
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_bed4da3c21494671b69672529210c6d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9218766
proquest_miscellaneous_2652031152
proquest_journals_2679531019
pubmed_primary_35435329
crossref_primary_10_1002_advs_202200307
crossref_citationtrail_10_1002_advs_202200307
wiley_primary_10_1002_advs_202200307_ADVS3881
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 165
2013; 4
2021 2016 2019 2018; 6 138 4 3
2020; 20
2019; 11
2019; 10
2019; 13
2019; 12
2019; 15
2006; 37
2019; 14
2011; 53
2021; 281
2020; 16
1958; 54
2004; 3
2021; 280
2019; 19
2020; 14
2020; 13
2021; 285
2020; 12
2021; 284
1995; 376
2020; 11
2020; 10
2021; 286
2013; 5
2012; 12
2012; 11
2014; 136
2018; 49
2018; 47
2018; 6
2018; 9
2018; 8
2018; 3
2018; 2
2015; 137
2020; 570
2005; 100
2018; 1
2020; 330
2019; 21
2020; 456
2014; 14
2019; 29
2018; 30
2020; 331
2008; 20
2021; 85
2019; 7
2018; 29
2019; 9
2018; 28
2019; 4
2019; 6
2019; 5
2019; 31
2019; 30
2020; 142
2020; 263
2020; 260
2020; 266
2020; 265
2020; 32
2000; 112
2021; 143
2011; 4
2017; 139
2014; 43
2015; 350
2016; 4
2016; 7
2016; 2
2021; 56
2021; 55
2020; 30
2019; 44
2005; 127
2002; 524
1999; 472
2020; 397
2020; 279
2020; 278
2018; 12
2016; 28
2021; 60
2018; 10
2020; 559
2018; 14
2022; 18
2017; 5
2017; 40
2017; 7
2021; 409
2017; 41
2017; 8
2021; 408
2017; 2
2017; 4
2020; 120
2000; 45
2021; 403
2019; 58
2013; 202
2020; 59
2019; 245
2020; 56
2017; 355
2017; 9
2019; 243
2017; 358
2019; 241
2020; 8
2020; 5
2021; 32
2020; 3
2021; 31
2021; 33
2019; 63
2015; 44
2020; 49
2017; 121
2020; 43
2014; 8
2014; 7
1980; 102
2014; 53
2021; 9
2021; 8
2015; 6
2021; 86
2005; 152
2021; 3
2018; 140
2015; 3
2021; 88
2013; 42
2006; 5
2016; 52
2020; 349
2019; 306
2017; 29
2020; 77
2021; 1
2019; 141
2015; 9
2015; 8
2020; 108
2021; 90
2020; 504
2021; 14
2021; 15
2015; 27
2021; 12
2021; 11
2020; 75
2020; 74
2021; 299
2017; 17
2021
2020; 71
2021; 17
2017; 13
2011; 50
2021; 291
2019; 256
2020; 68
2016; 138
2021; 295
2021; 298
2021; 297
2019; 251
2009; 1
2019; 375
2019; 254
2022; 300
2018; 57
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_1
e_1_2_8_1_3
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_1_2
e_1_2_8_1_4
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_290_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
Liu S. (e_1_2_8_144_1) 2021
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_14_1
e_1_2_8_292_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_293_1
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
Liu S. (e_1_2_8_163_1) 2021; 3
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_294_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_273_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_285_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
Chen W. (e_1_2_8_254_1) 2021; 1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
Zheng J. (e_1_2_8_30_1) 2016; 2
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 6
  start-page: 5848
  year: 2015
  publication-title: Nat. Commun.
– volume: 251
  start-page: 87
  year: 2019
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 1334
  year: 2019
  publication-title: ChemSusChem
– volume: 18
  year: 2022
  publication-title: Small
– volume: 17
  start-page: 5133
  year: 2017
  publication-title: Nano Lett.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 3007
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 2469
  year: 2020
  publication-title: Nano Res.
– volume: 58
  start-page: 2029
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 260
  year: 2020
  publication-title: Appl. Catal., B
– volume: 108
  year: 2020
  publication-title: Prog. Mater. Sci.
– volume: 6 138 4 3
  start-page: 614 1359 512 773
  year: 2021 2016 2019 2018
  publication-title: Nat. Energy J. Am. Chem. Soc. Nat. Energy Nat. Energy
– volume: 60
  start-page: 3290
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 349
  year: 2020
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 6543
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1656
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1908
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 2255
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 8
  start-page: 177
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 256
  year: 2019
  publication-title: Appl. Catal., B
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 142
  start-page: 4298
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1368
  year: 2019
  publication-title: ChemSusChem
– volume: 56
  start-page: 23
  year: 2021
  publication-title: J. Energy Chem.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 14
  start-page: 1707
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 2950
  year: 2020
  publication-title: Nano Res.
– volume: 300
  year: 2022
  publication-title: Appl. Catal., B
– volume: 58
  start-page: 244
  year: 2019
  publication-title: Nano Energy
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– year: 2021
  publication-title: Adv. Mater.
– volume: 3
  start-page: 476
  year: 2018
  publication-title: Nat. Energy
– volume: 350
  start-page: 185
  year: 2015
  publication-title: Science
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 3315
  year: 2020
  publication-title: Nat. Commun.
– volume: 45
  start-page: 71
  year: 2000
  publication-title: Adv. Catal.
– volume: 13
  start-page: 2056
  year: 2020
  publication-title: Nano Res.
– volume: 49
  start-page: 14
  year: 2018
  publication-title: Nano Energy
– volume: 59
  start-page: 4154
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 1369
  year: 2021
  publication-title: Nat. Commun.
– volume: 56
  start-page: 8472
  year: 2020
  publication-title: Chem. Commun.
– volume: 397
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 8629
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 7081
  year: 2008
  publication-title: Chem. Mater.
– volume: 8
  start-page: 2789
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 3878
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 4114
  year: 2020
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2452
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 891
  year: 2020
  publication-title: Nat. Energy
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 1594
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 284
  year: 2021
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 359
  year: 2020
  publication-title: Nat. Energy
– volume: 241
  start-page: 424
  year: 2019
  publication-title: Appl. Catal., B
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 27
  start-page: 3769
  year: 2015
  publication-title: Chem. Mater.
