Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of h...
Uloženo v:
| Vydáno v: | Advanced science Ročník 9; číslo 18; s. e2200307 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
John Wiley & Sons, Inc
01.06.2022
John Wiley and Sons Inc Wiley |
| Témata: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
This review presents varieties of representative hydrogen evolution reaction (HER) electrocatalysts benefited from intrinsic and extrinsic design strategies and gives insight into classical/novel descriptors and reaction mechanism to provide the audience with a broad and basic understanding. Moreover, the progress on water‐splitting technology is also discussed. Some invigorating perspectives on the challenges and future directions at the HER field are provided. |
|---|---|
| AbstractList | The excessive dependence on fossil fuels contributes to the majority of CO 2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. This review presents varieties of representative hydrogen evolution reaction (HER) electrocatalysts benefited from intrinsic and extrinsic design strategies and gives insight into classical/novel descriptors and reaction mechanism to provide the audience with a broad and basic understanding. Moreover, the progress on water‐splitting technology is also discussed. Some invigorating perspectives on the challenges and future directions at the HER field are provided. Abstract The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. The excessive dependence on fossil fuels contributes to the majority of CO emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed. This review presents varieties of representative hydrogen evolution reaction (HER) electrocatalysts benefited from intrinsic and extrinsic design strategies and gives insight into classical/novel descriptors and reaction mechanism to provide the audience with a broad and basic understanding. Moreover, the progress on water‐splitting technology is also discussed. Some invigorating perspectives on the challenges and future directions at the HER field are provided. |
| Author | Huang, Zhen‐Feng Zhang, Xiangwen Zou, Ji‐Jun He, Zexing Shi, Chengxiang Guo, Xiaolei Liu, Fan Pan, Lun |
| AuthorAffiliation | 2 Collaborative Innovative Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China 1 Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China 3 Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China |
| AuthorAffiliation_xml | – name: 1 Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China – name: 2 Collaborative Innovative Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China – name: 3 Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China |
| Author_xml | – sequence: 1 givenname: Fan surname: Liu fullname: Liu, Fan organization: Zhejiang Institute of Tianjin University – sequence: 2 givenname: Chengxiang surname: Shi fullname: Shi, Chengxiang organization: Zhejiang Institute of Tianjin University – sequence: 3 givenname: Xiaolei surname: Guo fullname: Guo, Xiaolei organization: Zhejiang Institute of Tianjin University – sequence: 4 givenname: Zexing surname: He fullname: He, Zexing organization: Zhejiang Institute of Tianjin University – sequence: 5 givenname: Lun surname: Pan fullname: Pan, Lun organization: Zhejiang Institute of Tianjin University – sequence: 6 givenname: Zhen‐Feng surname: Huang fullname: Huang, Zhen‐Feng email: zfhuang@tju.edu.cn organization: Zhejiang Institute of Tianjin University – sequence: 7 givenname: Xiangwen surname: Zhang fullname: Zhang, Xiangwen organization: Zhejiang Institute of Tianjin University – sequence: 8 givenname: Ji‐Jun orcidid: 0000-0002-9126-1251 surname: Zou fullname: Zou, Ji‐Jun email: jj_zou@tju.edu.cn organization: Zhejiang Institute of Tianjin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35435329$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktvEzEUhUeoiJbSLUs0Ehs2CX7PmAVSaAOtVAmp5bFgYXk8d4IjZ5zanlT593iaErXddGXL_s7xse55XRz0voeieIvRFCNEPup2E6cEEYIQRdWL4ohgWU9ozdjBg_1hcRLjEiGEOa0Yrl8Vh5QzyimRR8WfK52s77UrzyDaRV_6rvwCKUEoz7dt8Avoy_nGu2GkyrkDk4I3Omm3jSmWnQ_lbz3S12tnU7L94lM5K69gY-H2TfGy0y7Cyf16XPz8Ov9xej65_P7t4nR2OTFccjwxFTY1YGMaLEmFa2qg4chITlpWCQGasboGxgBIpWWHNWRVR6loRScQxfS4uNj5tl4v1TrYlQ5b5bVVdwc-LJQOyRoHqoGWtZoagplkosKNkKIinEiCkREtyl6fd17roVlBa6BPQbtHpo9vevtXLfxGZYc6p80GH-4Ngr8ZICa1stGAc7oHP0RFBCc5NOYko--foEs_hDyLkaokpxhhmal3DxPto_yfYQamO8AEH2OAbo9gpMaeqLEnat-TLGBPBMamuxrkH1n3rOzWOtg-84ianf26pnWN6T95M9Av |
| CitedBy_id | crossref_primary_10_1016_j_fuel_2025_135249 crossref_primary_10_1016_j_jcis_2023_03_036 crossref_primary_10_1002_aenm_202302828 crossref_primary_10_1002_sstr_202200404 crossref_primary_10_1080_1536383X_2025_2513649 crossref_primary_10_1002_smll_202400221 crossref_primary_10_1002_advs_202402978 crossref_primary_10_1016_j_ijhydene_2024_08_372 crossref_primary_10_1016_j_ijhydene_2024_01_027 crossref_primary_10_1038_s41467_024_45321_z crossref_primary_10_1016_j_seppur_2022_122399 crossref_primary_10_1088_2977_3504_adbdd1 crossref_primary_10_1002_admi_202300920 crossref_primary_10_1016_j_mseb_2023_116884 crossref_primary_10_1016_j_cej_2023_143879 crossref_primary_10_1002_adma_202412925 crossref_primary_10_1002_aenm_202404167 crossref_primary_10_1016_j_colsurfa_2024_135446 crossref_primary_10_1039_D5NR00137D crossref_primary_10_1002_smll_202303440 crossref_primary_10_3390_ma17133089 crossref_primary_10_1002_anie_202411470 crossref_primary_10_1002_adma_202307979 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1039_D5LF00104H crossref_primary_10_1016_j_fuel_2024_132954 crossref_primary_10_1002_advs_202202750 crossref_primary_10_1002_ange_202400048 crossref_primary_10_1039_D3NR00514C crossref_primary_10_1016_j_electacta_2024_144953 crossref_primary_10_26599_NR_2025_94907442 crossref_primary_10_1063_5_0203381 crossref_primary_10_1002_adfm_202305940 crossref_primary_10_1021_acs_inorgchem_5c03077 crossref_primary_10_1016_j_scowo_2025_100046 crossref_primary_10_1002_cphc_202400640 crossref_primary_10_1002_slct_202404995 crossref_primary_10_1063_5_0191316 crossref_primary_10_1002_advs_202414622 crossref_primary_10_1007_s12274_023_6393_4 crossref_primary_10_1016_j_cej_2024_149457 crossref_primary_10_1002_smll_202304512 crossref_primary_10_1002_smll_202305965 crossref_primary_10_1016_j_jallcom_2024_173572 crossref_primary_10_1016_j_jallcom_2022_166824 crossref_primary_10_1002_smll_202307052 crossref_primary_10_1002_adfm_202316544 crossref_primary_10_1002_adsu_202300380 crossref_primary_10_1002_smll_202506936 crossref_primary_10_1002_adfm_202405897 crossref_primary_10_1134_S199079312570023X crossref_primary_10_1039_D3QI02668J crossref_primary_10_1039_D3QM00841J crossref_primary_10_1002_slct_202501775 crossref_primary_10_1016_j_electacta_2023_142119 crossref_primary_10_1002_adfm_202207536 crossref_primary_10_1039_D4QI00090K crossref_primary_10_1002_ece2_73 crossref_primary_10_1016_j_jallcom_2022_167924 crossref_primary_10_1002_anie_202501721 crossref_primary_10_1002_cplu_202300739 crossref_primary_10_1002_smll_202310573 crossref_primary_10_1016_j_susmat_2024_e01073 crossref_primary_10_1016_j_ces_2024_120068 crossref_primary_10_1016_j_apsusc_2025_162869 crossref_primary_10_1002_smtd_202300461 crossref_primary_10_1016_j_ijhydene_2025_06_213 crossref_primary_10_1007_s11426_025_2646_7 crossref_primary_10_1039_D4EE05559D crossref_primary_10_1016_j_jcis_2023_11_124 crossref_primary_10_3390_ijms24076861 crossref_primary_10_1021_acs_energyfuels_4c06084 crossref_primary_10_1016_j_jallcom_2024_175650 crossref_primary_10_1016_j_cej_2024_149406 crossref_primary_10_1002_smll_202304681 crossref_primary_10_1002_celc_202400301 crossref_primary_10_1016_j_cej_2025_164649 crossref_primary_10_1002_aenm_202401444 crossref_primary_10_1016_j_jcis_2022_11_091 crossref_primary_10_1002_chem_202301521 crossref_primary_10_1039_D2EE03323B crossref_primary_10_1021_acsami_4c12784 crossref_primary_10_1016_j_jallcom_2024_174237 crossref_primary_10_1007_s41918_024_00237_6 crossref_primary_10_1038_s41524_025_01607_4 crossref_primary_10_1016_j_fuel_2023_130334 crossref_primary_10_1016_j_ica_2024_121967 crossref_primary_10_1002_adfm_202312672 crossref_primary_10_1002_smll_202306970 crossref_primary_10_1002_adsu_202400815 crossref_primary_10_1002_adfm_202309264 crossref_primary_10_1016_j_enconman_2025_119636 crossref_primary_10_1002_slct_202303891 crossref_primary_10_1039_D4NH00036F crossref_primary_10_1002_adma_202404806 crossref_primary_10_26599_NR_2025_94907595 crossref_primary_10_1007_s40820_023_01024_6 crossref_primary_10_1021_acsami_5c01897 crossref_primary_10_1016_j_jiec_2023_01_014 crossref_primary_10_1016_j_jelechem_2023_117900 crossref_primary_10_1063_5_0271005 crossref_primary_10_1002_ange_202501721 crossref_primary_10_1002_admi_202300094 crossref_primary_10_1016_j_jcis_2023_09_189 crossref_primary_10_1002_cey2_630 crossref_primary_10_1002_ente_202201048 crossref_primary_10_1039_D3NR03694D crossref_primary_10_1016_j_colsurfa_2024_135711 crossref_primary_10_1016_j_jcis_2024_07_179 crossref_primary_10_1039_D5CC01473E crossref_primary_10_1002_ange_202411470 crossref_primary_10_1002_smll_202411883 crossref_primary_10_1002_advs_202403206 crossref_primary_10_1002_aenm_202302436 crossref_primary_10_1016_j_ijhydene_2024_02_215 crossref_primary_10_1016_j_cis_2022_102811 crossref_primary_10_3390_molecules29061215 crossref_primary_10_1002_aesr_202400433 crossref_primary_10_1016_j_ijhydene_2023_12_007 crossref_primary_10_1002_smll_202309823 crossref_primary_10_1016_j_fuel_2024_133761 crossref_primary_10_1002_smll_202502876 crossref_primary_10_1016_j_decarb_2023_100019 crossref_primary_10_1002_adma_202206960 crossref_primary_10_1007_s11244_025_02062_7 crossref_primary_10_1002_smll_202304807 crossref_primary_10_1016_j_colsurfa_2024_134049 crossref_primary_10_1021_prechem_4c00020 crossref_primary_10_1002_adma_202419360 crossref_primary_10_1016_j_cej_2024_152903 crossref_primary_10_1016_j_cej_2023_144670 crossref_primary_10_1016_j_fuel_2024_134178 crossref_primary_10_1007_s12209_023_00364_z crossref_primary_10_1039_D5DT00800J crossref_primary_10_1002_smll_202309122 crossref_primary_10_1016_j_ccr_2023_215492 crossref_primary_10_1002_smll_202403364 crossref_primary_10_1002_anie_202400048 crossref_primary_10_1007_s11708_024_0961_5 crossref_primary_10_1039_D3QM00766A crossref_primary_10_1002_chem_202404422 crossref_primary_10_1002_aenm_202406080 crossref_primary_10_1021_acs_inorgchem_5c02931 crossref_primary_10_1016_j_cej_2025_159709 crossref_primary_10_1016_j_cej_2023_144660 crossref_primary_10_1016_j_jallcom_2025_179101 crossref_primary_10_1002_adsu_202500713 crossref_primary_10_1016_j_apsusc_2023_157203 crossref_primary_10_1002_advs_202508013 crossref_primary_10_1002_smll_202400662 crossref_primary_10_1007_s12274_024_6507_7 crossref_primary_10_1002_EXP_20240013 crossref_primary_10_1016_j_checat_2023_100643 crossref_primary_10_1038_s43246_025_00838_8 crossref_primary_10_1016_j_jcis_2023_04_043 crossref_primary_10_1007_s12678_024_00903_9 crossref_primary_10_1002_adfm_202519434 crossref_primary_10_1002_aenm_202304099 crossref_primary_10_1021_jacs_4c18149 crossref_primary_10_1016_j_jcis_2024_05_085 crossref_primary_10_1002_cssc_202501388 crossref_primary_10_1016_j_eurpolymj_2024_113125 crossref_primary_10_1016_j_nanoen_2024_110020 crossref_primary_10_1039_D3QI00656E crossref_primary_10_1021_acsami_5c02561 crossref_primary_10_1007_s12274_023_6237_6 crossref_primary_10_1016_j_ijhydene_2025_150671 crossref_primary_10_3762_bjnano_16_104 crossref_primary_10_1039_D5GC02573G crossref_primary_10_3389_fenrg_2024_1465349 crossref_primary_10_1016_j_apsusc_2024_160553 crossref_primary_10_1039_D3NR02511J crossref_primary_10_1002_adfm_202308345 crossref_primary_10_1002_adfm_202308337 crossref_primary_10_1002_ente_202400941 crossref_primary_10_1039_D3MH01130E crossref_primary_10_1039_D4CY00213J crossref_primary_10_1002_smll_202207342 crossref_primary_10_1002_ente_202200655 crossref_primary_10_1002_er_8505 crossref_primary_10_1016_j_fuel_2023_130174 crossref_primary_10_1002_aenm_202301047 crossref_primary_10_1016_j_seppur_2024_129934 crossref_primary_10_1016_j_jallcom_2024_173660 crossref_primary_10_1016_j_jcis_2024_05_061 crossref_primary_10_1016_j_jcis_2024_05_182 crossref_primary_10_1039_D3QM01156A crossref_primary_10_1002_smll_202402511 crossref_primary_10_1002_celc_202400154 crossref_primary_10_1039_D4NR02879A crossref_primary_10_1016_j_ijhydene_2023_03_090 crossref_primary_10_1002_adfm_202208358 crossref_primary_10_1039_D4EE05759G |
| Cites_doi | 10.1126/science.aao3691 10.1002/adfm.202100698 10.1038/s41560-019-0402-6 10.1002/smll.202100832 10.1002/adma.201806326 10.1002/anie.201406468 10.1126/science.aad4998 10.1038/ncomms14969 10.1038/nenergy.2017.31 10.1039/D0CC04781C 10.1002/adfm.202107597 10.1021/acssuschemeng.9b00105 10.1038/s41467-018-04888-0 10.1126/science.aad3716 10.1021/acsnano.0c08671 10.1038/s41560-019-0404-4 10.1016/j.apcatb.2018.09.067 10.1021/acsnano.1c00171 10.1038/s41467-019-13631-2 10.1021/acsnano.0c10885 10.1038/s41467-021-23750-4 10.1002/adma.201900510 10.1002/adfm.202003198 10.1149/1.1856988 10.1016/j.apcatb.2019.117851 10.1039/C8TA03249A 10.1002/adma.202006034 10.1021/acs.nanolett.9b02888 10.1039/C9EE01202H 10.1038/s41467-020-16111-0 10.1039/C9NR07564J 10.1016/j.apcatb.2021.120490 10.1039/c3cs60067j 10.1039/C8CP06755D 10.1002/aenm.201700020 10.1039/D1TA02495G 10.1021/acscatal.7b02787 10.1016/j.electacta.2019.03.175 10.1007/s41918-018-0025-9 10.1038/s41560-021-00826-5 10.1039/C8TA12263F 10.1002/cssc.201803032 10.1016/j.apcatb.2021.120640 10.1039/C5EE00751H 10.1021/acsaem.0c00163 10.1021/acsnano.7b08149 10.1039/C7TA03673F 10.1002/adma.202006965 10.1021/acs.chemmater.5b01284 10.1038/nmat3313 10.1039/C7CS00690J 10.1039/C9CS00906J 10.1021/acs.chemmater.5b05006 10.1021/jacs.1c02831 10.1039/C9EE02388G 10.1039/D1EE02380B 10.1016/j.apcatb.2020.118649 10.1039/D1EE02105B 10.1002/smll.202104323 10.1002/adma.201502696 10.1016/j.apcatb.2020.119514 10.1021/acs.chemmater.7b01598 10.1016/j.nanoen.2020.104981 10.1002/anie.202017102 10.1039/C9NR10702A 10.1039/C8NR00908B 10.1039/c1ee01970h 10.1016/j.nanoen.2021.106047 10.1002/aenm.201801891 10.1002/aenm.202100141 10.1016/j.apsusc.2019.144320 10.1016/j.electacta.2019.135191 10.1002/anie.201915254 10.1016/j.nanoen.2021.106211 10.1039/C4EE02564D 10.1039/C9TA03442K 10.1126/sciadv.aav6009 10.1039/C8TA11251G 10.1002/smll.202007333 10.1021/nn501434a 10.1038/s41560-018-0132-1 10.1002/anie.201901010 10.1002/adfm.202004375 10.1021/ja503372r 10.1016/j.nanoen.2021.105940 10.1002/adma.201606459 10.1016/j.apcatb.2020.119795 10.1039/D0CC01300E 10.1002/adfm.201809151 10.1021/acsami.8b04528 10.1016/j.nanoen.2018.04.023 10.1016/j.apcatb.2020.119284 10.1016/j.apcatb.2019.03.053 10.1039/tf9585401053 10.1016/j.nanoen.2019.01.017 10.1039/C9NR08102J 10.1002/adma.202002584 10.1002/smll.202006730 10.1002/anie.201406848 10.1016/j.nanoen.2017.07.032 10.1002/adma.201505597 10.1016/j.apcatb.2020.119451 10.1146/annurev.physchem.53.100301.131630 10.1039/c3sc50205h 10.1021/acs.nanolett.0c00845 10.1039/D0CS00013B 10.1038/nchem.1574 10.1021/acs.nanolett.7b02518 10.1038/s41565-019-0550-7 10.1016/j.apcatb.2020.118597 10.1149/2.0271815jes 10.1021/acssuschemeng.9b04219 10.1016/S0022-0728(02)00683-6 10.1016/j.electacta.2020.136417 10.1021/acsnano.5b02420 10.1021/jacs.0c06960 10.1021/acssuschemeng.8b06861 10.1002/cctc.201900341 10.1039/C8TA10985K 10.1016/j.ijhydene.2018.11.084 10.1016/j.cattod.2012.04.059 10.1021/acsami.7b05290 10.1038/s41467-019-12997-7 10.1039/C9TA11945K 10.1021/acsnano.9b07324 10.1016/j.jechem.2019.08.018 10.1002/smll.202100998 10.1088/1361-6528/aa9eb5 10.1039/C9EE00197B 10.1002/adma.201807134 10.1039/C8TA07135G 10.1039/D1TA03704H 10.1039/C9TA07282A 10.1016/j.nanoen.2021.106579 10.1016/S0360-0564(02)45013-4 10.1021/acsenergylett.0c00642 10.1021/ja00544a007 10.1039/D0EE02020F 10.1021/ja0540019 10.1002/anie.201007987 10.1002/cssc.201802437 10.1021/acs.nanolett.7b00855 10.1016/j.cej.2020.126312 10.1039/C3CS60468C 10.1016/j.apcatb.2021.120630 10.1039/C4EE00957F 10.1021/jacs.8b09211 10.1002/advs.202002341 10.1016/j.cej.2020.125457 10.1002/anie.202013985 10.1002/admi.201601029 10.1039/C7TA00816C 10.1016/j.pmatsci.2019.100618 10.1016/j.cclet.2019.02.009 10.1016/j.apcatb.2018.11.004 10.1002/aenm.201800789 10.1002/adfm.201707564 10.1002/adma.201806296 10.1021/cm802123a 10.1002/anie.202016199 10.1016/j.jechem.2020.06.073 10.1002/advs.202004516 10.1002/aenm.202002260 10.1038/s41560-018-0209-x 10.1016/j.nanoen.2017.07.053 10.1016/S0022-0728(99)00291-0 10.1002/aenm.201900624 10.1021/jacs.5b11986 10.1002/adma.201802880 10.1021/acs.jpcc.7b05270 10.1021/nl302389d 10.1038/s41929-018-0063-z 10.1039/C5CC08097E 10.1126/science.aab3501 10.1021/acs.nanolett.9b01381 10.1002/smll.202103064 10.1002/smll.201804388 10.1016/j.apcatb.2019.118196 10.1002/anie.202106547 10.1039/C9TA06861A 10.1039/D0TA00445F 10.1002/adfm.202000561 10.1021/acsami.8b22052 10.1038/s41557-018-0035-6 10.1016/j.electacta.2019.135445 10.1038/s41467-019-12885-0 10.1016/j.apcatb.2019.04.028 10.1002/aenm.201802553 10.1039/C8NR04246B 10.1038/s41467-021-21595-5 10.1002/smll.202103517 10.1021/jacs.7b01376 10.1016/j.apcatb.2021.120100 10.1002/smll.202103018 10.1021/acsami.9b15844 10.1021/acscatal.0c03692 10.1021/acsnano.9b01583 10.1016/j.jechem.2020.07.037 10.1038/nmat1223 10.1021/acsami.9b20076 10.1016/j.apcatb.2021.120386 10.1016/j.nanoen.2019.06.045 10.1021/jacs.9b09229 10.1016/j.apcatb.2019.01.034 10.1063/1.481119 10.1038/s41467-020-17199-0 10.1039/C9CS00869A 10.1002/smll.202103798 10.1007/s12274-020-2881-y 10.1002/adma.201807001 10.1016/j.nanoen.2020.104850 10.1016/j.nanoen.2019.104332 10.1021/acs.chemrev.9b00248 10.1038/s41467-020-17904-z 10.1002/advs.201801829 10.1016/j.apcatb.2021.120455 10.1002/adma.201906384 10.1002/adma.202000231 10.1007/s12274-020-2807-8 10.1016/j.apcatb.2021.120660 10.1038/ncomms13216 10.1021/jacs.6b08096 10.1002/adfm.202002536 10.1016/j.apcatb.2021.119882 10.1016/j.nanoen.2021.106302 10.1016/j.jechem.2018.03.005 10.1021/jacs.8b13228 10.1038/ncomms6848 10.1016/j.apcatb.2021.120478 10.1002/advs.201900090 10.1021/acssuschemeng.9b04025 10.1039/C8TA11286J 10.1039/C9NR07362K 10.1016/j.jcis.2019.10.024 10.1021/acscatal.0c04975 10.1016/j.jcat.2019.05.031 10.1039/C5CS00151J 10.1016/j.apcatb.2019.118255 10.1016/j.apcatb.2020.119738 10.1007/s12274-020-2952-0 10.1039/D1TA01868J 10.1016/j.cej.2020.127270 10.1038/s41467-021-25647-8 10.1038/nmat1752 10.1021/acsami.0c07088 10.1002/smll.201805474 10.1038/s41560-020-00710-8 10.1002/anie.201812475 10.1016/j.apcatb.2021.120283 10.1002/smll.201905738 10.1038/s41560-020-0619-4 10.1039/D0TA02005B 10.1002/smll.202003161 10.1039/C9CY02552A 10.1002/anie.201408222 10.1016/j.nanoen.2020.104603 10.1016/j.nanoen.2020.105212 10.1002/adfm.202100883 10.1016/j.nanoen.2019.104335 10.1002/adma.201707301 10.1002/adma.201604464 10.1016/j.apcatb.2020.118627 10.1021/acscatal.1c02673 10.1021/jacs.5b01330 10.1039/C4TA04867A 10.1016/j.cej.2020.128293 10.1016/j.apcatb.2021.120696 10.1038/s41467-019-11847-w 10.1038/nchem.367 10.1002/smll.202002850 10.1002/anie.201804817 10.1038/376238a0 10.1039/D1TA06574B 10.1021/jacs.9b12113 10.1002/smll.201603706 10.1021/acsnano.8b07700 10.1039/D1EE00106J 10.1021/nl404444k 10.1002/cnma.201600096 10.1002/aenm.201903891 10.1002/aenm.201803312 10.1016/j.jpowsour.2020.227998 10.1016/j.jcis.2020.02.090 10.1039/C4EE00440J 10.1021/acs.chemmater.9b04377 10.1021/acsami.9b05670 10.1039/C9TA12714C 10.1039/C6TA01328G 10.1007/s11244-006-0004-y 10.1002/aenm.201803970 10.1007/s10562-004-3434-9 10.1021/jacs.1c06006 10.1016/j.apcatb.2020.119394 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202200307 |
| DatabaseName | Wiley Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_bed4da3c21494671b69672529210c6d0 PMC9218766 35435329 10_1002_advs_202200307 ADVS3881 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2020YFA0710000 – fundername: National Natural Science Foundation of China funderid: 2200080551; 21978200; 22161142002; 22121004 – fundername: National Natural Science Foundation of China grantid: 22161142002 – fundername: National Natural Science Foundation of China grantid: 21978200 – fundername: National Natural Science Foundation of China grantid: 22121004 – fundername: National Key R&D Program of China grantid: 2020YFA0710000 – fundername: National Natural Science Foundation of China grantid: 2200080551 – fundername: ; grantid: 2200080551; 21978200; 22161142002; 22121004 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM AAYXX AFFHD CITATION EJD WIN NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c5951-c71c8e1ccb1927183ceb50c952d4766ea4488e44ee27a9f1ae951f336d6f60313 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 371 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783221300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Tue Oct 14 19:03:50 EDT 2025 Tue Nov 04 01:53:50 EST 2025 Sun Nov 09 05:16:43 EST 2025 Wed Aug 13 07:06:29 EDT 2025 Mon Jul 21 05:58:17 EDT 2025 Sat Nov 29 07:23:30 EST 2025 Tue Nov 18 21:49:00 EST 2025 Sun Jul 06 04:45:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | intrinsic effects water-splitting technology extrinsic effects catalyst design hydrogen evolution reaction |
| Language | English |
| License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5951-c71c8e1ccb1927183ceb50c952d4766ea4488e44ee27a9f1ae951f336d6f60313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-9126-1251 |
| OpenAccessLink | https://doaj.org/article/bed4da3c21494671b69672529210c6d0 |
| PMID | 35435329 |
| PQID | 2679531019 |
| PQPubID | 4365299 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bed4da3c21494671b69672529210c6d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9218766 proquest_miscellaneous_2652031152 proquest_journals_2679531019 pubmed_primary_35435329 crossref_primary_10_1002_advs_202200307 crossref_citationtrail_10_1002_advs_202200307 wiley_primary_10_1002_advs_202200307_ADVS3881 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2018; 165 2013; 4 2021 2016 2019 2018; 6 138 4 3 2020; 20 2019; 11 2019; 10 2019; 13 2019; 12 2019; 15 2006; 37 2019; 14 2011; 53 2021; 281 2020; 16 1958; 54 2004; 3 2021; 280 2019; 19 2020; 14 2020; 13 2021; 285 2020; 12 2021; 284 1995; 376 2020; 11 2020; 10 2021; 286 2013; 5 2012; 12 2012; 11 2014; 136 2018; 49 2018; 47 2018; 6 2018; 9 2018; 8 2018; 3 2018; 2 2015; 137 2020; 570 2005; 100 2018; 1 2020; 330 2019; 21 2020; 456 2014; 14 2019; 29 2018; 30 2020; 331 2008; 20 2021; 85 2019; 7 2018; 29 2019; 9 2018; 28 2019; 4 2019; 6 2019; 5 2019; 31 2019; 30 2020; 142 2020; 263 2020; 260 2020; 266 2020; 265 2020; 32 2000; 112 2021; 143 2011; 4 2017; 139 2014; 43 2015; 350 2016; 4 2016; 7 2016; 2 2021; 56 2021; 55 2020; 30 2019; 44 2005; 127 2002; 524 1999; 472 2020; 397 2020; 279 2020; 278 2018; 12 2016; 28 2021; 60 2018; 10 2020; 559 2018; 14 2022; 18 2017; 5 2017; 40 2017; 7 2021; 409 2017; 41 2017; 8 2021; 408 2017; 2 2017; 4 2020; 120 2000; 45 2021; 403 2019; 58 2013; 202 2020; 59 2019; 245 2020; 56 2017; 355 2017; 9 2019; 243 2017; 358 2019; 241 2020; 8 2020; 5 2021; 32 2020; 3 2021; 31 2021; 33 2019; 63 2015; 44 2020; 49 2017; 121 2020; 43 2014; 8 2014; 7 1980; 102 2014; 53 2021; 9 2021; 8 2015; 6 2021; 86 2005; 152 2021; 3 2018; 140 2015; 3 2021; 88 2013; 42 2006; 5 2016; 52 2020; 349 2019; 306 2017; 29 2020; 77 2021; 1 2019; 141 2015; 9 2015; 8 2020; 108 2021; 90 2020; 504 2021; 14 2021; 15 2015; 27 2021; 12 2021; 11 2020; 75 2020; 74 2021; 299 2017; 17 2021 2020; 71 2021; 17 2017; 13 2011; 50 2021; 291 2019; 256 2020; 68 2016; 138 2021; 295 2021; 298 2021; 297 2019; 251 2009; 1 2019; 375 2019; 254 2022; 300 2018; 57 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_1_3 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_1_2 e_1_2_8_1_4 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 Liu S. (e_1_2_8_144_1) 2021 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_14_1 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 Liu S. (e_1_2_8_163_1) 2021; 3 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_285_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 Chen W. (e_1_2_8_254_1) 2021; 1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 Zheng J. (e_1_2_8_30_1) 2016; 2 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
| References_xml | – volume: 6 start-page: 5848 year: 2015 publication-title: Nat. Commun. – volume: 251 start-page: 87 year: 2019 publication-title: Appl. Catal., B – volume: 12 start-page: 1334 year: 2019 publication-title: ChemSusChem – volume: 18 year: 2022 publication-title: Small – volume: 17 start-page: 5133 year: 2017 publication-title: Nano Lett. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 3007 year: 2020 publication-title: Energy Environ. Sci. – volume: 13 start-page: 2469 year: 2020 publication-title: Nano Res. – volume: 58 start-page: 2029 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 260 year: 2020 publication-title: Appl. Catal., B – volume: 108 year: 2020 publication-title: Prog. Mater. Sci. – volume: 6 138 4 3 start-page: 614 1359 512 773 year: 2021 2016 2019 2018 publication-title: Nat. Energy J. Am. Chem. Soc. Nat. Energy Nat. Energy – volume: 60 start-page: 3290 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 349 year: 2020 publication-title: Electrochim. Acta – volume: 7 start-page: 6543 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1656 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1908 year: 2020 publication-title: ACS Energy Lett. – volume: 7 start-page: 2255 year: 2014 publication-title: Energy Environ. Sci. – volume: 71 year: 2020 publication-title: Nano Energy – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 8 start-page: 177 year: 2015 publication-title: Energy Environ. Sci. – volume: 256 year: 2019 publication-title: Appl. Catal., B – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 142 start-page: 4298 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1368 year: 2019 publication-title: ChemSusChem – volume: 56 start-page: 23 year: 2021 publication-title: J. Energy Chem. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 14 start-page: 1707 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 2950 year: 2020 publication-title: Nano Res. – volume: 300 year: 2022 publication-title: Appl. Catal., B – volume: 58 start-page: 244 year: 2019 publication-title: Nano Energy – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – year: 2021 publication-title: Adv. Mater. – volume: 3 start-page: 476 year: 2018 publication-title: Nat. Energy – volume: 350 start-page: 185 year: 2015 publication-title: Science – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 start-page: 3315 year: 2020 publication-title: Nat. Commun. – volume: 45 start-page: 71 year: 2000 publication-title: Adv. Catal. – volume: 13 start-page: 2056 year: 2020 publication-title: Nano Res. – volume: 49 start-page: 14 year: 2018 publication-title: Nano Energy – volume: 59 start-page: 4154 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 1369 year: 2021 publication-title: Nat. Commun. – volume: 56 start-page: 8472 year: 2020 publication-title: Chem. Commun. – volume: 397 year: 2020 publication-title: Chem. Eng. J. – volume: 8 start-page: 8629 year: 2020 publication-title: J. Mater. Chem. A – volume: 20 start-page: 7081 year: 2008 publication-title: Chem. Mater. – volume: 8 start-page: 2789 year: 2020 publication-title: J. Mater. Chem. A – volume: 4 start-page: 3878 year: 2011 publication-title: Energy Environ. Sci. – volume: 11 start-page: 4114 year: 2020 publication-title: Nat. Commun. – volume: 9 start-page: 2452 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 891 year: 2020 publication-title: Nat. Energy – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 14 start-page: 1594 year: 2021 publication-title: Energy Environ. Sci. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 284 year: 2021 publication-title: Appl. Catal., B – volume: 5 start-page: 359 year: 2020 publication-title: Nat. Energy – volume: 241 start-page: 424 year: 2019 publication-title: Appl. Catal., B – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 27 start-page: 3769 year: 2015 publication-title: Chem. Mater. – volume: 409 year: 2021 publication-title: Chem. Eng. J. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2017 publication-title: Small – volume: 286 year: 2021 publication-title: Appl. Catal., B – volume: 3 year: 2021 publication-title: Adv. Mater. – volume: 285 year: 2021 publication-title: Appl. Catal., B – volume: 74 year: 2020 publication-title: Nano Energy – volume: 11 start-page: 2253 year: 2020 publication-title: Nat. Commun. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1838 year: 2016 publication-title: Chem. Mater. – volume: 472 start-page: 126 year: 1999 publication-title: J. Electroanal. Chem. – volume: 29 start-page: 6329 year: 2017 publication-title: Chem. Mater. – volume: 12 start-page: 9600 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 278 year: 2020 publication-title: Appl. Catal., B – volume: 43 start-page: 121 year: 2020 publication-title: J. Energy Chem. – volume: 15 start-page: 5467 year: 2021 publication-title: ACS Nano – volume: 298 year: 2021 publication-title: Appl. Catal., B – volume: 14 start-page: 5228 year: 2021 publication-title: Energy Environ. Sci. – volume: 29 start-page: 129 year: 2019 publication-title: J. Energy Chem. – volume: 11 start-page: 3958 year: 2021 publication-title: ACS Catal. – volume: 10 year: 2020 publication-title: ACS Catal. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 570 start-page: 205 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 105 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 112 start-page: 5435 year: 2000 publication-title: J. Chem. Phys. – volume: 75 year: 2020 publication-title: Nano Energy – volume: 57 start-page: 9382 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 3 start-page: 810 year: 2004 publication-title: Nat. Mater. – volume: 42 start-page: 6593 year: 2013 publication-title: Chem. Soc. Rev. – volume: 86 year: 2021 publication-title: Nano Energy – volume: 43 start-page: 6555 year: 2014 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 4109 year: 2017 publication-title: Nano Lett. – volume: 7 start-page: 8314 year: 2017 publication-title: ACS Catal. – volume: 3 start-page: 2315 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 504 year: 2020 publication-title: Appl. Surf. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 7293 year: 2019 publication-title: Nano Lett. – volume: 10 start-page: 6080 year: 2018 publication-title: Nanoscale – volume: 7 start-page: 9249 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 355 start-page: 4998 year: 2017 publication-title: Science – volume: 299 year: 2021 publication-title: Appl. Catal., B – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 524 start-page: 252 year: 2002 publication-title: J. Electroanal. Chem. – volume: 291 year: 2021 publication-title: Appl. Catal., B – volume: 13 start-page: 6824 year: 2019 publication-title: ACS Nano – volume: 245 start-page: 656 year: 2019 publication-title: Appl. Catal., B – volume: 28 start-page: 215 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 5333 year: 2021 publication-title: ACS Nano – volume: 297 year: 2021 publication-title: Appl. Catal., B – volume: 15 year: 2019 publication-title: Small – volume: 295 year: 2021 publication-title: Appl. Catal., B – volume: 12 start-page: 4459 year: 2020 publication-title: Nanoscale – volume: 60 start-page: 7234 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 2710 year: 2013 publication-title: Chem. Sci. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 254 start-page: 432 year: 2019 publication-title: Appl. Catal., B – volume: 12 start-page: 2620 year: 2019 publication-title: Energy Environ. Sci. – volume: 5 start-page: 300 year: 2013 publication-title: Nat. Chem. – volume: 12 start-page: 1571 year: 2018 publication-title: ACS Nano – volume: 375 start-page: 164 year: 2019 publication-title: J. Catal. – volume: 1 start-page: 339 year: 2018 publication-title: Nat. Catal. – volume: 52 start-page: 990 year: 2016 publication-title: Chem. Commun. – volume: 13 start-page: 86 year: 2020 publication-title: Energy Environ. Sci. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 7587 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 765 year: 2017 publication-title: Nano Energy – volume: 14 start-page: 5433 year: 2021 publication-title: Energy Environ. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 6692 year: 2020 publication-title: J. Mater. Chem. A – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 559 start-page: 206 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 350 start-page: 164 year: 2015 publication-title: Science – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 280 year: 2021 publication-title: Appl. Catal., B – volume: 14 year: 2018 publication-title: Small – volume: 10 start-page: 5231 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 2624 year: 2014 publication-title: Energy Environ. Sci. – volume: 12 start-page: 3502 year: 2021 publication-title: Nat. Commun. – volume: 50 start-page: 7238 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 57 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 552 year: 2009 publication-title: Nat. Chem. – volume: 139 start-page: 5494 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 7211 year: 1980 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2780 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 32 start-page: 1224 year: 2020 publication-title: Chem. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 5260 year: 2021 publication-title: Nat. Commun. – volume: 49 start-page: 1414 year: 2020 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 88 year: 2017 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: Nanoscale – volume: 243 start-page: 614 year: 2019 publication-title: Appl. Catal., B – volume: 12 start-page: 5218 year: 2012 publication-title: Nano Lett. – volume: 47 start-page: 7628 year: 2018 publication-title: Chem. Soc. Rev. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 44 start-page: 965 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 408 year: 2021 publication-title: Chem. Eng. J. – volume: 8 start-page: 1594 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 17 year: 2021 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 6245 year: 2020 publication-title: J. Mater. Chem. A – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 638 year: 2018 publication-title: Nat. Chem. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 1395 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1790 year: 2020 publication-title: Nanoscale – volume: 456 year: 2020 publication-title: J. Power Sources – volume: 30 start-page: 1253 year: 2019 publication-title: Chin. Chem. Lett. – volume: 14 start-page: 1381 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: 7407 year: 2015 publication-title: ACS Nano – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 358 start-page: 1187 year: 2017 publication-title: Science – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 776 year: 2016 publication-title: ChemNanoMat – volume: 330 year: 2020 publication-title: Electrochim. Acta – volume: 281 year: 2021 publication-title: Appl. Catal., B – volume: 263 year: 2020 publication-title: Appl. Catal., B – volume: 266 year: 2020 publication-title: Appl. Catal., B – volume: 265 year: 2020 publication-title: Appl. Catal., B – volume: 21 start-page: 3024 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 4 start-page: 7169 year: 2016 publication-title: J. Mater. Chem. A – volume: 152 start-page: J23 year: 2005 publication-title: J. Electrochem. Soc. – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 8243 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 4875 year: 2019 publication-title: Nat. Commun. – volume: 37 start-page: 3 year: 2006 publication-title: Top. Catal. – volume: 85 year: 2021 publication-title: Nano Energy – volume: 7 start-page: 4971 year: 2019 publication-title: J. Mater. Chem. A – volume: 202 start-page: 105 year: 2013 publication-title: Catal. Today – volume: 14 start-page: 1071 year: 2019 publication-title: Nat. Nanotechnol. – volume: 376 start-page: 238 year: 1995 publication-title: Nature – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 137 start-page: 6983 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 19 start-page: 5102 year: 2019 publication-title: Nano Lett. – volume: 12 start-page: 952 year: 2019 publication-title: Energy Environ. Sci. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 7 start-page: 7804 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 7 start-page: 3697 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 58 start-page: 5432 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 6197 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 9635 year: 2018 publication-title: ACS Nano – volume: 55 start-page: 92 year: 2021 publication-title: J. Energy Chem. – volume: 120 start-page: 851 year: 2020 publication-title: Chem. Rev. – volume: 4 start-page: 519 year: 2019 publication-title: Nat. Energy – volume: 5 start-page: 8187 year: 2017 publication-title: J. Mater. Chem. A – volume: 306 start-page: 627 year: 2019 publication-title: Electrochim. Acta – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 11 start-page: 2667 year: 2019 publication-title: ChemCatChem – volume: 10 start-page: 4405 year: 2020 publication-title: Catal. Sci. Technol. – volume: 49 start-page: 2215 year: 2020 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 5290 year: 2014 publication-title: ACS Nano – volume: 403 year: 2021 publication-title: Chem. Eng. J. – volume: 10 start-page: 3755 year: 2019 publication-title: Nat. Commun. – volume: 53 start-page: 319 year: 2011 publication-title: Annu. Rev. Phys. Chem. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 10 year: 2018 publication-title: Nanoscale – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 49 start-page: 3072 year: 2020 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 279 year: 2020 publication-title: Appl. Catal. B – volume: 68 year: 2020 publication-title: Nano Energy – volume: 143 start-page: 8720 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 88 year: 2021 publication-title: Nano Energy – volume: 141 start-page: 3232 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 1053 year: 1958 publication-title: Trans. Faraday Soc. – volume: 100 start-page: 111 year: 2005 publication-title: Catal. Lett. – volume: 20 start-page: 2923 year: 2020 publication-title: Nano Lett. – volume: 44 start-page: 2702 year: 2015 publication-title: Chem. Soc. Rev. – volume: 331 year: 2020 publication-title: Electrochim. Acta – volume: 7 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_145_1 doi: 10.1126/science.aao3691 – ident: e_1_2_8_259_1 doi: 10.1002/adfm.202100698 – ident: e_1_2_8_1_3 doi: 10.1038/s41560-019-0402-6 – ident: e_1_2_8_229_1 doi: 10.1002/smll.202100832 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201806326 – ident: e_1_2_8_86_1 doi: 10.1002/anie.201406468 – ident: e_1_2_8_53_1 doi: 10.1126/science.aad4998 – ident: e_1_2_8_76_1 doi: 10.1038/ncomms14969 – ident: e_1_2_8_38_1 doi: 10.1038/nenergy.2017.31 – ident: e_1_2_8_209_1 doi: 10.1039/D0CC04781C – ident: e_1_2_8_251_1 doi: 10.1002/adfm.202107597 – ident: e_1_2_8_194_1 doi: 10.1021/acssuschemeng.9b00105 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-018-04888-0 – ident: e_1_2_8_69_1 doi: 10.1126/science.aad3716 – ident: e_1_2_8_270_1 doi: 10.1021/acsnano.0c08671 – ident: e_1_2_8_283_1 doi: 10.1038/s41560-019-0404-4 – ident: e_1_2_8_138_1 doi: 10.1016/j.apcatb.2018.09.067 – ident: e_1_2_8_231_1 doi: 10.1021/acsnano.1c00171 – ident: e_1_2_8_147_1 doi: 10.1038/s41467-019-13631-2 – ident: e_1_2_8_235_1 doi: 10.1021/acsnano.0c10885 – ident: e_1_2_8_75_1 doi: 10.1038/s41467-021-23750-4 – ident: e_1_2_8_197_1 doi: 10.1002/adma.201900510 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.202003198 – ident: e_1_2_8_43_1 doi: 10.1149/1.1856988 – ident: e_1_2_8_123_1 doi: 10.1016/j.apcatb.2019.117851 – ident: e_1_2_8_156_1 doi: 10.1039/C8TA03249A – ident: e_1_2_8_167_1 doi: 10.1002/adma.202006034 – ident: e_1_2_8_278_1 doi: 10.1021/acs.nanolett.9b02888 – ident: e_1_2_8_20_1 doi: 10.1039/C9EE01202H – ident: e_1_2_8_65_1 doi: 10.1038/s41467-020-16111-0 – ident: e_1_2_8_243_1 doi: 10.1039/C9NR07564J – ident: e_1_2_8_185_1 doi: 10.1016/j.apcatb.2021.120490 – ident: e_1_2_8_275_1 doi: 10.1039/c3cs60067j – ident: e_1_2_8_71_1 doi: 10.1039/C8CP06755D – ident: e_1_2_8_220_1 doi: 10.1002/aenm.201700020 – ident: e_1_2_8_233_1 doi: 10.1039/D1TA02495G – ident: e_1_2_8_32_1 doi: 10.1021/acscatal.7b02787 – ident: e_1_2_8_149_1 doi: 10.1016/j.electacta.2019.03.175 – ident: e_1_2_8_41_1 doi: 10.1007/s41918-018-0025-9 – ident: e_1_2_8_1_1 doi: 10.1038/s41560-021-00826-5 – ident: e_1_2_8_78_1 doi: 10.1039/C8TA12263F – ident: e_1_2_8_160_1 doi: 10.1002/cssc.201803032 – ident: e_1_2_8_252_1 doi: 10.1016/j.apcatb.2021.120640 – ident: e_1_2_8_155_1 doi: 10.1039/C5EE00751H – ident: e_1_2_8_100_1 doi: 10.1021/acsaem.0c00163 – ident: e_1_2_8_99_1 doi: 10.1021/acsnano.7b08149 – ident: e_1_2_8_172_1 doi: 10.1039/C7TA03673F – ident: e_1_2_8_191_1 doi: 10.1002/adma.202006965 – ident: e_1_2_8_117_1 doi: 10.1021/acs.chemmater.5b01284 – ident: e_1_2_8_27_1 doi: 10.1038/nmat3313 – ident: e_1_2_8_136_1 doi: 10.1039/C7CS00690J – ident: e_1_2_8_17_1 doi: 10.1039/C9CS00906J – ident: e_1_2_8_174_1 doi: 10.1021/acs.chemmater.5b05006 – ident: e_1_2_8_267_1 doi: 10.1021/jacs.1c02831 – ident: e_1_2_8_286_1 doi: 10.1039/C9EE02388G – ident: e_1_2_8_256_1 doi: 10.1039/D1EE02380B – ident: e_1_2_8_12_1 doi: 10.1016/j.apcatb.2020.118649 – ident: e_1_2_8_265_1 doi: 10.1039/D1EE02105B – ident: e_1_2_8_188_1 doi: 10.1002/smll.202104323 – ident: e_1_2_8_103_1 doi: 10.1002/adma.201502696 – ident: e_1_2_8_150_1 doi: 10.1016/j.apcatb.2020.119514 – ident: e_1_2_8_87_1 doi: 10.1021/acs.chemmater.7b01598 – ident: e_1_2_8_271_1 doi: 10.1016/j.nanoen.2020.104981 – ident: e_1_2_8_104_1 doi: 10.1002/anie.202017102 – ident: e_1_2_8_198_1 doi: 10.1039/C9NR10702A – ident: e_1_2_8_130_1 doi: 10.1039/C8NR00908B – ident: e_1_2_8_5_1 doi: 10.1039/c1ee01970h – ident: e_1_2_8_225_1 doi: 10.1016/j.nanoen.2021.106047 – ident: e_1_2_8_121_1 doi: 10.1002/aenm.201801891 – ident: e_1_2_8_222_1 doi: 10.1002/aenm.202100141 – ident: e_1_2_8_135_1 doi: 10.1016/j.apsusc.2019.144320 – ident: e_1_2_8_288_1 doi: 10.1016/j.electacta.2019.135191 – ident: e_1_2_8_108_1 doi: 10.1002/anie.201915254 – ident: e_1_2_8_253_1 doi: 10.1016/j.nanoen.2021.106211 – ident: e_1_2_8_37_1 doi: 10.1039/C4EE02564D – ident: e_1_2_8_80_1 doi: 10.1039/C9TA03442K – ident: e_1_2_8_119_1 doi: 10.1126/sciadv.aav6009 – ident: e_1_2_8_292_1 doi: 10.1039/C8TA11251G – ident: e_1_2_8_294_1 doi: 10.1002/smll.202007333 – ident: e_1_2_8_62_1 doi: 10.1021/nn501434a – ident: e_1_2_8_284_1 doi: 10.1038/s41560-018-0132-1 – ident: e_1_2_8_214_1 doi: 10.1002/anie.201901010 – ident: e_1_2_8_177_1 doi: 10.1002/adfm.202004375 – ident: e_1_2_8_110_1 doi: 10.1021/ja503372r – ident: e_1_2_8_223_1 doi: 10.1016/j.nanoen.2021.105940 – ident: e_1_2_8_137_1 doi: 10.1002/adma.201606459 – ident: e_1_2_8_226_1 doi: 10.1016/j.apcatb.2020.119795 – ident: e_1_2_8_95_1 doi: 10.1039/D0CC01300E – ident: e_1_2_8_2_1 doi: 10.1002/adfm.201809151 – ident: e_1_2_8_238_1 doi: 10.1021/acsami.8b04528 – ident: e_1_2_8_212_1 doi: 10.1016/j.nanoen.2018.04.023 – ident: e_1_2_8_190_1 doi: 10.1016/j.apcatb.2020.119284 – ident: e_1_2_8_102_1 doi: 10.1016/j.apcatb.2019.03.053 – ident: e_1_2_8_52_1 doi: 10.1039/tf9585401053 – ident: e_1_2_8_50_1 doi: 10.1016/j.nanoen.2019.01.017 – ident: e_1_2_8_158_1 doi: 10.1039/C9NR08102J – ident: e_1_2_8_176_1 doi: 10.1002/adma.202002584 – ident: e_1_2_8_211_1 doi: 10.1002/smll.202006730 – ident: e_1_2_8_114_1 doi: 10.1002/anie.201406848 – ident: e_1_2_8_236_1 doi: 10.1016/j.nanoen.2017.07.032 – ident: e_1_2_8_45_1 doi: 10.1002/adma.201505597 – ident: e_1_2_8_125_1 doi: 10.1016/j.apcatb.2020.119451 – ident: e_1_2_8_56_1 doi: 10.1146/annurev.physchem.53.100301.131630 – ident: e_1_2_8_46_1 doi: 10.1039/c3sc50205h – ident: e_1_2_8_285_1 doi: 10.1021/acs.nanolett.0c00845 – ident: e_1_2_8_26_1 doi: 10.1039/D0CS00013B – ident: e_1_2_8_28_1 doi: 10.1038/nchem.1574 – ident: e_1_2_8_72_1 doi: 10.1021/acs.nanolett.7b02518 – ident: e_1_2_8_293_1 doi: 10.1038/s41565-019-0550-7 – ident: e_1_2_8_13_1 doi: 10.1016/j.apcatb.2020.118597 – ident: e_1_2_8_33_1 doi: 10.1149/2.0271815jes – ident: e_1_2_8_192_1 doi: 10.1021/acssuschemeng.9b04219 – ident: e_1_2_8_40_1 doi: 10.1016/S0022-0728(02)00683-6 – ident: e_1_2_8_196_1 doi: 10.1016/j.electacta.2020.136417 – ident: e_1_2_8_131_1 doi: 10.1021/acsnano.5b02420 – ident: e_1_2_8_153_1 doi: 10.1021/jacs.0c06960 – ident: e_1_2_8_246_1 doi: 10.1021/acssuschemeng.8b06861 – ident: e_1_2_8_140_1 doi: 10.1002/cctc.201900341 – ident: e_1_2_8_247_1 doi: 10.1039/C8TA10985K – ident: e_1_2_8_216_1 doi: 10.1016/j.ijhydene.2018.11.084 – ident: e_1_2_8_39_1 doi: 10.1016/j.cattod.2012.04.059 – ident: e_1_2_8_85_1 doi: 10.1021/acsami.7b05290 – ident: e_1_2_8_276_1 doi: 10.1038/s41467-019-12997-7 – ident: e_1_2_8_14_1 doi: 10.1039/C9TA11945K – ident: e_1_2_8_182_1 doi: 10.1021/acsnano.9b07324 – ident: e_1_2_8_249_1 doi: 10.1016/j.jechem.2019.08.018 – ident: e_1_2_8_258_1 doi: 10.1002/smll.202100998 – ident: e_1_2_8_280_1 doi: 10.1088/1361-6528/aa9eb5 – ident: e_1_2_8_124_1 doi: 10.1039/C9EE00197B – ident: e_1_2_8_23_1 doi: 10.1002/adma.201807134 – ident: e_1_2_8_219_1 doi: 10.1039/C8TA07135G – ident: e_1_2_8_221_1 doi: 10.1039/D1TA03704H – ident: e_1_2_8_287_1 doi: 10.1039/C9TA07282A – ident: e_1_2_8_255_1 doi: 10.1016/j.nanoen.2021.106579 – ident: e_1_2_8_61_1 doi: 10.1016/S0360-0564(02)45013-4 – ident: e_1_2_8_199_1 doi: 10.1021/acsenergylett.0c00642 – ident: e_1_2_8_63_1 doi: 10.1021/ja00544a007 – ident: e_1_2_8_213_1 doi: 10.1039/D0EE02020F – ident: e_1_2_8_115_1 doi: 10.1021/ja0540019 – ident: e_1_2_8_42_1 doi: 10.1002/anie.201007987 – ident: e_1_2_8_193_1 doi: 10.1002/cssc.201802437 – ident: e_1_2_8_279_1 doi: 10.1021/acs.nanolett.7b00855 – ident: e_1_2_8_105_1 doi: 10.1016/j.cej.2020.126312 – ident: e_1_2_8_281_1 doi: 10.1039/C3CS60468C – ident: e_1_2_8_260_1 doi: 10.1016/j.apcatb.2021.120630 – ident: e_1_2_8_109_1 doi: 10.1039/C4EE00957F – ident: e_1_2_8_215_1 doi: 10.1021/jacs.8b09211 – ident: e_1_2_8_146_1 doi: 10.1002/advs.202002341 – ident: e_1_2_8_208_1 doi: 10.1016/j.cej.2020.125457 – ident: e_1_2_8_166_1 doi: 10.1002/anie.202013985 – ident: e_1_2_8_77_1 doi: 10.1002/admi.201601029 – ident: e_1_2_8_51_1 doi: 10.1039/C7TA00816C – ident: e_1_2_8_44_1 doi: 10.1016/j.pmatsci.2019.100618 – ident: e_1_2_8_157_1 doi: 10.1016/j.cclet.2019.02.009 – ident: e_1_2_8_181_1 doi: 10.1016/j.apcatb.2018.11.004 – ident: e_1_2_8_134_1 doi: 10.1002/aenm.201800789 – ident: e_1_2_8_217_1 doi: 10.1002/adfm.201707564 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201806296 – ident: e_1_2_8_118_1 doi: 10.1021/cm802123a – ident: e_1_2_8_165_1 doi: 10.1002/anie.202016199 – ident: e_1_2_8_184_1 doi: 10.1016/j.jechem.2020.06.073 – ident: e_1_2_8_228_1 doi: 10.1002/advs.202004516 – ident: e_1_2_8_133_1 doi: 10.1002/aenm.202002260 – ident: e_1_2_8_1_4 doi: 10.1038/s41560-018-0209-x – ident: e_1_2_8_31_1 doi: 10.1016/j.nanoen.2017.07.053 – ident: e_1_2_8_58_1 doi: 10.1016/S0022-0728(99)00291-0 – ident: e_1_2_8_22_1 doi: 10.1002/aenm.201900624 – ident: e_1_2_8_1_2 doi: 10.1021/jacs.5b11986 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201802880 – ident: e_1_2_8_67_1 doi: 10.1021/acs.jpcc.7b05270 – ident: e_1_2_8_282_1 doi: 10.1021/nl302389d – ident: e_1_2_8_73_1 doi: 10.1038/s41929-018-0063-z – ident: e_1_2_8_79_1 doi: 10.1039/C5CC08097E – ident: e_1_2_8_68_1 doi: 10.1126/science.aab3501 – ident: e_1_2_8_84_1 doi: 10.1021/acs.nanolett.9b01381 – ident: e_1_2_8_142_1 doi: 10.1002/smll.202103064 – ident: e_1_2_8_159_1 doi: 10.1002/smll.201804388 – ident: e_1_2_8_7_1 doi: 10.1016/j.apcatb.2019.118196 – ident: e_1_2_8_224_1 doi: 10.1002/anie.202106547 – ident: e_1_2_8_169_1 doi: 10.1039/C9TA06861A – ident: e_1_2_8_171_1 doi: 10.1039/D0TA00445F – ident: e_1_2_8_132_1 doi: 10.1002/adfm.202000561 – ident: e_1_2_8_244_1 doi: 10.1021/acsami.8b22052 – ident: e_1_2_8_97_1 doi: 10.1038/s41557-018-0035-6 – ident: e_1_2_8_237_1 doi: 10.1016/j.electacta.2019.135445 – ident: e_1_2_8_230_1 doi: 10.1038/s41467-019-12885-0 – ident: e_1_2_8_91_1 doi: 10.1016/j.apcatb.2019.04.028 – ident: e_1_2_8_94_1 doi: 10.1002/aenm.201802553 – ident: e_1_2_8_245_1 doi: 10.1039/C8NR04246B – ident: e_1_2_8_11_1 doi: 10.1038/s41467-021-21595-5 – ident: e_1_2_8_148_1 doi: 10.1002/smll.202103517 – ident: e_1_2_8_120_1 doi: 10.1021/jacs.7b01376 – ident: e_1_2_8_266_1 doi: 10.1016/j.apcatb.2021.120100 – ident: e_1_2_8_210_1 doi: 10.1002/smll.202103018 – ident: e_1_2_8_274_1 doi: 10.1021/acsami.9b15844 – ident: e_1_2_8_291_1 doi: 10.1021/acscatal.0c03692 – volume: 3 year: 2021 ident: e_1_2_8_163_1 publication-title: Adv. Mater. – ident: e_1_2_8_141_1 doi: 10.1021/acsnano.9b01583 – ident: e_1_2_8_183_1 doi: 10.1016/j.jechem.2020.07.037 – ident: e_1_2_8_74_1 doi: 10.1038/nmat1223 – ident: e_1_2_8_90_1 doi: 10.1021/acsami.9b20076 – ident: e_1_2_8_187_1 doi: 10.1016/j.apcatb.2021.120386 – ident: e_1_2_8_161_1 doi: 10.1016/j.nanoen.2019.06.045 – volume: 2 year: 2016 ident: e_1_2_8_30_1 publication-title: Sci. Adv. – ident: e_1_2_8_170_1 doi: 10.1021/jacs.9b09229 – ident: e_1_2_8_204_1 doi: 10.1016/j.apcatb.2019.01.034 – ident: e_1_2_8_54_1 doi: 10.1063/1.481119 – ident: e_1_2_8_154_1 doi: 10.1038/s41467-020-17199-0 – ident: e_1_2_8_16_1 doi: 10.1039/C9CS00869A – ident: e_1_2_8_162_1 doi: 10.1002/smll.202103798 – ident: e_1_2_8_10_1 doi: 10.1007/s12274-020-2881-y – ident: e_1_2_8_24_1 doi: 10.1002/adma.201807001 – ident: e_1_2_8_201_1 doi: 10.1016/j.nanoen.2020.104850 – ident: e_1_2_8_106_1 doi: 10.1016/j.nanoen.2019.104332 – ident: e_1_2_8_19_1 doi: 10.1021/acs.chemrev.9b00248 – ident: e_1_2_8_101_1 doi: 10.1038/s41467-020-17904-z – ident: e_1_2_8_248_1 doi: 10.1002/advs.201801829 – ident: e_1_2_8_262_1 doi: 10.1016/j.apcatb.2021.120455 – ident: e_1_2_8_152_1 doi: 10.1002/adma.201906384 – ident: e_1_2_8_168_1 doi: 10.1002/adma.202000231 – ident: e_1_2_8_205_1 doi: 10.1007/s12274-020-2807-8 – ident: e_1_2_8_257_1 doi: 10.1016/j.apcatb.2021.120660 – ident: e_1_2_8_129_1 doi: 10.1038/ncomms13216 – ident: e_1_2_8_3_1 doi: 10.1021/jacs.6b08096 – ident: e_1_2_8_272_1 doi: 10.1002/adfm.202002536 – volume: 1 start-page: 1395 year: 2021 ident: e_1_2_8_254_1 publication-title: Energy Environ. Sci. – ident: e_1_2_8_263_1 doi: 10.1016/j.apcatb.2021.119882 – ident: e_1_2_8_269_1 doi: 10.1016/j.nanoen.2021.106302 – ident: e_1_2_8_151_1 doi: 10.1016/j.jechem.2018.03.005 – ident: e_1_2_8_35_1 doi: 10.1021/jacs.8b13228 – ident: e_1_2_8_29_1 doi: 10.1038/ncomms6848 – ident: e_1_2_8_186_1 doi: 10.1016/j.apcatb.2021.120478 – ident: e_1_2_8_92_1 doi: 10.1002/advs.201900090 – ident: e_1_2_8_239_1 doi: 10.1021/acssuschemeng.9b04025 – ident: e_1_2_8_96_1 doi: 10.1039/C8TA11286J – ident: e_1_2_8_207_1 doi: 10.1039/C9NR07362K – ident: e_1_2_8_88_1 doi: 10.1016/j.jcis.2019.10.024 – ident: e_1_2_8_126_1 doi: 10.1021/acscatal.0c04975 – ident: e_1_2_8_83_1 doi: 10.1016/j.jcat.2019.05.031 – ident: e_1_2_8_98_1 doi: 10.1039/C5CS00151J – ident: e_1_2_8_175_1 doi: 10.1016/j.apcatb.2019.118255 – ident: e_1_2_8_268_1 doi: 10.1016/j.apcatb.2020.119738 – ident: e_1_2_8_173_1 doi: 10.1007/s12274-020-2952-0 – ident: e_1_2_8_232_1 doi: 10.1039/D1TA01868J – ident: e_1_2_8_128_1 doi: 10.1016/j.cej.2020.127270 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-021-25647-8 – ident: e_1_2_8_49_1 doi: 10.1038/nmat1752 – year: 2021 ident: e_1_2_8_144_1 publication-title: Adv. Mater. – ident: e_1_2_8_206_1 doi: 10.1021/acsami.0c07088 – ident: e_1_2_8_81_1 doi: 10.1002/smll.201805474 – ident: e_1_2_8_34_1 doi: 10.1038/s41560-020-00710-8 – ident: e_1_2_8_200_1 doi: 10.1002/anie.201812475 – ident: e_1_2_8_189_1 doi: 10.1016/j.apcatb.2021.120283 – ident: e_1_2_8_203_1 doi: 10.1002/smll.201905738 – ident: e_1_2_8_289_1 doi: 10.1038/s41560-020-0619-4 – ident: e_1_2_8_240_1 doi: 10.1039/D0TA02005B – ident: e_1_2_8_290_1 doi: 10.1002/smll.202003161 – ident: e_1_2_8_195_1 doi: 10.1039/C9CY02552A – ident: e_1_2_8_111_1 doi: 10.1002/anie.201408222 – ident: e_1_2_8_179_1 doi: 10.1016/j.nanoen.2020.104603 – ident: e_1_2_8_122_1 doi: 10.1016/j.nanoen.2020.105212 – ident: e_1_2_8_164_1 doi: 10.1002/adfm.202100883 – ident: e_1_2_8_127_1 doi: 10.1016/j.nanoen.2019.104335 – ident: e_1_2_8_180_1 doi: 10.1002/adma.201707301 – ident: e_1_2_8_277_1 doi: 10.1002/adma.201604464 – ident: e_1_2_8_139_1 doi: 10.1016/j.apcatb.2020.118627 – ident: e_1_2_8_250_1 doi: 10.1021/acscatal.1c02673 – ident: e_1_2_8_48_1 doi: 10.1021/jacs.5b01330 – ident: e_1_2_8_116_1 doi: 10.1039/C4TA04867A – ident: e_1_2_8_202_1 doi: 10.1016/j.cej.2020.128293 – ident: e_1_2_8_261_1 doi: 10.1016/j.apcatb.2021.120696 – ident: e_1_2_8_64_1 doi: 10.1038/s41467-019-11847-w – ident: e_1_2_8_60_1 doi: 10.1038/nchem.367 – ident: e_1_2_8_9_1 doi: 10.1002/smll.202002850 – ident: e_1_2_8_70_1 doi: 10.1002/anie.201804817 – ident: e_1_2_8_55_1 doi: 10.1038/376238a0 – ident: e_1_2_8_227_1 doi: 10.1039/D1TA06574B – ident: e_1_2_8_143_1 doi: 10.1021/jacs.9b12113 – ident: e_1_2_8_241_1 doi: 10.1002/smll.201603706 – ident: e_1_2_8_47_1 doi: 10.1021/acsnano.8b07700 – ident: e_1_2_8_234_1 doi: 10.1039/D1EE00106J – ident: e_1_2_8_178_1 doi: 10.1021/nl404444k – ident: e_1_2_8_82_1 doi: 10.1002/cnma.201600096 – ident: e_1_2_8_112_1 doi: 10.1002/aenm.201903891 – ident: e_1_2_8_6_1 doi: 10.1002/aenm.201803312 – ident: e_1_2_8_93_1 doi: 10.1016/j.jpowsour.2020.227998 – ident: e_1_2_8_89_1 doi: 10.1016/j.jcis.2020.02.090 – ident: e_1_2_8_36_1 doi: 10.1039/C4EE00440J – ident: e_1_2_8_66_1 doi: 10.1021/acs.chemmater.9b04377 – ident: e_1_2_8_218_1 doi: 10.1021/acsami.9b05670 – ident: e_1_2_8_273_1 doi: 10.1039/C9TA12714C – ident: e_1_2_8_113_1 doi: 10.1039/C6TA01328G – ident: e_1_2_8_57_1 doi: 10.1007/s11244-006-0004-y – ident: e_1_2_8_107_1 doi: 10.1002/aenm.201803970 – ident: e_1_2_8_59_1 doi: 10.1007/s10562-004-3434-9 – ident: e_1_2_8_264_1 doi: 10.1021/jacs.1c06006 – ident: e_1_2_8_242_1 doi: 10.1016/j.apcatb.2020.119394 |
| SSID | ssj0001537418 |
| Score | 2.6535814 |
| SecondaryResourceType | review_article |
| Snippet | The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil... The excessive dependence on fossil fuels contributes to the majority of CO 2 emissions, influencing on the climate change. One promising alternative to fossil... The excessive dependence on fossil fuels contributes to the majority of CO emissions, influencing on the climate change. One promising alternative to fossil... Abstract The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2200307 |
| SubjectTerms | Adsorption catalyst design Copyright Dependency theory Electrodes Electrolytes Energy Environmental impact extrinsic effects Hydrogen hydrogen evolution reaction intrinsic effects Principles Publishing Renewable resources Review Reviews Volcanoes Voltammetry water‐splitting technology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgOXQnkGCjISEnCImtiJHXNBXdiqp1XVgqjEIfIrpRJK2s12pf57xo43sOJ14JqMFcczk_k8nnwD8FIWvHJ5UaaV1CItGpmnlVIqpYVzWlNpcmlDswkxn1enp_IoJtz6WFa5_iaGD7XtjM-R71EuJNoLIpJ3F5ep7xrlT1djC42bsOWZyooJbE1n86PjH1mWknl6ljVbY0b3lF15lm5Kg3lvRKNA2v87pPlrweTPQDZEooM7__sOd2E7YlCyPxjNDtxw7T3YiV7ek9eRivrNffhyHHOF5EOo9CBdQ6bhByByeG0XHVofma2i9ZLZ0FInZISu-2VPEBCTz8pLnyDWDRXWb8k-Gc4jHsCng9nH94dpbMeQmhJxWGpEblCvxmhEhRjSmHG6zIwsqS0E507hTq9yBSqZCiWbXDkc1TDGLW98L2v2ECZt17rHQKhPYWomjLC6yJpSVkbLXFdaaEuZNQmka7XUJnKV-5YZ3-qBZZnWXo31qMYEXo3yFwNLxx8lp17Lo5Rn1w4XusVZHZ211s4WVjFDcfuIgSTXXHJBSypxf2y4zRLYXeu3ji6PjxiVm8CL8TY6qz-BUa3rrrxMSTPPb0QTeDSY1DgTViJyZRRHiw1j25jq5p32_GsgBMd5YVDjuGrBLP-xBDUCnhNWVfmTv7_GU7jtxwx1cbswWS6u3DO4ZVbL837xPHradxJgMUE priority: 102 providerName: ProQuest – databaseName: Wiley Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAClGegICMhAYeo8dvm1sJWPVUVBVGJQ-RXoBJK0Ga7Uv89YyebNgKEENd4nDj2jOfz2P4GoZeGSx0JF6U2TpW8MaTU1tqS8hido8YTE3KyCXV0pE9PzfGVW_wDP8QUcEuWkefrZODW9buXpKE2rBPdNqVZT6-jG4QwnZI3UH58GWURLNGzpAxzsLoumeZ8w9xY0d35K2aeKRP4_w51_np48iqozV7p4M7__89ddHtEpHhvUKFtdC2299D2aPM9fj0SU7-5j758GCOH-H0-94G7Bu_n60D48CIsO9BFvFiPuowXQ4KdHB-66Fc9BniMP9skfQLIN5-3fov38LA78QB9Olh8fHdYjskZSi8AlZVeEQ-j7L0DjAgOjvnoROWNoIErKaOFdZ-OHIacKmsaYiPUahiTQTYpszV7iLbaro2PEaYpoOmY8io4XjXCaO8McdopFygLvkDlZmBqPzKXpwQa3-uBc5nWqe_qqe8K9GqS_zFwdvxRcj-N8ySVuLbzg275tR5Nt3Yx8GCZp7CYBLdCnDRSUUENrJa9DFWBdjZaUo8TAHxCKgPTGwDoAr2YisF0036MbWN3nmQErRLbES3Qo0GpppYwATiWUaitZuo2a-q8pD37lunBoV3g4iT0Wla3v3RBDfDnhGlNnvyj_FN0Kz0cjs3toK3V8jw-Qzf9enXWL59nM_wJGg0yqw priority: 102 providerName: Wiley-Blackwell |
| Title | Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202200307 https://www.ncbi.nlm.nih.gov/pubmed/35435329 https://www.proquest.com/docview/2679531019 https://www.proquest.com/docview/2652031152 https://pubmed.ncbi.nlm.nih.gov/PMC9218766 https://doaj.org/article/bed4da3c21494671b69672529210c6d0 |
| Volume | 9 |
| WOSCitedRecordID | wos000783221300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access (Activated by CARLI) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdg48AFMT4zRmUkJOAQrbEdf3BbodN2WIk20Io4RP6KmITSqe0q7b_n2U6jVoB24WIp8UtivY_4Z-fl9xB6qxiXvmBlLpUROWtUkUutdU6Y98YQZQvlYrEJMZnI6VRVG6W-Qk5YogdOijs03jGnqSUA5SGoC8MVF6QkCtYqlru4WgfUs7GYSv8H00DLsmZpHJJD7VaBnZuQ6NZbs1Ak6_8bwvwzUXITwMYZ6PgxetRBR3yUhryH7vn2CdrrgnOB33cM0h-eoh_n3RYf_hwTNPCswaP43w4-uXXzGTgNHq86p8PjVAknbuTcLpYLDDgWX-ogfQEQNSZGf8RHOH1GeIa-HY-_fjrJuyoKuS0BPuVWFBbMYa0BMAczEbXelEOrSuKY4NxrWKBJz8A2RGjVFNrDVQ2l3PEmlKCmz9FOO2v9S4RJ2Hk0VFjhDBs2pZLWqMJII4wj1NkM5Wut1rajGA-VLn7ViRyZ1MEKdW-FDL3r5a8TucY_JUfBSL1UIMWOJ8BV6s5V6rtcJUMHaxPXXaTCI7hQ8B4CpJuhN303xFj4cKJbP7sJMiUZBloikqEXySP6kdASACclcLXY8pWtoW73tFc_I483jAvmIg5ai151hwpqwCkXVMpi_3_o4hV6GO6ckt4O0M5yfuNfowd2tbxazAfoPmEVtGIqB2h3NJ5U54MYYNCekS-xhf7d6vSs-g5Hl6eT379NKLs |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuQHkaCiwSCDhYtXdtrxcJoZamStQ2imgrijgY78NQCdklSYPyp_iNzK4fEPE69cDVno3Hm29mZ2fH3wA8FlGSmjCK_VRI7keFCP00z3OfRsZISYUKhXbNJvholB4fi_EKfGu_hbFlla1PdI5aV8rmyDdowgXiBSOSV6dffNs1yp6uti00aljsmsVX3LJNXw638f99QulO__D1wG-6Cvgqtj3lFQ8VqqeUxOAGPTNTRsaBEjHVEU8Sk-OGJTUR6kp5LoowNziqYCzRSWFbMjP83QuwGiHY0x6sjof743c_sjoxs3QwLTtkQDdyPbes4JQ6c1pa_VyTgN9Ftr8WaP4cOLuVb-fq_zZn1-BKE2OTzdoo1mDFlNdhrfFiU_Ksodp-fgPev2lyoWTbVbKQqiBb7gMnMljoSYXWRfrzxjpJv24Z5DJei-lsSjDgJ29zK32AsbyrIH9BNkl93nITjs7lJW9Br6xKcwcItSlaybjiWkZBEYtUSRHKVHKpKdPKA7-FQaYaLnbbEuRzVrNI08zCJutg48HTTv60ZiH5o-SWRVUnZdnD3YVq8jFrnFEmjY50zhTF7TEulKFMRMJpTAXu_1WiAw_WWzxljUvDR3Rg8uBRdxudkT1hyktTnVmZmAaWv4l6cLuGcKcJizEyZxRH8yVwL6m6fKc8-eQIz1EvXLQTnDVnBv-YggwDugOWpuHdv7_GQ7g0ONzfy_aGo917cNmOr2sA16E3m5yZ-3BRzWcn08mDxsoJfDhvI_kOyziM7Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXoDwDBRYJBBys2LO214uEUEsStSoKFQVRiYPxPgyVUFySNCh_jV_H7PoBEa9TD1zt2Xi9-eaxs-NvAB7IOM1sFCdBJpUI4lJGQVYURYCxtUqh1JE0vtmEGI-zw0O5vwbf2m9hXFllaxO9oTaVdjnyPqZCEl4oIumXTVnE_mD0_PhL4DpIuZPWtp1GDZE9u_xK27fZs90B_dcPEUfDNy92gqbDQKAT119ei0jTVLVWFOiQlebaqiTUMkETizS1BW1eMhvTvFEUsowKS6NKzlOTlq49M6ffPQNnRUxO2ZUN4qsf-Z2EO2KYlicyxH5hFo4fHNEr1oof9O0Cfhfj_lqq-XMI7X3g6NL_vHqX4WITebOtWlU2YM1OrsBGY9tm7HFDwP3kKrx_3WRI2cDXt7CqZNv-sye2szTTinSODReNzrJh3UjI58GWs_mM0TaAvSuc9AFF-L6u_CnbYvUpzDV4eyoveR3WJ9XE3gSGLnGruNDCqDgsE5lpJSOVKaEMcqN7ELSQyHXD0O4ahXzOa25pzB2E8g5CPXjUyR_X3CR_lNx2COukHKe4v1BNP-aNicqVNbEpuEbaNJP7jFQqU4EJSoxCnZqwB5sttvLG0NEjOmD14H53m0yUO3cqJrY6cTIJho7VCXtwo4ZzNxOeULzOkUaLFaCvTHX1zuTok6dBp3mRK09p1bxK_GMJcgrzDniWRbf-_hr34DxpRv5yd7x3Gy644XVh4Casz6cn9g6c04v50Wx616s7gw-nrSHfAeQqlCc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Better+Hydrogen+Evolution+Electrocatalysts+for+Water+Splitting%3A+A+Review&rft.jtitle=Advanced+science&rft.au=Fan+Liu&rft.au=Chengxiang+Shi&rft.au=Xiaolei+Guo&rft.au=Zexing+He&rft.date=2022-06-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=9&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202200307&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bed4da3c21494671b69672529210c6d0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |