A Recommender System Based on Multi-Criteria Aggregation

Recommender systems aim to support decision-makers by providing decision advice. We review briefly tools of Multi-Criteria Decision Analysis (MCDA), including aggregation operators, that could be the basis for a recommender system. Then we develop a multi-criteria recommender system, STROMa (SysTem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of decision support system technology Ročník 9; číslo 4; s. 1 - 15
Hlavní autori: Fomba, Soumana, Zarate, Pascale, Kilgour, Marc, Camilleri, Guy, Konate, Jacqueline, Tangara, Fana
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hershey IGI Global 01.10.2017
Predmet:
ISSN:1941-6296, 1941-630X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Recommender systems aim to support decision-makers by providing decision advice. We review briefly tools of Multi-Criteria Decision Analysis (MCDA), including aggregation operators, that could be the basis for a recommender system. Then we develop a multi-criteria recommender system, STROMa (SysTem of RecOmmendation Multi-criteria), to support decisions by aggregating measures of performance contained in a performance matrix. The system makes inferences about preferences using a partial order on criteria input by the decision-maker. To determine a total ordering of the alternatives, STROMa uses a multi-criteria aggregation operator, the Choquet integral of a fuzzy measure. Thus, recommendations are calculated using partial preferences provided by the decision maker and updated by the system. An integrated web platform is under development.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1941-6296
1941-630X
DOI:10.4018/IJDSST.2017100101