– volume: 409
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 286
  year: 2021
  publication-title: Appl. Catal., B
– volume: 3
  year: 2021
  publication-title: Adv. Mater.
– volume: 285
  year: 2021
  publication-title: Appl. Catal., B
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 11
  start-page: 2253
  year: 2020
  publication-title: Nat. Commun.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1838
  year: 2016
  publication-title: Chem. Mater.
– volume: 472
  start-page: 126
  year: 1999
  publication-title: J. Electroanal. Chem.
– volume: 29
  start-page: 6329
  year: 2017
  publication-title: Chem. Mater.
– volume: 12
  start-page: 9600
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 278
  year: 2020
  publication-title: Appl. Catal., B
– volume: 43
  start-page: 121
  year: 2020
  publication-title: J. Energy Chem.
– volume: 15
  start-page: 5467
  year: 2021
  publication-title: ACS Nano
– volume: 298
  year: 2021
  publication-title: Appl. Catal., B
– volume: 14
  start-page: 5228
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 129
  year: 2019
  publication-title: J. Energy Chem.
– volume: 11
  start-page: 3958
  year: 2021
  publication-title: ACS Catal.
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 570
  start-page: 205
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 2
  start-page: 105
  year: 2018
  publication-title: Electrochem. Energy Rev.
– volume: 112
  start-page: 5435
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 57
  start-page: 9382
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 810
  year: 2004
  publication-title: Nat. Mater.
– volume: 42
  start-page: 6593
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 43
  start-page: 6555
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 4109
  year: 2017
  publication-title: Nano Lett.
– volume: 7
  start-page: 8314
  year: 2017
  publication-title: ACS Catal.
– volume: 3
  start-page: 2315
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 504
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 7293
  year: 2019
  publication-title: Nano Lett.
– volume: 10
  start-page: 6080
  year: 2018
  publication-title: Nanoscale
– volume: 7
  start-page: 9249
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 355
  start-page: 4998
  year: 2017
  publication-title: Science
– volume: 299
  year: 2021
  publication-title: Appl. Catal., B
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 524
  start-page: 252
  year: 2002
  publication-title: J. Electroanal. Chem.
– volume: 291
  year: 2021
  publication-title: Appl. Catal., B
– volume: 13
  start-page: 6824
  year: 2019
  publication-title: ACS Nano
– volume: 245
  start-page: 656
  year: 2019
  publication-title: Appl. Catal., B
– volume: 28
  start-page: 215
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 5333
  year: 2021
  publication-title: ACS Nano
– volume: 297
  year: 2021
  publication-title: Appl. Catal., B
– volume: 15
  year: 2019
  publication-title: Small
– volume: 295
  year: 2021
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 4459
  year: 2020
  publication-title: Nanoscale
– volume: 60
  start-page: 7234
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 2710
  year: 2013
  publication-title: Chem. Sci.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 254
  start-page: 432
  year: 2019
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 2620
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 300
  year: 2013
  publication-title: Nat. Chem.
– volume: 12
  start-page: 1571
  year: 2018
  publication-title: ACS Nano
– volume: 375
  start-page: 164
  year: 2019
  publication-title: J. Catal.
– volume: 1
  start-page: 339
  year: 2018
  publication-title: Nat. Catal.
– volume: 52
  start-page: 990
  year: 2016
  publication-title: Chem. Commun.
– volume: 13
  start-page: 86
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 7587
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 765
  year: 2017
  publication-title: Nano Energy
– volume: 14
  start-page: 5433
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 6692
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 559
  start-page: 206
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 350
  start-page: 164
  year: 2015
  publication-title: Science
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 280
  year: 2021
  publication-title: Appl. Catal., B
– volume: 14
  year: 2018
  publication-title: Small
– volume: 10
  start-page: 5231
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2624
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3502
  year: 2021
  publication-title: Nat. Commun.
– volume: 50
  start-page: 7238
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 57
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 552
  year: 2009
  publication-title: Nat. Chem.
– volume: 139
  start-page: 5494
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 7211
  year: 1980
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2780
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 32
  start-page: 1224
  year: 2020
  publication-title: Chem. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 5260
  year: 2021
  publication-title: Nat. Commun.
– volume: 49
  start-page: 1414
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 88
  year: 2017
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 243
  start-page: 614
  year: 2019
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 5218
  year: 2012
  publication-title: Nano Lett.
– volume: 47
  start-page: 7628
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 44
  start-page: 965
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 408
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 1594
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 6245
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 638
  year: 2018
  publication-title: Nat. Chem.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 1395
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1790
  year: 2020
  publication-title: Nanoscale
– volume: 456
  year: 2020
  publication-title: J. Power Sources
– volume: 30
  start-page: 1253
  year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 14
  start-page: 1381
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: 7407
  year: 2015
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 358
  start-page: 1187
  year: 2017
  publication-title: Science
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 776
  year: 2016
  publication-title: ChemNanoMat
– volume: 330
  year: 2020
  publication-title: Electrochim. Acta
– volume: 281
  year: 2021
  publication-title: Appl. Catal., B
– volume: 263
  year: 2020
  publication-title: Appl. Catal., B
– volume: 266
  year: 2020
  publication-title: Appl. Catal., B
– volume: 265
  year: 2020
  publication-title: Appl. Catal., B
– volume: 21
  start-page: 3024
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 4
  start-page: 7169
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 152
  start-page: J23
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 8243
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 4875
  year: 2019
  publication-title: Nat. Commun.
– volume: 37
  start-page: 3
  year: 2006
  publication-title: Top. Catal.
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 7
  start-page: 4971
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 202
  start-page: 105
  year: 2013
  publication-title: Catal. Today
– volume: 14
  start-page: 1071
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 376
  start-page: 238
  year: 1995
  publication-title: Nature
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 137
  start-page: 6983
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 19
  start-page: 5102
  year: 2019
  publication-title: Nano Lett.
– volume: 12
  start-page: 952
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 7
  start-page: 7804
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  start-page: 3697
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 5432
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 6197
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 9635
  year: 2018
  publication-title: ACS Nano
– volume: 55
  start-page: 92
  year: 2021
  publication-title: J. Energy Chem.
– volume: 120
  start-page: 851
  year: 2020
  publication-title: Chem. Rev.
– volume: 4
  start-page: 519
  year: 2019
  publication-title: Nat. Energy
– volume: 5
  start-page: 8187
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 306
  start-page: 627
  year: 2019
  publication-title: Electrochim. Acta
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2667
  year: 2019
  publication-title: ChemCatChem
– volume: 10
  start-page: 4405
  year: 2020
  publication-title: Catal. Sci. Technol.
– volume: 49
  start-page: 2215
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 5290
  year: 2014
  publication-title: ACS Nano
– volume: 403
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 3755
  year: 2019
  publication-title: Nat. Commun.
– volume: 53
  start-page: 319
  year: 2011
  publication-title: Annu. Rev. Phys. Chem.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 3072
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 279
  year: 2020
  publication-title: Appl. Catal. B
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 143
  start-page: 8720
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 88
  year: 2021
  publication-title: Nano Energy
– volume: 141
  start-page: 3232
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 1053
  year: 1958
  publication-title: Trans. Faraday Soc.
– volume: 100
  start-page: 111
  year: 2005
  publication-title: Catal. Lett.
– volume: 20
  start-page: 2923
  year: 2020
  publication-title: Nano Lett.
– volume: 44
  start-page: 2702
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 331
  year: 2020
  publication-title: Electrochim. Acta
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_145_1
  doi: 10.1126/science.aao3691
– ident: e_1_2_8_259_1
  doi: 10.1002/adfm.202100698
– ident: e_1_2_8_1_3
  doi: 10.1038/s41560-019-0402-6
– ident: e_1_2_8_229_1
  doi: 10.1002/smll.202100832
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_8_86_1
  doi: 10.1002/anie.201406468
– ident: e_1_2_8_53_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_76_1
  doi: 10.1038/ncomms14969
– ident: e_1_2_8_38_1
  doi: 10.1038/nenergy.2017.31
– ident: e_1_2_8_209_1
  doi: 10.1039/D0CC04781C
– ident: e_1_2_8_251_1
  doi: 10.1002/adfm.202107597
– ident: e_1_2_8_194_1
  doi: 10.1021/acssuschemeng.9b00105
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-018-04888-0
– ident: e_1_2_8_69_1
  doi: 10.1126/science.aad3716
– ident: e_1_2_8_270_1
  doi: 10.1021/acsnano.0c08671
– ident: e_1_2_8_283_1
  doi: 10.1038/s41560-019-0404-4
– ident: e_1_2_8_138_1
  doi: 10.1016/j.apcatb.2018.09.067
– ident: e_1_2_8_231_1
  doi: 10.1021/acsnano.1c00171
– ident: e_1_2_8_147_1
  doi: 10.1038/s41467-019-13631-2
– ident: e_1_2_8_235_1
  doi: 10.1021/acsnano.0c10885
– ident: e_1_2_8_75_1
  doi: 10.1038/s41467-021-23750-4
– ident: e_1_2_8_197_1
  doi: 10.1002/adma.201900510
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.202003198
– ident: e_1_2_8_43_1
  doi: 10.1149/1.1856988
– ident: e_1_2_8_123_1
  doi: 10.1016/j.apcatb.2019.117851
– ident: e_1_2_8_156_1
  doi: 10.1039/C8TA03249A
– ident: e_1_2_8_167_1
  doi: 10.1002/adma.202006034
– ident: e_1_2_8_278_1
  doi: 10.1021/acs.nanolett.9b02888
– ident: e_1_2_8_20_1
  doi: 10.1039/C9EE01202H
– ident: e_1_2_8_65_1
  doi: 10.1038/s41467-020-16111-0
– ident: e_1_2_8_243_1
  doi: 10.1039/C9NR07564J
– ident: e_1_2_8_185_1
  doi: 10.1016/j.apcatb.2021.120490
– ident: e_1_2_8_275_1
  doi: 10.1039/c3cs60067j
– ident: e_1_2_8_71_1
  doi: 10.1039/C8CP06755D
– ident: e_1_2_8_220_1
  doi: 10.1002/aenm.201700020
– ident: e_1_2_8_233_1
  doi: 10.1039/D1TA02495G
– ident: e_1_2_8_32_1
  doi: 10.1021/acscatal.7b02787
– ident: e_1_2_8_149_1
  doi: 10.1016/j.electacta.2019.03.175
– ident: e_1_2_8_41_1
  doi: 10.1007/s41918-018-0025-9
– ident: e_1_2_8_1_1
  doi: 10.1038/s41560-021-00826-5
– ident: e_1_2_8_78_1
  doi: 10.1039/C8TA12263F
– ident: e_1_2_8_160_1
  doi: 10.1002/cssc.201803032
– ident: e_1_2_8_252_1
  doi: 10.1016/j.apcatb.2021.120640
– ident: e_1_2_8_155_1
  doi: 10.1039/C5EE00751H
– ident: e_1_2_8_100_1
  doi: 10.1021/acsaem.0c00163
– ident: e_1_2_8_99_1
  doi: 10.1021/acsnano.7b08149
– ident: e_1_2_8_172_1
  doi: 10.1039/C7TA03673F
– ident: e_1_2_8_191_1
  doi: 10.1002/adma.202006965
– ident: e_1_2_8_117_1
  doi: 10.1021/acs.chemmater.5b01284
– ident: e_1_2_8_27_1
  doi: 10.1038/nmat3313
– ident: e_1_2_8_136_1
  doi: 10.1039/C7CS00690J
– ident: e_1_2_8_17_1
  doi: 10.1039/C9CS00906J
– ident: e_1_2_8_174_1
  doi: 10.1021/acs.chemmater.5b05006
– ident: e_1_2_8_267_1
  doi: 10.1021/jacs.1c02831
– ident: e_1_2_8_286_1
  doi: 10.1039/C9EE02388G
– ident: e_1_2_8_256_1
  doi: 10.1039/D1EE02380B
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apcatb.2020.118649
– ident: e_1_2_8_265_1
  doi: 10.1039/D1EE02105B
– ident: e_1_2_8_188_1
  doi: 10.1002/smll.202104323
– ident: e_1_2_8_103_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_8_150_1
  doi: 10.1016/j.apcatb.2020.119514
– ident: e_1_2_8_87_1
  doi: 10.1021/acs.chemmater.7b01598
– ident: e_1_2_8_271_1
  doi: 10.1016/j.nanoen.2020.104981
– ident: e_1_2_8_104_1
  doi: 10.1002/anie.202017102
– ident: e_1_2_8_198_1
  doi: 10.1039/C9NR10702A
– ident: e_1_2_8_130_1
  doi: 10.1039/C8NR00908B
– ident: e_1_2_8_5_1
  doi: 10.1039/c1ee01970h
– ident: e_1_2_8_225_1
  doi: 10.1016/j.nanoen.2021.106047
– ident: e_1_2_8_121_1
  doi: 10.1002/aenm.201801891
– ident: e_1_2_8_222_1
  doi: 10.1002/aenm.202100141
– ident: e_1_2_8_135_1
  doi: 10.1016/j.apsusc.2019.144320
– ident: e_1_2_8_288_1
  doi: 10.1016/j.electacta.2019.135191
– ident: e_1_2_8_108_1
  doi: 10.1002/anie.201915254
– ident: e_1_2_8_253_1
  doi: 10.1016/j.nanoen.2021.106211
– ident: e_1_2_8_37_1
  doi: 10.1039/C4EE02564D
– ident: e_1_2_8_80_1
  doi: 10.1039/C9TA03442K
– ident: e_1_2_8_119_1
  doi: 10.1126/sciadv.aav6009
– ident: e_1_2_8_292_1
  doi: 10.1039/C8TA11251G
– ident: e_1_2_8_294_1
  doi: 10.1002/smll.202007333
– ident: e_1_2_8_62_1
  doi: 10.1021/nn501434a
– ident: e_1_2_8_284_1
  doi: 10.1038/s41560-018-0132-1
– ident: e_1_2_8_214_1
  doi: 10.1002/anie.201901010
– ident: e_1_2_8_177_1
  doi: 10.1002/adfm.202004375
– ident: e_1_2_8_110_1
  doi: 10.1021/ja503372r
– ident: e_1_2_8_223_1
  doi: 10.1016/j.nanoen.2021.105940
– ident: e_1_2_8_137_1
  doi: 10.1002/adma.201606459
– ident: e_1_2_8_226_1
  doi: 10.1016/j.apcatb.2020.119795
– ident: e_1_2_8_95_1
  doi: 10.1039/D0CC01300E
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.201809151
– ident: e_1_2_8_238_1
  doi: 10.1021/acsami.8b04528
– ident: e_1_2_8_212_1
  doi: 10.1016/j.nanoen.2018.04.023
– ident: e_1_2_8_190_1
  doi: 10.1016/j.apcatb.2020.119284
– ident: e_1_2_8_102_1
  doi: 10.1016/j.apcatb.2019.03.053
– ident: e_1_2_8_52_1
  doi: 10.1039/tf9585401053
– ident: e_1_2_8_50_1
  doi: 10.1016/j.nanoen.2019.01.017
– ident: e_1_2_8_158_1
  doi: 10.1039/C9NR08102J
– ident: e_1_2_8_176_1
  doi: 10.1002/adma.202002584
– ident: e_1_2_8_211_1
  doi: 10.1002/smll.202006730
– ident: e_1_2_8_114_1
  doi: 10.1002/anie.201406848
– ident: e_1_2_8_236_1
  doi: 10.1016/j.nanoen.2017.07.032
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.201505597
– ident: e_1_2_8_125_1
  doi: 10.1016/j.apcatb.2020.119451
– ident: e_1_2_8_56_1
  doi: 10.1146/annurev.physchem.53.100301.131630
– ident: e_1_2_8_46_1
  doi: 10.1039/c3sc50205h
– ident: e_1_2_8_285_1
  doi: 10.1021/acs.nanolett.0c00845
– ident: e_1_2_8_26_1
  doi: 10.1039/D0CS00013B
– ident: e_1_2_8_28_1
  doi: 10.1038/nchem.1574
– ident: e_1_2_8_72_1
  doi: 10.1021/acs.nanolett.7b02518
– ident: e_1_2_8_293_1
  doi: 10.1038/s41565-019-0550-7
– ident: e_1_2_8_13_1
  doi: 10.1016/j.apcatb.2020.118597
– ident: e_1_2_8_33_1
  doi: 10.1149/2.0271815jes
– ident: e_1_2_8_192_1
  doi: 10.1021/acssuschemeng.9b04219
– ident: e_1_2_8_40_1
  doi: 10.1016/S0022-0728(02)00683-6
– ident: e_1_2_8_196_1
  doi: 10.1016/j.electacta.2020.136417
– ident: e_1_2_8_131_1
  doi: 10.1021/acsnano.5b02420
– ident: e_1_2_8_153_1
  doi: 10.1021/jacs.0c06960
– ident: e_1_2_8_246_1
  doi: 10.1021/acssuschemeng.8b06861
– ident: e_1_2_8_140_1
  doi: 10.1002/cctc.201900341
– ident: e_1_2_8_247_1
  doi: 10.1039/C8TA10985K
– ident: e_1_2_8_216_1
  doi: 10.1016/j.ijhydene.2018.11.084
– ident: e_1_2_8_39_1
  doi: 10.1016/j.cattod.2012.04.059
– ident: e_1_2_8_85_1
  doi: 10.1021/acsami.7b05290
– ident: e_1_2_8_276_1
  doi: 10.1038/s41467-019-12997-7
– ident: e_1_2_8_14_1
  doi: 10.1039/C9TA11945K
– ident: e_1_2_8_182_1
  doi: 10.1021/acsnano.9b07324
– ident: e_1_2_8_249_1
  doi: 10.1016/j.jechem.2019.08.018
– ident: e_1_2_8_258_1
  doi: 10.1002/smll.202100998
– ident: e_1_2_8_280_1
  doi: 10.1088/1361-6528/aa9eb5
– ident: e_1_2_8_124_1
  doi: 10.1039/C9EE00197B
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201807134
– ident: e_1_2_8_219_1
  doi: 10.1039/C8TA07135G
– ident: e_1_2_8_221_1
  doi: 10.1039/D1TA03704H
– ident: e_1_2_8_287_1
  doi: 10.1039/C9TA07282A
– ident: e_1_2_8_255_1
  doi: 10.1016/j.nanoen.2021.106579
– ident: e_1_2_8_61_1
  doi: 10.1016/S0360-0564(02)45013-4
– ident: e_1_2_8_199_1
  doi: 10.1021/acsenergylett.0c00642
– ident: e_1_2_8_63_1
  doi: 10.1021/ja00544a007
– ident: e_1_2_8_213_1
  doi: 10.1039/D0EE02020F
– ident: e_1_2_8_115_1
  doi: 10.1021/ja0540019
– ident: e_1_2_8_42_1
  doi: 10.1002/anie.201007987
– ident: e_1_2_8_193_1
  doi: 10.1002/cssc.201802437
– ident: e_1_2_8_279_1
  doi: 10.1021/acs.nanolett.7b00855
– ident: e_1_2_8_105_1
  doi: 10.1016/j.cej.2020.126312
– ident: e_1_2_8_281_1
  doi: 10.1039/C3CS60468C
– ident: e_1_2_8_260_1
  doi: 10.1016/j.apcatb.2021.120630
– ident: e_1_2_8_109_1
  doi: 10.1039/C4EE00957F
– ident: e_1_2_8_215_1
  doi: 10.1021/jacs.8b09211
– ident: e_1_2_8_146_1
  doi: 10.1002/advs.202002341
– ident: e_1_2_8_208_1
  doi: 10.1016/j.cej.2020.125457
– ident: e_1_2_8_166_1
  doi: 10.1002/anie.202013985
– ident: e_1_2_8_77_1
  doi: 10.1002/admi.201601029
– ident: e_1_2_8_51_1
  doi: 10.1039/C7TA00816C
– ident: e_1_2_8_44_1
  doi: 10.1016/j.pmatsci.2019.100618
– ident: e_1_2_8_157_1
  doi: 10.1016/j.cclet.2019.02.009
– ident: e_1_2_8_181_1
  doi: 10.1016/j.apcatb.2018.11.004
– ident: e_1_2_8_134_1
  doi: 10.1002/aenm.201800789
– ident: e_1_2_8_217_1
  doi: 10.1002/adfm.201707564
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201806296
– ident: e_1_2_8_118_1
  doi: 10.1021/cm802123a
– ident: e_1_2_8_165_1
  doi: 10.1002/anie.202016199
– ident: e_1_2_8_184_1
  doi: 10.1016/j.jechem.2020.06.073
– ident: e_1_2_8_228_1
  doi: 10.1002/advs.202004516
– ident: e_1_2_8_133_1
  doi: 10.1002/aenm.202002260
– ident: e_1_2_8_1_4
  doi: 10.1038/s41560-018-0209-x
– ident: e_1_2_8_31_1
  doi: 10.1016/j.nanoen.2017.07.053
– ident: e_1_2_8_58_1
  doi: 10.1016/S0022-0728(99)00291-0
– ident: e_1_2_8_22_1
  doi: 10.1002/aenm.201900624
– ident: e_1_2_8_1_2
  doi: 10.1021/jacs.5b11986
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201802880
– ident: e_1_2_8_67_1
  doi: 10.1021/acs.jpcc.7b05270
– ident: e_1_2_8_282_1
  doi: 10.1021/nl302389d
– ident: e_1_2_8_73_1
  doi: 10.1038/s41929-018-0063-z
– ident: e_1_2_8_79_1
  doi: 10.1039/C5CC08097E
– ident: e_1_2_8_68_1
  doi: 10.1126/science.aab3501
– ident: e_1_2_8_84_1
  doi: 10.1021/acs.nanolett.9b01381
– ident: e_1_2_8_142_1
  doi: 10.1002/smll.202103064
– ident: e_1_2_8_159_1
  doi: 10.1002/smll.201804388
– ident: e_1_2_8_7_1
  doi: 10.1016/j.apcatb.2019.118196
– ident: e_1_2_8_224_1
  doi: 10.1002/anie.202106547
– ident: e_1_2_8_169_1
  doi: 10.1039/C9TA06861A
– ident: e_1_2_8_171_1
  doi: 10.1039/D0TA00445F
– ident: e_1_2_8_132_1
  doi: 10.1002/adfm.202000561
– ident: e_1_2_8_244_1
  doi: 10.1021/acsami.8b22052
– ident: e_1_2_8_97_1
  doi: 10.1038/s41557-018-0035-6
– ident: e_1_2_8_237_1
  doi: 10.1016/j.electacta.2019.135445
– ident: e_1_2_8_230_1
  doi: 10.1038/s41467-019-12885-0
– ident: e_1_2_8_91_1
  doi: 10.1016/j.apcatb.2019.04.028
– ident: e_1_2_8_94_1
  doi: 10.1002/aenm.201802553
– ident: e_1_2_8_245_1
  doi: 10.1039/C8NR04246B
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-021-21595-5
– ident: e_1_2_8_148_1
  doi: 10.1002/smll.202103517
– ident: e_1_2_8_120_1
  doi: 10.1021/jacs.7b01376
– ident: e_1_2_8_266_1
  doi: 10.1016/j.apcatb.2021.120100
– ident: e_1_2_8_210_1
  doi: 10.1002/smll.202103018
– ident: e_1_2_8_274_1
  doi: 10.1021/acsami.9b15844
– ident: e_1_2_8_291_1
  doi: 10.1021/acscatal.0c03692
– volume: 3
  year: 2021
  ident: e_1_2_8_163_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_141_1
  doi: 10.1021/acsnano.9b01583
– ident: e_1_2_8_183_1
  doi: 10.1016/j.jechem.2020.07.037
– ident: e_1_2_8_74_1
  doi: 10.1038/nmat1223
– ident: e_1_2_8_90_1
  doi: 10.1021/acsami.9b20076
– ident: e_1_2_8_187_1
  doi: 10.1016/j.apcatb.2021.120386
– ident: e_1_2_8_161_1
  doi: 10.1016/j.nanoen.2019.06.045
– volume: 2
  year: 2016
  ident: e_1_2_8_30_1
  publication-title: Sci. Adv.
– ident: e_1_2_8_170_1
  doi: 10.1021/jacs.9b09229
– ident: e_1_2_8_204_1
  doi: 10.1016/j.apcatb.2019.01.034
– ident: e_1_2_8_54_1
  doi: 10.1063/1.481119
– ident: e_1_2_8_154_1
  doi: 10.1038/s41467-020-17199-0
– ident: e_1_2_8_16_1
  doi: 10.1039/C9CS00869A
– ident: e_1_2_8_162_1
  doi: 10.1002/smll.202103798
– ident: e_1_2_8_10_1
  doi: 10.1007/s12274-020-2881-y
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201807001
– ident: e_1_2_8_201_1
  doi: 10.1016/j.nanoen.2020.104850
– ident: e_1_2_8_106_1
  doi: 10.1016/j.nanoen.2019.104332
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.chemrev.9b00248
– ident: e_1_2_8_101_1
  doi: 10.1038/s41467-020-17904-z
– ident: e_1_2_8_248_1
  doi: 10.1002/advs.201801829
– ident: e_1_2_8_262_1
  doi: 10.1016/j.apcatb.2021.120455
– ident: e_1_2_8_152_1
  doi: 10.1002/adma.201906384
– ident: e_1_2_8_168_1
  doi: 10.1002/adma.202000231
– ident: e_1_2_8_205_1
  doi: 10.1007/s12274-020-2807-8
– ident: e_1_2_8_257_1
  doi: 10.1016/j.apcatb.2021.120660
– ident: e_1_2_8_129_1
  doi: 10.1038/ncomms13216
– ident: e_1_2_8_3_1
  doi: 10.1021/jacs.6b08096
– ident: e_1_2_8_272_1
  doi: 10.1002/adfm.202002536
– volume: 1
  start-page: 1395
  year: 2021
  ident: e_1_2_8_254_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_263_1
  doi: 10.1016/j.apcatb.2021.119882
– ident: e_1_2_8_269_1
  doi: 10.1016/j.nanoen.2021.106302
– ident: e_1_2_8_151_1
  doi: 10.1016/j.jechem.2018.03.005
– ident: e_1_2_8_35_1
  doi: 10.1021/jacs.8b13228
– ident: e_1_2_8_29_1
  doi: 10.1038/ncomms6848
– ident: e_1_2_8_186_1
  doi: 10.1016/j.apcatb.2021.120478
– ident: e_1_2_8_92_1
  doi: 10.1002/advs.201900090
– ident: e_1_2_8_239_1
  doi: 10.1021/acssuschemeng.9b04025
– ident: e_1_2_8_96_1
  doi: 10.1039/C8TA11286J
– ident: e_1_2_8_207_1
  doi: 10.1039/C9NR07362K
– ident: e_1_2_8_88_1
  doi: 10.1016/j.jcis.2019.10.024
– ident: e_1_2_8_126_1
  doi: 10.1021/acscatal.0c04975
– ident: e_1_2_8_83_1
  doi: 10.1016/j.jcat.2019.05.031
– ident: e_1_2_8_98_1
  doi: 10.1039/C5CS00151J
– ident: e_1_2_8_175_1
  doi: 10.1016/j.apcatb.2019.118255
– ident: e_1_2_8_268_1
  doi: 10.1016/j.apcatb.2020.119738
– ident: e_1_2_8_173_1
  doi: 10.1007/s12274-020-2952-0
– ident: e_1_2_8_232_1
  doi: 10.1039/D1TA01868J
– ident: e_1_2_8_128_1
  doi: 10.1016/j.cej.2020.127270
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-021-25647-8
– ident: e_1_2_8_49_1
  doi: 10.1038/nmat1752
– year: 2021
  ident: e_1_2_8_144_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_206_1
  doi: 10.1021/acsami.0c07088
– ident: e_1_2_8_81_1
  doi: 10.1002/smll.201805474
– ident: e_1_2_8_34_1
  doi: 10.1038/s41560-020-00710-8
– ident: e_1_2_8_200_1
  doi: 10.1002/anie.201812475
– ident: e_1_2_8_189_1
  doi: 10.1016/j.apcatb.2021.120283
– ident: e_1_2_8_203_1
  doi: 10.1002/smll.201905738
– ident: e_1_2_8_289_1
  doi: 10.1038/s41560-020-0619-4
– ident: e_1_2_8_240_1
  doi: 10.1039/D0TA02005B
– ident: e_1_2_8_290_1
  doi: 10.1002/smll.202003161
– ident: e_1_2_8_195_1
  doi: 10.1039/C9CY02552A
– ident: e_1_2_8_111_1
  doi: 10.1002/anie.201408222
– ident: e_1_2_8_179_1
  doi: 10.1016/j.nanoen.2020.104603
– ident: e_1_2_8_122_1
  doi: 10.1016/j.nanoen.2020.105212
– ident: e_1_2_8_164_1
  doi: 10.1002/adfm.202100883
– ident: e_1_2_8_127_1
  doi: 10.1016/j.nanoen.2019.104335
– ident: e_1_2_8_180_1
  doi: 10.1002/adma.201707301
– ident: e_1_2_8_277_1
  doi: 10.1002/adma.201604464
– ident: e_1_2_8_139_1
  doi: 10.1016/j.apcatb.2020.118627
– ident: e_1_2_8_250_1
  doi: 10.1021/acscatal.1c02673
– ident: e_1_2_8_48_1
  doi: 10.1021/jacs.5b01330
– ident: e_1_2_8_116_1
  doi: 10.1039/C4TA04867A
– ident: e_1_2_8_202_1
  doi: 10.1016/j.cej.2020.128293
– ident: e_1_2_8_261_1
  doi: 10.1016/j.apcatb.2021.120696
– ident: e_1_2_8_64_1
  doi: 10.1038/s41467-019-11847-w
– ident: e_1_2_8_60_1
  doi: 10.1038/nchem.367
– ident: e_1_2_8_9_1
  doi: 10.1002/smll.202002850
– ident: e_1_2_8_70_1
  doi: 10.1002/anie.201804817
– ident: e_1_2_8_55_1
  doi: 10.1038/376238a0
– ident: e_1_2_8_227_1
  doi: 10.1039/D1TA06574B
– ident: e_1_2_8_143_1
  doi: 10.1021/jacs.9b12113
– ident: e_1_2_8_241_1
  doi: 10.1002/smll.201603706
– ident: e_1_2_8_47_1
  doi: 10.1021/acsnano.8b07700
– ident: e_1_2_8_234_1
  doi: 10.1039/D1EE00106J
– ident: e_1_2_8_178_1
  doi: 10.1021/nl404444k
– ident: e_1_2_8_82_1
  doi: 10.1002/cnma.201600096
– ident: e_1_2_8_112_1
  doi: 10.1002/aenm.201903891
– ident: e_1_2_8_6_1
  doi: 10.1002/aenm.201803312
– ident: e_1_2_8_93_1
  doi: 10.1016/j.jpowsour.2020.227998
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jcis.2020.02.090
– ident: e_1_2_8_36_1
  doi: 10.1039/C4EE00440J
– ident: e_1_2_8_66_1
  doi: 10.1021/acs.chemmater.9b04377
– ident: e_1_2_8_218_1
  doi: 10.1021/acsami.9b05670
– ident: e_1_2_8_273_1
  doi: 10.1039/C9TA12714C
– ident: e_1_2_8_113_1
  doi: 10.1039/C6TA01328G
– ident: e_1_2_8_57_1
  doi: 10.1007/s11244-006-0004-y
– ident: e_1_2_8_107_1
  doi: 10.1002/aenm.201803970
– ident: e_1_2_8_59_1
  doi: 10.1007/s10562-004-3434-9
– ident: e_1_2_8_264_1
  doi: 10.1021/jacs.1c06006
– ident: e_1_2_8_242_1
  doi: 10.1016/j.apcatb.2020.119394
SSID ssj0001537418
Score 2.6535814
SecondaryResourceType review_article
Snippet The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil...
The excessive dependence on fossil fuels contributes to the majority of CO 2 emissions, influencing on the climate change. One promising alternative to fossil...
The excessive dependence on fossil fuels contributes to the majority of CO emissions, influencing on the climate change. One promising alternative to fossil...
Abstract The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200307
SubjectTerms Adsorption
catalyst design
Copyright
Dependency theory
Electrodes
Electrolytes
Energy
Environmental impact
extrinsic effects
Hydrogen
hydrogen evolution reaction
intrinsic effects
Principles
Publishing
Renewable resources
Review
Reviews
Volcanoes
Voltammetry
water‐splitting technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgOXQnkGCjISEnCImtiJHXNBXdiqp1XVgqjEIfIrpRJK2s12pf57xo43sOJ14JqMFcczk_k8nnwD8FIWvHJ5UaaV1CItGpmnlVIqpYVzWlNpcmlDswkxn1enp_IoJtz6WFa5_iaGD7XtjM-R71EuJNoLIpJ3F5ep7xrlT1djC42bsOWZyooJbE1n86PjH1mWknl6ljVbY0b3lF15lm5Kg3lvRKNA2v87pPlrweTPQDZEooM7__sOd2E7YlCyPxjNDtxw7T3YiV7ek9eRivrNffhyHHOF5EOo9CBdQ6bhByByeG0XHVofma2i9ZLZ0FInZISu-2VPEBCTz8pLnyDWDRXWb8k-Gc4jHsCng9nH94dpbMeQmhJxWGpEblCvxmhEhRjSmHG6zIwsqS0E507hTq9yBSqZCiWbXDkc1TDGLW98L2v2ECZt17rHQKhPYWomjLC6yJpSVkbLXFdaaEuZNQmka7XUJnKV-5YZ3-qBZZnWXo31qMYEXo3yFwNLxx8lp17Lo5Rn1w4XusVZHZ211s4WVjFDcfuIgSTXXHJBSypxf2y4zRLYXeu3ji6PjxiVm8CL8TY6qz-BUa3rrrxMSTPPb0QTeDSY1DgTViJyZRRHiw1j25jq5p32_GsgBMd5YVDjuGrBLP-xBDUCnhNWVfmTv7_GU7jtxwx1cbswWS6u3DO4ZVbL837xPHradxJgMUE
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAClGegICMhAYeo8dvm1sJWPVUVBVGJQ-RXoBJK0Ga7Uv89YyebNgKEENd4nDj2jOfz2P4GoZeGSx0JF6U2TpW8MaTU1tqS8hido8YTE3KyCXV0pE9PzfGVW_wDP8QUcEuWkefrZODW9buXpKE2rBPdNqVZT6-jG4QwnZI3UH58GWURLNGzpAxzsLoumeZ8w9xY0d35K2aeKRP4_w51_np48iqozV7p4M7__89ddHtEpHhvUKFtdC2299D2aPM9fj0SU7-5j758GCOH-H0-94G7Bu_n60D48CIsO9BFvFiPuowXQ4KdHB-66Fc9BniMP9skfQLIN5-3fov38LA78QB9Olh8fHdYjskZSi8AlZVeEQ-j7L0DjAgOjvnoROWNoIErKaOFdZ-OHIacKmsaYiPUahiTQTYpszV7iLbaro2PEaYpoOmY8io4XjXCaO8McdopFygLvkDlZmBqPzKXpwQa3-uBc5nWqe_qqe8K9GqS_zFwdvxRcj-N8ySVuLbzg275tR5Nt3Yx8GCZp7CYBLdCnDRSUUENrJa9DFWBdjZaUo8TAHxCKgPTGwDoAr2YisF0036MbWN3nmQErRLbES3Qo0GpppYwATiWUaitZuo2a-q8pD37lunBoV3g4iT0Wla3v3RBDfDnhGlNnvyj_FN0Kz0cjs3toK3V8jw-Qzf9enXWL59nM_wJGg0yqw
  priority: 102
  providerName: Wiley-Blackwell
Title Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202200307
https://www.ncbi.nlm.nih.gov/pubmed/35435329
https://www.proquest.com/docview/2679531019
https://www.proquest.com/docview/2652031152
https://pubmed.ncbi.nlm.nih.gov/PMC9218766
https://doaj.org/article/bed4da3c21494671b69672529210c6d0
Volume 9
WOSCitedRecordID wos000783221300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdg48AFMT4zRmUkJOAQrbEdf3BbodN2WIk20Io4RP6KmITSqe0q7b_n2U6jVoB24WIp8UtivY_4Z-fl9xB6qxiXvmBlLpUROWtUkUutdU6Y98YQZQvlYrEJMZnI6VRVG6W-Qk5YogdOijs03jGnqSUA5SGoC8MVF6QkCtYqlru4WgfUs7GYSv8H00DLsmZpHJJD7VaBnZuQ6NZbs1Ak6_8bwvwzUXITwMYZ6PgxetRBR3yUhryH7vn2CdrrgnOB33cM0h-eoh_n3RYf_hwTNPCswaP43w4-uXXzGTgNHq86p8PjVAknbuTcLpYLDDgWX-ogfQEQNSZGf8RHOH1GeIa-HY-_fjrJuyoKuS0BPuVWFBbMYa0BMAczEbXelEOrSuKY4NxrWKBJz8A2RGjVFNrDVQ2l3PEmlKCmz9FOO2v9S4RJ2Hk0VFjhDBs2pZLWqMJII4wj1NkM5Wut1rajGA-VLn7ViRyZ1MEKdW-FDL3r5a8TucY_JUfBSL1UIMWOJ8BV6s5V6rtcJUMHaxPXXaTCI7hQ8B4CpJuhN303xFj4cKJbP7sJMiUZBloikqEXySP6kdASACclcLXY8pWtoW73tFc_I483jAvmIg5ai151hwpqwCkXVMpi_3_o4hV6GO6ckt4O0M5yfuNfowd2tbxazAfoPmEVtGIqB2h3NJ5U54MYYNCekS-xhf7d6vSs-g5Hl6eT379NKLs
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuQHkaCiwSCDhYtXdtrxcJoZamStQ2imgrijgY78NQCdklSYPyp_iNzK4fEPE69cDVno3Hm29mZ2fH3wA8FlGSmjCK_VRI7keFCP00z3OfRsZISYUKhXbNJvholB4fi_EKfGu_hbFlla1PdI5aV8rmyDdowgXiBSOSV6dffNs1yp6uti00aljsmsVX3LJNXw638f99QulO__D1wG-6Cvgqtj3lFQ8VqqeUxOAGPTNTRsaBEjHVEU8Sk-OGJTUR6kp5LoowNziqYCzRSWFbMjP83QuwGiHY0x6sjof743c_sjoxs3QwLTtkQDdyPbes4JQ6c1pa_VyTgN9Ftr8WaP4cOLuVb-fq_zZn1-BKE2OTzdoo1mDFlNdhrfFiU_Ksodp-fgPev2lyoWTbVbKQqiBb7gMnMljoSYXWRfrzxjpJv24Z5DJei-lsSjDgJ29zK32AsbyrIH9BNkl93nITjs7lJW9Br6xKcwcItSlaybjiWkZBEYtUSRHKVHKpKdPKA7-FQaYaLnbbEuRzVrNI08zCJutg48HTTv60ZiH5o-SWRVUnZdnD3YVq8jFrnFEmjY50zhTF7TEulKFMRMJpTAXu_1WiAw_WWzxljUvDR3Rg8uBRdxudkT1hyktTnVmZmAaWv4l6cLuGcKcJizEyZxRH8yVwL6m6fKc8-eQIz1EvXLQTnDVnBv-YggwDugOWpuHdv7_GQ7g0ONzfy_aGo917cNmOr2sA16E3m5yZ-3BRzWcn08mDxsoJfDhvI_kOyziM7Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXoDwDBRYJBBys2LO214uEUEsStSoKFQVRiYPxPgyVUFySNCh_jV_H7PoBEa9TD1zt2Xi9-eaxs-NvAB7IOM1sFCdBJpUI4lJGQVYURYCxtUqh1JE0vtmEGI-zw0O5vwbf2m9hXFllaxO9oTaVdjnyPqZCEl4oIumXTVnE_mD0_PhL4DpIuZPWtp1GDZE9u_xK27fZs90B_dcPEUfDNy92gqbDQKAT119ei0jTVLVWFOiQlebaqiTUMkETizS1BW1eMhvTvFEUsowKS6NKzlOTlq49M6ffPQNnRUxO2ZUN4qsf-Z2EO2KYlicyxH5hFo4fHNEr1oof9O0Cfhfj_lqq-XMI7X3g6NL_vHqX4WITebOtWlU2YM1OrsBGY9tm7HFDwP3kKrx_3WRI2cDXt7CqZNv-sye2szTTinSODReNzrJh3UjI58GWs_mM0TaAvSuc9AFF-L6u_CnbYvUpzDV4eyoveR3WJ9XE3gSGLnGruNDCqDgsE5lpJSOVKaEMcqN7ELSQyHXD0O4ahXzOa25pzB2E8g5CPXjUyR_X3CR_lNx2COukHKe4v1BNP-aNicqVNbEpuEbaNJP7jFQqU4EJSoxCnZqwB5sttvLG0NEjOmD14H53m0yUO3cqJrY6cTIJho7VCXtwo4ZzNxOeULzOkUaLFaCvTHX1zuTok6dBp3mRK09p1bxK_GMJcgrzDniWRbf-_hr34DxpRv5yd7x3Gy644XVh4Casz6cn9g6c04v50Wx616s7gw-nrSHfAeQqlCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Better+Hydrogen+Evolution+Electrocatalysts+for+Water+Splitting%3A+A+Review&rft.jtitle=Advanced+science&rft.au=Fan+Liu&rft.au=Chengxiang+Shi&rft.au=Xiaolei+Guo&rft.au=Zexing+He&rft.date=2022-06-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=9&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202200307&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bed4da3c21494671b69672529210c6d0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon