changing global carbon cycle: linking plant-soil carbon dynamics to global consequences

1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of ecology Ročník 97; číslo 5; s. 840 - 850
Hlavní autori: Stuart Chapin III, F, McFarland, Jack, David McGuire, A, Euskirchen, Eugenie S, Ruess, Roger W, Kielland, Knut
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2009
Blackwell Publishing
Blackwell Publishing Ltd
Blackwell
Predmet:
ISSN:0022-0477, 1365-2745
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract 1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO₂, land cover, species composition and/or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.
AbstractList Summary1.Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition).2.Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs.3.Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and-or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change.4.Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale.5.Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems.6.Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change.7.Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.
1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and/or N deposition. Inclusion of these processes in climate–C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem–climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.
Most current climate - carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO..., land cover, species composition and/or N deposition. Inclusion of these processes in climate - C cycle models would improve their capacity to simulate recent and future climatic change. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem - climate feedbacks provides a strong foundation for policies to mitigate climate change. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. (ProQuest: ... denotes formulae/symbols omitted.)
1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO₂, land cover, species composition and/or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.
Summary 1.  Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2.  Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell‐Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3.  Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and/or N deposition. Inclusion of these processes in climate–C cycle models would improve their capacity to simulate recent and future climatic change. 4.  Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below‐ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5.  Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6.  Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non‐steady‐state conditions. An integrated understanding of multiple ecosystem–climate feedbacks provides a strong foundation for policies to mitigate climate change. 7.  Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.
1.  Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2.  Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell‐Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3.  Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO 2 , land cover, species composition and/or N deposition. Inclusion of these processes in climate–C cycle models would improve their capacity to simulate recent and future climatic change. 4.  Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below‐ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5.  Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6.  Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non‐steady‐state conditions. An integrated understanding of multiple ecosystem–climate feedbacks provides a strong foundation for policies to mitigate climate change. 7.   Synthesis . Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.
Author Ruess, Roger W
Kielland, Knut
David McGuire, A
McFarland, Jack
Stuart Chapin III, F
Euskirchen, Eugenie S
Author_xml – sequence: 1
  fullname: Stuart Chapin III, F
– sequence: 2
  fullname: McFarland, Jack
– sequence: 3
  fullname: David McGuire, A
– sequence: 4
  fullname: Euskirchen, Eugenie S
– sequence: 5
  fullname: Ruess, Roger W
– sequence: 6
  fullname: Kielland, Knut
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21831230$$DView record in Pascal Francis
BookMark eNqNkV1rFDEYhYNUcFv9CeIg6N2M-c5EUJClflHwQouXIclk1qzZZE1msfvvzThlhd7Y3CRwnnPevJxzcBZTdAA0CHaonlfbDhHOWiwo6zCEsoOIYdndPACrk3AGVhBi3EIqxCNwXsoWQsgFgyvw3f7QcePjptmEZHRorM4mxcYebXCvm-Djz1ncBx2ntiR_AoZj1DtvSzOlkzXF4n4dXLSuPAYPRx2Ke3J7X4Dr95ff1h_bqy8fPq3fXbWWSSpbagQWmGtOGCfOMDJqaBEeLMFG4tFKqwdDB2pgP7KeyYFqI8kwYuy0M9CQC_Byyd3nVEeXSe18sS7U_7p0KIrWZCEl-y-IoZAcMVTB53fAbTrkWJeoTN_3gjFaoRe3kC5WhzHraH1R--x3Oh8VRj1BmMDK9Qtncyolu_GEIKjm_tRWzTWpuSY196f-9qduqvXtHav1k558ilPWPtwn4M0S8NsHd7z3YPX5cj2_qv_p4t-WKeV_uwnBKBa86s8WfdRJ6U2u-19_xRARiDjnUGLyB-4XyQc
CODEN JECOAB
CitedBy_id crossref_primary_10_3390_w15183246
crossref_primary_10_1111_ele_13193
crossref_primary_10_1016_j_foreco_2020_118592
crossref_primary_10_1126_science_aap7325
crossref_primary_10_1111_j_1365_2389_2010_01314_x
crossref_primary_10_1007_s10533_014_0063_2
crossref_primary_10_1007_s13595_016_0551_8
crossref_primary_10_1016_j_soilbio_2017_07_026
crossref_primary_10_1111_j_1365_2486_2011_02585_x
crossref_primary_10_1111_nph_12333
crossref_primary_10_1007_s00442_012_2584_5
crossref_primary_10_1016_j_pedsph_2024_01_006
crossref_primary_10_1002_eco_70033
crossref_primary_10_1016_j_geoderma_2016_01_041
crossref_primary_10_1016_j_scitotenv_2024_171439
crossref_primary_10_7717_peerj_13960
crossref_primary_10_1002_ldr_4819
crossref_primary_10_1016_j_scitotenv_2024_173632
crossref_primary_10_1890_10_1011_1
crossref_primary_10_1007_s11273_017_9585_4
crossref_primary_10_1016_j_catena_2022_106308
crossref_primary_10_1111_gcb_14511
crossref_primary_10_1111_gcb_13424
crossref_primary_10_1016_j_foreco_2016_06_007
crossref_primary_10_5194_bg_8_3457_2011
crossref_primary_10_1016_j_scitotenv_2019_135341
crossref_primary_10_1016_j_soilbio_2012_02_032
crossref_primary_10_1111_1365_2745_12247
crossref_primary_10_1111_1365_2745_12484
crossref_primary_10_1016_j_ppees_2016_08_001
crossref_primary_10_3389_ffgc_2025_1602557
crossref_primary_10_5194_soil_2_175_2016
crossref_primary_10_1890_ES14_00301_1
crossref_primary_10_5194_bg_12_457_2015
crossref_primary_10_1002_ecs2_2687
crossref_primary_10_1016_j_catena_2023_107389
crossref_primary_10_3389_ffgc_2023_1152142
crossref_primary_10_1007_s11442_017_1361_0
crossref_primary_10_1007_s11104_022_05441_1
crossref_primary_10_1016_j_cosust_2011_08_013
crossref_primary_10_1016_j_atmosenv_2019_05_026
crossref_primary_10_1016_j_agee_2012_06_010
crossref_primary_10_1002_ldr_2982
crossref_primary_10_1093_treephys_tps057
crossref_primary_10_1038_s41598_023_34753_0
crossref_primary_10_1016_j_agee_2011_04_003
crossref_primary_10_1007_s10725_024_01232_z
crossref_primary_10_1016_j_aiia_2024_12_004
crossref_primary_10_1111_gcb_15624
crossref_primary_10_1890_10_0631_1
crossref_primary_10_1007_s00374_012_0680_7
crossref_primary_10_1111_j_1365_2745_2009_01545_x
crossref_primary_10_3390_biology12070909
crossref_primary_10_1007_s11104_010_0298_1
crossref_primary_10_1007_s10530_020_02244_2
crossref_primary_10_1111_1365_2745_12383
crossref_primary_10_1111_2041_210X_12138
crossref_primary_10_1111_j_1365_2486_2010_02363_x
crossref_primary_10_1002_ecs2_3872
crossref_primary_10_1016_j_foreco_2017_09_023
crossref_primary_10_1038_srep22411
crossref_primary_10_1371_journal_pone_0057127
crossref_primary_10_3389_fmicb_2025_1608399
crossref_primary_10_1038_s41598_017_15296_7
crossref_primary_10_3390_f13020284
crossref_primary_10_1007_s13157_023_01722_2
crossref_primary_10_37501_soilsa_156097
crossref_primary_10_1007_s13157_016_0844_6
crossref_primary_10_1016_j_apsoil_2016_06_002
crossref_primary_10_1111_gcb_12549
crossref_primary_10_1007_s10021_019_00440_3
crossref_primary_10_1038_s41467_023_37164_x
crossref_primary_10_1016_j_soilbio_2015_10_006
crossref_primary_10_1111_1365_2745_12054
crossref_primary_10_3390_ijerph182111617
crossref_primary_10_1007_s00374_025_01931_3
crossref_primary_10_1007_s44378_024_00023_2
crossref_primary_10_1016_j_rama_2016_05_002
crossref_primary_10_1007_s11104_011_0853_4
crossref_primary_10_1002_ecs2_2655
crossref_primary_10_1007_s10533_020_00728_w
crossref_primary_10_3390_soilsystems5010007
crossref_primary_10_1002_ecs2_3849
crossref_primary_10_1016_j_soilbio_2021_108229
crossref_primary_10_1093_femsec_fiw169
crossref_primary_10_12677_HJSS_2019_72019
crossref_primary_10_1016_j_catena_2023_107188
crossref_primary_10_1016_j_scitotenv_2022_157111
crossref_primary_10_1016_j_agwat_2021_107404
crossref_primary_10_1080_13416979_2018_1483129
crossref_primary_10_5194_bg_16_2857_2019
crossref_primary_10_1007_s11104_019_04410_5
crossref_primary_10_1080_11956860_2020_1772613
crossref_primary_10_1016_j_scowo_2024_100038
crossref_primary_10_1371_journal_pclm_0000320
crossref_primary_10_1111_j_1365_2486_2012_02654_x
crossref_primary_10_1002_ece3_4215
crossref_primary_10_1016_j_still_2023_105898
crossref_primary_10_1111_2041_210X_12963
crossref_primary_10_1093_rpd_ncac146
crossref_primary_10_3390_agriculture14112065
crossref_primary_10_1111_nph_13447
crossref_primary_10_1371_journal_pone_0112810
crossref_primary_10_1111_ppl_13498
crossref_primary_10_1111_gcb_13887
crossref_primary_10_1111_1365_2745_12629
crossref_primary_10_1002_eco_1508
crossref_primary_10_1016_j_soilbio_2018_01_019
crossref_primary_10_1016_j_landusepol_2009_09_016
crossref_primary_10_1016_j_soilbio_2024_109315
crossref_primary_10_1002_ecy_2660
crossref_primary_10_1007_s00442_012_2576_5
crossref_primary_10_1016_j_soilbio_2023_108964
crossref_primary_10_1139_X10_074
crossref_primary_10_3390_d16080506
crossref_primary_10_1111_j_1461_0248_2012_01826_x
crossref_primary_10_1371_journal_pone_0096299
crossref_primary_10_1007_s10661_018_6887_9
crossref_primary_10_1002_2012GB004536
crossref_primary_10_1007_s10021_015_9900_y
crossref_primary_10_1002_ece3_710
crossref_primary_10_1002_2014JG002710
crossref_primary_10_1007_s42729_022_00794_z
crossref_primary_10_3389_fevo_2023_1178660
crossref_primary_10_5194_bg_10_3931_2013
crossref_primary_10_1016_j_soilbio_2014_03_006
crossref_primary_10_1002_ecm_1396
crossref_primary_10_1657_1938_4246_44_3_319
crossref_primary_10_3390_rs10071071
crossref_primary_10_1016_j_soilbio_2018_11_009
crossref_primary_10_1016_j_catena_2024_108102
crossref_primary_10_1016_j_jenvman_2024_120556
crossref_primary_10_1111_gcb_16659
crossref_primary_10_1002_ecs2_1507
crossref_primary_10_1139_X09_209
crossref_primary_10_1111_nph_12285
crossref_primary_10_1134_S1064229320020052
crossref_primary_10_3390_f9060322
crossref_primary_10_1016_j_soilbio_2018_11_018
crossref_primary_10_1111_geb_12172
crossref_primary_10_3389_fmicb_2023_1152187
crossref_primary_10_3389_fmicb_2023_1233815
crossref_primary_10_1016_j_rse_2016_04_010
crossref_primary_10_1007_s10661_019_7914_1
crossref_primary_10_3390_f8060220
crossref_primary_10_1016_j_chnaes_2015_07_002
crossref_primary_10_1111_j_1461_0248_2010_01482_x
crossref_primary_10_1016_j_geoderma_2024_117143
crossref_primary_10_1007_s11104_016_3006_y
crossref_primary_10_1007_s00442_011_2030_0
crossref_primary_10_1016_j_soilbio_2015_02_025
crossref_primary_10_1007_s11104_012_1350_0
crossref_primary_10_1007_s42532_022_00133_7
crossref_primary_10_1016_j_soilbio_2019_107520
crossref_primary_10_3390_agriculture12070923
crossref_primary_10_1093_treephys_tpr129
crossref_primary_10_1111_gcb_12079
crossref_primary_10_1111_1462_2920_13141
crossref_primary_10_1007_s11104_012_1482_2
crossref_primary_10_1007_s11104_021_05224_0
crossref_primary_10_1017_sus_2024_27
crossref_primary_10_1007_s11104_020_04718_7
crossref_primary_10_1016_j_srs_2025_100269
crossref_primary_10_3389_fenvs_2022_846045
crossref_primary_10_1016_j_soilbio_2015_02_032
crossref_primary_10_1002_ecs2_3472
crossref_primary_10_1080_15230430_2017_1420283
crossref_primary_10_1007_s10533_017_0415_9
crossref_primary_10_1038_ismej_2015_38
crossref_primary_10_1093_treephys_tpr134
crossref_primary_10_1371_journal_pone_0109063
crossref_primary_10_1007_s10533_010_9496_4
crossref_primary_10_1007_s11104_013_1701_5
crossref_primary_10_1016_j_resconrec_2017_02_019
crossref_primary_10_1890_ES12_00196_1
crossref_primary_10_1016_j_soilbio_2012_02_001
crossref_primary_10_1007_s11104_023_06030_6
crossref_primary_10_1093_treephys_tpaa051
crossref_primary_10_1038_s41558_025_02270_9
crossref_primary_10_1038_s41558_024_02147_3
crossref_primary_10_1016_j_agrformet_2025_110682
crossref_primary_10_11922_11_6035_csd_2023_0065_zh
crossref_primary_10_5194_bg_12_2737_2015
crossref_primary_10_1002_jid_3810
crossref_primary_10_1016_j_agee_2012_09_001
crossref_primary_10_1007_s10021_018_0245_1
crossref_primary_10_1038_s41586_024_07274_7
crossref_primary_10_1016_j_pedobi_2015_10_003
crossref_primary_10_1111_1365_2435_13208
crossref_primary_10_1111_gcb_12144
crossref_primary_10_5194_bg_10_7053_2013
crossref_primary_10_1186_s13021_015_0041_6
crossref_primary_10_3390_earth4030036
crossref_primary_10_3390_agriculture14101786
crossref_primary_10_1007_s10113_014_0739_0
crossref_primary_10_1007_s10533_011_9635_6
crossref_primary_10_1038_ismej_2015_254
crossref_primary_10_1007_s00468_021_02182_z
crossref_primary_10_3389_fmicb_2014_00720
crossref_primary_10_1111_gcb_12494
crossref_primary_10_1111_gcb_17268
crossref_primary_10_1002_ldr_4293
crossref_primary_10_1007_s11104_015_2750_8
crossref_primary_10_1016_j_catena_2019_104338
crossref_primary_10_1016_j_agee_2015_05_008
crossref_primary_10_1016_j_geoderma_2012_10_018
crossref_primary_10_1890_13_1942_1
crossref_primary_10_1016_j_agee_2017_01_033
crossref_primary_10_1111_gcb_12609
crossref_primary_10_1111_1365_2745_12910
crossref_primary_10_1016_j_scitotenv_2017_10_215
crossref_primary_10_1371_journal_pone_0149902
crossref_primary_10_1111_1752_1688_12881
crossref_primary_10_1111_j_1461_0248_2010_01465_x
crossref_primary_10_1007_s11676_019_01013_9
crossref_primary_10_1021_acs_est_5c03106
crossref_primary_10_1007_s11356_016_7474_7
crossref_primary_10_3389_fmicb_2015_00817
crossref_primary_10_1007_s00442_015_3427_y
crossref_primary_10_1080_00380768_2013_772495
crossref_primary_10_1016_j_foreco_2013_05_016
crossref_primary_10_1111_nph_14379
crossref_primary_10_1111_gcb_12277
crossref_primary_10_1007_s11104_013_1630_3
crossref_primary_10_1007_s11104_015_2664_5
crossref_primary_10_1016_j_geoderma_2022_116067
crossref_primary_10_1080_00380768_2011_589363
crossref_primary_10_1007_s00376_012_1252_3
crossref_primary_10_1088_1748_9326_8_3_034034
crossref_primary_10_1111_gcb_12392
crossref_primary_10_3389_fmicb_2014_00261
crossref_primary_10_1029_2020JG005666
Cites_doi 10.1023/A:1004417419288
10.1126/science.1074153
10.1016/j.soilbio.2005.08.020
10.1126/science.1155121
10.1073/pnas.0935903100
10.1111/j.1365-2486.2004.00866.x
10.1046/j.1365-2486.1998.00128.x
10.1111/j.1469-8137.2006.01712.x
10.1007/s10021-009-9237-5
10.1093/icb/8.1.19
10.1029/2005GL023646
10.1890/05-0755
10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2
10.1016/j.apsoil.2007.05.002
10.2307/2261479
10.1111/j.1365-2486.2008.01600.x
10.1111/j.1365-2486.2004.00816.x
10.1016/S0038-0717(00)00084-5
10.1007/s00442-007-0804-1
10.1029/2001GB001840
10.1007/s10021-002-0227-0
10.1007/978-3-642-80913-2_12
10.1038/nature03138
10.1016/j.soilbio.2009.03.001
10.1890/04-1254
10.1890/03-8002
10.1073/pnas.0608998104
10.1029/97GB00059
10.1093/aob/mcg041
10.1890/1051-0761(1997)007[0444:RONLET]2.0.CO;2
10.1073/pnas.0702737104
10.1007/s10533-004-1773-7
10.1016/j.soilbio.2004.04.023
10.1128/AEM.02188-07
10.1111/j.1469-8137.2005.01571.x
10.1890/070062
10.1146/annurev.energy.32.053006.141119
10.1029/2008GL037014
10.1007/978-0-387-76570-9_16
10.1175/2008JCLI2038.1
10.1111/j.1574-6941.2007.00337.x
10.1890/02-4032
10.1111/j.1461-0248.2008.01219.x
10.1111/j.1365-2486.2007.01420.x
10.1038/nature02887
10.1029/2006GL025677
10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
10.1007/s10021-007-9037-8
10.1007/s004420000615
10.1029/2006GB002868
10.1111/j.1365-2486.2004.00878.x
10.1890/02-5291
10.1146/annurev.es.26.110195.002353
10.1007/3-540-29449-X_1
10.1029/2008JG000728
10.1016/j.soilbio.2007.03.024
10.1111/j.1744-7909.2008.00750.x
10.1111/j.1365-2435.2008.01479.x
10.1038/nature06777
10.1007/s11104-006-9162-8
10.1126/science.277.5325.504
10.1111/j.1365-2486.2006.01210.x
10.1038/nature04486
10.1007/s00442-003-1419-9
10.1016/j.agee.2006.01.004
10.1890/080005
10.1007/s10021-005-0105-7
10.1007/s10021-002-0130-8
10.1038/35081058
10.1111/j.1365-2745.2008.01453.x
10.1029/2002GL016848
10.1016/j.agrformet.2007.09.006
10.1046/j.1365-2486.2001.00412.x
10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2
10.1111/j.1365-2486.2007.01450.x
10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2
10.1890/08-0806.1
10.1007/s004420100693
10.1029/2000GB001298
10.1016/S0038-0717(01)00175-4
10.1038/nature03226
10.1046/j.1469-8137.2002.00417.x
10.1007/BF00000940
10.1139/x06-217
10.1890/06-1847.1
10.1038/415381a
10.1111/j.1461-0248.2008.01164.x
10.1175/JCLI3800.1
10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2
10.1007/s00374-005-0049-2
10.1029/2008GB003250
10.1139/b04-123
10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
10.1111/j.1365-2486.2007.01415.x
10.1046/j.1365-2486.2003.00629.x
10.1023/A:1019637807021
10.1034/j.1600-0889.1992.t01-1-00001.x
10.1111/j.1365-2486.2007.01383.x
10.1073/pnas.0509478102
10.2136/sssaj1999.03615995006300020008x
10.1038/nature05040
10.1038/377199a0
10.2134/agronmonogr22
10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2
10.1890/03-4037
ContentType Journal Article
Copyright Copyright 2009 British Ecological Society
2009 The Authors. Journal compilation © 2009 British Ecological Society
2009 INIST-CNRS
Copyright Blackwell Publishing Ltd. Sep 2009
Copyright_xml – notice: Copyright 2009 British Ecological Society
– notice: 2009 The Authors. Journal compilation © 2009 British Ecological Society
– notice: 2009 INIST-CNRS
– notice: Copyright Blackwell Publishing Ltd. Sep 2009
DBID FBQ
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7TV
7U6
7S9
L.6
DOI 10.1111/j.1365-2745.2009.01529.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 850
ExternalDocumentID 1834946221
21831230
10_1111_j_1365_2745_2009_01529_x
JEC1529
27754276
US201301666092
Genre reviewArticle
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFDAS
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFXHP
AFZJQ
AGJLS
AGUYK
AIAGR
AIHXQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
CWIXF
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AAYCA
ABAWQ
ABPQH
ABSQW
ABXSQ
ACHIC
ACHJO
ADMHG
AEFGJ
AEYWJ
AFWVQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
OIG
AAYXX
ABUFD
AGHNM
CITATION
O8X
IQODW
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7TV
7U6
7S9
L.6
ID FETCH-LOGICAL-c5949-4b72726a63563eb53fa0c12dc32b92fc9cadb4d4b08f5859d4ab93df22eaeb0b3
IEDL.DBID DRFUL
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268928200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0477
IngestDate Thu Oct 02 10:29:32 EDT 2025
Tue Oct 07 09:53:09 EDT 2025
Mon Nov 10 03:12:40 EST 2025
Mon Jul 21 09:15:42 EDT 2025
Sat Nov 29 04:58:52 EST 2025
Tue Nov 18 22:06:20 EST 2025
Wed Jan 22 16:43:44 EST 2025
Thu Jul 03 21:12:02 EDT 2025
Wed Dec 27 19:21:32 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords heterotrophic respiration
Root
Heterotrophy
soil carbon
Net primary production
Decomposition
Vegetation dynamics
Net production
roots
Symbiont
Carbon
Dynamical climatology
Carbon cycle
Climate change
Soils
Ecosystem
Mycorrhiza
net ecosystem production
mycorrhizas
Respiration
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5949-4b72726a63563eb53fa0c12dc32b92fc9cadb4d4b08f5859d4ab93df22eaeb0b3
Notes http://dx.doi.org/10.1111/j.1365-2745.2009.01529.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2745.2009.01529.x
PQID 208887554
PQPubID 37508
PageCount 11
ParticipantIDs proquest_miscellaneous_46357995
proquest_miscellaneous_20796151
proquest_journals_208887554
pascalfrancis_primary_21831230
crossref_primary_10_1111_j_1365_2745_2009_01529_x
crossref_citationtrail_10_1111_j_1365_2745_2009_01529_x
wiley_primary_10_1111_j_1365_2745_2009_01529_x_JEC1529
jstor_primary_27754276
fao_agris_US201301666092
PublicationCentury 2000
PublicationDate September 2009
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: September 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell Publishing Ltd
– name: Blackwell
References 1995; 31
2007; 104
1968; 8
2002; 154
2006; 33
2006; 38
2002; 12
1975
1995; 377
2009; 114
1999; 207
1997; 7
2009; 12
2009; 97
1995; 26
2005; 102
2004; 36
2005; 73
2006; 440
2008; 21
2008; 22
1982
2007; 61
2009; 19
2001; 51
2001; 411
2006; 169
2006; 443
2007; 17
2002; 5
2002; 415
2005; 86
2007; 290
2008; 50
2006; 115
2007; 10
2003; 30
2007; 13
2004; 431
2006; 42
2002; 242
2007; 154
2000; 81
1996; 84
2007; 88
1998; 4
2003; 100
2005; 11
2007; 39
2009; 41
2000; 50
2003; 17
2008; 6
2008; 148
2008; 74
2007; 32
1992; 44B
2007; 37
2004; 74
1997; 227
2004; 138
1997; 94
2003; 91
1997; 11
2001
2003; 6
2003; 9
2005; 32
2001; 15
2007; 21
2003; 84
2009; 23
2004; 85
2004; 82
2006; 12
2005; 433
2002; 34
2006; 9
2002; 298
2008; 14
2008
2007
2006; 19
2006
2005
2008; 11
1999; 63
2008; 320
2003; 74
2001; 126
2001; 128
2001; 127
2004; 10
2009; 36
2001; 7
2006; 87
2000; 32
2004; 14
2008; 452
1998; 35
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
Blagodatskaya E.V. (e_1_2_7_6_1) 1998; 35
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
IPCC (e_1_2_7_51_1) 2007
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
Prentice I.C. (e_1_2_7_81_1) 2001
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
Callaghan T.V. (e_1_2_7_14_1) 2005
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 13
  start-page: 2425
  year: 2007
  end-page: 2438
  article-title: Energy feedbacks to the climate system due to reduced high latitude snow cover during 20th century warming
  publication-title: Global Change Biology
– volume: 443
  start-page: 71
  year: 2006
  end-page: 75
  article-title: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
  publication-title: Nature
– volume: 100
  start-page: 5852
  year: 2003
  end-page: 5857
  article-title: Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 30
  start-page: 1414
  year: 2003
  article-title: Factors controlling large scale variations in methane emissions from wetlands
  publication-title: Geophysical Research Letters
– volume: 39
  start-page: 2103
  year: 2007
  end-page: 2110
  article-title: Rhizospheric influence on soil respiration and decomposition in a temperate Norway spruce stand
  publication-title: Soil Biology and Biochemistry
– volume: 73
  start-page: 555
  year: 2005
  end-page: 566
  article-title: Implications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco River, Venezuela
  publication-title: Biogeochemistry
– volume: 12
  start-page: 489
  year: 2009
  end-page: 502
  article-title: Disease‐mediated declines in N‐fixation inputs by to early‐successional floodplains in interior and south‐central Alaska
  publication-title: Ecosystems
– volume: 433
  start-page: 298
  year: 2005
  end-page: 301
  article-title: Long‐term sensitivity of soil carbon turnover to warming
  publication-title: Nature
– volume: 86
  start-page: 320
  year: 2005
  end-page: 326
  article-title: Litter quality and the temperature sensitivity of decomposition
  publication-title: Ecology
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  article-title: Human alteration of the global nitrogen cycle: Sources and consequences
  publication-title: Ecological Applications
– volume: 9
  start-page: 479
  year: 2003
  end-page: 492
  article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future
  publication-title: Global Change Biology
– volume: 14
  start-page: 460
  year: 2004
  end-page: 475
  article-title: Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine
  publication-title: Ecological Applications
– volume: 50
  start-page: 871
  year: 2000
  end-page: 882
  article-title: Global warming and terrestrial ecosystems: A conceptual framework for analysis
  publication-title: BioScience
– volume: 9
  start-page: 1041
  year: 2006
  end-page: 1050
  article-title: Reconciling carbon‐cycle concepts, terminology, and methods
  publication-title: Ecosystems
– volume: 97
  start-page: 48
  year: 2009
  end-page: 56
  article-title: Linkages between plant functional composition, fine root processes and potential soil mineralization rates
  publication-title: Journal of Ecology
– volume: 37
  start-page: 93
  year: 2007
  end-page: 102
  article-title: Biomass partitioning in red pine ( ) along a chronosequence in the Upper Peninsula of Michigan
  publication-title: Canadian Journal of Forest Research
– volume: 154
  start-page: 791
  year: 2002
  end-page: 795
  article-title: Extramatrical ectomycorrhizal mycelium contributes one‐third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil
  publication-title: New Phytologist
– volume: 11
  start-page: 167
  year: 2005
  end-page: 181
  article-title: The response of heterotrophic CO flux to soil warming
  publication-title: Global Change Biology
– start-page: 341
  year: 2008
  end-page: 360
– volume: 94
  start-page: 13730
  year: 1997
  end-page: 13734
  article-title: From tropics to tundra: Global convergence in plant functioning
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 104
  start-page: 6550
  year: 2007
  end-page: 6555
  article-title: Combined climate and carbon‐cycle effects of large‐scale deforestation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 128
  start-page: 305
  year: 2001
  end-page: 316
  article-title: The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems
  publication-title: Oecologia
– volume: 17
  start-page: 1001
  issue: 1
  year: 2003
  article-title: The isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling
  publication-title: Global Biogeochemical Cycles
– volume: 19
  start-page: 1022
  year: 2009
  end-page: 1043
  article-title: Changes in vegetation in northern Alaska under scenarios of climate change, 2003‐2100: Implications for climate feedbacks
  publication-title: Ecological Applications
– volume: 242
  start-page: 83
  year: 2002
  end-page: 92
  article-title: Litter quality in a north European transect vs. carbon storage potential
  publication-title: Plant and Soil
– volume: 81
  start-page: 1867
  year: 2000
  end-page: 1877
  article-title: Nutrient regulation of decomposition in Hawaiian montane forests: Do the same nutrients limit production and decomposition?
  publication-title: Ecology
– volume: 38
  start-page: 425
  year: 2006
  end-page: 448
  article-title: Sources of CO efflux from soil and review of partitioning methods
  publication-title: Soil Biology & Biochemistry
– volume: 32
  start-page: 1
  year: 2007
  end-page: 29
  article-title: Feedbacks of terrestrial ecosystems to climate change
  publication-title: Annual Review of Environment and Resources
– volume: 82
  start-page: 1243
  year: 2004
  end-page: 1263
  article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes
  publication-title: Canadian Journal of Botany
– volume: 22
  start-page: 941
  year: 2008
  end-page: 954
  article-title: Below‐ground carbon flux and partitioning: Global patterns and response to temperature
  publication-title: Functional Ecology
– volume: 10
  start-page: 1756
  year: 2004
  end-page: 1766
  article-title: A global relationship between the heterotrophic and autotrophic components of soil respiration?
  publication-title: Global Change Biology
– volume: 11
  start-page: 173
  year: 1997
  end-page: 189
  article-title: Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration
  publication-title: Global Biogeochemical Cycles
– volume: 26
  start-page: 473
  year: 1995
  end-page: 503
  article-title: The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide
  publication-title: Annual Review of Ecology and Systematics
– volume: 12
  start-page: 937
  year: 2002
  end-page: 947
  article-title: Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems
  publication-title: Ecological Applications
– volume: 74
  start-page: 393
  year: 2004
  end-page: 414
  article-title: An experimental test of the causes of forest growth decline with stand age
  publication-title: Ecological Monographs
– volume: 51
  start-page: 180
  year: 2001
  end-page: 198
  article-title: Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects and management strategies
  publication-title: BioScience
– year: 2007
– volume: 6
  start-page: 524
  year: 2003
  end-page: 539
  article-title: Regime shifts in the Sahara and Sahel: Interactions between ecological and climatic systems in Northern Africa
  publication-title: Ecosystems
– volume: 36
  start-page: L05501
  year: 2009
  article-title: Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions
  publication-title: Geophysical Research Letters
– volume: 34
  start-page: 209
  year: 2002
  end-page: 219
  article-title: Soil amino acid turnover dominates the nitrogen flux in permafrost‐dominated taiga forest soils
  publication-title: Soil Biology and Biochemistry
– volume: 6
  start-page: 313
  year: 2008
  end-page: 320
  article-title: Changing feedbacks in the earth‐climate system
  publication-title: Frontiers in Ecology and the Environment
– volume: 11
  start-page: 516
  year: 2008
  end-page: 531
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecology Letters
– volume: 207
  start-page: 77
  year: 1999
  end-page: 86
  article-title: Predominance of ecophysiological over environmental controls over CO flux in a Minnesota grassland
  publication-title: Plant and Soil
– volume: 227
  start-page: 504
  year: 1997
  end-page: 509
  article-title: Agricultural intensification and ecosystem properties
  publication-title: Science
– volume: 148
  start-page: 135
  year: 2008
  end-page: 143
  article-title: Soil respiration fluxes in relation to photosynthetic activity in broad‐leaf and needle‐leaf forest stands
  publication-title: Agricultural and Forest Meteorology
– volume: 5
  start-page: 487
  year: 2002
  end-page: 499
  article-title: Total belowground carbon allocation in a fast‐growing plantation estimated using a carbon balance approach
  publication-title: Ecosystems
– volume: 415
  start-page: 381
  year: 2002
  end-page: 382
  article-title: Nitrogen cycle: Natural organic tendency
  publication-title: Nature
– volume: 298
  start-page: 2173
  year: 2002
  end-page: 2176
  article-title: Soil warming and carbon‐cycle feedbacks to the climate system
  publication-title: Science
– volume: 35
  start-page: 955
  year: 1998
  end-page: 963
  article-title: Comparison of fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techiques
  publication-title: Soil Biology and Biochemistry
– volume: 21
  year: 2007
  article-title: Inclusion of carbon‐nitrogen feedback fundamentally changes response of land carbon model to CO fertilization and climate variability
  publication-title: Global Biogeochemical Cycles
– volume: 87
  start-page: 563
  year: 2006
  end-page: 569
  article-title: Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies
  publication-title: Ecology
– volume: 433
  start-page: 57
  year: 2005
  end-page: 59
  article-title: Similar response of labile and resistant soil organic matter pools to changes in temperature
  publication-title: Nature
– volume: 114
  start-page: G02006
  year: 2009
  article-title: Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem
  publication-title: Journal of Geophysical Research- Biogeosciences
– volume: 61
  start-page: 295
  year: 2007
  end-page: 304
  article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure
  publication-title: Fems Microbiology Ecology
– volume: 8
  start-page: 19
  year: 1968
  end-page: 30
  article-title: Primary production in terrestrial communities
  publication-title: American Zoologist
– volume: 14
  start-page: 1503
  year: 2008
  end-page: 1516
  article-title: Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation
  publication-title: Global Change Biology
– volume: 21
  start-page: 3776
  year: 2008
  end-page: 3796
  article-title: Consequences of considering carbon/nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle
  publication-title: Journal of Climate
– volume: 13
  start-page: 2018
  year: 2007
  end-page: 2035
  article-title: Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture
  publication-title: Global Change Biology
– volume: 37
  start-page: 95
  year: 2007
  end-page: 105
  article-title: Priming effects in a Chernozem induced by glucose and N in relation to microbial growth strategies
  publication-title: Applied Soil Ecology
– volume: 88
  start-page: 2105
  year: 2007
  end-page: 2113
  article-title: Microbial nitrogen limitation increases decomposition
  publication-title: Ecology
– volume: 74
  start-page: 738
  year: 2008
  end-page: 744
  article-title: Root exudates regulate soil fungal community composition and diversty
  publication-title: Applied and Environmental Microbiology
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 102
  start-page: 18052
  year: 2005
  end-page: 18056
  article-title: Forest response to elevated CO is conserved across a broad range of productivity
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 91
  start-page: 455
  year: 2003
  end-page: 463
  article-title: Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change
  publication-title: Annals of Botany
– volume: 115
  start-page: 174
  year: 2006
  end-page: 182
  article-title: Changes in intrasystem N cycling from N ‐fixing shrub encroachment in grassland: Multiple positive feedbacks
  publication-title: Agriculture, Ecosystems and Environment
– volume: 17
  start-page: 203
  year: 2007
  end-page: 212
  article-title: Net emissions of CH and CO in Alaska: Implications for the region’s greenhouse gas budget
  publication-title: Ecological Applications
– volume: 154
  start-page: 327
  year: 2007
  end-page: 338
  article-title: The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem
  publication-title: Oecologia
– volume: 19
  start-page: 3337
  year: 2006
  end-page: 3353
  article-title: Climate‐carbon cycle feedback analysis: Results from the C MIP model intercomparison
  publication-title: Journal of Climate
– volume: 15
  start-page: 183
  year: 2001
  end-page: 206
  article-title: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO , climate and land‐use effects with four process‐based ecosystem models
  publication-title: Global Biogeochemical Cycles
– volume: 33
  start-page: L13703
  year: 2006
  article-title: Recent changes in the fire regime across the North American boreal region: Spatial and temporal patterns of burning across Canada and Alaska
  publication-title: Geophysical Research Letters
– volume: 431
  start-page: 440
  year: 2004
  end-page: 443
  article-title: Ecosystem carbon storage in arctic tundra reduced by long‐term nutrient fertilization
  publication-title: Nature
– volume: 23
  year: 2009
  article-title: Soil organic nitrogen mineralization across a global latitudinal gradient
  publication-title: Global Biogeochemical Cycles
– volume: 138
  start-page: 275
  year: 2004
  end-page: 284
  article-title: Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak‐woodland plant communities
  publication-title: Oecologia
– volume: 84
  start-page: 573
  year: 1996
  end-page: 582
  article-title: An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types
  publication-title: Journal of Ecology
– volume: 6
  start-page: 439
  year: 2008
  end-page: 447
  article-title: Putting people on the map: Anthropogenic biomes of the world
  publication-title: Frontiers in Ecology and the Environment
– year: 1982
– volume: 4
  start-page: 217
  year: 1998
  end-page: 227
  article-title: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest
  publication-title: Global Change Biology
– volume: 377
  start-page: 199
  year: 1995
  end-page: 200
  article-title: New cog in the nitrogen cycle
  publication-title: Nature
– volume: 169
  start-page: 27
  year: 2006
  end-page: 34
  article-title: Plants actively control nitrogen cycling: Uncorking the microbial bottleneck
  publication-title: New Phytologist
– start-page: 243
  year: 2005
  end-page: 352
– volume: 10
  start-page: 1
  year: 2004
  end-page: 26
  article-title: Carbon cycling and storage in world forests: Biome patterns related to forest age
  publication-title: Global Change Biology
– volume: 85
  start-page: 591
  year: 2004
  end-page: 602
  article-title: Nitrogen mineralization: Challenges of a changing paradigm
  publication-title: Ecology
– volume: 127
  start-page: 153
  year: 2001
  end-page: 165
  article-title: Elevated CO , litter chemistry, and decomposition: A synthesis
  publication-title: Oecologia
– volume: 50
  start-page: 1467
  year: 2008
  end-page: 1483
  article-title: Adjustment of forest ecosystem root respiration as temperature warms
  publication-title: Journal of Integrative Plant Biology
– volume: 104
  start-page: 10288
  year: 2007
  end-page: 10293
  article-title: Contributions to accelerating atmospheric CO growth from economic activity, carbon intensity, and efficiency of natural sinks
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 126
  start-page: 543
  year: 2001
  end-page: 562
  article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming
  publication-title: Oecologia
– volume: 63
  start-page: 307
  year: 1999
  end-page: 319
  article-title: Statistical analysis of published carbon‐13 CPMAS NMR spectra of soil organic matter
  publication-title: Soil Science Society of America Journal
– volume: 74
  start-page: 643
  year: 2003
  end-page: 652
  article-title: Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska
  publication-title: Ecological Monographs
– volume: 84
  start-page: 1165
  year: 2003
  end-page: 1170
  article-title: Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation
  publication-title: Ecology
– volume: 411
  start-page: 789
  year: 2001
  end-page: 792
  article-title: Large‐scale forest girdling shows that current photosynthesis drives soil respiration
  publication-title: Nature
– volume: 13
  start-page: 1786
  year: 2007
  end-page: 1797
  article-title: Forest soil CO flux: Uncovering the contribution and environmental responses of ectomycorrhizas
  publication-title: Global Change Biology
– volume: 290
  start-page: 293
  year: 2007
  end-page: 305
  article-title: Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature
  publication-title: Plant and Soil
– start-page: 237
  year: 1975
  end-page: 263
– volume: 12
  start-page: 1733
  year: 2006
  end-page: 1747
  article-title: Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna
  publication-title: Global Change Biology
– volume: 32
  year: 2005
  article-title: Observed and predicted responses of plant growth to climate across Canada
  publication-title: Geophysical Research Letters
– volume: 10
  start-page: 360
  year: 2007
  end-page: 368
  article-title: Rapid organic nitrogen cycling in taiga forest ecosystems
  publication-title: Ecosystems
– start-page: 183
  year: 2001
  end-page: 237
– start-page: 1
  year: 2006
  end-page: 22
– volume: 452
  start-page: 987
  year: 2008
  end-page: 990
  article-title: Mountain pine beetle and forest carbon feedback to climate change
  publication-title: Nature
– volume: 13
  start-page: 2089
  year: 2007
  end-page: 2109
  article-title: Carbon allocation in forest ecosystems
  publication-title: Global Change Biology
– volume: 42
  start-page: 542
  year: 2006
  end-page: 549
  article-title: Soil microbial biomass activation by trace amounts of readily available substrate
  publication-title: Biology and Fertility of Soils
– volume: 44B
  start-page: 81
  year: 1992
  end-page: 99
  article-title: The global carbon dioxide flux in soil respiration and its relationship to climate
  publication-title: Tellus
– volume: 31
  start-page: 85
  year: 1995
  end-page: 98
  article-title: Landscape patterns of free amino acids in arctic tundra soils
  publication-title: Biogeochemistry
– volume: 440
  start-page: 922
  year: 2006
  end-page: 925
  article-title: Nitrogen limitation constrains sustainability of ecosystem response to CO
  publication-title: Nature
– volume: 7
  start-page: 269
  year: 2001
  end-page: 278
  article-title: Productivity overshadows temperature in determining soil and ecosystem respiration across European forests
  publication-title: Global Change Biology
– volume: 36
  start-page: 1443
  year: 2004
  end-page: 1451
  article-title: Microbial community response to nitrogen deposition in northern forest ecosystems
  publication-title: Soil Biology and Biochemistry
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  article-title: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology and Biochemistry
– volume: 41
  start-page: 1210
  year: 2009
  end-page: 1220
  article-title: Soil amino acid composition across a boreal forest successional sequence
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_7_26_1
  doi: 10.1023/A:1004417419288
– ident: e_1_2_7_75_1
  doi: 10.1126/science.1074153
– ident: e_1_2_7_61_1
  doi: 10.1016/j.soilbio.2005.08.020
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1155121
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.0935903100
– ident: e_1_2_7_80_1
  doi: 10.1111/j.1365-2486.2004.00866.x
– ident: e_1_2_7_29_1
  doi: 10.1046/j.1365-2486.1998.00128.x
– ident: e_1_2_7_85_1
  doi: 10.1111/j.1469-8137.2006.01712.x
– ident: e_1_2_7_88_1
  doi: 10.1007/s10021-009-9237-5
– ident: e_1_2_7_107_1
  doi: 10.1093/icb/8.1.19
– ident: e_1_2_7_12_1
  doi: 10.1029/2005GL023646
– ident: e_1_2_7_46_1
  doi: 10.1890/05-0755
– ident: e_1_2_7_47_1
  doi: 10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2
– ident: e_1_2_7_7_1
  doi: 10.1016/j.apsoil.2007.05.002
– volume-title: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_7_51_1
– ident: e_1_2_7_25_1
  doi: 10.2307/2261479
– ident: e_1_2_7_101_1
  doi: 10.1111/j.1365-2486.2008.01600.x
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2486.2004.00816.x
– ident: e_1_2_7_62_1
  doi: 10.1016/S0038-0717(00)00084-5
– start-page: 183
  volume-title: Climate Change 2001: The Scientific Basis
  year: 2001
  ident: e_1_2_7_81_1
– ident: e_1_2_7_105_1
  doi: 10.1007/s00442-007-0804-1
– ident: e_1_2_7_93_1
  doi: 10.1029/2001GB001840
– ident: e_1_2_7_40_1
  doi: 10.1007/s10021-002-0227-0
– ident: e_1_2_7_64_1
  doi: 10.1007/978-3-642-80913-2_12
– ident: e_1_2_7_37_1
  doi: 10.1038/nature03138
– ident: e_1_2_7_106_1
  doi: 10.1016/j.soilbio.2009.03.001
– ident: e_1_2_7_39_1
  doi: 10.1890/04-1254
– ident: e_1_2_7_91_1
  doi: 10.1890/03-8002
– ident: e_1_2_7_3_1
  doi: 10.1073/pnas.0608998104
– ident: e_1_2_7_73_1
  doi: 10.1029/97GB00059
– ident: e_1_2_7_18_1
  doi: 10.1093/aob/mcg041
– ident: e_1_2_7_89_1
  doi: 10.1890/1051-0761(1997)007[0444:RONLET]2.0.CO;2
– ident: e_1_2_7_15_1
  doi: 10.1073/pnas.0702737104
– ident: e_1_2_7_16_1
  doi: 10.1007/s10533-004-1773-7
– ident: e_1_2_7_103_1
  doi: 10.1016/j.soilbio.2004.04.023
– ident: e_1_2_7_11_1
  doi: 10.1128/AEM.02188-07
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1469-8137.2005.01571.x
– ident: e_1_2_7_34_1
  doi: 10.1890/070062
– ident: e_1_2_7_38_1
  doi: 10.1146/annurev.energy.32.053006.141119
– ident: e_1_2_7_108_1
  doi: 10.1029/2008GL037014
– ident: e_1_2_7_23_1
  doi: 10.1007/978-0-387-76570-9_16
– ident: e_1_2_7_95_1
  doi: 10.1175/2008JCLI2038.1
– ident: e_1_2_7_99_1
  doi: 10.1111/j.1574-6941.2007.00337.x
– ident: e_1_2_7_87_1
  doi: 10.1890/02-4032
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1365-2486.2007.01420.x
– ident: e_1_2_7_69_1
  doi: 10.1038/nature02887
– ident: e_1_2_7_55_1
  doi: 10.1029/2006GL025677
– ident: e_1_2_7_31_1
  doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
– ident: e_1_2_7_57_1
  doi: 10.1007/s10021-007-9037-8
– ident: e_1_2_7_78_1
  doi: 10.1007/s004420000615
– ident: e_1_2_7_98_1
  doi: 10.1029/2006GB002868
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2486.2004.00878.x
– start-page: 243
  volume-title: Arctic Climate Impact Assessment
  year: 2005
  ident: e_1_2_7_14_1
– ident: e_1_2_7_67_1
  doi: 10.1890/02-5291
– ident: e_1_2_7_72_1
  doi: 10.1146/annurev.es.26.110195.002353
– ident: e_1_2_7_97_1
  doi: 10.1007/3-540-29449-X_1
– ident: e_1_2_7_44_1
  doi: 10.1029/2008JG000728
– ident: e_1_2_7_32_1
  doi: 10.1016/j.soilbio.2007.03.024
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1744-7909.2008.00750.x
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1365-2435.2008.01479.x
– ident: e_1_2_7_60_1
  doi: 10.1038/nature06777
– ident: e_1_2_7_63_1
  doi: 10.1007/s11104-006-9162-8
– ident: e_1_2_7_71_1
  doi: 10.1126/science.277.5325.504
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1365-2486.2006.01210.x
– ident: e_1_2_7_86_1
  doi: 10.1038/nature04486
– ident: e_1_2_7_102_1
  doi: 10.1007/s00442-003-1419-9
– ident: e_1_2_7_2_1
  doi: 10.1016/j.agee.2006.01.004
– ident: e_1_2_7_20_1
  doi: 10.1890/080005
– volume: 35
  start-page: 955
  year: 1998
  ident: e_1_2_7_6_1
  article-title: Comparison of fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techiques
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_7_19_1
  doi: 10.1007/s10021-005-0105-7
– ident: e_1_2_7_43_1
  doi: 10.1007/s10021-002-0130-8
– ident: e_1_2_7_49_1
  doi: 10.1038/35081058
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2745.2008.01453.x
– ident: e_1_2_7_22_1
  doi: 10.1029/2002GL016848
– ident: e_1_2_7_77_1
  doi: 10.1016/j.agrformet.2007.09.006
– ident: e_1_2_7_52_1
  doi: 10.1046/j.1365-2486.2001.00412.x
– ident: e_1_2_7_83_1
  doi: 10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1365-2486.2007.01450.x
– ident: e_1_2_7_110_1
  doi: 10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2
– ident: e_1_2_7_36_1
  doi: 10.1890/08-0806.1
– ident: e_1_2_7_65_1
  doi: 10.1007/s004420100693
– ident: e_1_2_7_74_1
  doi: 10.1029/2000GB001298
– ident: e_1_2_7_53_1
  doi: 10.1016/S0038-0717(01)00175-4
– ident: e_1_2_7_59_1
  doi: 10.1038/nature03226
– ident: e_1_2_7_48_1
  doi: 10.1046/j.1469-8137.2002.00417.x
– ident: e_1_2_7_56_1
  doi: 10.1007/BF00000940
– ident: e_1_2_7_58_1
  doi: 10.1139/x06-217
– ident: e_1_2_7_27_1
  doi: 10.1890/06-1847.1
– ident: e_1_2_7_10_1
  doi: 10.1038/415381a
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1461-0248.2008.01164.x
– ident: e_1_2_7_42_1
  doi: 10.1175/JCLI3800.1
– ident: e_1_2_7_94_1
  doi: 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2
– ident: e_1_2_7_76_1
  doi: 10.1007/s00374-005-0049-2
– ident: e_1_2_7_54_1
  doi: 10.1029/2008GB003250
– ident: e_1_2_7_84_1
  doi: 10.1139/b04-123
– ident: e_1_2_7_100_1
  doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
– ident: e_1_2_7_109_1
  doi: 10.1111/j.1365-2486.2007.01415.x
– ident: e_1_2_7_4_1
  doi: 10.1046/j.1365-2486.2003.00629.x
– ident: e_1_2_7_5_1
  doi: 10.1023/A:1019637807021
– ident: e_1_2_7_82_1
  doi: 10.1034/j.1600-0889.1992.t01-1-00001.x
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1365-2486.2007.01383.x
– ident: e_1_2_7_79_1
  doi: 10.1073/pnas.0509478102
– ident: e_1_2_7_70_1
  doi: 10.2136/sssaj1999.03615995006300020008x
– ident: e_1_2_7_104_1
  doi: 10.1038/nature05040
– ident: e_1_2_7_17_1
  doi: 10.1038/377199a0
– ident: e_1_2_7_96_1
  doi: 10.2134/agronmonogr22
– ident: e_1_2_7_92_1
  doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2
– ident: e_1_2_7_90_1
  doi: 10.1890/03-4037
SSID ssj0006750
Score 2.4485607
Snippet 1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker...
1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker...
Summary 1.  Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell &...
1.  Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker...
Most current climate - carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker...
Summary1.Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell &...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 840
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Atmospheric models
biogeochemical cycles
Biogeochemistry
Biological and medical sciences
Carbon
Carbon cycle
carbon dioxide
carbon sequestration
climate
Climate change
Climate change mitigation
Climate cycles
Climate models
Climate system
Decomposition
degradation
Demecology
Ecosystem models
Ecosystems
Emissions
energy
Forest soils
Fundamental and applied biological sciences. Psychology
General aspects
heterotrophic respiration
heterotrophs
Hydrology
issues and policy
land cover
methane
microbial communities
mycorrhizae
mycorrhizas
net ecosystem production
net primary production
nitrogen
Plants and fungi
Primary production
primary productivity
roots
Simulation
soil carbon
Soil dynamics
Soil ecology
Soil microorganisms
Soil respiration
Special Feature: Plant-Soil Interactions and the Carbon Cycle
Species composition
species diversity
temperature
Terrestrial ecosystems
Wildfires
Title changing global carbon cycle: linking plant-soil carbon dynamics to global consequences
URI https://www.jstor.org/stable/27754276
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2745.2009.01529.x
https://www.proquest.com/docview/208887554
https://www.proquest.com/docview/20796151
https://www.proquest.com/docview/46357995
Volume 97
WOSCitedRecordID wos000268928200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 20231206
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 0022-0477
  databaseCode: WIN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 0022-0477
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7RbStxoVComrYsOXAN8jrOj3srZVeA0AoBK3pBkf9SrVSSarNF7I136BvyJMwk2bCRQKoQt0ixHXk8nvmcGX8D8NwyG8vY4QpYFwWCmyTQqUwDhdAijLQhipe62EQynaYXF_J9m_9Ed2EafojuhxvtjNpe0wZXuupv8uY-lYha2kl0RfIF4sltjmocDWD71YfJ7F1nlxEaszV3OBNJ0s_r-eNYPWe1latynbVIKZSqQinmTfmLHj7dRLm1m5rs_c8JPoQHLVj1zxrtegT3XLEPu035ytU-7LwsEVriw-645r5ePYYvqHZ-fZkYXaLfsI34Ri10WfhmhYOc-m21Bv_6Chf154_bqpx3TeyqUF_npvKXZdd5I937Ccwm40_nr4O2gkNgIilkIDTFeWNFJHih01GYK2ZG3JqQa8lzI42yWlihWZrjuUVaobQMbc65U04zHR7AoCgLdwi-zK1VLOZulEoxckbniXIxU4lKXRQy60GyXqrMtPTmVGXjKts45qA8M5InFd-UWS3P7LsHo67ndUPxcYc-h6gNmbpES5zNPnKK_1IAlknuwUGtIt1YnEgGeRJ7MOzpzO8GaFYRQDAPjtdKlLWWpMKvpugHEPR58Kx7iyaA4jqqcOUNNUkkAdO_txDEOihl5EFca9yd55m9HZ_T09G_djyG-038jbLyTmCwXNy4p7Bjvi3n1WLYbtEhbH1-M_0FlNc3jA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BaUUvPApVQ6HNgWuQ13Ee5gbVVi2UFRKt6AVZfqVaqSTVZou6N_4D_5BfwkySDRsJpApxixTbUezxzJfM-PsAXjrmUpl6XAHnk0hwm0Uml3mkEVrEibFE8dKITWSTSX5-Lj92ckB0Fqblh-h_uNHOaPw1bXD6IT3c5e2BKpF0vJMYi-QrBJT3BOIO0nH4fDzp3TIiY7akDmciy4ZlPX8caRCr7ha6WhYtUgWlrnESi1b9YgBPV0FuE6UOH_7X93sEDzqwGr5presx3PHlFmy08pWLLVh_WyG0xIuNccN9vXgCX9DswuYwMYbEsGUbCa2emaoM7QIHeR12ag3h1SUu6s_vP-pq2jdxi1J_ndo6nFd955Vy76dwdjg-PTiKOgWHyCZSyEgYyvOmmkjwYm-SuNDMjrizMTeSF1Za7YxwwrC8wO8W6YQ2MnYF5157w0y8DWtlVfodCGXhnGYp96NcipG3psi0T5nOdO6TmLkAsuVaKdvRm5PKxqVa-czB-VQ0nyS-KVUzn-omgFHf86ql-LhFnx00B6Uv0BOrs0-c8r-UgGWSB7Dd2Eg_FieSQZ6lAewNjOZ3A3SrCCBYALtLK1KdJ6nxqTnGAQR9Aez3d9EFUF5Hl766piaZJGD69xaCWAelTAJIG5O79Xuqd-MDunr2rx334f7R6YcTdXI8eb8Lm20ujir0nsPafHbtX8C6_Taf1rO9Zrf-AujOOT8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B2qJeeBSqmkLrA1ejzXr9WG7QJuJRRRUQqRdk7ctVpGJHcYqaG_-Bf8gvYcZ2TCyBVCFulry7lndnZz57Zr8P4IVlNpaxwxWwLgoEN0mgU5kGCqFFGGlDFC-12EQymaQXF_K8lQOiszANP0T3w412Ru2vaYO7uc37u7w5UCWilncSY5F8iYByS5CmzAC2Tj-Op2edY0ZszNbk4UwkSb-w549j9aLV3VyV67JFqqFUFU5j3uhf9ADqJsyt49T4wX99w4dwv4Wr_uvGvh7BHVfswU4jYLnag-03JYJLvNgZ1ezXq8fwBQ3Pr48TY1D0G74R36iFLgvfrHCQV36r1-DPr3BZf37_UZWzroldFerrzFT-suw6bxR8P4HpePT55G3QajgEJpJCBkJTpjdWRIMXOh2FuWJmyK0JuZY8N9Ioq4UVmqU5frlIK5SWoc05d8pppsN9GBRl4Q7Al7m1isXcDVMphs7oPFEuZipRqYtCZj1I1muVmZbgnHQ2rrKNDx2cz4zmk-Q3ZVbPZ3bjwbDrOW9IPm7R5wDNIVOX6Iuz6SdOGWBKwTLJPdivbaQbixPNIE9iD456RvO7ATpWhBDMg8O1FWWtL6nwqSlGAoR9Hhx3d9EJUGZHFa68piaJJGj69xaCeAeljDyIa5O79Xtm70cndPX0Xzsew73z03F29m7y4RB2m2Qcleg9g8Fyce2ew7b5tpxVi6N2u_4CHRM56A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+changing+global+carbon+cycle%3A+linking+plant-soil+carbon+dynamics+to+global+consequences&rft.jtitle=The+Journal+of+ecology&rft.au=Stuart+Chapin+III%2C+F&rft.au=McFarland%2C+Jack&rft.au=David+McGuire%2C+A&rft.au=Euskirchen%2C+Eugenie+S&rft.date=2009-09-01&rft.issn=0022-0477&rft.volume=97&rft.issue=5+p.840-850&rft.spage=840&rft.epage=850&rft_id=info:doi/10.1111%2Fj.1365-2745.2009.01529.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon